DOCKETED				
Docket Number:	21-IEPR-03			
Project Title:	Electricity and Natural Gas Demand Forecast			
TN #:	239170			
Document Title:	Presentation - Historic Zero-Emission Vehicle (ZEV) Trends			
Description:	S2.01 Gage, Bahreinian, McBride, Aragon, Deaver, Marshall_CEC			
Filer:	Raquel Kravitz			
Organization:	California Energy Commission			
Submitter Role:	Commission Staff			
Submission Date:	8/3/2021 12:47:51 PM			
Docketed Date:	8/3/2021			

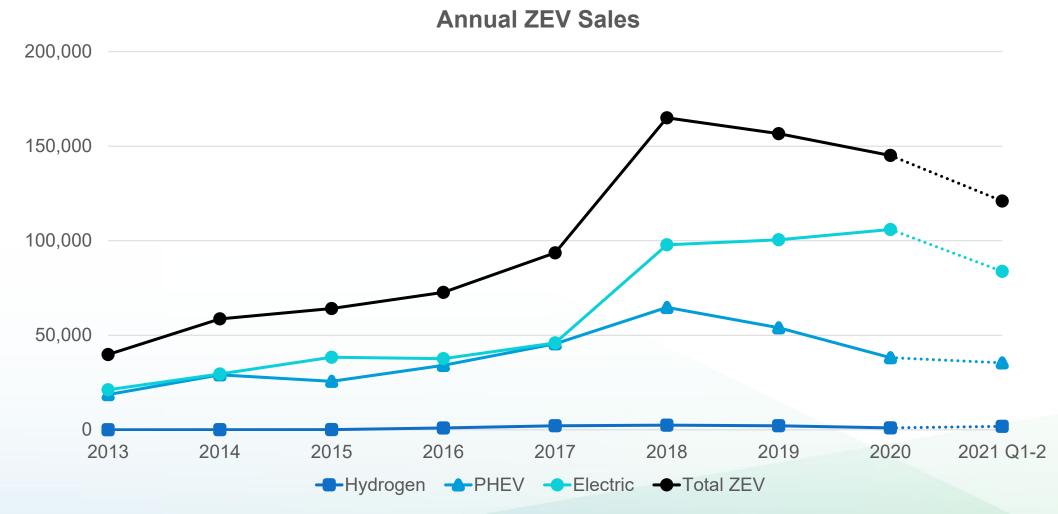
Historic Zero-Emission Vehicle (ZEV) Trends


IEPR Workshop on Electricity and Natural Gas Demand Forecast: Inputs and Assumptions August 5, 2021

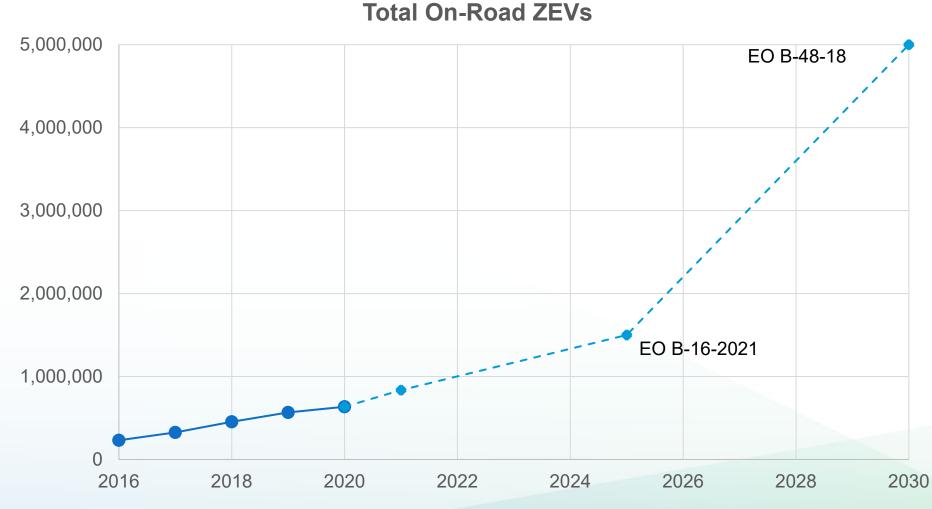
Jesse Gage Jesse.Gage@energy.ca.gov

ZEVStats is Your Official Source for... ZEV Stats

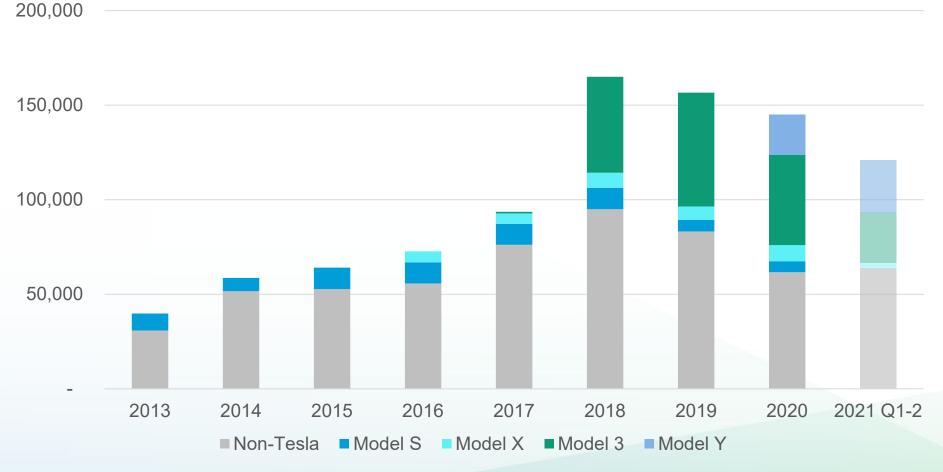
- Historical on-road ZEV
 population
- Sales of new ZEVs, updated quarterly
- Infrastructure data such as EV chargers and H2 stations
- Medium/Heavy-Duty ZEV data in the works
- Just type "ZEVStats" in Google, Bing, or DuckDuckGo



https://www.energy.ca.gov/data-reports/energy-insights/zero-emission-vehicle-and-charger-statistics


- Record ZEV sales in 2021 and 10% sales share look likely
- 1.5 million on-road ZEV by 2025 looks within reach; 5 million by 2030 may need help
- Tesla is the largest ZEV maker, but not a majority
- ZEV models are diversifying and will soon be offered for nearly all light-duty market segments

2021 Q1-2 sales data is through June 2021 and is approximate. Source: Zevstats.



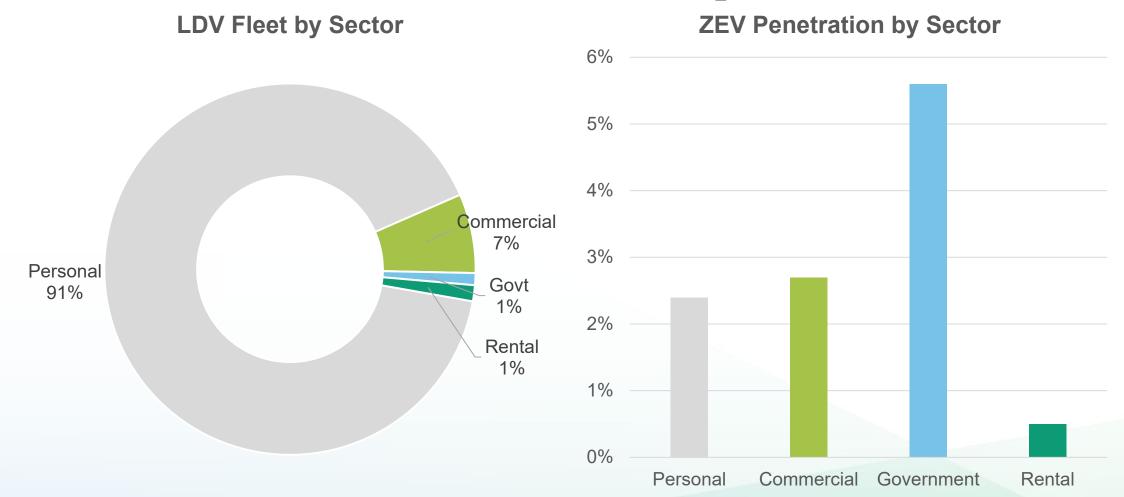
Source: Zevstats.

5

Tesla's Sales Share is Dominant, but not Absolute

ZEV Sales by Tesla Models, and Other Manufacturers

Source: Zevstats.


ZEV Sales Charts: The Top Ten

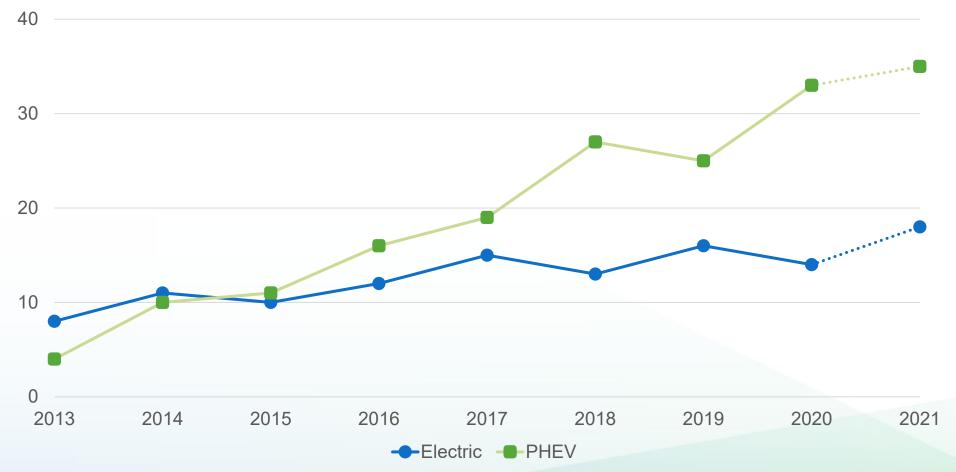
Rank	Make	Model	Fuel	2021 Q1-2 Sales
1	Tesla	Model Y	Electric	27,924
2	Tesla	Model 3	Electric	26,671
3	Chevrolet	Bolt EV	Electric	10,983
4	Toyota	Prius Prime	PHEV	10,535
5	Toyota	RAV4 Prime	PHEV	2,841
6	BMW	5 Series	PHEV	2,504
7	Ford	Mustang Mach-E	Electric	2,466
8	Nissan	LEAF	Electric	2,401
9	Audi	e-tron	Electric	2,247
10	Honda	Clarity PHEV	PHEV	2,236

			F	All-Time
Rank	Make	Model	Fuel	Sales
1	Tesla	Model 3	Electric	186,145
2	Chevrolet	Volt	PHEV	79,717
3	Tesla	Model S	Electric	74,719
4	Nissan	LEAF	Electric	56,036
5	Chevrolet	Bolt EV	Electric	55,949
6	Toyota	Prius Prime	PHEV	55,486
7	Tesla	Model Y	Electric	49,303
8	Tesla	Model X	Electric	36,227
9	Ford	Fusion Energi	PHEV	30,361
10	FIAT	500e	Electric	29,824

Source: <u>Zevstats</u> and staff analysis of DMV Vehicle Registration Database.

Govt/Rental sectors small, but have anomalous ZEV penetration

Includes all light-duty vehicles model year 2000 and later. Source: Staff analysis of DMV Vehicle Registration Database.


ZEV Model Availability Beginning to Look Like ICE

Source: Staff analysis of DMV Vehicle Registration Database.

Available Electric and PHEV Models for Sale in California

Source: Zevstats and staff analysis of DMV Vehicle Registration Database.

Toyota Mirai

Honda Clarity FCV

Image source: Toyota

Hyundai Nexo

Image source: CEC Staff. Dog not included.

Image source: Honda

Thank You!

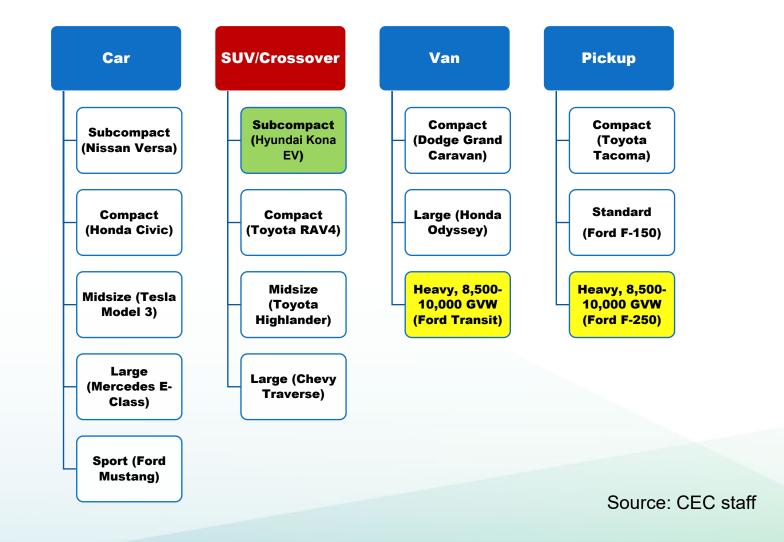
Transportation Forecasting: Light Duty Vehicle Model Updates

IEPR Workshop on Electricity and Natural Gas Demand Forecast: Inputs and Assumptions August 5, 2021

Aniss Bahreinian aniss.bahreinian@energy.ca.gov

Overview of Updates

- Forecasting Inputs
- Model Updates
- Light Duty Vehicle Classes

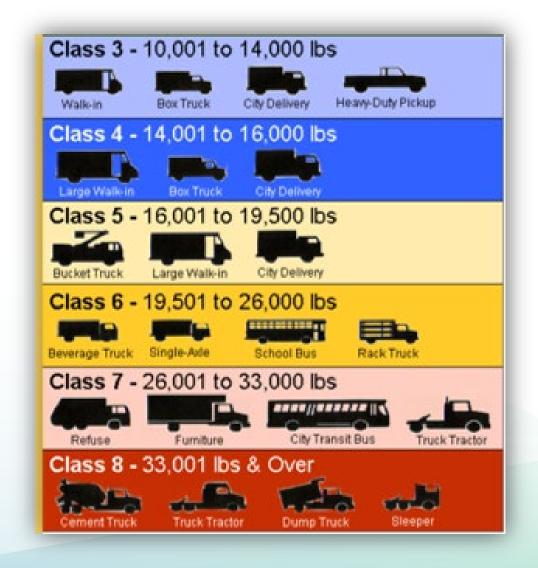

- Economic & Demographic Data,
- Energy Prices,
- Vehicle attribute (price, range, MPG ...etc) forecasts **<u>updating</u>**:
 - All attribute values,
 - Technology introduction & elimination schedules,
 - Differentiating between luxury and standard vehicle attributes,
 - Light duty vehicle attribute forecast scenarios includes one on the 2035 ICE sales ban for a potential ZEV demand forecast scenario.

Forecasting Horizon: 2021-2035

- Consumer preferences in the <u>newly estimated models</u> reflect the snapshot of consumer preferences, in the residential and commercial market segments, captured in the <u>2019 California Vehicle Survey</u> <u>data</u>,
- Differentiating between **luxury and standard** vehicle preferences,
- Higher resolution of income category; <u>10 income categories</u> vs 7 in prior forecasts,
- 514 household types vs 362 household types in prior forecasts,
- Rebate incentives <u>by threshold income category</u>, more consistent with current CVRP practice.

New Vehicle Classes: 15 New Classes vs 18 Legacy Classes

Thank You!



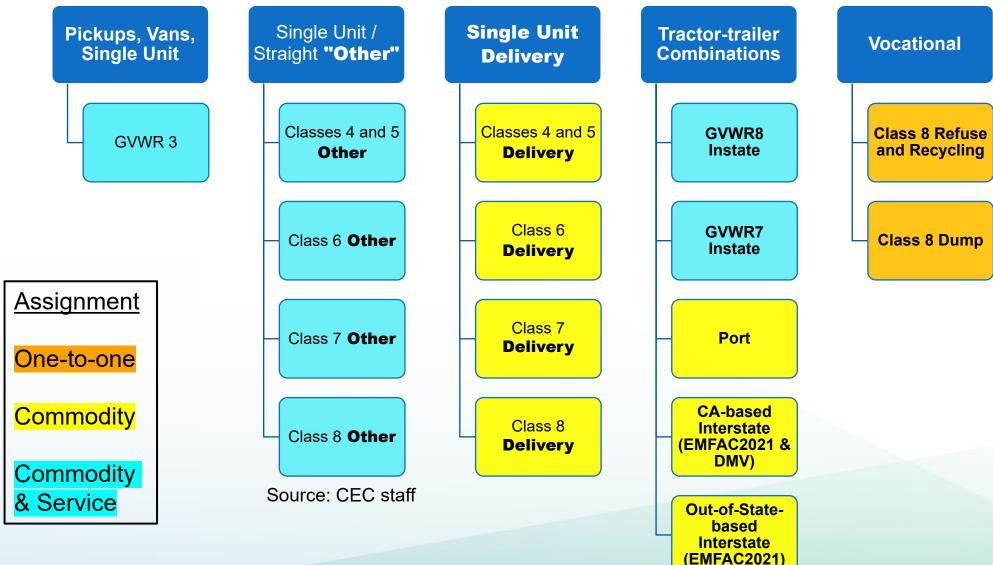
Truck Choice and Freight Model Inputs and Assumptions – 2021 IEPR

Presenter: Bob McBride, Energy Commission Specialist Date: August 5, 2021

MD-HD Truck Model and Data Changes since IEPR 2020

- Update commodity growth and service growth based on economic projections
- Reclassify trucks to stay comparable to CARB's EMFAC 2021
- Allocate freight-tons to new truck classes for Classes 4 to 8
- Update truck prices and fuel economy
- Update the availability matrix of fuel types and truck classes
 - Dropped dedicated ethanol and catenary electric
 - Added Class 6 hydrogen
- Removed the restriction on daily movement of battery-electric trucks to their nominal range
- Update the distribution of intermodal rail and truck freight tons

Powertrain Availability Matrix (draft)


	Diesel- Electric Hybrid	Battery electric	Gasoline	hydrogen fuel cell	natural gas	propane	diesel	Diesel PHEV	gasoline hybrid
GVWR3	Null	2016	1995	Null	Null	2000	1995	Null	2020
GVWR4and5	2010	2016	1995	Null	2000	2000	1995	Null	2020
GVWR4and5 Delivery	2010	2016	1995	Null	2000	2000	1995	Null	2020
GVWR6	2010	2016	1995	2027	2000	2000	1995	Null	Null
GVWR6 Delivery	2010	2016	1995	2027	2000	2000	1995	Null	Null
GVWR7	2010	2024	Null	Null	2003	Null	1995	Null	Null
GVWR7 Delivery	2010	2024	Null	Null	2003	Null	1995	Null	Null
GVWR7 COMBO	Null	2021	Null	Null	2003	Null	1995	Null	Null
GVWR8_SU	Null	2024	Null	Null	2000	Null	1995	2025	Null
GVWR8 REFUSE AND RECYCLING	2020	2023	Null	Null	2000	Null	1995	Null	Null
GVWR8 COMBO	Null	2021	Null	2022	2007	Null	1995	2025	Null
GVWR8 IRP	Null	Null	Null	TBD	2000	Null	1995	Null	Null
GVWR8 PORT	Null	2021	Null	2022	2007	Null	1995	2025	Null
GVWR8_SU DUMP	Null	2024	Null	Null	2000	Null	1995	TBD	Null
GVWR8 CAIRP	Null	Null	Null	TBD	2000	Null	1995	Null	Null
GVWR8 PUBLIC AND UTILITY	Null	2024	Null	Null	2000	Null	1995	TBD	Null

Source: CEC staff

- Annual miles per truck estimated using a fitted equation from EMFAC 2021 miles per truck by class and vintage
- Survival rates by model year are a statewide average of EMFAC 2021 stock proportions through time (to represent retirements, imports, and sales of used trucks)
- Truck fuel economy values from EMFAC 2021 where they exist. Supplemented with ICF's research for additional fuels using GREET and HD Systems data

Commodity Assignment to Truck Class (**Remainder Becomes Service Trucks**)

Questions?

Production Cost Model Preliminary Inputs, Assumptions, and Results

2021 Integrated Energy Policy Report (IEPR)

Presenters: Hazel Aragon, Electric Generation System Specialist I Paul Deaver, Electric Generation System Program Specialist I

Date: August 5, 2021

- IEPR Preliminary Common Case Overview
- Inputs and Assumptions
 - Load forecast
 - Renewable portfolio build
 - Hydro updates
 - Thermal fuel and price updates
- Selected Simulation Results
 - Natural gas demand for electric generation
 - Greenhouse gas emission projections
 - California generation

	2020 CA Energy			2030 RPS
Common Case	Demand Update	Price	Energy Efficiency	Target
High Energy Consumption	High	Low	Low AAEE	60%
Mid Energy Consumption	Mid	Mid	Mid AAEE	60%
Low Energy Consumption	Low	High	High AAEE	60%

*AAEE = Additional Achievable Energy Efficiency

*RPS = Renewable Portfolio Standard

Preliminary Inputs and Assumptions

CA Energy Demand for PLEXOS Simulations

• Preliminary IEPR simulations used 2020 CA Energy Demand Update

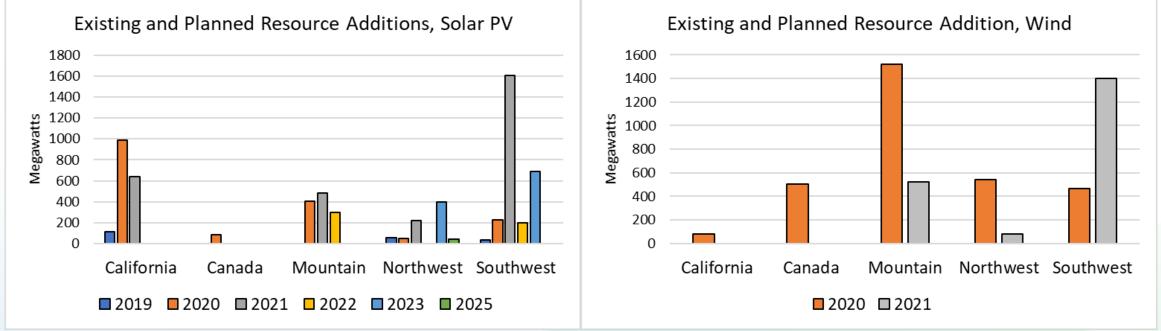
- Hourly load and modifiers for Investor-Owned Utilities (IOUs)
 - Add "Leap Day" only modification
- Annual load and modifiers for Publicly Owned Utilities
 - Loads shaped using CEC-developed shape from historical data
 - Modifiers calculated and shaped using nearest IOU profile
- Mid-Mid / High-Low / Low-High Cases used
- <u>https://www.energy.ca.gov/data-reports/reports/integrated-energy-policy-report/2020-integrated-energy-policy-report-update-0</u>

• Data obtained from various sources

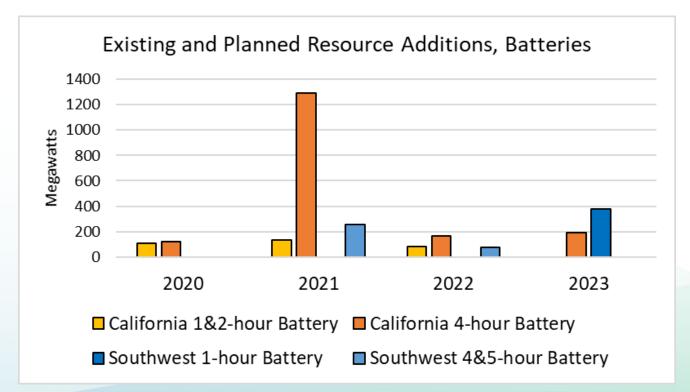
- Western Electricity Coordinating Council (WECC) Loads and Resources - Peak and Energy for 2024 through 2030 only
- Federal Energy Regulatory Commission 714 filings
- Utility Integrated Resource Plans (IRPs)
- High and Low Cases developed using U.S. Energy Information Administration (EIA) 861 regional electricity sales forecast data by category (Residential, Industrial, Commercial)
- Adjustments made in certain areas to smooth / control growth

Rest of WECC Loads (cont.)

- For out of state (OOS) loads, for the mid case:
 - Use historical data (2014-2018) by Balancing Authority Area or state to create average monthly load duration curves (LDC)
 - Create a base year LDC (2018) to order average monthly LDCs
 - Re-order average LDCs based on 2018 chronology
- For the low and high cases use 2020 EIA Annual Energy Outlook:
 - Percent difference between mid/low and mid/high to get multipliers
 - Use multipliers on mid case to get low/high cases


- Hitachi ABB Energy Velocity Suite subscription database / WECC Anchor Dataset (ADS) / Trade Press / IRPs
- Once Through Cooling compliance dates
- "Generic" renewable additions for RPS Requirements
- Updates captured through January 2021

- Additional 5,450 megawatt (MW) in WECC-wide retirements by 2030 not captured in the previous IEPR cycle:
 - 3,360 MW in coal capacity retiring
 - 1,740 MW in gas capacity retiring
 - Remaining 340 MW in biomass, landfill gas, hydro resources



- Solar photovoltaic (PV) and wind additions to the Preliminary IEPR 2021 cycle
- Planned resources include those under construction, some regulatory approval or level of confidence in projects coming online

- 1, 2, 4, or 5-hour battery storage additions to the Preliminary IEPR 2021 cycle
- Planned resources include those under construction, some regulatory approval or level of confidence in projects coming online

- Wind/Solar original source:
 - California: Use California Independent System Operator data and aggregate
 - Rest of WECC: National Renewable Energy Laboratory data
- For this update: changed all times to Pacific Standard Time, and do not adjust for daylight savings
 - Provides consistent estimates as solar PV generation can change greatly in an hour or two

• Estimated RPS energy targets in the mid demand

Estimated Mid Demand Annual RPS Targets (GWh)									
State	2022	2026	2030						
Arizona	7,384	13,574	20,112						
California	89,812	117,393	143,384						
Colorado	10,387	10,629	11,194						
Montana	1,239	1,264	1,296						
New Mexico	3,144	7,247	9,510						
Nevada	8,374	9,296	13,826						
Oregon	7,013	11,209	14,256						
Utah	4,210	5,094	5,239						
Washington	11,834	11,901	12,149						
Total	143,397	187,607	230,966						

 Additional capacity is added to the model as "generic" to meet the RPS target

Mid Demand Installed Generic Capacity to Meet California's RPS (MW)									
	2022	2026	2030						
RPS Biomass	0	248	429						
RPS In-State	0	248	429						
RPS Out-of-State	0	0	0						
RPS Geothermal	0	55	109						
RPS In-State	0	55	96						
RPS Out-of-State	0	0	13						
RPS Solar PV	0	7,939	14,702						
RPS In-State	0	7,939	13,773						
RPS Out-of-State	0	0	929						
RPS Wind	0	1,418	4,967						
In-State	0	1,418	2,461						
RPS Out-of-State	0	0	2,506						
Total MW	0	9,660	20,208						

Additional 4-hour capacity is added to the model as "generic" to meet zero unserved energy

High Demand Case Generic 4-Hour Battery Capacity (MW)									
Region	2022	2022 2026							
California	1,445	3,099	4,499						
Northwest	140	140	140						
Southwest	319	2,300	2,300						
Mountain	88	88	88						
Grand Total	1,992	5,627	7,027						

Hydro Generation Input Data

- 2005 to 2019 average monthly generation by plant
 - Quarterly Fuel and Energy Report (QFER) data for CA
 - EIA data (via Hitachi ABB Energy Velocity) for rest of WECC
 - Conventional hydro only
- California annual total generation ~ 27 terawatt-hours (TWh)
- Rest of WECC annual total generation ~ 211 TWh
- Constraints added to CAISO and PNW to ensure minimum generation

Nuclear Refueling Schedule

- Diablo Canyon / Palo Verde / Columbia Generating Station
- Use historical patterns for refuel outages from EIA data
- Outage duration ~ 5 weeks every 18 months
- Unit outages staggered no overlap at Diablo Canyon and Palo Verde
- Diablo Canyon units retires in 2024, 2025

- Use public data to update natural gas plant operating attributes
 - Environmental Protection Agency (EPA) Continuous Emissions Monitoring System (CEMS)
 - Index of /DMDnLoad/emissions/hourly/monthly/ (epa.gov)
- For this update, used 2014-2018 hourly data to create a relationship between fuel use and output, and remove outliers
 - Staff white paper describes the method in detail:
 - Updating Thermal Power Plant Efficiency Measures and Operational Characteristics for Production Cost Modeling | California Energy Commission

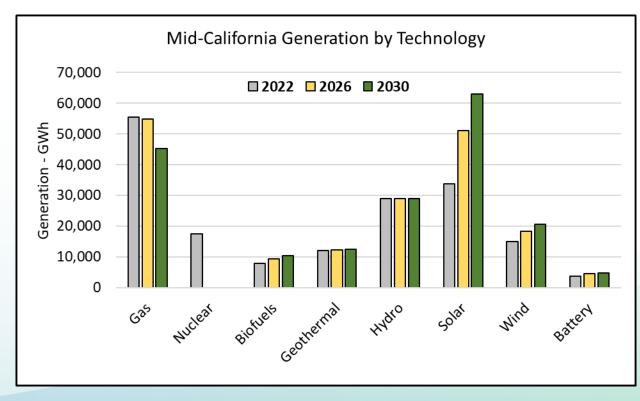
- Deflator series U.S. Bureau of Economic Analysis, Mood's Analytics Forecasted
- Greenhouse gas (GHG) prices CEC, <u>Alberta Government</u>, <u>British</u> <u>Columbia Carbon Tax</u>
- Updates to coal and gas cold start costs and thermal variable operations and maintenance costs – WECC ADS, EIA
- June 2021 natural gas burner tip price* CEC North American Gas-Trade (NAMGas) team

• Except for super critical coal, all other thermal technologies saw a decrease in start costs

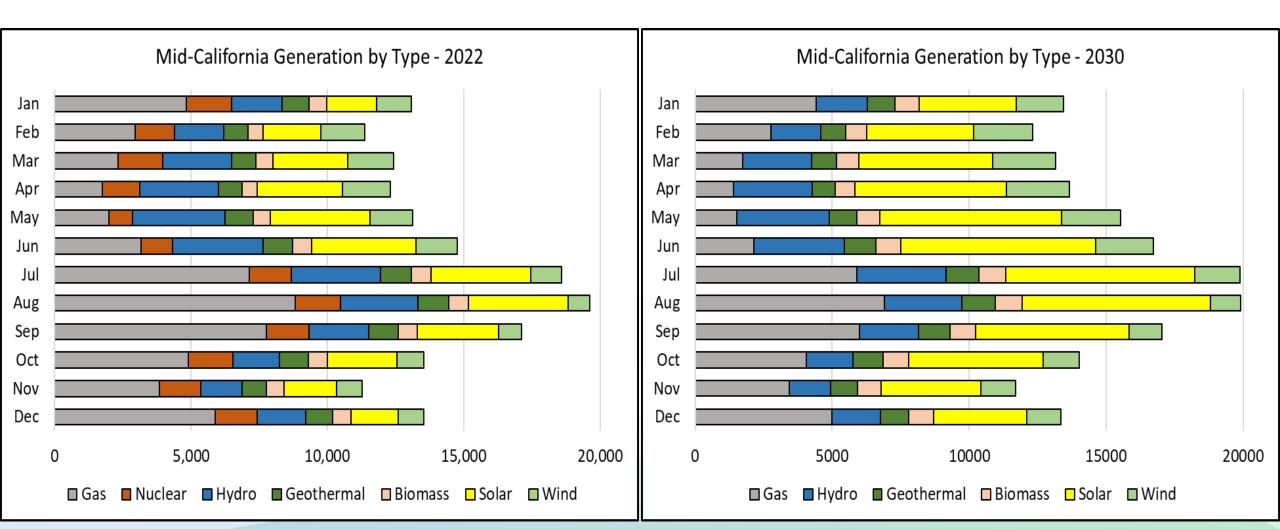
		Cold St 2019\$	art Data -		oad Variable - 2 019\$	\$ Dif	ference	(2019\$)
WECC - Unit Type	PLEXOS - Unit Type		ost (\$/MW	(\$/M	Wh)	Cold Start		Baselo Variab Cost	
Coal - Small Sub Critical	COAL_SML	\$	142.25	\$	1.77	\$	(22.90)	\$	(1.40)
Coal - Large Sub Critical	COAL_LRG_SUB	\$	112.61	\$	2.37	\$	(5.35)	\$	(0.64)
Coal - Super Critical	COAL_LRG_SUP	\$	124.47	\$	3.71	\$	7.63	\$	0.39
Gas - Steam	GAS_ST	\$	66.19	\$	0.29	\$	(18.07)	\$	(0.75)
Gas - Large Frame CT	GAS_SC_LRG	\$	56.31	\$	0.55	\$	(59.41)	\$	(0.09)
Gas - Aero Derivative CT	GAS_SC_AERO	\$	27.66	\$	0.44	\$	(8.29)	\$	(0.30)
Typical CC [GT+HRSG+ST]	GAS_CC	\$	74.09	\$	2.07	\$	(14.67)	\$	0.93

EIA - Unit Type	Plexos Child Name		&M Cost - 2019\$
			-
50-MW Biomass Plant	Biomass	Ş	4.83
50-MW Biomass Plant	Wood	\$	4.83
Internal Combustion Engines -			
Landfill Gas	Landfill Gas	\$	6.20
Geothermal	Geothermal	\$	1.16

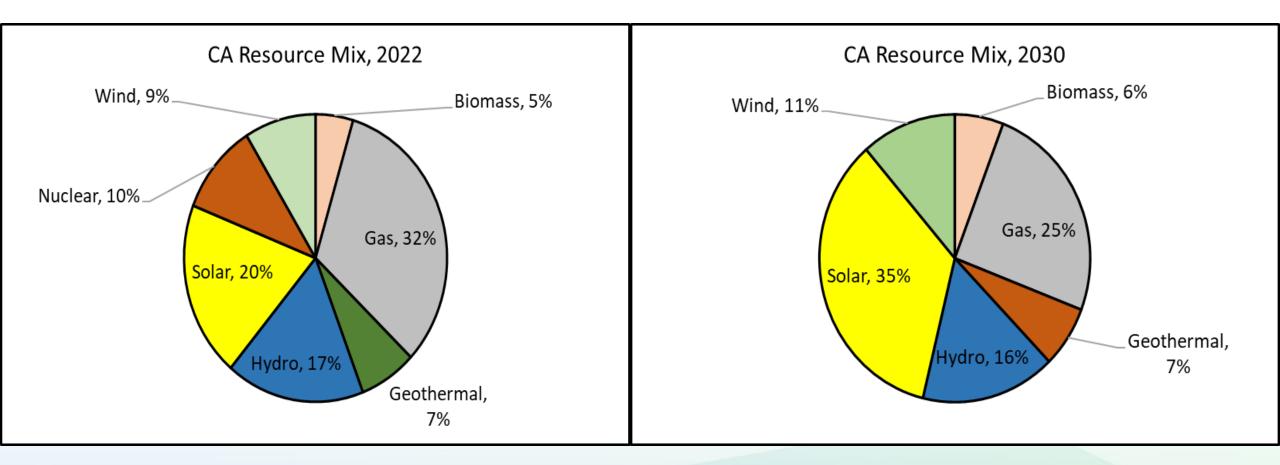
- Items we would like to address permitting the time:
 - Finalize iterations with the NAMGas team on the burner tip prices
 - Update the renewable and battery portfolio to account for the recent CPUC Proposal Decision, which adds 11,500 MW of NQC capacity
 - Apply more emphasis on system reliability not only in the summer but also in the winter

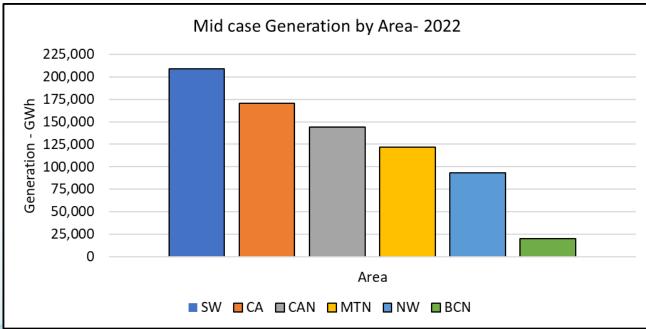


Preliminary Results

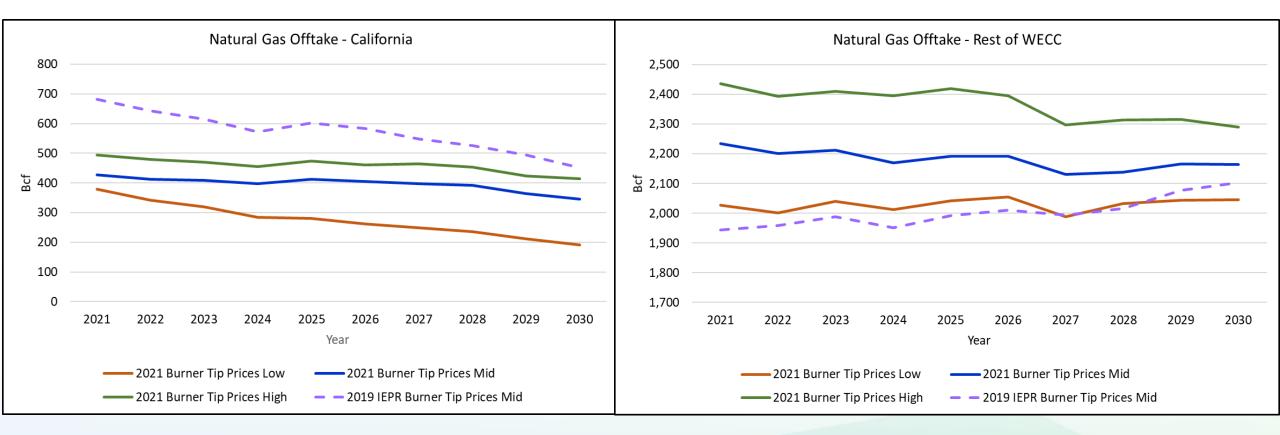


CA Generation Results (Annual)

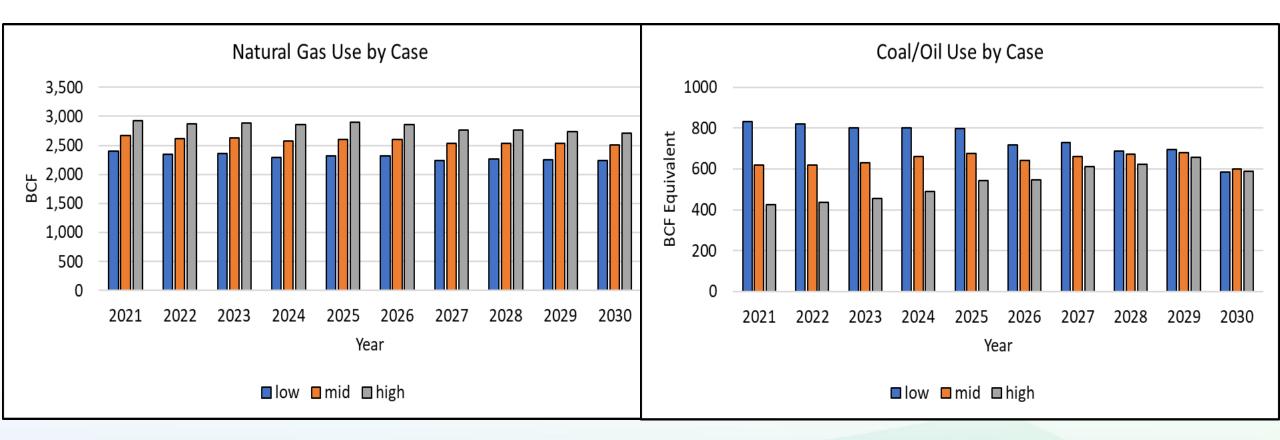

- In California, gas use decreases as solar and wind increase
 - Decrease from 2022-2026 is smaller than from 2026-2030
 - Diablo retirement cause short term need for some gas
- Biofuels, geothermal, and hydro remain constant

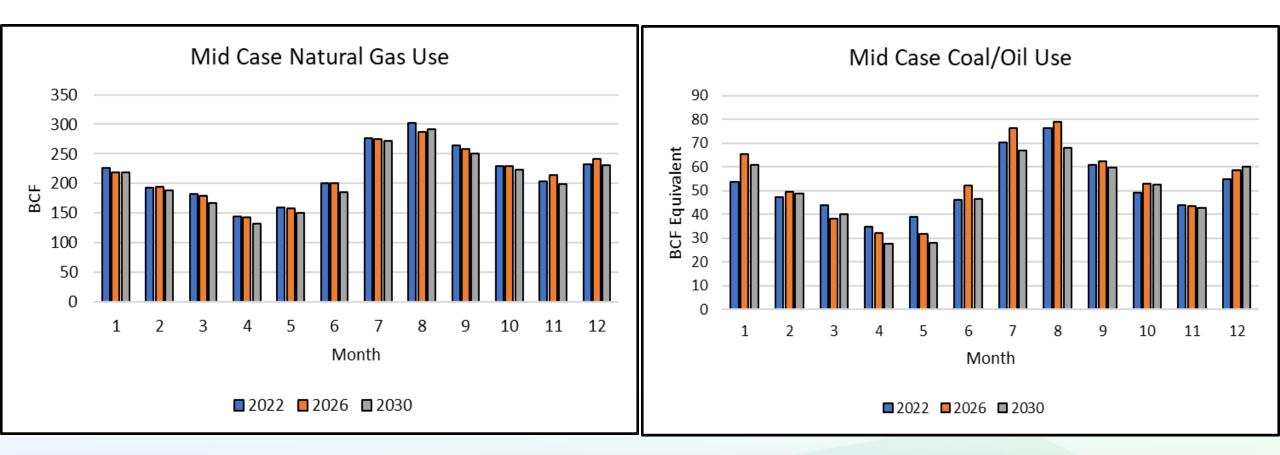


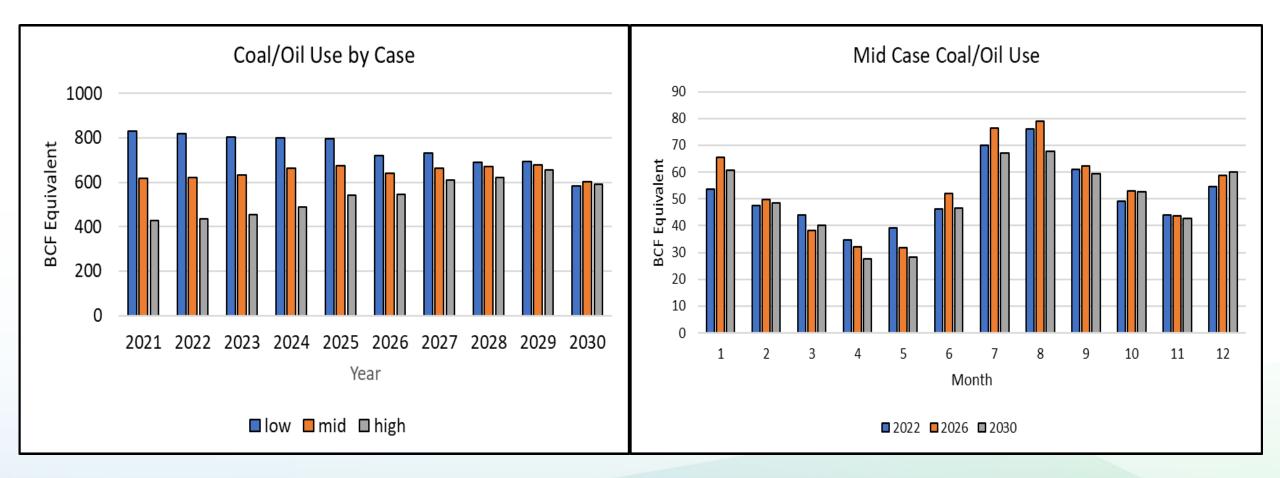
California Generation Mix-Mid Case

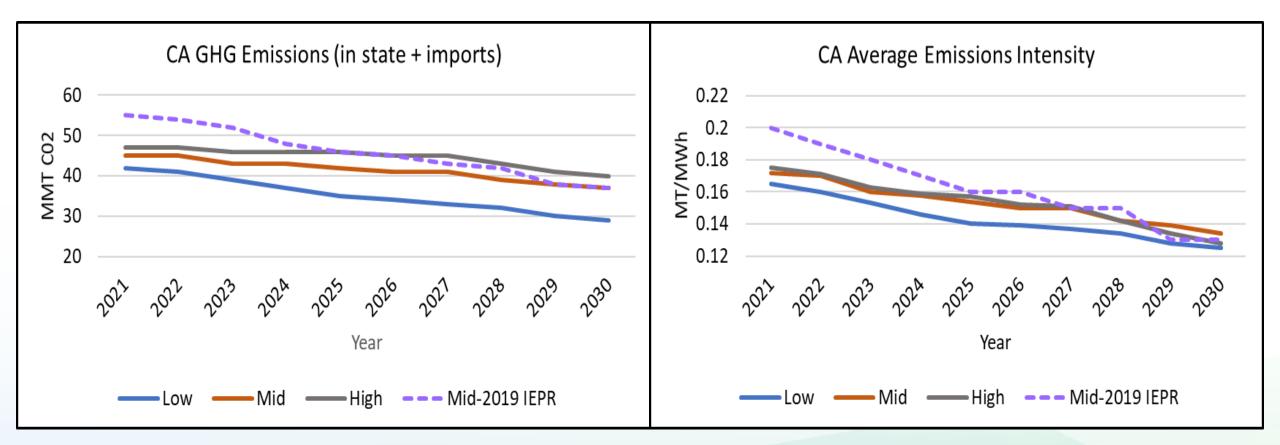


Generation by Area


- Southwest states generate the most, followed by CA
 - Pattern persists through 2030
- SW: Arizona, New Mexico, & Nevada
- NW: Oregon, Idaho, and Montana
- MTN: Utah, Colorado, Wyoming, and South Dakota
- CAN: Alberta and British Columbia
- BCN: Baja California North (CFE)





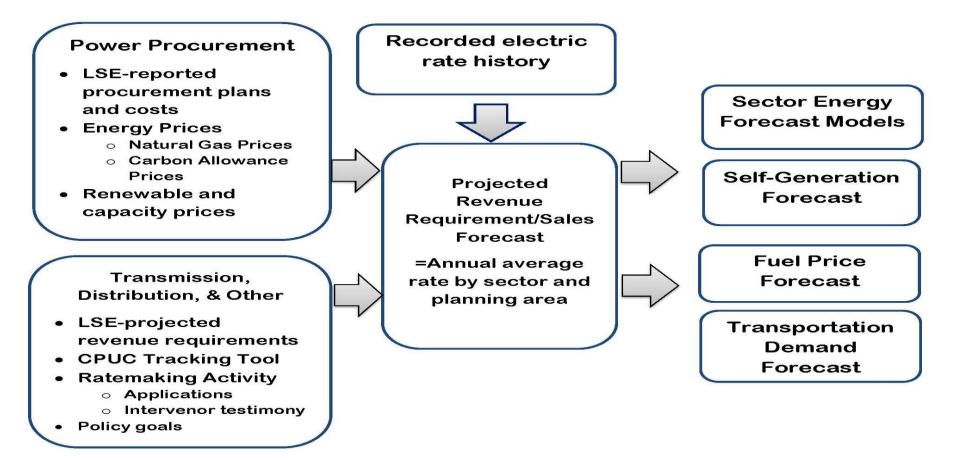


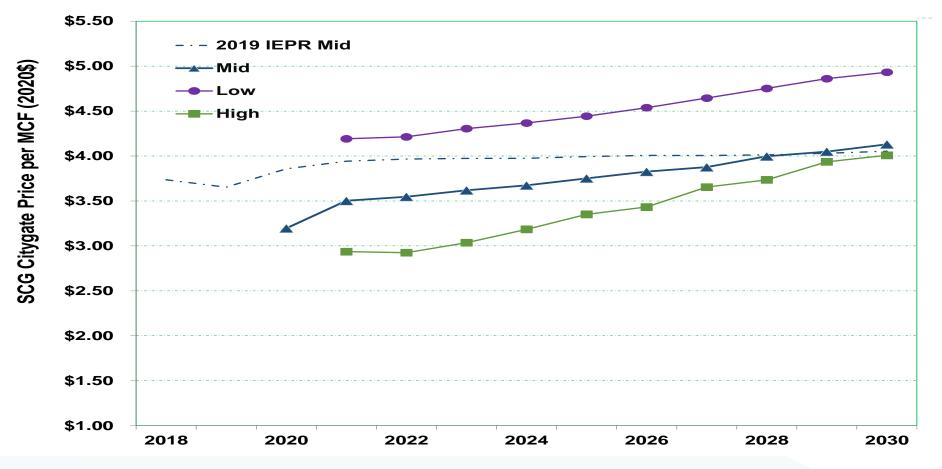
2022			Month								2030	2030 Month						·							
Hour	1	2	3	4	5	6	7	8	9	10	11	12	Hour	1	2	3	4	5	6	7	8	9	10	11	12
0	0.23	0.22	0.18	0.13	0.13	0.15	0.21	0.25	0.25	0.25	0.24	0.25	0	0.22	0.20	0.16	0.11	0.10	0.12	0.19	0.22	0.23	0.23	0.22	0.23
1	0.24	0.22	0.19	0.13	0.14	0.16	0.22	0.26	0.26	0.25	0.24	0.25	1	0.23	0.21	0.16	0.11	0.11	0.12	0.19	0.23	0.24	0.24	0.22	0.24
2	0.24	0.22	0.19	0.14	0.15	0.17	0.22	0.26	0.26	0.25	0.24	0.25	2	0.23	0.21	0.16	0.12	0.11	0.13	0.19	0.24	0.24	0.24	0.23	0.24
3	0.23	0.22	0.19	0.14	0.15	0.17	0.23	0.26	0.26	0.25	0.24	0.25	3	0.23	0.21	0.16	0.12	0.11	0.13	0.20	0.24	0.24	0.24	0.23	0.24
4	0.23	0.22	0.18	0.13	0.15	0.16	0.22	0.26	0.26	0.25	0.24	0.25	4	0.23	0.21	0.16	0.12	0.11	0.14	0.20	0.24	0.24	0.24	0.23	0.24
5	0.23	0.21	0.17	0.13	0.14	0.16	0.22	0.26	0.25	0.24	0.23	0.25	5	0.22	0.20	0.15	0.11	0.11	0.13	0.19	0.23	0.23	0.22	0.22	0.24
6	0.21	0.20	0.17	0.13	0.14	0.15	0.21	0.25	0.25	0.23	0.22	0.23	6	0.20	0.19	0.15	0.11	0.10	0.11	0.18	0.22	0.22	0.22	0.21	0.22
7	0.21	0.18	0.14	0.11	0.11	0.13	0.18	0.20	0.21	0.20	0.21	0.22	7	0.19	0.16	0.10	0.05	0.04	0.04	0.09	0.12	0.16	0.17	0.19	0.21
8	0.18	0.16	0.10	0.09	0.10	0.12	0.16	0.18	0.18	0.16	0.17	0.19	8	0.13	0.09	0.04	0.03	0.03	0.03	0.05	0.06	0.07	0.07	0.08	0.14
9	0.16	0.12	0.09	0.08	0.09	0.11	0.15	0.17	0.17	0.15	0.15	0.16	9	0.08	0.05	0.03	0.03	0.03	0.03	0.05	0.05	0.05	0.05	0.05	0.08
10	0.15	0.11	0.09	0.08	0.09	0.10	0.15	0.16	0.16	0.14	0.14	0.15	10	0.06	0.04	0.03	0.03	0.03	0.03	0.05	0.05	0.05	0.04	0.05	0.07
11	0.14	0.10	0.08	0.08	0.09	0.10	0.15	0.16	0.16	0.14	0.13	0.15	11		0.04	0.03	0.03	0.03	0.03	0.05	0.05	0.05	0.04	0.05	0.07
12	0.14	0.11	0.09	0.08	0.09	0.09	0.15	0.16	0.16	0.14	0.14	0.15	12	0.06	0.04	0.03	0.03	0.03	0.03	0.05	0.05	0.05	0.04	0.05	0.07
13	0.15	0.11	0.09	0.08	0.09	0.09	0.15	0.17	0.17	0.14	0.14	0.16	13		0.04	0.03	0.03	0.03	0.03	0.05	0.05	0.06	0.05	0.05	0.07
14	0.16	0.12	0.10	0.08	0.09	0.09	0.15	0.16	0.18	0.16	0.16	0.17	14	0.07	0.04	0.03	0.03	0.03	0.04	0.06	0.07	0.08	0.06	0.06	0.08
15	0.19	0.15	0.12	0.09	0.09	0.09	0.14	0.16	0.18	0.19	0.20	0.22	15		0.06	0.04	0.04	0.04	0.04	0.09	0.10	0.13	0.13	0.15	0.18
16	0.21	0.19	0.16	0.10	0.09	0.09	0.13	0.16	0.18	0.19	0.19	0.22	16		0.16	0.11	0.05	0.05	0.05	0.11	0.13	0.16	0.18	0.19	0.21
17	0.19	0.18	0.15	0.10	0.10	0.10	0.13	0.16	0.18	0.18	0.18	0.20	17		0.17	0.13	0.09	0.08	0.08	0.13	0.14	0.16	0.17	0.18	0.19
18	0.18	0.17	0.14	0.10	0.10	0.12	0.15	0.17	0.18	0.18	0.18	0.19	18	0.18	0.16	0.13	0.10	0.09	0.11	0.15	0.16	0.18	0.17	0.17	0.18
19	0.18	0.16	0.13	0.10	0.11	0.13	0.16	0.18	0.19	0.18	0.18	0.19	19	0.17	0.16	0.13	0.11	0.11	0.13	0.16	0.18	0.18	0.17	0.17	0.18
20	0.18	0.17	0.13	0.10	0.11	0.13	0.17	0.19	0.20	0.19	0.19	0.19	20	0.18	0.16	0.12	0.10	0.11	0.13	0.16	0.18	0.18	0.18	0.18	0.19
21	0.19	0.18	0.14	0.10	0.10	0.13	0.18	0.21	0.22	0.21	0.20	0.20	21	0.18	0.17	0.13	0.10	0.09	0.12	0.16	0.18	0.20	0.20	0.19	0.20
22	0.21	0.19	0.16	0.11	0.11	0.13	0.19	0.22	0.23	0.23	0.21	0.22	22	0.20	0.18	0.13	0.10	0.09	0.11	0.17	0.20	0.21	0.21	0.20	0.21
23	0.22	0.21	0.17	0.12	0.13	0.14	0.20	0.24	0.25	0.24	0.23	0.24	23	0.21	0.19	0.14	0.11	0.10	0.11	0.18	0.21	0.22	0.22	0.21	0.23

Thank You!

Hazel Aragon (hazel.aragon@energy.ca.gov) Paul Deaver (paul.deaver@energy.ca.gov)

Electricity Rate Scenarios Inputs and Assumptions


August 5, 2021

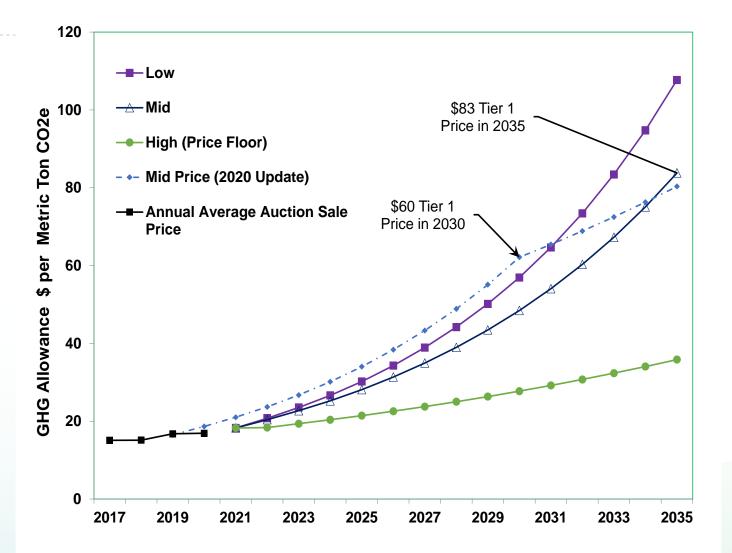

Lynn Marshall

Energy Assessments Division

Overview of Rate Forecast

- While current prices are lower than previously projected, costs to maintain aging natural gas
 pipeline infrastructure are projected to increase transportation rates, so citygate prices rise at faster
 pace.
- Complete natural gas price forecast will be presented at the August 30th IEPR workshop

Cap and Trade Program Background

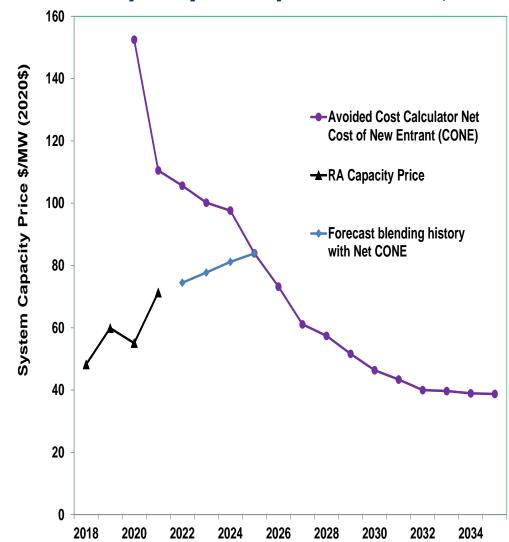

Electric generation is covered by the ARB cap and trade program, so allowance prices are included in PLEXOS model and are reflected in resulting prices. The current cap and trade regulation has the following features:

- A \$65 (nominal) price ceiling value in 2021.
- A post-2020 Reserve Tier 1 price fixed at the halfway point of the Auction Reserve Price (floor price) and price ceiling in all years (\$41.40 in 2021).
- A post-2020 Reserve Tier 2 price fixed at the three-quarter point of the Auction Reserve Price and the price ceiling in all years (\$53.2 in 2021).
- After 2021, tier prices and the price ceiling escalate annually at 5 percent plus inflation. The Auction Reserve Price at the same rate.
- In analysis of this structure, Borenstein, Bushell and Wolak (2017) found probability-weighted expected prices in 2030 in the \$40-\$60 range, but with high probabilities of being either at the cap or floor price.
- Previously staff used the 2030 Tier 1 price (\$60) for the mid case 2030 price, the Tier 2 price for the low demand (high price) case, and the Auction Reserve Price in the high demand (low price) case.



GHG Allowance Price Scenarios

- Prices to date have been slightly above the floor price.
- Complementary programs, such as the Low Carbon Fuel Standard, provide a strong incentive to reduce emissions and reduce allowance demand, dampening cap and trade prices.
- Eventual regulation changes will likely seek to incent more GHG reductions.
- The new mid-case 2035 price assumes prices will increase more slowly, but still eventually reach the Tier 1 price.


Wholesale Energy Costs

- Lower natural gas and GHG allowance prices, and increased additions of renewable and storage resources, lower energy prices compared to 2019 IEPR mid case.
- Incremental renewable procurement costs will be valued using NREL 2021 Annual Technology Baseline levelized costs.

- The CPUC 2021 Avoided Cost Calculator (ACC) estimates the avoided cost of generation capacity based on 4-hour battery storage, assumed to be the marginal resource.
- Near term, the ACC cost per MW is much higher than recent reported capacity prices compiled by the CPUC.
- Staff is blending the 2021 capacity price with the ACC forecast for purposes of valuing incremental capacity needs.
- Prices reach \$84/MW in 2025 then decline with lower capital costs and increasing energy market revenue.

Capacity Price per MW 2020\$

- LSEs over 200 MW report current and projected revenue requirements on IEPR demand forms:
 - Distribution
 - Transmission
 - Customer Costs
 - Energy efficiency, demand response, electrification, and other programs
- Rate case proceedings and publicly owned utility rate actions and plans
- CPUC Energy Division Utility Cost & Rate Tracking Tool compiles current and pending IOU revenue requirements, in support of Affordability OIR R.18-07-006.
 - CPUC Affordability Report scenarios use the CEC bundled rate forecast as input, but are designed for a different purpose:

	CPUC Affordability Analysis	CEC Forecast
Objective	Assess potential cumulative	Project expected outcome of final
	rate and bill impacts of all	decisions
	pending applications	
Scope	Bundled IOU customers	Bundled, Community choice, direct
		access, and public utility customers
Method	Near term: full application	Short term: Pending applications
	request; Long term:	discounted based on intervenor
	escalation based on CEC	positions; Long term: scenarios based
	bundled rate forecast	on historic trends and policy and cost
		drivers

g

Distribution Revenue Requirement Scenarios

- Pending applications are adjusted based on expected outcomes.
- Wildfire mitigation costs are the largest component of recent requested increases.
 - Proposed decision on SCE 2021 GRC reduces their request from a 19% increase to 7.4%. The largest reduction is to wildfire mitigation capital.
- Staff will develop scenarios to 2035 will reflect a range of potential wildfire mitigation and infrastructure costs.

PG&E General Rate Case Distribution Revenue Requirements CPUC Authorized v. Utility Application

	Autho	orized	Requested					
	Million \$	% Increase	Million \$	% Increase				
2019	4,364							
2020	4,800	10%	5,057	16%				
2021	5,011	4%	5,310	5%				
2022	5,287	6%	5,644	6%				
2023			8,171	45%				
2024			8,621	6%				