DOCKETED			
Docket Number:	16-OIR-06		
Project Title:	Senate Bill 350 Disadvantaged Community Advisory Group		
TN #:	238210		
Document Title:	Presentation - Item 4 SB 100 Results		
Description:	N/A		
Filer:	Dorothy Murimi		
Organization:	California Energy Commission		
Submitter Role:	Public Advisor		
Submission Date:	6/15/2021 11:28:36 AM		
Docketed Date:	6/15/2021		

ITEM 4 SB 100 Report Resource Builds

Liz Gill, PhD California Energy Commission

Expands RPS

60% by Dec 31, 2030

Establishes 100% Policy

It is the policy of the state that eligible renewable energy resources and zero-carbon resources supply 100 percent of all retail sales of electricity to California end-use customers by December 31, 2045 and 100 percent of electricity procured to serve all state agencies by December 31, 2045.

PUC 399.11(a), 454.53 (a)

CEC, CPUC, and CARB to issue a Joint-Agency report every four years including the following:

- A. A review of the policy (technical, safety, affordability, reliability)
- **B.** Reliability benefits and impacts
- C. Financial costs/benefits
- D. Barriers/Benefits of achieving the policy
- E. Alternative scenarios and costs/benefits of each

All modeling was conducted by consultant E3.

- **RESOLVE** California model:
 - Co-optimizes NPV of investment and operational costs, given reliability and policy constraints, to develop a *least-cost resource portfolio*

SB 100 portfolios are *not precise* but can inform tradeoffs around different pathways.

- A reliability assessment was not included in the scope of work for the 2021 Report.
- Portfolios do not reflect individual BA or LSE goals or decision-making.

SB 100 Scope of Analysis

Zero-Carbon Resources Included in Modeling

Technology	Eligibility Basis	Scenarios
Solar PV	RPS	Core and Study
Solar Thermal (existing only)	RPS	Core and Study
Onshore Wind	RPS	Core and Study
Offshore Wind	RPS	Core and Study
Geothermal	RPS	Core and Study
Bioenergy	RPS	Core and Study
Fuel Cells (green H2)	RPS	Core and Study
Small Hydro (existing)	RPS	Core and Study
Large Hydro (existing)	Zero-Carbon	Core and Study
Nuclear (existing)	Zero-Carbon	Core and Study
Zero-Carbon Firm Dispatchable Resource	Zero-Carbon	Study Only
Zero-Carbon Firm Baseload Resource	Zero-Carbon	Study Only

Core Assumptions: Demand Scenarios

PATHWAYS provides RESOLVE:

- Annual loads by category (GWh/yr)
- Some load shape information for load modifiers

Mahone, Amber, Zachary Subin, Jenya Kahn-Lang, Douglas Allen, Vivian Li, Gerrit De Moor, Nancy Ryan, Snuller Price. 2018. <u>Deep Decarbonization in a High</u> Renewables Future: Updated Results from the California PATHWAYS Model. California Energy Commission. Publication Number: CEC-500-2018-012

SB 100 Requires Significant Resource Build

Customer solar shown here is a demand-side assumption. No additional customer solar was selected.

As of 2019, there is 80 GW of in-state capacity in California.

Economy-wide Decarbonization Impacts Resource Requirements

Resource Technology Pursued Impacts Resource Requirements

Resource Technology Pursued Impacts Resource Requirements

Going Beyond SB 100 Impacts Resource Requirements

Going Beyond SB 100 Impacts Resource Requirements

Resource Build Rates

Factors that May Impact Resource Build

- Electrification/electric demand
- Changes to gas fleet
- Portfolio diversity
 - Offshore wind, out-of-state wind, geothermal, etc
 - Clean firm resource development/deployment
 - DER deployment
 - Load flexibility
- Land-use constraints

Key Takeaways from Modeling

- The initial analysis suggests SB 100 is technically achievable though multiple pathways.
- Construction of clean electricity generation and storage resources must be sustained at record setting build rates.
- Diversity in energy resources lowers overall costs.
- Retaining some natural gas power capacity may minimize costs while ensuring an uninterrupted power supply during the transition to 100 percent clean energy.
 - Increased energy storage and advancements in zero-carbon firm resources and storage can reduce natural gas needs.
- Further analysis is needed.

Further Analysis Recommendations

- Verifying that scenario results satisfy the state's grid reliability requirements across a range of conditions.
- Continuing to evaluate the potential effects of cost-saving emerging resources, such as offshore wind, long-duration storage, green hydrogen technologies, and demand flexibility.
- Assessing environmental, social, and economic costs and benefits of the additional clean electricity generation capacity and storage needed to implement SB 100.
- Holding annual workshops to support alignment among the joint agencies and continuity between SB 100 reports.

Further Analysis and Related Work

Further Analysis and Related Work

- SB 100
 - Alterative resource build options
 - Net-energy benefits
 - Reliability (long-term)
- Related Work
 - Role of DERs
 - Load Flexibility
 - Reliability (near- and mid-term)
 - Demand Scenarios

SB 100 Annual Workshop: Fall 2021/Winter 2022

The 2021 SB 100 Joint Agency Report and Summary Document can be found at:

https://www.energy.ca.gov/sb100