DOCKETED	
Docket Number:	21-IEPR-05
Project Title:	Natural Gas Outlook and Assessments
TN #:	239289
Document Title:	Presentation - PG&E Attachment to Comments on IEPR Workshop on Hydrogen Comments - Presentation - PG&E Attachment to Comments on IEPR Workshop on Hydrogen
Description:	N/A
Filer:	Elizabeth Lopez
Organization:	PG&E
Submitter Role:	Public
Submission Date:	8/11/2021 4:43:18 PM
Docketed Date:	8/11/2021

PG&E Gas R&D Hydrogen Efforts

2021-06-17

Hydrogen Production

GTI Compact Hydrogen Generator 2019 – Present

- Modular heat engine for direct conversion of natural gas to hydrogen and power using hydrogen turbines
- Phase 1 –
 Technoeconomics of system
- Phase 2 demo in-situ H2 storage for load following and clean power generation

CZERO Methane Pyrolysis 2019 – 2020

- Generate hydrogen and solid carbon from natural gas through methane pyrolysis using molten salts.
- Scale-up reactor and explore cement market for carbon co-product .

Hydrogen Blending and Injection

HYREADY Joint Industry Project – Engineering guidelines for hydrogen blending 2017 - Present

- Complete: Transmission, Distribution, End use equipment, Compression
- In Progress: UGS, Interconnection Facilities, 100% Transmission

NREL Joint Industry Project - HyBlend

2021 - 2023

- Address technical barriers to blending hydrogen in natural gas pipelines.
 - Hydrogen compatibility of piping and pipelines
 - o Life-cycle analysis
 - o Techno-economic analysis
- \$12.45M from DOE & \$4-5M from participants.

Hydrogen Blending and Injection

NYSEARCH RANGE Model Enhancement – Gas Interchangeability Analysis for Appliances 2019 – 2020

- Spreadsheet based interchangeability assessment model to project performance of in-service residential appliance populations
- Hydrogen-natural gas blend test data improve model's predictions for power-to-gas RNG

ver	Limit Analysis		CO Sensitivity		lame Sensitivity	Summa	ary	Correlations			About		User	
Gas	Gas Composition Input: limitco 6.0 limitco 50 15.0 limittip 5.0 limittift 1.0													
		Min	Low	Max	Max Limit Criteria (% of appliance population exceeding									
							ANSI CO Standard					6.0		
Ca	rbon	4.000	1.000	1.54	0.000	0.000	50% of ANSI CO Sta				ard	d 15.0		
Dio	oxide						Yellow Tipping					5.0		
Oxy	ygen	0.000	0.000	0.00	0.000	0.000	Lifting						1.0	
Nitro	ogen	0.000	2.000	0.00	0.000	0.000	Save Changes							
Meth	hane	93.000	95.000	94.99	94.000	91.000								
Eth	hane	2.500	1.000	1.21	2 4.500	6.000	Pass/Fail Relative To Limit Criteria:							
Prop	pane	0.500	0.500	1.42	8 1.500	3.000	Pass					Fa	Fail	
i-Bu	itane	0.000	0.500	0.00	0.000	0.000		Min	Low	Base	High	Max	Data	
	n-	0.000	0.000	0.00	0.000	0.000	ANSI CO	2.7%	3.2%	3.7%	5.7%	6.9%	3.9%	
Bu	itane						50% ANSI	6.0%	7.8%	8.9%	12.0%	13.3%	8.9%	
	i-	0.000	0.000	0.00	0.000	0.000	Yellow Tip.	1.3%	1.6%	1.6%	2.7%	4.1%	1.6%	
Pen	itane						Lifting	0.8%	0.4%	0.4%	0.3%	0.2%	0.4%	
Pen	n- itane	0.000	0.000	0.00	0.000	0.000								
C6+ n	+ (as I-C6)	0.000	0.000	0.00	0.000	0.000								
	Total	100.000	100.000	99.1	76 100.000	100.000								

NYSEARCH Hydrogen Impacts on Elastomers 2020 – 2021

- Determine if blending hydrogen (<20%) into a fuel gas will change the physical properties of elastomers used as materials of construction in a natural gas delivery system
- Include: material comparative tests

Hydrogen Blending and Injection

PRCI Hydrogen State-Of-The-Art Study 2020

Objective: Identify R&D needed for companies to safely & reliably inject hydrogen into their pipelines at certain blend levels.

Technical Subjects

- 1. Integrity
- 2. Safety
- 3. End Uses
- 4. Metering
- 5. Network Management
- 6. Maintenance and Inspection
- 7. H2/NG Separation
- 8. Underground Gas Storage

Link to report

Hydrogen Utilization

UCR Heavy-Duty Truck Engine Blend Study 2021 – 2022

- Test the impacts of blending hydrogen in natural gas up to 5% H₂ on the emissions and durability of a Cummins L9N 8.9 liter near-zero natural gas engine.
- Phase 1: Emissions Testing
- Phase 2: Durability Testing

GTI High Hydrogen-Content Fuel in Residential / Commercial Combustion Equipment 2020 – 2022

 Adapt and demonstrate solutions to utilize highhydrogen (H₂) blends (> 50% H₂ by volume) and 100% H₂ in residential and commercial combustion equipment

Thank you

Danielle Mark Senior Gas Engineer PG&E Gas R&D and Innovation Danielle.Mark@pge.com | 925-813-8191

