DOCKETED	
Docket Number:	20-MISC-01
Project Title:	2020 Miscellaneous Proceedings.
TN #:	236558
Document Title:	Presentation - Panel 2 Jacob Mathews CEC V2B Workshop
Description:	N/A
Filer:	Ben Wender
Organization:	Ford
Submitter Role:	Public
Submission Date:	2/1/2021 4:46:32 PM
Docketed Date:	2/1/2021

Ford Vehicle to Grid & Vehicle to Building Outlook

Desired Outcome for Discussion:

- Outline EV market evolution
- Understand how Ford's BEV lineup supports V2L
- Case for exporting DC to support Vehicle to Building

Electric Utility Perspective

Utilities continue to renovate the grid with investments in renewable energy technology.

40%

of all new electricity generating capacity added in the U.S. in Q1 2020 was Solar (3.6 GWdc of PV)

By 2025 33% of new residential solar systems and 25% of new nonresidential solar systems will be paired with energy storage

Effects of Environmental Factors

Mismatched Energy Production & Demand Renewable sources produce energy when the sun shines or wind blows.

Grid Disruption

Weather events temporarily disable/prevent grid to customer distribution.

Key Consideration

Continued renewable generation growth will drive a need for careful load management, and for energy storage

Ford

EV Consumers Perspective

Current State

EVs (e.g. MachE) have large batteries:

+70 kWhr

Daily Commute

EV drivers will use only a small portion of their total battery capacity 10%-15% for the average commute

Could Large-Capacity BEVs help support power needs via V2H, V2G?

Ford BEV Historical Lineup

- Gradual increases in both range and available battery capacity
- Vehicle to Load historically unavailable

Ford

Considerations for Exporting Power (V2B)

Ford

Challenges with Vehicle to Building/Exporting Power

- Technology onboard vehicles needs development and uniform standards adoption
- Inverters are generally expensive (thousands of dollars)
- Warranty concerns surrounding added battery cycling
 - Differences between V2L vs. V2B
 - Battery Durability Requirements
- Certification and Regulatory authority over automobile electrical systems.
 - Need to develop complete certification structure for automakers
- Cost Onboard Inverter cost is more expensive than Off board inverter.
 - Overall cost system cost dependent upon architecture.
 - Typical cost drivers : Inverter sizing > 10KW, Critical Load Sub panel, Transfer SW.

How can the CEC help?

- Consider allowing automaker self-certification
 - · Allows for more streamlined approvals
 - · Limits unnecessary cost increases on vehicles
- Incentives for vehicle to grid adoption
 - CARB could consider a credit mechanism for GHG abatement
 - Incentives for automakers, customers, etc.
 - Warranty based on a mix of Amp-hrs / vehicle miles
- Help deliver a strong, consistent signal to the market for widespread deployment
 - Update Rule 21 to streamline interconnection.

Regulatory certainty will accelerate development and adoption of V2H technologies

Q & A

