DOCKETED						
Docket Number:	21-IEPR-06					
Project Title:	Building Decarbonization and Energy Efficiency					
TN #:	239134					
Document Title:	Presentation - An Evaluation of the Potential for Deep Decarbonization in the Industrial Sector by 2050					
Description:	S1.1B Elizabeth Dutrow, U.S. Environmental Protection Agency					
Filer:	Raquel Kravitz					
Organization:	US EPA					
Submitter Role:	Public					
Submission Date:	8/2/2021 11:08:28 AM					
Docketed Date:	8/2/2021					

An Evaluation of the Potential for Deep Decarbonization in the Industrial Sector by 2050

Elizabeth Dutrow US Environmental Protection Agency Climate Protection Partnerships Division

Who we are – ENERGY STAR Industrial Partnership

- ENERGY STAR promotes energy efficiency and decarbonization in the industrial sector through its work with 32 industries & more than 800 corporations
- We provide tools that engage specific sectors in greater energy efficiency
 - Plant energy performance indicators benchmarking tools score energy performance for a plant within its industry nationwide
 - Energy guides actual opportunities within a sector for reducing energy consumption and GHGs
 - Focus industries companies in a sector convene to share best practices and support tool development
 - Certification of plants top quartile energy performance for plants in the sector
 - Goal setting tools include Challenge for Industry, plant assessment (treasure hunts), campaigns, etc.
 - Network of energy managers

Evaluation co-authors

- Gale Boyd, associate research professor in the Social Science Research Institute and Department of Economics at Duke University
- Ernst Worrell, professor of energy, resources and technological change in the Copernicus Institute at Utrecht University
- Josh Smith, *director of public policy* at ICF
- Elizabeth Dutrow, *physical scientist and lead for* the ENERGY STAR Industrial Partnership, Climate Protection Partnerships Division, US EPA

Why consider the industrial sector?

2018 US GHG emissions by economic sector, electricity emissions allocated to sectors, US EPA 2020 4

Why this evaluation

- Many have studied manufacturing sector opportunities
 - Some explore specific technologies
 - Others examine options for specific sectors
 - All show potential is there for industrial decarbonization
 - Question: what is the full impact when considering opportunities for increased energy efficiency, electrification, renewables and grid balancing?

How much decarbonization is feasible?

Scope of the evaluation

- Manufacturing sector (NAICS 31-33)
- Consider opportunities for energy-related emissions reductions
- Assess how the manufacturing sector can contribute to deep energy/emissions reductions by 2050, examining the pillars of:
 - 1. Energy Efficiency
 - 2. Electrification
 - 3. Renewables
 - 4. Grid Balancing
 - *Additional consideration was given to hydrogen, CHP, CCUS, and circular economy.
- Baseline: Energy Information Administration's Annual Energy Outlook

Industry subsectors evaluated

- Iron & steel
- Cement
- Chemicals
- Pulp & paper
- Petroleum refining
- Aluminum & glass
- "Light" industry

Example: zero-carbon paper industry

Energy Efficiency

Large technical potential

Material Efficiency

- Changing demand patterns
- Increased recycling

Renewable Energy

- Industry based on renewable resource
- Deep geothermal

New Process Designs

- Pulping Biotechnology
- Papermaking Water-free papermaking

Electrification

> New drying technologies (microwave)

Example: zero-carbon cement industry

Energy Efficiency

Sustain ongoing improvements

Material Efficiency

- Increase blending
- Improve design & concrete recycling

Renewables

- Increase use of alternative fuels
- Onsite renewables
- Carbon Capture & Storage
 - Under study
- New Processes/Raw Materials
 - Potential TBD

Estimated potential across the sectors

DDM Opportunity	Bulk Chemicals	Cement, Lime	Light Industrv	Oil Refining	Pulp & Paper	Steel	Aluminum, Glass
			J	8	Ĩ		
Energy Efficiency	Medium	High	High	High	High	High	High
Material Efficiency	Medium	Medium	Medium	Medium	High	High	Medium
Industry-Specific: Renewables	Medium	Medium- high	High	Low	High	Low	n/a
Industry-Specific: Hydrogen	Medium	Low	Low	Medium	Low	Medium	n/a
Industry-Specific: CCS	Medium	Medium	Low	Low- medium	Low	Medium	n/a
Grid Interaction: Electrification	Medium	Low	High	Low- medium	Medium	High	High
Grid Interaction: Balancing	Low	Medium	Medium	Low	Medium	Low	Medium
Total Reduction from Reference Case	76%	90%	95%	93%	100%	93%	97%

86 percent

the estimated reduction in CO₂ emissions feasible from the US manufacturing sector by 2050,

through the actions of *Energy Efficiency*, *Material Efficiency*, *Industry-Specific Technologies*, and *Power Grid Synergies*

Reduction potential

Overall potential, detailed

U.S. Environmental Protection Agency

Insights

- Energy efficiency enables greater reductions
 - Has great potential remaining and is a key action for the early years & beyond
 - "Buys down" price of capital investments
 - Low in cost, relative to other options
 - Prevalent in all sectors
 - ¹/₂ additional potential in heavy industry
 - ¹/₂ additional potential in light industry
 - Some sectors have twice the benefit by combining EE & electrification (e.g., heat pump)

More insights

- Material efficiency: changes in consumer demand are important to mitigate CO₂ emissions
- Decarbonized grid is key to enabling industrial electrification
 & green H₂ fuel production
- Electrification: short to mid-term, low temp processes in light industry promising; long-term some energy intensive sectors
- Renewable energy & grid decarbonization
 - Industry can play the role of enabler with VPPAs
- CCS for select industries with fewer decarbonization options
- H₂ has a role in certain industries

Evaluation conclusions

- Industry can reduce CO₂ emissions significantly
 - 86% is estimated to be feasible
- One approach is unlikely to be successful for all sectors
 - Multiplicity of approaches ("all of the above") is needed; more likely to be robust for industry, the economy, and the environment
- Start now, or the impact to industry will be significantly more costly in the future
- Follow manufacturing's natural capital stock investment cycle
 - Least expensive approach: take advantage of full 30-year time horizon to naturally replace energy-using plants and equipment with more efficient and lower emissions technologies

Carbon Intensity Benchmarks

- Carbon metrics can inform and help industry in decision making.
- Plant level data on carbon emissions and production could provide a basis for calculating performance-based measures of carbon intensity.
- Carbon intensity benchmarks could assist industry in decarbonization planning and corporate financial climate risk assessment and disclosure.