DOCKETED				
Docket Number:	21-IEPR-05			
Project Title:	Natural Gas Outlook and Assessments			
TN #:	239504			
Document Title:	Presentation - Preliminary Natural Gas Market Results			
Description:	Description: 2.A Anthony Dixon, CEC			
Filer:	Raquel Kravitz			
Organization:	California Energy Commission			
Submitter Role:	Commission Staff			
Submission Date:	8/27/2021 3:02:10 PM			
Docketed Date:	8/27/2021			

Preliminary Natural Gas Market Results

August 30, 2021

Anthony Dixon, Lead Natural Gas Markets Forecaster Energy Assessments Division, Supply Analysis Office

NAMGas Model: Construction

- Created in the MarketBuilder platform
 - Well-vetted general equilibrium modeling logic capturing North American market
- Updates to the 2021 NAMGas model:
 - Demands in North America to reflect current market trends
 - North American pipeline system capacity
 - Newest information on gas reserves and costs
- Vetting of staff assumptions and results

NAMGas Model: Modeling Flow

NAMGas Model: Simplified View

Natural gas supply basins Connected to Interstate and Intrastate pipelines Connected to Demand centers

Supply
Transmission
Demand

- Model iterates among the three components to find economic equilibrium at all nodes at all time periods
- Results give prices, demand, and supply at equilibrium

2021 IEPR Changes:

- NAMGas expanded from an annual model to a monthly model
 - Accounts for seasonal demand patterns
 - Accounts for storage
- New Resources Allocation Model (natural gas supplies)
 - Previous versions of NAMGas used old data given to CEC by consultant
- Streamlined nodes to better capture market trading locations (hubs)

2021 IEPR Common Cases

Staff Scenarios/Common Cases:

- High-Demand
- Mid-Demand (Business as usual)
- Low-Demand

All cases assume Senate Bill 100 - Zero carbon sources for power generation by 2045.

Input Category	High Demand	Mid Demand	Low Demand
GDP/GSP	High Case in EIA's 2021 Energy Outlook: 3.4% Annual GDP Growth	Reference Case in EIA's 2021 Energy Outlook: 2.6% GDP Growth	Low Case in EIA's 2021 Energy Outlook: 1.7% Annual GDP Growth
Renewables	CA and Other US States Meeting RPS Targets	CA and Other US States Meeting RPS Targets	CA and Other US States Meeting RPS Targets
US Initial Demand 2021 EIA/2019 CED/PLEXOS	38.40 Tcf	37.87 Tcf	27.86 Tcf

IEPR Common Cases: Key Assumptions, CA Reference Demand

CA Reference Demands:

- Uses 2019 CED for all CA demand except electric gen
- Electric gen is from July 2021 PLEXOS modeling results
- Elasticities are turned off for CA demand and WECC electric gen demand

CA Total		High-Demand	% Change	Mid-Demand	% Change	Low-Demand	% Change
CA TOLAT							
2	020	1.76		1.75		1.73	
2	021	1.98	12.15%	1.87	6.89%	1.77	2.38%
2	022	1.94	-1.97%	1.84	-1.31%	1.72	-2.72%
2	023	1 94	0.23%	1 84	0.03%	1 72	-0 32%
2	020	1.04	0.2070	1.04	0.0070	1.72	0.0270
20	024	1.94	0.03%	1.83	-0.74%	1.70	-1.33%
2	025	1.97	1.50%	1.83	0.14%	1.69	-0.30%
2	026	1.99	0.74%	1.82	-0.82%	1.66	-1.80%
2	027	2.00	0.78%	1.80	-0.97%	1.65	-0.93%
20	028	1.99	-0.43%	1.77	-1.65%	1.63	-1.17%
2	029	1.98	-0.71%	1.73	-1.97%	1.62	-0.44%
2	030	1.94	-1.85%	1.71	-1.45%	1.61	-0.82%
average %							
change			1.05%		-0.18%		-0.75%

Continued IEPR Common Cases:

Key Assumptions

Input Category	High-Demand	Mid-Demand	Low-Demand
US Supplies	Proved: 289 Tcf	Proved: 289 Tcf	Proved:289 Tcf
2021	Potential: 4,304 Tcf	Potential: 3,311 Tcf	Potential: 2,317 Tcf
Resource	30% Lower Than 2020	2020 Inputs	30% Higher Than
Capital Costs	Inputs		2020 Inputs
Resource	30% Lower Than 2020	2020 Inputs	30% Higher Than
O&M Costs	Inputs		2020 Inputs
Proved Supply	30% Lower Than Mid	Estimated Based on	30% Higher Than Mid
O&M Costs	Case in 2020 and after	Hub Prices	Case in 2020 and after

US Gas Demand Projections

Total US gas demand to increase 5% by 2030 (at about 1% per year)

By 2030:

- Residential declines 9%
- Commercial increases 3%
- Industrial increase 8%
- Electric gen increase 1%
- Vehicle use increase 58%

NAMGas Preliminary Results Henry Hub

- Henry Hub is National Benchmark Price - Used for NYMEX futures, forwards, and common hedges
- Prices increasing 4% per year, higher increase the first five years (5.6%)
- Prices show greater seasonality in later years
- Prices are lower than 2019 IEPR projections in early years 2021-2024, then within 5% difference 2025-2030

Monthly Henry Hub Prices

NAMGas Preliminary Price Results California Supply Basins

California Supply Basins

- Canada (AECO-C)
- Rocky Mountains (Opal)
- Four Corners Area (San Juan)
- West Texas/Eastern New Mexico (Permian)

Supply Basin Prices Remain Low

- Low cost of "fracking"
- High proved and potential supplies
- Prices see more seasonality in later years
 - As demand increase, winter demand increases more compared to other seasons leading to less slack capacity pushing prices higher

California Supply Basins Mid-Demand Prices

NAMGas Preliminary Results California Border

- Increased seasonality
 Less slack capacity
- Border prices follow Henry Hub prices
- These prices exclude extreme events (polar vortex, heat waves)

California Border Prices and Henry Hub

- PG&E Citygate prices climb steadily in all three case
- High-demand case prices exceed the mid-demand case
 - Less slack capacity in higher demand months

Annual Average PG&E Citygate Prices

NAMGas Preliminary Results SoCalGas Citygate

- SoCal Citygate prices climb steadily in all three case
- High-demand case prices exceed the mid-demand case
- Summer seasonal impacts

Annual Average SoCal Citygate Prices

Monthly SoCal Citygate Prices

15

Methodology Revisions: Transportation Rates

NG market differentiates transportation from commodity procurement service

- Gas utilities purchase gas only for core customers
- Noncore customers must buy their own gas
- Commodity procurement price is set in an open, liquid market
- Delivered cost to ratepayers procurement price plus the rate charged by gas utility to transport gas
- Delivered cost is also called a "burner tip" price

CEC Need for Transportation Rates

CEC applies transportation rates in modeling and analysis

- CEC demand forecast, gas price forecast, production cost modeling

 CED Demand Sectors: Residential, Commercial, Industrial
 Electric Generation Demand derived from PLEXOS modeling
- Old method took published rates from tariffs
 - New method computes average rate for each class like what utilities do in calculating rates for rate cases
- Appears non-EG rates escalated in 2019 IEPR but EG did not goal to improve logic and consistency

Transportation Rate Methodology New Rates Approach: Six Steps

- 1. Start with transportation-only revenue requirement
- 2. Divide class dollars by total RR to get allocation (spread) factors
 - 3. Check step: divide those dollars by class demand to confirm 2021 baseline rates
- 4. Escalate revenue requirement for each year
- 5. Multiply by 2021 allocation factors
- 6. Divide by class forecast annual demand

(2021 Transp RR * Escalator * Class Spread Factors) / Class Demand = Class Average Rates

Three key variables drive forecasted rates:

Revenue requirement annual escalator
 Class revenue allocation factors
 Forecast annual demand by class

Notes on forecasted rates:

- If RR is constant & demand declines, then rates increase
- CEC demand differs from utilities' forecasts, so rates don't exactly match
- 2019 IEPR forecast only went to 2030. So held demand constant afterwards for preliminary rates

Data series on transportation revenue requirement from CPUC Gas & Electric Utility Cost Reports and the 2020 and 2021 "January 1" advice letters.

What should we use as escalator on revenue requirements?

- 2.3% (real) in this iteration. Too conservative?
- Switch to the 12-year recorded escalation? Too aggressive? Trend seems to change in 2016
- Want to ID specific programs driving cost and sound logic to switch; not arbitrary or trend

How should we treat revenue allocation to customers classes?

- Held constant in this iteration?
- On what basis should they change?

Delivered price calculation:

Delivered Price = Commodity Price (NAMGas Citygate Price) + Transportation Rate (New Model)

- Input to IEPR California Energy Demand Forecast (Natural Gas)
- Results for PG&E, SoCalGas, and SDG&E service territories include:
 - Residential, commercial, and industrial classes

Industrial, Mid-Demand Case

All rates in mid-demand case grow at an average of about 2% per year, close to revenue requirement escalation factor.

Preliminary Natural Gas Market Results Conclusion

Thank You

Anthony Dixon Anthony.Dixon@energy.ca.gov 916-654-4882