DOCKETED				
Docket Number:	19-AB-2127			
Project Title:	Implementation of AB 2127 Electric Vehicle Charging Infrastructure Assessments			
TN #:	240667			
Document Title:	Siemens Panelist Presentation ISO 15118			
Description:	N/A			
Filer:	Spencer Kelley			
Organization:	California Energy Commission			
Submitter Role:	Commission Staff			
Submission Date:	11/22/2021 10:59:27 AM			
Docketed Date:	11/22/2021			

Siemens EV Charging Portfolio

Commercial &
Residential
Chargers
"Level 2"

Name: VersiCharge™

- Home, workplace, Utility, longer-term stop areas
- 9.6kW & 11.5kW
- Cell, Wi-Fi, OCPP, Modbus, I/O
- RFID / QR Code
- Hours to charge

DC Fast Charger "Level 3"

Names: Ultra50™ Ultra175 (Q4)

- Primarily car, short term stop locations.
- 50kW / 175kW
- Wi-Fi, Cell, RFID, Credit Card, OCPP coms
- 30 min to charge

DC Heavy Duty Plug-In

Name: Sicharge UC™

- Fleet, eBus & Depots
- **150kW**, 200-850V
- Up to "4" remote dispensers
- OCPP Coms
- Built in Cellular

"Opportunity Charging" Bus Overhead

Name: Sicharge UC™

- Pantograph
- eBus & Fleet charging
- On-route or Depot charging
- 300kW **600kW**
- Minutes to charge

Cloud Service Offerings

Names: Care, Connect, Charge and Control

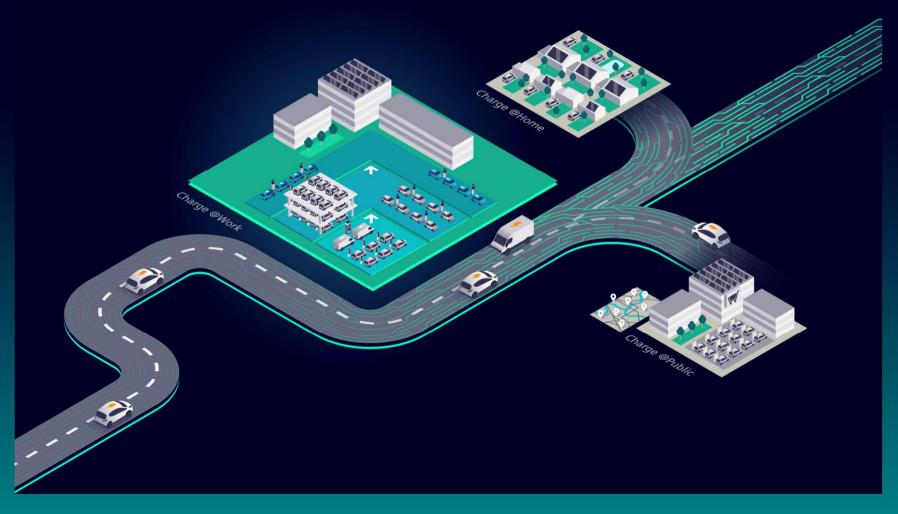
- IoT cloud
 Reporting,
 trending, control,
 alarming and
 billing
- Open connectivity to any OCPP charger

Battery Storage Site Generation

Name: Fluence™

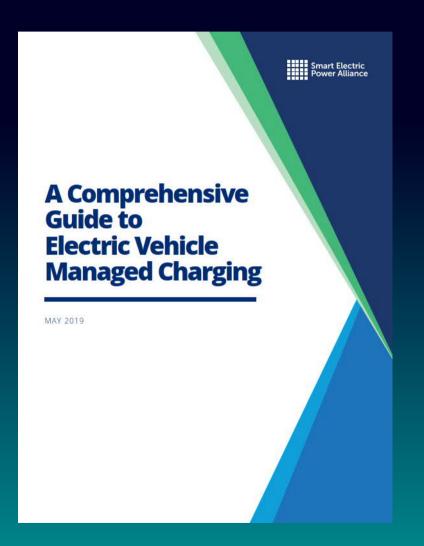
- Modular Battery storage solutions
- 250kW, 500kW and up designs
- Offer backup storage and site grid stability

SIEMENS


Siemens as EV Charging Customer

Fleet of ~11,000 LD vehicles

- Sales representatives
- Service vehicles
- Full transition to electric


Key requirements

- Streamlined user experience
- Charge at home
- Charger at workplace
- Public charging
- Universal payment access to public charging

Industry Adoption

TABLE 11: NUMBER OF MANAGED CHARGING-CAPABLE EVSE MANUFACTURERS BY MESSAGING PROTOCOL TYPE, 2019						
OSCP/ OCPP	OPENADR	ISO/IEC 15118	IEEE 2030.5	API	PROPRIETARY	
29	8	8	4	2	7	

TABLE 12: PROTOCOLS INCLUDED IN AUTOMAKERS' 10-YEAR TIME HORIZON, 2017					
AUTOMAKER	AC CONDUCTIVE DC CONDUCTIVE		WIRELESS INDUCTIVE		
BMW	(SO 15118 (HomePlug Green PHY)	ISO 15118 (HomePlug Green PHY)	ISO 15118		
Fiat Chrysler	IEEE 2030.5	(SO 15118 (HomePlug Green PHY)	WiFi, ISO 15118 v2		
Ford	Telematics & ISO 15118 (future)	ISO 15118 (HomePlug Green PHY)	ISO 15118 v2		
GM	No High Level Communication	DIN Spec, no timeframe for ISO/IEC	WiFi and Telematics		
Honda	TBD High Level Communication, Vehicle to Grid	DIN Spec / <mark>ISO 15118,</mark> Vehicle to Grid	Premium product		
Lucid	ISO 15118 (HomePlug Green PHY)	ISO 15118 (HomePlug Green PHY)			
Mercedes Benz	ISO 15118 (HomePlug Green PHY)	ISO 15118 (HomePlug Green PHY)	J2954 / ISO 15118		
Nissan	Telematics	CHAdeMO	In development		
Porsce/Audi/ Volkswagen	ISO 15118 (HomePlug Green PHY)	ISO 15118 (HomePlug Green PHY)	(In development—2018)		

Thank You