DOCKETED		
Docket Number:	19-BSTD-03	
Project Title:	2022 Energy Code Pre-Rulemaking	
TN #:	235906	
Document Title:	Presentation-December 8, 2020 Energy Code on Pre-Rule Making Workshop	
Description:	Staff Presentation on Heatpump Baselines and PV/Battery Storage Requirements for HRMF and Selected Nonresidential Buildings, Highrise Multifamily (HRMF) Heatpump Baseline and Cost Effectiveness, Nonresidential Heat pump Baselines, HRMF and Nonresidential PV and Battery Storage, HRMF and Nonresidential PV/Storage Proposed Draft Language and 2022 Central Heatpump Water Heating Update. By Payam Bozorgchami on December 8, 2020 Energy Code on Pre-Rule Making Workshop	
Filer:	Tajanee Ford-Whelan	
Organization:	Efficiency Division	
Submitter Role:	Commission Staff	
Submission Date:	12/10/2020 12:37:42 PM	
Docketed Date:	12/10/2020	

2022 Pre-Rulemaking for Building Energy Efficiency Standards

Payam Bozorgchami, P.E.

December 8, 2020

Start Time: 9:00 AM

What We Will Covering Today

How Title 24, Part 6 is Developed

• Mazi Shirakh, P.E.

 Heatpump Baselines and PV/Battery Storage Requirements for HRMF and Selected Nonresidential Buildings

NORESCO

 Highrise Multifamily (HRMF) Heatpump Baseline and Cost Effectiveness
 Nonresidential Heatpump Baselines

Danny Tam

 2022 Central Heatpump Water Heating Update • E3 • HRMF and Nonresidential PV and

Battery Storage

• Mazi Shirakh, P.E.

HRMF and Nonresidential PV/Storage
 Proposed Draft Language

Cleanup Language

- Bill Pennington
 - Section 10-115, Community Solar

o Mazi Shirakh, P.E.

- ➢ Other Cleanup
 - ✓ Section 150.1(c)14 Exceptions
 - ✓ New Exception to Section 150.1(c)14
 - ✓ JA11 and JA12
- Open for Comments

Authority & Process

•Public Resources Code (PRC 25402): Reduction of wasteful, uneconomic, inefficient, or unnecessary consumption of energy

- (a)(1) Prescribe, by regulation, lighting, insulation, climate control system, and other building design and construction standards that increase the efficiency in the use of energy and water...
- Warren Alquist Act Signed into law in 1974 by Governor Ronald Reagan and launched by Governor Jerry Brown in 1975 which mandates updates Building Efficiency Standards and requires the building departments to enforce them through the permit process.

- 1. Increase building energy efficiency cost-effectively
- 2. Contribute to the state's GHG reduction goals
- 3. Enable pathways for all-electric buildings
- 4. Reduce residential building impacts on the electricity grid
- 5. Promote demand flexibility and self-utilization of PV generation
- 6. Provide tools for local government reach codes

Process Used to Updated Energy Codes

CEC staff, with input from utility partners and industry stakeholders, develop the triennial standards update

Opportunities for participation

- Utility-Sponsored Stakeholder Meetings
- CEC-Sponsored Workshops

Standards must be cost-effective

- Life-Cycle Costing Methodology
- Time Dependent Valuation (TDV)

2022 Standards Process

2022 STANDARDS UPDATE SCHEDULE

DATE	MILESTONES
November 2018 - November 2019	Updated Weather Files
November 2018-December 2019	Metric Development
November 2018-July 2019	Measures Identified and approval
August 2019 to October 2020	Stakeholder meeting/workshop & final staff workshop
August 2020-October 2020	CASE Reports submitted to the CEC
February 2021	45-day Language Hearings
July 2021	Adoption of 2022 Standards at a Business Meeting
July 2021 to	Staff work on Software, Compliance Manuals, Electronic Documents
November 2021	Available to Industry
December of 2021	Approval of the Manuals
January 2022	Software, Compliance Manuals, Electronic Documents Available to Industry
January 1, 2023	Effective Date

Tentative Pre-Rulemaking Schedule

- September 1
 - Energy Savings and Process
 Improvements for Alterations and Additions
 - Roof deck insulation for low-slope roofs
 - Prescriptive attic insulation for alterations
 - Prescriptive duct sealing
 - Electric resistance water heating
 - Electric resistance space heating
 - 40-ft trigger for prescriptive duct requirements
 - Cool roof for steep-slope roofs
 - Cool roof for low-slope roof

September 9

- Nonresidential Grid Integration
- Controlled Receptacle, CEA Proposal

- September 10
 - Verification Testing
- September 22
 - Outdoor lighting
 - Daylighting
- September 23
 - Computer Room Efficiencies
 - Pipe Sizing and Leak Testing for Compressed Air Systems
 - Refrigeration System Operation
- September 30
 - Indoor Air Quality Roundtable discussion with the outside world

Tentative Pre-Rulemaking Schedule (Cont.)

October 6 and December 8

- Solar Photo Voltaic and HeatPump Baseline
- Multifamily All Electric

October 7

- Nonresidential Indoor Lighting
- ➢ Air Distribution
- Nonresidential HVAC Controls

October 13

- Multifamily Domestic Hot Water
- Multifamily Restructuring

October 20

Nonresidential High Performance Envelope

October 27

- Control Environmental Horticulture
- New Construction Steam Trap
- November 3 (Commissioner roundtable discussion on September 30 on IAQ)
 - Indoor Air Quality Roundtable discussion with the outside world
 - Nonresidential Reduced Infiltration

December 2

- Alternate Compliance Method Approval Manual
- Economizer Provisions
- Nonresidential Data Registry Provisions
- Restructuring of Multifamily Buildings

Key Web-Links

2022 Title 24 Utility-Sponsored Stakeholder http://title24stakeholders.com/

Building Energy Efficiency Program

http://www.energy.ca.gov/title24/

Comments to be submitted to:

https://efiling.energy.ca.gov/EComment/EComment.aspx?docketnumber=19 -BSTD-03

NOTE: For this workshop comments To Be Submitted By December 24, 2020

Building Standards Staff Contact Information – Energy Commission

Mazi Shirakh, PE

Building Decarbonization Lead & Advisor to the 2022 Building Standard Staff. Mazi.Shirakh@energy.ca.gov 916-654-3839

Payam Bozorgchami, PE Project Manager, 2022 Building Standards Payam.Bozorgchami@energy.ca.gov 916-654-4618

Peter Strait Supervisor, Building Standards Development <u>Peter.Strait@energy.ca.gov</u> 916-654-2817 Haile Bucaneg Senior Mechanical Engineer Haile.Bucaneg@energy.ca.gov 916-651-8858

Will Vicent Building Standards Office Manager Will.Vicent@energy.ca.gov (916) 628-1556

Due Date: December 24, 2020 By 5:00 PM

Comments to be submitted to:

https://efiling.energy.ca.gov/EComment/EComment.aspx?docketnumber

<u>=19-BSTD-03</u>

Questions ?

Due Date: December 24, 2020 By 5:00 PM

Comments to be submitted to:

https://efiling.energy.ca.gov/EComment/EComment.aspx?docketnumber=19-BSTD-03

Mazi Shirakh, P.E. Senior Mechanical

- Phone: (916) 654-3839
- Email: Mazi.Shirakh@energy.ca.gov

Payam Bozorgchami, P.E. 2022 BEES Project Manager

- Phone: (916) 654-4618
- Email: <u>Payam.Bozorgchami@energy.ca.gov</u>

Thank You!

2022 Building Energy Efficiency Standards Overview

December 8, 2020 Staff Workshop Heatpump Baselines and PV Requirements Mazi Shirakh, PE: Building Decarbonization Lead

2022 T24 Standards Building Decarbonization Team

Mazi Shirakh, PE Building Decarbonization Lead Bill Pennington Senior Technical and Program Advisor Danny Tam Mechanical Engineer Payam Bozorgchami, PE Project Manager, Building Energy Efficiency Standards Will Vicent Office Manager, Building Standards Office

Consulting Team: Energy + Environmental Economics (E3) NORESCO TRC

Heatpump Baseline and PV/Storage Workshops

Two workshops, twice the fun:

Two workshops dedicated to heatpump baselines and nonresidential PV and battery storage requirements:

October 6, 2020 presented:

- High level overview of the proposed requirements for heatpump baseline scenarios and PV and storage requirements; only included "TDV" and not "Source Energy" baseline options
- Draft language was not presented
- Sought public input for concepts presented

December 8, 2020

- Draft language and detailed analysis will be presented
- After seeking further public comments, will become the basis for 45-day language

2022 T24 Standards Goals

Heatpump Baselines For:

- 1. Highrise Multifamily (HRMF)
- 2. Selected Nonresidential Occupancies

PV and Battery Storage Requirements For:

- 1. HRMF
- 2. Selected Nonresidential Occupancies

2022 T24 Standards Occupancies

New Heatpump Baselines and PV Requirements for:

- 1. HRMF
- 2. Office (small)
- 3. Retail (small, medium, and large)
- 4. Educational facilities
- 5. Warehouses
- 6. Mixed occupancy building where one or more of these types-of-uses makeup at least 80 percent of the floor areas of the building

Heatpump Baselines

Heatpump for space heating in baseline for:

- HRMF and selected nonresidential occupancies
- Establish appropriate Source Energy and TDV baselines
- Must be feasible and cost effective

Creating feasible and cost-effective heatpump baselines is challenging for larger buildings currently relying on central boiler systems

PV & Battery Storage Requirements

PV and Possibly Battery Storage Requirements for HRMF and Selected Nonresidential Occupancies with access to VNEM:

- 1. Considering NEM2 and alternative NEM tariffs with hourly exports compensated at avoided cost
- 2. Emphasize maximizing self-utilization of PV generation and minimizing exports thru:
 - i. "Right sizing" the PV system to avoid large exports
 - ii. Pairing with battery storage, EV charging, and other load-shifting strategies to limit hourly exports to less than 10% of annual generation
- 3. Possible credit for standalone battery storage systems

Availability of suitable rooftop areas for PV installation may be a limiting factor

Battery Storage Ready Proposed Requirements

New residential mandatory battery storage ready requirements:

- 1. Panel requirements to accommodate electric end-uses, PV, EVs, and future battery storage installation
- 2. Identification and isolation of emergency circuits, and
- 3. Compatibility with both battery storage systems, bidectional Evs, and backup generators to help with PSPS events

Will reduce the future battery storage installations by \$2,000 or more

Questions?

Title 24 2022 ACM: Heat Pump Baseline Analysis – Nonresidential and High-Rise Residential Buildings

December 8, 2020

Roger Hedrick, Nikhil Kapur, Eric Shadd, Rahul Athalye

OBJECTIVES

- Identify heat pump based HVAC systems for consideration as 2022 ACM Baselines
- Evaluate performance relative to current ACM baseline
 - All current standard designs use gas heat
 - Initial expectation was that TDV will increase when switching to electric heat
- Identify systems that have lower TDV consumption, but result in a minimal increase in stringency
 - A new baseline with higher TDV consumption would <u>decrease</u> stringency for projects with electric heat
 - Systems with large differences from the baseline in TDV consumption are excluded from the results that will follow

APPROACH

Use CEC prototypes

- 10 Story, Mixed-Use Apartment
- Retail Small, Medium and Large
- Office Small, Medium and Large
- Small Restaurant
- Small School
- Warehouse
- Service and Domestic Hot Water Systems Electric Only
- Cooling parameters match standard design
 - Federal standards may impact this if changes made in CBECC-Com
- Fan parameters also match standard design
- For similar system types, impacts are due to heating type only.

HIGH-RISE BASELINE SYSTEM OPTIONS

	Current Baseline	Systems Analyzed
Highrise Residential Dwelling Units*	Single Zone Air Conditioner with Gas Furnace Heat	 Single Zone Heat Pump Single Zone Heat Pump w/ Gas Supplemental Heat Variable Refrigerant Flow Water Source Heat Pump w/ Elec. Boiler
DHW	Central Gas Water Heating	Central GasCentral Heat Pump
Ventilation	Balanced Ventilation	Balanced Ventilation
*HVAC systems for nonresidential spaces were modeled to match the baseline for all options		

ALTERNATIVE SYSTEM OPTIONS

	Current Baseline	Systems Analyzed
Small Retail	Single Zone and Single Zone Variable Air Volume (VAV) – Gas Furnace Heat	 Single Zone Heat Pump Single Zone Heat Pump with Gas Sup. Heat Single Zone VAV Heat Pump Single Zone VAV Heat Pump with Gas Sup. Heat
Medium Retail	Single Zone and Single Zone VAV – Gas Furnace Heat	 Single Zone Heat Pump Single Zone Heat Pump with Gas Sup. Heat Single Zone VAV Heat Pump Single Zone VAV Heat Pump with Gas Sup. Heat
Large Retail	Single Zone VAV – Gas Furnace Heat	 Single Zone Heat Pump Single Zone Heat Pump with Gas Sup. Heat Single Zone VAV Heat Pump Single Zone VAV Heat Pump with Gas Sup. Heat

ALTERNATIVE SYSTEM OPTIONS

	Current Baseline	Systems Analyzed
Small Office	Single Zone Rooftop – Gas Furnace Heat	 Single Zone Heat Pump Single Zone Heat Pump with Gas Supplemental Heat Single Zone VAV Heat Pump Single Zone VAV Heat Pump with Gas Sup. Heat Variable Refrigerant Flow + DOAS
Medium Office	Packaged Variable Air Volume – Hot Water Heat with Gas Boiler	 Packaged VAV – Electric Resistance Reheat Packaged VAV – Electric Reheat & Parallel Fan Boxes Packaged VAV w/ Heat Pump Boiler Variable Refrigerant Flow + DOAS Water Source Heat Pump w/ Elec. Boiler + DOAS
Large Office	Built-Up Variable Air Volume – Hot Water Heat with Gas Boiler	 Variable Air Volume (VAV) w/ Elec. Reheat VAV w/ Electric Reheat & Parallel Fan Boxes VAV w/ Heat Pump Boiler Water Source Heat Pump w/ Elec. Boiler + DOAS

ALTERNATIVE SYSTEM OPTIONS

	Current Baseline	Systems Analyzed
Restaurant (Small)	Single Zone and Single Zone VAV – Gas Furnace Heat	 Single Zone Heat Pump Single Zone Heat Pump with Gas Sup. Heat Single Zone VAV Heat Pump Single Zone VAV Heat Pump with Gas Sup. Heat
School (Small)	Single Zone and Single Zone VAV – Gas Furnace Heat	 Single Zone Heat Pump Single Zone Heat Pump with Gas Sup. Heat Single Zone VAV Heat Pump Single Zone VAV Heat Pump with Gas Sup. Heat Packaged VAV – Electric Resistance Reheat Packaged VAV – Electric Reheat & Parallel Fan Boxes Variable Refrigerant Flow Water Source Heat Pump w/ Elec. Boiler + DOAS
Warehouse	Single Zone VAZ (Office), Heating Ventilating System (Storage) – Gas Furnace Heat	 Single Zone Heat Pump Single Zone Heat Pump with Gas Sup. Heat Single Zone VAV Heat Pump Single Zone VAV Heat Pump with Gas Sup. Heat
31		N O R E

HIGH RISE MULTIFAMILY – TDV RESULTS

- Baseline is single zone air conditioners (SZAC) with gas furnace heat
- Heat pump heat gives small reductions in TDV except in CZ16
- Changing supplemental heat to gas gives TDV savings in all climate zones

HIGH RISE MULTIFAMILY – SOURCE ENERGY RESULTS

- Source energy savings for all options
- Source energy savings means increased stringency for gas heat design choices
- Use of gas supplemental heat reduces the source energy stringency

HIGH RISE MULTIFAMILY – SOURCE ENERGY RESULTS

- Will source stringency be prohibitive to gas heat?
- Added simple efficiency measures to gas furnace design
- Gas heat designs will require aggressive efficiency measures to comply in cool climate zones
- Gas supplemental heat sets more achievable targets

SMALL RETAIL – TDV RESULTS

- Baseline is a mix of single zone air conditioners (SZAC) and single zone
 VAV air conditioners (SZVAVAC), all with gas furnace heat
- Changing furnace to heat pump heat - small reduction in TDV except in CZ1, 5, 14 and 16
- Changing supplemental heat to gas gives TDV savings in all CZ

SMALL RETAIL – SOURCE ENERGY RESULTS

- Source energy savings in all Climate
 Zones for all options
- Increase in stringency with SZHP very significant, particularly in cool climate zones
- Use of gas supplemental heat mitigates the increased stringency

SMALL RETAIL – SOURCE ENERGY RESULTS

- Will source stringency be prohibitive for gas heat?
- Added simple efficiency measures to furnace system
- Gas supplemental heat sets achievable target in most climate zones
- VAV or DOAS may be needed in CZ1

MEDIUM RETAIL – TDV RESULTS

- Baseline is a mix of SZAC and SZVAVAC, all with gas furnace heat
- Changing furnace to heat pump heat - small reduction in TDV except in CZ1, 5 and 16
- Changing supplemental heat to gas gives TDV savings in all CZ

MEDIUM RETAIL – SOURCE ENERGY RESULTS

- Source stringency slightly higher than in Small Retail
- Gas supplemental heat sets challenging target in most heating climate zones
- VAV or DOAS would meet these targets

LARGE RETAIL – TDV RESULTS

- Baseline is SZVAVAC with gas furnace heat
- Changing furnace to heat pump heat - small reduction in TDV except in CZ1, 5 and 16
- Changing supplemental heat to gas gives TDV savings in all CZ

LARGE RETAIL – SOURCE ENERGY RESULTS

- Source stringency similar to Small Retail
- Gas supplemental heat sets achievable target in most climate zones

SMALL OFFICE – TDV RESULTS

- Baseline is SZAC with gas furnace heat
- Changing furnace to heat pump heat - small increases in TDV in CZ2, 4, 5, 11, 12, 13, and 14
- Significant TDV increases in CZ1 and 16
- Changing supplemental heat to gas gives TDV savings in all CZ

SMALL OFFICE – SOURCE ENERGY RESULTS

- Source stringency less than in Retail
- Gas supplemental heat sets achievable target in all climate zones except possibly CZ1
- VAV or DOAS would easily meet these targets

SMALL SCHOOL – TDV RESULTS

- Baseline is a mix of SZAC and SZVAVAC, all with gas furnace heat.
- Changing furnace to heat pump heat - small reduction in TDV except in CZ1, 5, 14 and 16
- Changing supplemental heat to gas provides TDV savings in all climate zones

SMALL SCHOOL – SOURCE ENERGY RESULTS

- Significant increase in source stringency
- Gas supplemental heat mitigates the increased stringency in source energy

WAREHOUSE – TDV RESULTS

- Baseline is a SZVAVAC for the office and heating/ventilating units serving storage areas, all with gas furnace heat.
- No direct electric heat alternative to the H/V units
- Heat pump for the office shows small TDV savings except in CZ16
- Change to gas supplemental heat reduces TDV in all climate zones

WAREHOUSE – SOURCE ENERGY RESULTS

- Increased stringency as a percentage skewed because the system only serves part of the building
- Gas supplemental heat mitigates the increased stringency in source energy

CONCLUSIONS

- Switch of standard design from gas furnace to heat pump appears viable
 - Very small TDV increases (reduced stringency) in some climate zones and prototypes
 - Significant TDV increases in climate zone 16
- Electric alternatives to gas boilers problematic significant reduction in TDV stringency
- Conventional heat pumps result in significant increases in source energy stringency in cooler climate zones, but especially CZ1
- Use of gas supplemental heat in the Standard Design:
 - Provides TDV savings in all climate zones
 - Mitigates the increase in source energy stringency

QUESTIONS??

2022 CALIFORNIA ENERGY CODE (TITLE 24, PART 6)

Multifamily Heatpump Compliance Pathway

Codes and Standards Enhancement (CASE) Proposal Multifamily

Abhijeet Pande & Dove Feng, TRC December 8, 2020

Statewide Utility Codes and Standards Team

Actively support the California Energy Commission in developing proposed changes to the Energy Code (Title 24, Part 6) to achieve significant statewide energy use reductions through the development of code change proposals for the 2022 cycle that are:

Feasible | Cost effective | Enforceable | Non-proprietary

Definition of Baseline and Proposed Conditions

Baseline Conditions

- Heating System Gas Furnace
- **Cooling System** Split Dx A/C
- Minimum efficiency meeting federal appliance standards

Proposed Conditions

- CZ 1-15: Split Ducted Heat Pump
- CZ16: Split Ducted Heat Pump with Gas Furnace Backup + Window Efficiency Upgrades
- Minimum SEER/HSPF meeting federal appliance standards

Incremental Cost Information

- Cost data collected for baseline and proposed systems using a professional cost estimator:
 - Based on a 'basis of design' prepared by an experienced engineering firm
 - Using existing products available in the market that meet minimum federal appliance efficiency standards
 - Using strategies utilized in real world projects
 - Baseline system costs include natural gas piping to individual furnaces
 - Proposed system costs include additional electrical circuits/panel capacity as needed
- All-electric designs were found to cost less at time of construction than mixed-fuel designs.

Per Dwelling Unit Costs

Items		Mid-Rise Mixed-Use		High-Rise Mixed-Use	
		Gas Furnace + Split Dx	SZHP	Gas Furnace + Split Dx	SZHP
Equipment	Dwelling Unit HVAC	\$5,619	\$4,121	\$5,567	\$4,092
	Common Area Ventilation	\$307	\$376	\$351	\$373
	Refrigerant piping	\$423	\$423	\$442	\$442
	Gas piping	\$227	\$0	\$237	\$0
	Electrical circuits	\$0	\$150	\$0	\$150
Labor		\$10,996	\$6,985	\$11,000	\$6,946
Overhead/Markup/Design/Permit		\$4,833	\$3,315	\$4,839	\$3,301
Total		\$22,405	\$15,371	\$22,435	\$15,304
Incremental Cost per Dwelling Unit			-\$7,034		-\$7,131

The Statewide CASE Team has not included any cost savings from eliminating natural gas infrastructure to the building in the analysis. The gas piping costs and savings shown are for gas pipelines from the building gas meter to individual space heating systems serving individual dwelling units.

Per Dwelling Unit Costs (CZ 16 only)

Items		Mid-Rise Mixed-Use/ High-Rise Mixed-Use		
		Gas-fired furnace + Split SZAC	Gas-fired furnace + Split SZHP	
Equipment	Dwelling Unit HVAC	\$5,619	\$6,109	
	Common Area Ventilation	\$307	\$307	
	Refrigerant piping	\$423	\$423	
	Gas piping	\$227	\$227	
	Electrical circuits	\$0	\$0	
Labor		\$10,996	\$10,985	
Overhead/Markup/Design/Permit		\$4,833	\$4,844	
Total		\$22,405	\$22,895	
Incremental Cost per Dwelling Unit			\$490	

Cost-Effectiveness

Ducted Heat Pump Space Heating

Mid-rise Mixed-use Multifamily

Climate Zone	TDV Energy Cost Savings	Incremental Cost Savings	Benefit-to- Cost Ratio	
	(2023 PV\$)	(2023 PV\$)		
1	\$657	\$9,719	Infinite	
2	\$417	\$12,472	Infinite	
3	\$404	\$11,904	Infinite	
4	\$230	\$11,950	Infinite	
5	\$189	\$9,760	Infinite	
6	\$107	\$9,749	Infinite	
7	\$92	\$9,781	Infinite	
8	\$100	\$9,857	Infinite	
9	\$152	\$9,760	Infinite	
10	\$156	\$10,001	Infinite	
11	\$552	\$10,087	Infinite	
12	\$383	\$9,954	Infinite	
13	\$353	\$9,967	Infinite	
14	\$221	\$9,897	Infinite	
15	\$65	\$10,016	Infinite	
16*	\$1,025	(\$923)	1.11	

High-rise Mixed-use Multifamily

Climate Zone	TDV Energy Cost Savings (2023 PV\$)	Incremental Cost Savings (2023 PV\$)	Benefit-to- Cost Ratio
1	\$735	\$9,766	Infinite
2	\$404	\$12,567	Infinite
3	\$355	\$11,979	Infinite
4	\$195	\$12,034	Infinite
5	\$172	\$9,834	Infinite
6	\$78	\$9,823	Infinite
7	\$82	\$9,860	Infinite
8	\$75	\$9,932	Infinite
9	\$126	\$9,842	Infinite
10	\$140	\$10,079	Infinite
11	\$611	\$10,170	Infinite
12	\$389	\$10,054	Infinite
13	\$334	\$10,052	Infinite
14	\$235	\$9,979	Infinite
15	\$48	\$10,122	Infinite
16*	\$738	(\$1,031)	0.72

Climate Zone 16 is cost-effective for the combined mid-rise + high-rise multifamily new construction, with benefit-cost ratio of 1.06

Thank You

Questions?

Abhijeet Pande, TRC (510) 359 4293 <u>APande@trccompanies.com</u>

Jingjuan (Dove) Feng, TRC (510) 359 4838 JFeng@trccompanies.com

2022 Central Heat Pump Water Heater Updates

Staff Pre-Rulemaking Workshop

Presenter: Danny Tam, Mechanical Engineer Date: December 8, 2020

Codes and Standards Enhancement (CASE) Initiative 2022 California Energy Code

All-Electric Multifamily Compliance Pathway

2022-MF-AEP-F | Multifamily | September 2020 Prepared by TRC Please submit comments to info@title24stakeholders.com. FINAL CASE REPORT

This report was prepared by the California Statewide Codes and Standards Enhancement (CASE) Program that is funded, in part, by California utility customers under the auspices of the California Public Utilities Commission.

A STATEWIDE UTILITY PROGRAM

Copyright 2020 Pacific Gas and Electric Company, Southern California Edison, San Diego Gas & Electric Company, Los Angeles Department of Water and Power, and Sacramento Municipal Utility District. All rights reserved, except that this document may be used, copied, and distributed without modification.

Neither Pacific Gas and Electric Company, Southern California Edison, San Diego Gas & Electric Company, Los Angeles Department of Water and Power, Sacramento Municipal Utility District or any of its employees makes any warranty, express or implied; or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any data, information, method, product, policy or process disclosed in this document; or represents that its use will not infringe any privately-owned rights including, but not limited to, patents, trademarks or copyrights.

JA14 Qualification Requirements for Central Heat Pump Water Heater System

- New proposed Joint Appendix to include testing and design documentation requirements for central HPWH systems in multifamily and nonresidential buildings
- Manufacturers would submit self-certified performance data with the following performance specification:
 - Water heater input power
 - Water heater output capacity
 - Water heater COP

JA14 Qualification Requirements for Central Heat Pump Water Heater System

- The central HPWH shall be tested at the following conditions
 - Inlet ambient air temperature: Maximum, minimum, and two midpoint temperatures of the manufacturer specified operating range. Minimum shall be equal to or lower than 40 °F.
 - Inlet water temperature: Maximum, minimum, and two midpoint temperatures of the manufacturer specified operating range.
 - Outlet water temperature: Maximum, midpoint, and minimum of outlet water (setpoint) temperatures of the manufacturer specified operating range. Maximum shall be equal to or greater than 140 °F.

- New proposed prescriptive option for central HPWH systems
 - $_{\odot}\,\text{HPWH}$ certified as JA14
 - \odot Requires recirculation loop tank.
 - Loop tank heater must be electric capable of multipass operation.
 - Setpoint at least 140°F for the primary storage tank; at least 20°F lower than the primary storage tank temperature for the loop tank.
 - Piping configuration requirements to ensure efficient operation
 - $_{\odot}$ Minimum HP compressor cut-off $\leq 40^{\circ}F$

Questions?

Due Date: December 24, 2020 By 5:00 PM

Comments to be submitted to:

https://efiling.energy.ca.gov/EComment/EComment.aspx?docketnumber=19-BSTD-03

Danny Tam, Mechanical

- Phone: (916) 654-8435
- Email: <u>Danny.Tam@energy.ca.gov</u>

Mazi Shirakh, P.E. Senior Mechanical

- Phone: (916) 654-3839
- Email: <u>Mazi.Shirakh@energy.ca.gov</u>

Payam Bozorgchami, P.E. 2022 BEES Project Manager

- Phone: (916) 654-4618
- Email: <u>Payam.Bozorgchami@energy.ca.gov</u>

Nonresidential PV and Battery Cost-Effectiveness with Draft Code Sizes

For CEC Public Workshop

10501241

December 8, 2020

Snuller Price Mike Sontag Jun Zhang Emily Peterson Brian Conlon Sierra Spencer Sumin Wang

+ Background and Context

- Goal of Analysis and Key Findings
- Modeling Inputs and Dimensions

+ PV + Storage Cost Effectiveness Results

- Medium Office Deep Dive
- All Building Types and Climate Zones
- Reliability Sensitivity Analysis
- + Source Energy & Emissions Results
- + First-Year Statewide Impacts
- + EV Charging Compliance Option Framework
- + Conclusions and Next Steps
- + Appendix

- + Evaluate participant benefits and cost effectiveness of behind-the-meter (BTM) PV and storage in HRMF and nonresidential new construction for proposed requirement size
- Study multiple configurations and sizes of PV and storage, with focus on limited grid exports (see October 6th workshop)
- + Cost-effectiveness measured under both TDV-based rates and current utility retail rates
 - TDV cost-effectiveness evaluated with multiple configurations to bound potential future rate design
- + Evaluation covers HRMF and nonresidential prototype buildings in all 16 climate zones
- + Present data inputs and methodology in a transparent manner

Key Findings

- Proposed PV + Storage package and configurations are cost-effective for all building categories due to co-benefits of combined systems, except warehouse (PV-only is cost-effective)
 - PV + Storage provides additional participant benefits, including reliability and resiliency
 - Climate zone 1 is least cost effective due to limited solar generation
- + PV + Storage is cost effective even under conservative dispatch, compensation scenarios
- + Cost-effectiveness by building type largely driven by cost declines for larger systems
 - Smaller buildings are least cost-effective, due to more expensive PV and storage (\$/W)
- Proposed PV and storage requirement reduces source energy and emissions by 10-50%, depending on building type and climate zone
- + Proposed requirement will yield an estimated 280 MW of behind the meter PV and 100 MW, 400 MWh of battery storage per year

Modeling Inputs and Dimensions

Cost-Effectiveness Modeling Framework

¹See CEC Docket Log 19-MISC-04 for additional information and documentation: https://efiling.energy.ca.gov/Lists/DocketLog.aspx?docketnumber=19-MISC-04

Energy+Environmental Economics

What are TDVs?

- The TDVs (Time Dependent Value) are a long-term forecast of hourly electricity, natural gas and propane costs to building owners and are used for cost-effectiveness activities in Title 24 Building Code
- + The TDVs answer the question of what is cost-effective in the long term, as required by the Warren-Alquist Act

- Time-differentiation reflects the underlying marginal cost of producing and delivering energy
- Area-correlation reflects underlying marginal cost shapes correlated with each climate zones weather file

+ 9 major sensitivities – many combinations!

Rates	PV Size	Storage Size	Storage Dispatch	Configura tions	Building Types	Building Fuels	Climate Zones	Reliability & Resiliency
Full TDV	Full NEM Compliant	PV Capacity	Optimal	PV only	Small Office	Mixed Fuel	All CZs	Not included
Export on Avoided Costs	Self Utilization	Minimize Solar Export	ΤΟυ	Storage Only	Medium Office	All-Electric		Included
Export on Wholesale Costs	Draft Code Language	Draft Code Language		PV+ Storage	Large Office			
Avoided Cost for All	Roof Space Constraint				Small Retail			
Utility Rates					Medium Retail			
					Large Retail			
					Small School			
					Large School			
					Warehouse			
					High-Rise Res			
					Mid-Rise Res			

Rates Sensitivities Considered

Rate Name	Compensation for Self-Utilized Electricity (Imports)	Compensation for Exports	
Existing Utility Retail Rates	Retail Rate + Non-bypassable charge	Retail Rate	
Full TDV (NEM2.0)	Full TDV	Full TDV – Non-bypassable charges	
Export on Avoided Costs	Full TDV	Avoided Costs	Increasing NEM
Export on Wholesale Costs	Full TDV	Wholesale Costs	
Self-utilized/Export on Avoided Costs	Avoided Costs	Avoided Costs	

- + <u>Self-utilized electricity</u> is generated and consumed behind the meter
- + <u>Imported electricity</u> is taken from the grid to power end-use loads
- + <u>Exported electricity</u> is generated behind the meter and sent to the grid

This analysis uses TDV with exports on avoided costs as conservative benchmark for cost-effectiveness

TDV Rate Sensitivities

+ Full TDV is highest, avoided costs and wholesale costs are similar in magnitude

- + Different climate zones have different hourly profiles due to local Transmission & Distribution peaks
 - Climate zones in inland LA Basin have slightly higher midday rates

- Draft Requirement sizing is designed such that building will self-utilize 80% of annual PV generation (20% exports)
- + Sizes calculated independent of roof area constraint
 - Effective Annual Solar Access Area (EASAA) constraint may limit sizes in actual buildings
- Sizes in prototype buildings range from ~20 kW_{DC} (Small Office, Warehouse) to as much as ~1300 kW_{DC} for Large Office

Average PV Size across All Climate Zones by Building Type

Key PV Inputs

+ PV Costs

- Consider full lifetime capital & replacement costs, fixed O&M costs, and investment tax credit (ITC)
- 2% inflation rate
- 3% real discount rate
- + Fixed O&M: \$11/kW_{DC}-yr (2018\$)²
- + ITC: 10%
- + Lifetime: 30 years
- + PV Tilt: assumed zero tilt, to maximize roof utilization
- + PV Azimuth: south-facing
- + Inverter Load Ratio (ILR): 1.0

PV (kWdc)	CAPEX ¹ (2020\$/W _{DC})	Lifetime NPV Costs (\$2023/kW _{DC})
10	\$3.16	\$3,263
20	\$2.84	\$2,957
50	\$2.46	\$2,594
100	\$2.21	\$2,355
200	\$1.99	\$2,145
500	\$1.73	\$1,897
1000	\$1.55	\$1,725

¹NORESCO Slides on PV and Storage Cost Presented on October 6: <u>https://efiling.energy.ca.gov/GetDocument.aspx?tn=235137&DocumentContentId=68017</u> ² NREL 2020 Annual Technology Baseline <u>https://atb.nrel.gov/electricity/2020/index.php?t=sd</u> *Fixed OM costs in 2020 NREL ATB include annualized large component replacement costs over technical life (e.g., inverters at 15 years)

Storage Sizing

- Draft Requirement sizing is designed so that battery storage will reduce annual solar exports from 20% to ~10%
 - Buildings with PV + storage will self-utilize ~90% of PV generation
- Storage sizes for prototype buildings range from 10 kW, 40 kWh to as much as 550 kW, 2200 kWh
- Assumes that battery has 4 hours worth of usable energy – i.e. battery can discharge at full capacity for 4 hours
 - Energy physically stored in battery must exceed 4-hour duration to account for discharge efficiency losses

Average Storage Size across All Climate Zones by Building Type

Key Storage Inputs

+ Storage Costs

- Consider full lifetime capital & replacement costs, fixed O&M costs, and investment tax credits (ITC)
- + Fixed O&M: \$29.61/kW_{DC}-yr (2018\$)²
- + 10% ITC
- + Storage RTE: 85%
- Storage Duration: 4 hours at full capacity
- Storage Lifetime: 10 years (cell replacement)
- + AC-coupled
- + Inverter Load Ratio (ILR) : 1.0
 - No PV generation "clipping"
- Exclude SGIP incentive in cost-effectiveness evaluation for code requirement
- + Assumed only charge from solar to maximize ITC

Commercial Battery Storage Capital Cost (2020\$/kWh)^{1,+}

Commercial Battery Storage, Cost/kWh

 $^{\rm +}$ Note: Equation assumes no further \$/kWh cost declines beyond 600 kW_{DC}, 2400 kWh

¹NORESCO Slides on PV and Storage Cost Presented on October 6: <u>https://efiling.energy.ca.gov/GetDocument.aspx?tn=235137&DocumentContentId=68017</u> ² NREL 2020 Annual Technology <u>https://atb.nrel.gov/electricity/2020/index.php?t=st</u>

- + Find values in prescriptive sizing table
- + Conditioned Floor Area: <u>53,628</u> sqft
- **PV** Adjustment Factor (A): <u>3.13</u> W/sqft
 - Climate Zone: 12

Table 140.10-A PV Adjustment Factors

	Minimum condit Adju	PV Capacity ioned floor a stment Facto	(W/ft² of rea) – or A
Climate Zone	1, 3, 5, 16	2, 4, 6-14	15
Highrise Multifamily	1.82	2.21	2.77
Office, Large	2.16	2.64	3.00
Office, Medium	2.59	3.13	3.80
Office, Small	4.04	4.44	5.02
Retail/Grocery, Large	2.58	2.87	3.39
Retail/Grocery, Medium	2.62	2.91	3.53
Retail/Grocery, Small	4.35	4.62	5.17
School, Small	1.44	1.78	2.93
School, Large	0.39	0.44	0.58
Warehouse	0.39	0.44	0.58
All Other: Auditorium, Convention Center, Financial Institution, Grocery store, Hotel/Motel, Library, Religious Facility, Medical/Clinic, Restaurant, Theater	0.39	0.44	0.85

EQUATION 140.10- PHOTOVOLTAIC DIRECT CURRENT SIZE

kW_{PVdc} = (CFA x A)/1000 WHERE: kW_{PVdc} = kW_{dc} size of the PV system in kW CFA = Conditioned floor area in square feet A = PV adjustment factor specified in Table 140.10-A for the building type

Example Calculation:

kW_{PVdc} = (53,628 sqft x 3.13 W/sqft)/1000 W/kW = <u>167 kW_{DC} PV System</u>

Prescriptive Storage Sizing Example – Medium Office

+ Roundtrip Efficiency: 85%

Table 140.10-B – Battery Storage Adjustment Factors

	Minimum Bat	tery Capacity
	Power – Adjustment	Energy – Adjustment
	Factor B	Factor C
Storage to PV Ratio	W/W	Wh/W
Highrise Multifamily	0.26	1.03
Office, Large	0.43	1.73
Office, Medium	0.42	1.68
Office, Small	0.37	1.48
Retail/Grocery, Large	0.27	1.07
Retail/Grocery, Medium	0.26	1.03
Retail/Grocery, Small	0.23	0.93
School, Small	0.48	1.93
School, Large	0.45	1.81
Warehouse	0.47	1.87
All Other: Auditorium, Convention Center,		
Financial Institution, Grocery store,	0.47	1.87
Hotel/Motel, Library, Religious Facility,		
Medical/Clinic, Restaurant, Theater		

EQUATION 140.10-B - BATTERY STORAGE RATED POWER CAPACITY $kW_{batt} = kW_{PVdc} \times B$

WHERE:

kW_{batt} =Power capacity of the battery storage system in kWdc kW_{PVdc} = kW_{dc} size of the PV system required by section 140.10A B =Battery storage capacity adjustment factor specified in Table 140.10-B for the building type

EQUATION 140.10-C - BATTERY STORAGE RATED ENERGY CAPACITY $kWh_{batt} = kW_{PVdc} \ge C / D^{0.5}$

WHERE:

kWh_{batt} = Rated energy capacity of the battery storage system in kWh kW_{PVdc} = kW_{dc} size of the PV system required by section 140.10A C = Battery storage energy adjustment factor specified in Table 140.10-B for the building type D = Rated single charge-discharge cycle AC to AC (round-trip) efficiency of the battery storage system

Equation 140.10-B Example: $kW_{batt} = 167 \ kW_{PVdc} \ x \ 0.42 \ W_{batt, dc}/W_{PVdc} = \frac{70 \ kWdc \ Battery}{1.85^{0.5}}$ Equation 140.10-C Example : $kWh_{batt} = 167 \ kW_{PVdc} \ x \ 1.68 \ W_{batt, dc}/W_{PVdc} / .85^{0.5} = \frac{304 \ kWh \ Battery}{1.85^{0.5}}$

+ Two major factors impact energy storage economic benefit

- **Controls scheme**: Commercially available energy storage does have sophisticated controls, but cannot match perfect foresight. TOU Dispatch scheme used in this analysis as conservative baseline
- Price signal: Current retail rates have limited alignment between participant benefits and grid benefits

Optimal Dispatch Option

- Optimal dispatch responds based on customer load, PV generation, different rate signals to + maximize customer benefit
- These plots show annual average of rate signals +
- Commercial TOU retail rate also includes demand charges (not shown) +

PG&E B-10 TOU

TDV - Export on Avoided Cost

Optimal Dispatch Option

+ Behind-the-meter (BTM) PV largely coincides with Medium Office load profile

• Some continued load after PV generation decreases, contributing to duck curve

- + Under TDV-based rate, optimal storage charging is mid-day, and discharges in evening (spring, summer, fall) and morning (winter), matching grid marginal costs
- + Commercial retail rates are dominated by demand charges, and optimal dispatch focuses on more lucrative demand charge clipping

- Under TDV-based rate, net load is increased mid-day to take advantage of cheap electricity, decreased in late evening to avoid expensive grid power
- + Under retail rate signal, net demand is minimized, even though it does not necessarily align with grid peak

TOU Dispatch Option

- + TOU dispatch controls are limited to charging during midday hours, and limited to discharging during TOU peak period from 4PM to 9PM
 - Schedule applied to full year
 - No additional controls for peak demand clipping
 - Storage can only offset on-site customer load and is not allowed to export to the grid

TDV - Export on Avoided Cost

PG&E B-10 TOU

PV+Storage Cost-Effectiveness

PV+Storage Cost-Effectiveness on TDV/Exported on Avoided Costs with Optimal Dispatch

- Calculated lifetime benefit and lifetime costs for each modeled sensitivity (building type, climate zone, rate, battery controls)
- This example for medium office, CZ 12, on the self-utilization on TDV/export on avoided costs rate shows approximately \$1M in lifetime benefits with \$800k in lifetime costs
- + This yields a Benefit-cost ratio of 1.3
- This rate scenario is a conservative assumption, based on potential retail rate reform, showing robust cost effectiveness across potential rate reform scenarios

Cost Effectiveness

PV+Storage Cost-Effectiveness on TDV/Exported on Avoided Costs with TOU Dispatch

- By constraining battery storage dispatch to a TOU-based schedule, total PV + Storage benefit is decreased by approximately 10%
 - Note: Benefit from PV-only does not change, so storage benefit decreases by more than 10%
- + Benefit-cost ratio is 1.2
- + On conservative rate scenario, with conservative battery storage controls, packaged system is still cost-effective
- + This serves as a low-bookend for potential benefit for this specific prototype building

Cost Effectiveness – TOU Dispatch, Exported on Avoided Costs

- + TOU dispatch still yields a cost-effective system under existing retail rates
- For Medium Office, the PV + Storage package is slightly more cost-effective under existing utility commercial TOU rates
 - Demand charge savings are significant driver of cost effectiveness for batteries on existing retail rates
 - TOU dispatch does not capture full demand charge savings benefit compared to optimal dispatch

+ Benefit-cost ratio is 1.36

Cost Effectiveness – TOU Dispatch, Utility Rate

PV+Storage System Net Benefits for All Climate Zones

- + Expanding to medium office, all climate zones, general trend stays consistent
 - Lifetime net benefit across all climate zones
- + Climate zone 1 and 16 are less cost-effective than other climate zones due to limited PV output
- + Utility rates have mixed impacts on cost-effectiveness
- + TOU dispatch limits cost-effectiveness

All Rates & Climate Zones, TOU Dispatch

PV + Storage TOU Dispatch on TDV/Exported on Avoided Costs Across Building Types

Mixed Fuel Load TOU Dispatch

 This chart shows benefit-cost ratio of each building type and climate zone. All combinations, except warehouse and some of CZ1, are cost-effective Export on Avoided Costs

								C	limat	e Zon	e								
		i	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	_	0.0
t-Effective	Warehouse -	0.68	0.91	0.89	0.95	0.9	1	0.89	1.1	1.1	1	0.9	0.91	0.93	1.1	1	0.92		0.0
	Small School -	0.78	1.1	1	1	1	1.1	1	1.1	1.1	1.1	1	1	1.1	1.2	1.2	1	-	0.5
	Large School -	0.93	1.3	1.2	1.3	1.2	1.3	1.2	1.3	1.4	1.4	1.2	1.2	1.3	1.4	1.4	1.2		
	Small Retail -	- 1	1.3	1.3	1.4	1.3	1.4	1.3	1.5	1.5	1.4	1.3	1.3	1.3	1.5	1.5	1.3	_	1.0
Build	Medium Retail -	1	1.3	1.3	1.4	1.4	1.4	1.3	1.5	1.5	1.5	1.3	1.3	1.4	1.6	1.5	1.3	-	1.5 a
T gui	Large Retail -	1.2	1.6	1.6	1.7	1.6	1.7	1.6	1.8	1.8	1.8	1.6	1.6	1.7	1.9	1.8	1.6		o ta
ype	Small Office -	0.86	1.1	1.1	1.2	1.1	1.2	1.1	1.2	1.3	1.2	1.1	1.1	1.2	1.3	1.3	1.1	-	2.0 <u>.</u>
	Medium Office -	0.89	1.2	1.2	1.2	1.2	1.2	1.1	1.3	1.3	1.3	1.2	1.2	1.3	1.4	1.4	1.1	-	2.5
	Large Office -	1.1	1.5	1.4	1.4	1.4	1.5	1.4	1.6	1.6	1.6	1.4	1.4	1.5	1.6	1.6	1.3		
Mid-F	Rise Residential -	1.1	1.6	1.4	1.7	1.5	1.7	1.5	1.8	1.8	1.7	1.6	1.6	1.6	1.8	1.7	1.5	-	3.0
High f	Rise Residential -	1.1	1.6	1.4	1.7	1.5	1.7	1.5	1.8	1.8	1.7	1.6	1.6	1.6	1.8	1.7	1.5		5.5
							1.1.2.5 544 545		1 Acres 2007 (2008)	ay na		a p a c							2 E

Energy+Environmental Economics

Not Cos

PV + Storage TOU Dispatch on TDV/Exported on Avoided Costs Across Building Types

+ This chart shows benefit-cost ratio. Removing storage requirement makes warehouse cost-effective

							C	limate	e Zon	e								
	1	ż	ġ.	4	5	6	Ż	8	9	10	11	12	13	14	15	16		0.0
for war	ehouse Warehouse - 1.1	1.5	1.5	1.7	1.6	1.7	1.5	1.9	1.8	1.8	1.5	1.5	1.6	2	1.8	1.5		0.0
	Small School - 0.78	1.1	1	1	1	1.1	1	1.1	1.1	1.1	1	1	1.1	1.2	1.2	1	- 1	0.5
	Large School - 0.93	1.3	1.2	1.3	1.2	1.3	1.2	1.3	1.4	1.4	1.2	1.2	1.3	1.4	1.4	1.2		
	Small Retail - 1	1.3	1.3	1.4	1.3	1.4	1.3	1.5	1.5	1.4	1.3	1.3	1.3	1.5	1.5	1.3	- 3	10
Build	Medium Retail - 1	1.3	1.3	1.4	1.4	1.4	1.3	1.5	1.5	1.5	1.3	1.3	1.4	1.6	1.5	1.3	- :	15 🖉
ling T	Large Retail - 1.2	1.6	1.6	1.7	1.6	1.7	1.6	1.8	1.8	1.8	1.6	1.6	1.7	1.9	1.8	1.6		n Rat
ype	Small Office - 0.86	1.1	1.1	1.2	1.1	1.2	1.1	1.2	1.3	1.2	1.1	1.1	1.2	1.3	1.3	1.1	- 1	2.0.⊆
	Medium Office - ^{0.89}	1.2	1.2	1.2	1.2	1.2	1.1	1.3	1.3	1.3	1.2	1.2	1.3	1.4	1.4	1.1	- 3	2.5
	Large Office - 11	1.5	1.4	1.4	1.4	1.5	1.4	1.6	1.6	1.6	1.4	1.4	1.5	1.6	1.6	1.3		
	Mid-Rise Residential - 11	1.6	1.4	1.7	1.5	1.7	1.5	1.8	1.8	1.7	1.6	1.6	1.6	1.8	1.7	1.5	- 1	3.0
ł	High Rise Residential - 1.1	1.6	1.4	1.7	1.5	1.7	1.5	1.8	1.8	1.7	1.6	1.6	1.6	1.8	1.7	1.5		
																	_	35

Export on Avoided Costs Mixed Fuel Load, TOU Dispatch

PV-only

PV + Storage TOU Dispatch on Utility Rates Across Building Types

Utility Rate Mixed Fuel Load, TOU Dispatch															CZ	Utility				
					1*	iixeu	rue	LUa	u, it	000	spau	-11					_	3.5	1	PG&E
High Rise Residential ·	2.3	2.9	2.8	3.1	3	2.7	3.1	2.6	2.8	3.4	3	3	3	3	2.8	2.5			2	PG&E
Mid-Rise Residential -	2.4	3	2.9	3.2	3	2.8	3.2	2.7	2.8	3.5	З	3.1	3.1	3.1	2.8	2.5	-	3.0	3	PG&E
Large Office -	. 1.1	1.4	1.4	1.5	1.6	1.4	1.6	1.3	1.4	1.7	1.5	1.5	1.5	1.4	1.3	1.2			4	PG&E
Medium Office -	- 1.1	1.3	1.3	1.4	1.4	1.2	1.3	1	1.1	1.5	1.3	1.4	1.4	1.2	1.1	1	- 1	2.5	5	PG&E
C . O. (%)	Small Office - 1.4 16 1.6 1.7 1.7 0.97 1.1 0.96 0.99 1.2 1.6 1.6 1.7 1 0.98 0.89															6	SCE			
Small Office -	- 1.4	1.0	1.0	1.7	1.7	0.97	1.1	0.96	0.99	1.2	1.0	1.0	1.7	1	0.98	0.89	- 1	2.0 .පු	7	SDG&E
Large Retail -	· 1.2	1.7	1.6	1.8	1.8	1.3	1.5	1.4	1.4	1.7	1.7	1.8	1.8	1.4	1.4	1.2		C Rai	8	SCE
Medium Retail -	1.3	1.6	1.6	1.7	1.7	1.1	1.2	1.2	1.2	1.3	1.6	1.6	1.7	1.2	1.2	1.1	- 1	15 🗟	9	SCE
Small Retail -	Small Retail - 17 19 2 2 2.1 1 1.1 1.1 1.1 1.3 2 2 2 1.1 1.1 0.98															10	SCE			
Larga Coheal	1.1	15	1.4	15	16	1 2	12	1.2	1.2	15	1.4	15	15	12	11	12		1.0	11	PG&E
Large School -	· 1.1	1.5	1.4	1.5	1.0	1.5	1.5	1.5	1.5	1.5	1.4	1.5	1.5	1.5	1.1	1.2			12	PG&E
Small School -	0.9	1.1	1.1	1.2	1.2	0.71	0.74	0.76	0.79	0.95	1.1	1.1	1.2	0.79	0.73	0.68	-	0.5	13	PG&E
Warehouse -	1.2	1.4	1.4	1.5	1.5	1.1	1.2	1.1	1.1	1.3	1.4	1.4	1.5	1.1	1	0.99			14	SCE
	i	ż	ż	4	5	6	ż	8	ģ	10	11	12	13	14	15	16	-	0.0	15	SCE
							C	limat	e Zon	e									16	SCE

PV + Storage TOU Dispatch on Utility Rates Across Building Types w/ LADWP & SMUD

	Utility Rate Mixed Fuel Load, TOU Dispatch															CZ	Utility			
					IV	iixea	Fue	Loa	α, το	וע טי	spac	cn						- 3.5	1	PG&E
High Rise Residential -	2.3	2.9	2.8	3.1	3	2	3.1	2	2.1	3.4	3	1.2	3	3	2.8	2.5			2	PG&E
Mid-Rise Residential -	2.4	3	2.9	3.2	3	2.1	3.2	2	2.1	3.5	3	1.2	3.1	3.1	2.8	2.5	-	- 3.0	3	PG&E
Large Office -	. 1.1	1.4	1.4	1.5	1.6	1	1.6	0.96	1.1	1.7	1.5	0.98	1.5	1.4	1.3	1.2			4	PG&E
Medium Office -	1.1	1.3	1.3	1.4	1.4	0.88	1.3	0.83	0.92	1.5	1.3	0.81	1.4	1.2	1.1	1	-	- 2.5	5	PG&E
. Small Office -	Small Office - 1.4 1.6 1.6 1.7 1.7 1.4 1.1 1.3 1.4 1.2 1.6 0.77 1.7 1 0.98 0.89														6					
large Retail -	. 12	17	16	18	18	22	15	7	22	17	17	11	18	14	1.4	12		Satio 7.7 -	/ 0	
Large Recan			1.0	1.0	1.0								1.0		1.4			-15 8	0	
Medium Retail -	um Retail - 1.3 1.6 1.6 1.7 1.7 1.8 1.2 1.7 1.8 1.3 1.6 0.94 1.7 1.2 1.2 1.1 -1.5 m 9													9	LADWP					
Small Retail -	1.7	1.9	2	2	2.1	1.8	1.1	1.7	1.7	1.3	2	0.93	2	1.1	1.1	0.98		.10	10	SCE
Large School -	1.1	1.5	1.4	1.5	1.6	1.6	1.3	1.5	1.6	1.5	1.4	0.84	1.5	1.3	1.1	1.2		- 1.0	11	PG&E
						1.5	0.74	1.5		0.05		0.00	1.5	0.70	0.70	0.00		0 F	12	SMUD
Small School -	. 0.9	1.1	1.1	1.2	1.2	1.3	0.74	1.2	1.3	0.95	1.1	0.68	1.2	0.79	0.73	0.68		- 0.5	13	PG&E
Warehouse -	1.2	1.4	1.4	1.5	1.5	1.3	1.2	1.3	1.4	1.3	1.4	0.69	1.5	1.1	1	0.99			14	SCE
	i	ź	3	4	5	6	ż	8	9	10	11	12	13	14	15	16		- 0.0	15	SCE
							C	limat	e Zon	e									16	SCE

- Proposed PV + Storage package is cost effective across building types and climate zones, even under conservative compensation assumptions (TDV rate with exports on avoided costs), and current utility rates
 - Some utility rates do not yield cost effective systems, partially due to limited demand charge reductions of TOU dispatch
 - Climate zone 1 is least cost effective due to limited solar generation
- TOU dispatch diminishes cost effectiveness across building types, but still yields cost-effective systems
- + Cost-effectiveness by building type largely driven by cost declines for larger systems
 - Smaller buildings are least cost-effective, due to more expensive PV and storage (\$/W)
- + Under TDV rates, some further variation in cost effectiveness between building types, likely driven by building load profile and ability for PV + Storage to impact net load

Energy+Environmental Economics

Reliability Value Sensitivity

Reliability Benefit Improves Cost-Effectiveness Optimal Dispatch

+ Behind-the-meter PV and battery storage has substantial reliability benefit

- Reliability benefit comes from having PV generation or reserving storage energy for unplanned short Transmission & Distribution power interruptions
- Not considered in cost-effectiveness tests, but this is a substantial participant benefit

Source Energy & Emissions Results

Source Energy, TOU Dispatch on TDV/Exported on Avoided Costs

- For Medium Office prototype, proposed PV + Storage systems yield substantial lifecycle source energy reductions in all climate zones for both mixed-fuel and all-electric buildings, ranging from 20% to over 50%
- All-electric buildings have lower source energy consumption across all climate zones, so PV + Storage yields larger % reduction in source energy savings

Mixed Fuel Load

All-Electric Load

* Lifecycle emissions calculated based on TDV source energy metric

Source Energy, TOU Dispatch on TDV/Exported on Avoided Costs Across Building Types

			i	ż	ż	4	5	6	, i	8 Timati	9 a Zon	10	ú	12	13	14	15	16	-	
PV-only		Warehouse	1.9	3.4	3.6	4.3	4.6	8.3	10	8.5	7.8	7.8	3.5	3.5	3.9	5.1	14	2.4	- 0	
		Small School -	9.6	17	16	21	18	29	33	28	27	26	16	16	17	20	42	9.8	- 10	
		Large School -	24	36	30	38	33	42	43	41	42	41	33	34	33	42	50	26	- 20 či Peče	j J
		Small Retail -	20	28	30	33	34	44	47	42	41	41	26	27	27	34	44	20	s ent S	5 1 1
	Build	Medium Retail -	14	21	22	26	25	35	39	34	33	32	19	20	21	26	39	14	- 30 ID	2 2 2
	ling T	Large Retail -	23	29	31	34	35	44	47	42	41	41	26	28	27	34	45	19	- 40 eu	1
	ype	Small Office -	23	34	34	38	38	47	50	47	46	46	32	33	33	41	50	25	201	5
		Medium Office -	22	31	32	37	34	49	52	47	46	45	31	32	32	39	53	23	- 50 pa	2222
		Large Office -	20	3 0	29	35	31	45	48	42	44	43	30	31	32	38	52	23	- 60 -	22
	Mi	d-Rise Residential -	9.8	14	13	16	15	19	19	19	19	18	13	14	14	18	23	10		
	Hig	h Rise Residential -	8.2	12	11	13	12	16	16	15	15	15	11	12	12	15	19	8.5	- 70	
							Μ	Exp lixed	oort (Fuel	on Av Loa	/oide d, TC	ed Co)U Di	sts spate	ch						

Source Energy

This chart shows % reduction in source energy from PV and storage. Reductions are as high as 53% +

Lifecycle GHG Emissions, TOU Dispatch on TDV/Exported on Avoided Costs

- For Medium Office prototype, proposed PV + Storage systems yield substantial lifecycle emissions reductions in all climate zones for both mixed-fuel and all-electric buildings, ranging from 20% to over 50%
- All-electric buildings have lower GHG emissions across all climate zones, so PV + Storage yields larger % reduction in source energy savings

* Lifecycle emissions calculated based on TDV hourly emissions factors

All-Electric Load

Lifetime GHG Emissions, TOU Dispatch on TDV/Exported on Avoided Costs Across Building Types

GHG Emissions

						Μ	Ex lixed	oort (Fuel	on Av Loa	/oide d, TC	ed Co DU Di	sts spate	ch					
	High Rise Residential -	8.3	12	11	13	12	16	16	15	15	15	11	12	12	15	20	8.5	- 70
	Mid-Rise Residential -	10	14	13	16	15	19	19	19	19	18	13	14	14	18	23	10	
	Large Office -	20	30	30	36	31	45	48	42	44	44	31	31	33	38	52	23	- 60
	Medium Office -	22	31	32	38	34	49	52	47	46	45	31	32	33	39	53	23	- 50 ^{ig}
	Small Office -	23	34	35	38	38	47	50	47	46	46	32	33	33	41	50	25	Red
1	Large Retail -	23	29	32	34	36	44	47	42	41	41	27	28	28	34	45	19	- 40 Joiss
	Medium Retail -	15	21	22	26	25	35	39	34	33	33	20	20	21	26	39	14	- 30 - 30
	Small Retail -	20	28	30	34	34	44	47	42	41	41	26	27	27	34	44	20	Frcen
	Large School -	24	36	30	38	33	42	43	41	42	41	33	34	33	42	50	26	- 20 2
	Small School -	9.7	17	16	21	18	29	33	28	27	26	16	17	17	21	42	9.8	- 10
PV-only	Warehouse ·	2	3.5	3.6	4.4	4.7	8.3	10	8.5	7.8	7.8	3.6	3.5	4	5.2	14	2.5	- 0
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Climate Zone													- 0				

+ This chart shows % reduction in lifetime GHG Emissions from PV and storage. Reductions are as high as 53%

First-Year Statewide Impacts

+ Based on proposed requirement, first year forecasted installed capacity (2023)

- PV 280 MW/yr
- Battery Storage 100 MW, 400MWh/yr
- + CPUC IRP Reference System Plan (Total Installed Capacity) Not including proposed requirement

Forecast based on 46MMT_20200207_2045_2GWPRM_NOOTCEXT_RSP_PD case from 2019 CPUC RSP: https://www.cpuc.ca.gov/General.aspx?id=6442459770

Energy+Environmental Economics

EV Charging Compliance Option Framework

Proposed framework for nonresidential EV compliance credit and initial example

- In order to meet California's 2025 ZEV goals, CARB estimates an additional need of 8,000-76,000 public/workplace level 2 (L2, ~7 kW) EV chargers, beyond those forecast under current building codes and incentives
- Proposed Title 24, Part 11 (CALGreen) requires ~10% of a building's parking spaces be "EV Capable" – cable raceway and sufficient panel capacity to support Electric Vehicle Supply Equipment (EVSE) – and one L2 EV charger per building
- + Granting Title 24, Part 6 compliance credit for EVSE installation in non-residential buildings could help fill this gap
- Designing Part 6 proposal so that it does not double count with Low Carbon Fuel Standard (LCFS) or CALGreen
- + This compliance credit is based on chargers in daytime charging locations that provide grid benefits:
 - TDV value of shifting EV charging load from a typical residential charging shape (during peak or evening hours) to a more solar-aligned workplace charging shape

+ Compliance Credit per Charger

- TDV 5,000 to 22,000 kBtu per charger lifecycle in likely usage scenarios
- Levelized Source Energy 3,000 to 5,200 kBtu per charger per year in likely usage scenarios
- Savings of 0.11 to 0.76 Tonnes CO2-e per charger per year in likely usage scenarios

+ CEC EVI-Pro preliminary charging profiles levelized to annual load of work L2 charger: 3.9 MWh

• Baseline-Public comparison represents switching from status quo charging (Res & Nonres) to all public charging

+ Title 24, Part 11 proposal to expand Nonres EVSE requirement to include

- ~10% of parking spaces to be "EV-Capable" cable raceway and sufficient panel capacity to support EVSE
- 1 Level 2 charger
- Current installation rate of chargers in EV-Capable spaces is 30%
 - May increase due to growing EV market and new requirement to install 1 L2 charger
- Part 6 compliance credit should be carefully designed to encourage EVSE <u>incremental</u> to Part 11 requirement and natural charger installations in EV-Capable spaces, as well as local reach codes

Proposed CALGreen Requirement for EV Capable Spaces

TOTAL NUMBER OF ACTUAL PARKING SPACES	NUMBER OF REQUIRED EV CHARGING SPACES
0-9	0
10-25	2
26-50	4
51-75	7
76-100	9
101-150	13
151-200	18
201 and over	10 percent of total ¹

Key Findings

- Proposed PV + Storage package and configurations are cost-effective for all building categories due to co-benefits of combined systems, except warehouse (PV-only is cost-effective)
 - PV + Storage provides additional participant benefits, including reliability and resiliency
 - Climate zone 1 is least cost effective due to limited solar generation
- + PV + Storage is cost effective even under conservative dispatch, compensation scenarios
- + Cost-effectiveness by building type largely driven by cost declines for larger systems
 - Smaller buildings are least cost-effective, due to more expensive PV and storage (\$/W)
- Proposed PV and storage requirement reduces source energy and emissions by 10-50%, depending on building type and climate zone
- + Proposed requirement will yield an estimated 280 MW of behind the meter PV and 100 MW, 400 MWh of battery storage per year

Energy+Environmental Economics

Appendix Contents

+ Key Updates since Oct. 6 Workshop	Slide 51
+ Additional Cost Effectiveness Run	Slide 52
+ PV Capacity Factor	Slide 53
+ Reliability Inputs & Assumptions	Slide 54
+ Net Benefit Results for Mixed Fuel Prototypes	Slide 57
+ Net Benefit Results for All-Electric Prototypes	Slide 64
+ Rate Assumptions	Slide 71
+ Solar + Storage Tool Details	Slide 81
+ Additional Context for Statewide Impacts	Slide 86
+ EV Charging Compliance Option Framework	Slide 91
+ October 6 Workshop Slides	Slide 94

Key Updates since October 6 Workshop

+ Refined technology cost assumption

- Smooth technology cost curve for battery storage
- + Oversized storage energy capacity to make sure it discharges full 4 hours
- + Switched lower bound to TOU dispatch
- + Corrected roof constraint calculation
 - Does not impact cost effectiveness results for configurations as proposed in draft measure language

+ Generalized PV and storage sizing by climate zone

- Only showing results for configurations as proposed in draft measure language
- Changed PV self-use size to be defined as 20% exports
- Changed Storage sizing scenario to 10% exports
- + Calculated source energy and emission results
- + Other minor bug fixes
 - Reliability value converted from 2016\$ to 2023\$

- For Medium Office, the PV + Storage package is more cost-effective under existing utility commercial TOU rates
- + Benefit-cost ratio is 1.6
- Demand charge savings are a significant portion of potential benefit for battery storage in existing retail rates

Cost Effectiveness – B10-TOU Rate

PV Capacity Factor

+ CZ01 has much lower PV output (les cost-effective), CZ14 has much higher PV output (more cost-effective)

Climate Zone	Weather Station Name	Capacity Factor
CZ01	Arcata AP	15.3%
CZ02	Santa Rosa (AWOS)	18.1%
CZ03	Oakland Metro AP	18.7%
CZ04	San Jose Reid Hillv	19.1%
CZ05	Santa Maria Public AP	19.9%
CZ06	Torrance Muni AP	20.1%
CZ07	San Diego Lindbergh F	18.6%
CZ08	Fullerton Muni AP	19.4%
CZ09	Burbank GIndle Pasad	20.3%
CZ10	Riverside Muni	20.3%
CZ11	Red Bluff Muni AP	18.2%
CZ12	Sacramento Executive	18.7%
CZ13	Fresno Yosemite IAP	18.8%
CZ14	Palmdale AP	21.9%
CZ15	Palm Springs IAP	20.3%
CZ16	Blue Canyon AP	19.4%

Energy+Environmental Economics

Energy+Environmental Economics

Appendix – Key Reliability Assumptions

+ Reliability benefit calculation methodology

- Reliability (ability to cover short-duration unplanned T&D power interruptions)
 - average T&D interruption probability * energy availability in PV and storage * interruption costs (VoLL)

+ Reliability metrics

- CA statewide data from NREL dGen Model¹
- SAIDI 195.1
- SAIFI 0.954

+ Interruption costs (VoLL)

- From LBNL Interruption Cost Estimate (ICE)²
- By prototype building type
- Based on CZ12 mixed-fuel electric load as a proxy
 - annual load kWh are close across different CZs

	VoLL Ass	umption	s by Building Type	
Building Type	Load Type	MWh	Sector	VoLL 2023 \$/kWh
High-rise Res	Mixed-fuel	691	Medium and Large C&I	69.21
Mid-rise Res	Mixed-fuel	645	Medium and Large C&I	71.66
Large Office	Mixed-fuel	3609	Medium and Large C&I	29.98
Medium Office	Mixed-fuel	453	Medium and Large C&I	85.63
Small Office	Mixed-fuel	62	Small C&I	233.68
Large Office	Mixed-fuel	1754	Medium and Large C&I	43.23
Medium Retail	Mixed-fuel	188	Medium and Large C&I	133.28
Small Retail	Mixed-fuel	103	Small C&I	150.99
Large School	Mixed-fuel	1035	Medium and Large C&I	56.43
Small School	Mixed-fuel	179	Small C&I	93.64
Warehouse	Mixed-fuel	73	Small C&I	203.10

2 https://www.icecalculator.com/

^{1 &}lt;u>https://www.nrel.gov/analysis/dgen/index.html</u>

Reliability Benefit Improves Cost-Effectiveness TOU Dispatch

+ Behind the meter PV and battery storage has substantial reliability benefit

- Reliability benefit comes from having PV generation or reserving storage energy for unplanned short T&D power interruptions
- Not considered in cost-effectiveness tests, but a substantial benefit

Appendix - Net Benefit Results for Mixed Fuel Load

PV + Storage Optimal Dispatch on TDV/Exported on Avoided Costs Across Building Types

					Mix	Ex ed F	port (uel L	on Av .oad,	voide Opti	ed Co mal	osts Dispa	atch						2 E
High Rise Residential -	1.3	1.6	1.5	1.8	1.6	1.8	1.7	1.9	1.9	1.8	1.6	1.7	1.7	2	1.8	1.6		·
Mid-Rise Residential -	1.3	1.6	1.5	1.8	1.6	1.8	1.7	1.9	1.9	1.8	1.6	1.7	1.7	2	1.8	1.6	-	3.0
Large Office -	1.3	1.6	1.6	1.6	1.6	1.7	1.6	1.8	1.8	1.7	1.6	1.6	1.6	1.9	1.7	1.6		
Medium Office -	1.1	1.3	1.3	1.4	1.3	1.4	1.3	1.5	1.5	1.4	1.3	1.3	1.4	1.5	1.5	1.3	-	2.5
Small Office -	1	1.2	1.2	1.3	1.3	1.3	1.2	1.4	1.4	1.3	1.2	1.2	1.3	1.5	1.4	1.3	-	2.0.9
Large Retail -	1.4	1.7	1.7	1.8	1.8	1.9	1.8	2	2	1.9	1.7	1.7	1.8	2.1	1.9	1.8		C Rat
Medium Retail -	1.2	1.4	1.4	1.5	1.5	1.5	1.4	1.6	1.6	1.6	1.4	1.4	1.5	1.7	1.6	1.5	-	15 🖻
Small Retail -	1.1	1.4	1.3	1.5	1.4	1.5	1.4	1.6	1.6	1.5	1.4	1.4	1.4	1.6	1.5	1.4	_	1.0
Large School -	1.2	1.4	1.4	1.4	1.4	1.5	1.4	1.6	1.6	1.5	1.4	1.4	1.4	1.6	1.5	1.4		
Small School -	0.98	1.1	1.1	1.2	1.2	1.2	1.2	1.3	1.3	1.2	1.1	1.2	1.2	1.4	1.3	1.2	-	0.5
Warehouse -	0.91	1.1	1.1	1.2	1.1	1.2	1.1	1.3	1.3	1.2	1.1	1.1	1.2	1.3	1.2	1.2		0.0
	i	2	3	4	5	6	ż	8 limat	9 e Zon	ı̈́o e	'n	12	13	14	15	16	-	0.0

PV + Storage Optimal Dispatch on Utility Rates Across Building Types

					RAS.		U Landar	Itility	Rate	e		ماسماد						CZ	Utility
					MUD	ea F	uerL	oad,	Opti	mai	uispa	aten					- 3.5	1	PG&E
High Rise Residential -	2.4	3	2.9	3.2	3.1	2.7	3.1	2.6	2.8	3.4	3	3.1	3.1	3	2.8	2.5		2	PG&E
Mid-Rise Residential -	2.4	3.1	2.9	3.2	3.1	2.8	3.2	2.7	2.8	3.5	3.1	3.2	3.2	3.1	2.8	2.5	- 3.0	3	PG&E
Large Office -	1.6	2	2	2.1	2.1	1.7	1.7	1.7	1.8	1.8	2	2	2.1	1.8	1.7	1.6		4	PG&E
Medium Office -	1.3	1.6	1.6	1.6	1.7	1.4	1.4	1.4	1.4	1.5	1.6	1.6	1.6	1.5	1.5	1.3	- 2.5	5	PG&E
Small Office -	1.4	1.6	1.7	1.7	1.8	1.2	1.3	1.2	1.3	1.4	1.6	1.7	1.7	1.3	1.3	1.1	- 20 0	6	SCE
Large Retail -	1.7	2.1	2.1	2.1	2.1	1.6	1.6	1.6	1.6	1.7	2	2.1	2	1.7	1.6	1.5	Ratio	8	SCE
Medium Retail -	1.4	1.7	1.8	1.8	1.8	1.3	1.3	1.3	1.3	1.4	1.7	1.7	1.7	1.4	1.3	1.3	-15 🛱	9	SCE
Small Retail -	1.7	2	2	2.1	2.1	1.2	1.2	1.2	1.2	1.3	2	2	2	1.3	1.2	1.2		10	SCE
		2.2	1.0		-	1 7	1.5			1.6	-	-	-	3.6	1.5	1.5	- 1.0	11	PG&E
Large School -	1.4	2.1	1.8	2.1	2	1.7	1.5	1.7	1.7	1.0	2	2	2	1.0	1.5	1.5		12	PG&E
Small School -	1.1	1.4	1.4	1.5	1.6	1.2	1.1	1.2	1.2	1.2	1.4	1.4	1.4	1.2	1.2	1	- 0.5	13	PG&E
Warehouse -	1.2	1.4	1.5	1.5	1.6	1.3	1.2	1.2	1.3	1.3	1.5	1.5	1.5	1.3	1.2	1.2		14	SCE
	i	ź	3	4	5	6	ż	8	9	10	11	12	13	14	15	16	- 0.0	15	SCE
							C	limat	e Zon	е								16	SCE

PV + Storage Optimal Dispatch on Utility Rates Across Building Types w/ LADWP & SMUD

					NA Sec		ll	Itility	Rate	e !								CZ	Utility
					MIX	lea F	uei L	oad,	Opti	mai	Jispa	aton					- 3.5	1	PG&E
High Rise Residential -	2.4	3	2.9	3.2	3.1	2.1	3.1	2.1	2.1	3.4	3	1.2	3.1	3	2.8	2.5		2	PG&E
Mid-Rise Residential -	2.4	3.1	2.9	3.2	3.1	2.2	3.2	2.1	2.2	3.5	3.1	1.2	3.2	3.1	2.8	2.5	- 3.0	3	PG&E
Large Office -	1.6	2	2	2.1	2.1	1.3	1.7	1.3	1.4	1.8	2	1	2.1	1.8	1.7	1.6		4	PG&E
Medium Office -	1.3	1.6	1.6	1.6	1.7	1.1	1.4	1.1	1.1	1.5	1.6	0.87	1.6	1.5	1.5	1.3	- 2.5	5	PG&E
Small Office -	1.4	16	17	17	1.8	16	13	15	16	1.4	16	0.82	17	13	13	11		6	LADWP
Sinai Onice -	1.4	1.0	1.7	1.7	1.0	1.0	1.5	1.5	1.0	1.4	1.0	0.02	1.7	1.0	1.5	1.1	- 2.0 .을	7	SDG&E
Large Retail -	1.7	2.1	2.1	2.1	2.1	2.3	1.6	2.2	2.3	1.7	2	1.2	2	1.7	1.6	1.5	CRa	8	LADWP
Medium Retail -	1.4	1.7	1.8	1.8	1.8	1.9	1.3	1.8	1.9	1.4	1.7	0.99	1.7	1.4	1.3	1.3	-15 🖻	9	LADWP
Small Retail -	1.7	2	2	2.1	2.1	1.8	1.2	1.8	1.8	1.3	2	0.97	2	1.3	1.2	1.2	1.0	10	SCE
Larga School	1.4	21	1.0	21	2	2	15	1.0	1.0	16	7	0.0	2	16	15	15	-10	11	PG&E
Large School -	1.4	2.1	1.0	2.1	2	2	1.5	1.9	1.9	1.0	2	v.9	2	1.0	1.5	1.5		12	SMUD
Small School -	1.1	1.4	1.4	1.5	1.6	1.6	1.1	1.5	1.5	1.2	1.4	0.74	1.4	1.2	1.2	1	- 0.5	13	PG&E
Warehouse -	1.2	1.4	1.5	1.5	1.6	1.4	1.2	1.4	1.4	1.3	1.5	0.74	1.5	1.3	1.2	1.2		14	SCE
	i	ź	3	4	5	6	ż	8	ģ	10	11	12	13	14	15	16	- 0.0	15	SCE
							C	limat	e Zon	e								16	SCE

PV + Storage TOU Dispatch on TDV/Exported on Avoided Costs Across Building Types

					Μ	Ex lixed	port (Fuel	on Av	voide d, TC	ed Co SU Di	sts spat	ch					2.5
High Rise Residential	- 1.1	1.6	1.4	1.7	1.5	1.7	1.5	1.8	1.8	1.7	1.6	1.6	1.6	1.8	1.7	1.5	- 3.5
Mid-Rise Residential	- 1.1	1.6	1.4	1.7	1.5	1.7	1.5	1.8	1.8	1.7	1.6	1.6	1.6	1.8	1.7	1.5	- 3.0
Large Office ·	1.1	1.5	1.4	1.4	1.4	1.5	1.4	1.6	1.6	1.6	1.4	1.4	1.5	1.6	1.6	1.3	
Medium Office	0.89	1.2	1.2	1.2	1.2	1.2	1.1	1.3	1.3	1.3	1.2	1.2	1.3	1.4	1.4	1.1	- 2.5
Small Office	0.86	1.1	1.1	1.2	1.1	1.2	1.1	1.2	1.3	1.2	1.1	1.1	1.2	1.3	1.3	1.1	- 2.0 <u>.</u>
Large Retail ·	· 1.2	1.6	1.6	1.7	1.6	1.7	1.6	1.8	1.8	1.8	1.6	1.6	1.7	1.9	1.8	1.б	C Rat
Medium Retail ·	. 1	1.3	1.3	1.4	1.4	1.4	1.3	1.5	1.5	1.5	1.3	1.3	1.4	1.6	1.5	1.3	-15 🖻
Small Retail	- 1	1.3	1.3	1.4	1.3	1.4	1.3	1.5	1.5	1.4	1.3	1.3	1.3	1.5	1.5	1.3	-10
Large School	0.93	1.3	1.2	1.3	1.2	1.3	1.2	1.3	1.4	1.4	1.2	1.2	1.3	1.4	1.4	1.2	
Small School	0.78	1.1	1	1	1	1.1	1	1.1	1.1	1.1	1	1	1.1	1.2	1.2	1	- 0.5
Warehouse ·	0.68	0.91	0.89	0.95	0.9	1	0.89	1.1	1.1	1	0.9	0.91	0.93	1.1	1	0.92	- 0.0
	i	2	з	4	5	6	7	8 Jimat	9 e Zon	ı̈́o e	'n	12	13	14	15	16	- 0.0

PV + Storage TOU Dispatch on Utility Rates Across Building Types

					N	livod	ل Fue	Jtility	/ Rate	е ылы	enati	-h						CZ	Utility
	~ ~		2.0		-	nxcu	T u u		u, re		spac	_	-	-	2.0		- 3.5	1	PG&E
High Rise Residential -	2.3	2.9	2.8	3.1	3	2.7	3.1	2.6	2.8	3.4	3	3	3	3	2.8	2.5		2	PG&E
Mid-Rise Residential -	2.4	3	2.9	3.2	3	2.8	3.2	2.7	2.8	3.5	3	3.1	3.1	3.1	2.8	2.5	- 3.0	3	PG&E
Large Office -	. 1.1	1.4	1.4	1.5	1.6	1.4	1.6	1.3	1.4	1.7	1.5	1.5	1.5	1.4	1.3	1.2		4	PG&E
Medium Office -	1.1	1.3	1.3	1.4	1.4	1.2	1.3	1	1.1	1.5	1.3	1.4	1.4	1.2	1.1	1	- 2.5	5	PG&E
Small Office -	. 14	16	16	17	17	0.07	11	0.06	0.00	12	16	16	17	1	0.08	0.80		6	SCE
Sinai Onice -	. 1.4	1.0	1.0	1.7	1.7	0.37	1.1	0.50	0.55	1.2	1.0	1.0	1.7	Ŧ	0.50	0.05	e. 0.2 -	7	SDG&E
Large Retail -	1.2	1.7	1.6	1.8	1.8	1.3	1.5	1.4	1.4	1.7	1.7	1.8	1.8	1.4	1.4	1.2	C Ba	8	SCE
Medium Retail -	1.3	1.6	1.6	1.7	1.7	1.1	1.2	1.2	1.2	1.3	1.6	1.6	1.7	1.2	1.2	1.1	-15 🖻	9	SCE
Small Retail -	1.7	1.9	2	2	2.1	1	1.1	1.1	1.1	1.3	2	2	2	1.1	1.1	0.98	1.0	10	SCE
Larga School	11	15	14	15	16	12	12	12	12	15	1.4	15	15	12	11	12	-10	11	PG&E
Large School -		1.0	1.4	1.5	1.0	1.0	1.0	1.0	1.3	1.5	1.4	1.0	1.0	1.5	1.1	1.2		12	PG&E
Small School -	0.9	1.1	1.1	1.2	1.2	0.71	0.74	0.76	0.79	0.95	1.1	1.1	1.2	0.79	0.73	0.68	- 0.5	13	PG&E
Warehouse -	1.2	1.4	1.4	1.5	1.5	1.1	1.2	1.1	1.1	1.3	1.4	1.4	1.5	1.1	1	0.99		14	SCE
	i	ź	3	4	5	6	ż	8	ģ	10	11	12	13	14	15	16'	- 0.0	15	SCE
							C	limat	e Zon	e								16	SCE

PV + Storage TOU Dispatch on Utility Rates Across Building Types w/ LADWP & SMUD

					p	انبعما	l. Furel	Itility	Rat	e	en per ser de	ch							CZ	Utility
					IA	iixea	Fue	Loa	α, το	וע טי	spac	cn						- 3.5	1	PG&E
High Rise Residential -	2.3	2.9	2.8	3.1	3	2	3.1	2	2.1	3.4	3	1.2	3	3	2.8	2.5			2	PG&E
Mid-Rise Residential -	2.4	3	2.9	3.2	3	2.1	3.2	2	2.1	3.5	3	1.2	3.1	3.1	2.8	2.5	-	- 3.0	3	PG&E
Large Office -	. 1.1	1.4	1.4	1.5	1.6	1	1.6	0.96	1.1	1.7	1.5	0.98	1.5	1.4	1.3	1.2			4	PG&E
Medium Office -	1.1	1.3	1.3	1.4	1.4	0.88	1.3	0.83	0.92	1.5	1.3	0.81	1.4	1.2	1.1	1	-	- 2.5	5	PG&E
. Small Office -	1.4	1.6	1.6	1.7	1.7	1.4	1.1	1.3	1.4	1.2	1.6	0.77	1.7	1	0.98	0.89		20.0	6	
) large Retail -	. 12	17	16	18	18	22	15	7	22	17	17	11	18	14	1.4	12		Satio 7.7 -	/ 0	
	1.2	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.7	1.0	0.04	1.0	1.5	1.7	1.1		-15 m	0	
Medium Retail -	. 1.3	1.6	1.0	1.7	1.7	1.8	1.2	1.7	1.8	1.3	1.6	0.94	1.7	1.2	1.2	1.1		15-	9	LADWP
Small Retail -	1.7	1.9	2	2	2.1	1.8	1.1	1.7	1.7	1.3	2	0.93	2	1.1	1.1	0.98		-10	10	SCE
Large School -	1.1	1.5	1.4	1.5	1.6	1.6	1.3	1.5	1.6	1.5	1.4	0.84	1.5	1.3	1.1	1.2		10	11	PG&E
Small School -	0.9	1.1	1.1	1.2	1.2	1.3	0.74	1.2	1.3	0.95	1.1	0.68	1.2	0.79	0.73	0.68		- 0.5	12	SMUD
Shan School																			13	PG&E
Warehouse -	1.2	1.4	1.4	1.5	1.5	1.3	1.2	1.3	1.4	1.3	1.4	0.69	1.5	1.1	1	0.99		0.0	14	SCE
	i	ź	ż	4	5	6	ż	8	9	10	11	12	13	14	15	16		- 0.0	15	SCE
							C	limat	e Zon	e									16	SCE

Appendix - Net Benefit Results for All-Electric Load

PV + Storage Optimal Dispatch on TDV/Exported on Avoided Costs Across Building Types – All-Electric

				All	Ex Elect	port (tric L	on Av .oad,	voide Opti	ed Co mal I	sts Dispa	atch						
High Rise Residential - 1.3	1.7	1.5	1.8	1.6	1.8	1.7	1.9	1.9	1.9	1.7	1.7	1.7	2	1.9	1.6		3.5
Large Office - 1.4	1.6	1.6	1.7	1.7	1.7	1.6	1.8	1.8	1.8	1.6	1.6	1.7	1.9	1.8	1.7	-	3.0
Medium Office - 1.1	1.3	1.3	1.4	1.4	1.4	1.3	1.5	1.5	1.4	1.3	1.3	1.4	1.6	1.5	1.4	-	2.5
Small Office - 1	1.2	1.2	1.3	1.3	1.3	1.3	1.4	1.4	1.4	1.2	1.3	1.3	1.5	1.4	1.3	-	20 c
Large Retail - 1.5	1.8	1.8	1.9	1.9	1.9	1.8	2.1	2.1	2	1.8	1.8	1.8	2.2	2	1.8		C Rati
Medium Retail - 1.2	1.5	1.4	1.6	1.5	1.6	1.5	1.7	1.7	1.6	1.5	1.5	1.5	1.8	1.6	1.5	-	1.5 🖻
Small Retail - 1.1	1.4	1.4	1.5	1.4	1.5	1.4	1.6	1.6	1.5	1.4	1.4	1.4	1.7	1.5	1.4	-	1.0
Small School - 0.98	1.2	1.1	1.2	1.2	1.2	1.2	1.3	1.3	1.2	1.2	1.2	1.2	1.4	1.3	1.2	-	0.5
Warehouse - ^{0.92}	1.1	1.1	1.2	1.2	1.2	1.1	1.3	1.3	1.2	1.1	1.1	1.2	1.4	1.3	1.2		0.0
i	ź	ż	4	5	6	7 C	8 Climat	9 e Zon	10 e	11	12	13	14	15	16		0.0

PV + Storage Optimal Dispatch on Utility Rates Across Building Types

							L	Itility	Rat	е								CZ	Utility
					All	Elect	tric L	oad,	Opti	mal I	Dispa	atch					 - 35	1	PG&E
High Rise Residential	- 2.4	3	2.9	3.2	3.1	2.7	3.2	2.6	2.8	3.5	3	3.1	3.1	3	2.8	2.5		2	PG&E
		_	-		2.1	1 -	1.7		1.7	1.0		2.2		1.0		1.0	- 3.0	3	PG&E
Large Office	- 1./	2	2	2.1	2.1	1.7	1.7	1.7	1./	1.8	2	2.1	2.1	1.8	1.7	1.6		4	PG&E
Medium Office	- 1.3	1.6	1.6	1.7	1.7	1.4	1.4	1.4	1.5	1.5	1.6	1.6	1.7	1.5	1.5	1.3	- 2.5	5	PG&E
																		6	SCE
Small Office	- 1.4	1.6	1.7	1.7	1.8	1.2	1.2	1.2	1.3	1.4	1.6	1.7	1.7	1.4	1.3	1.2	-200	7	SDG&E
- ₽ Large Retail	- 1.7	2.1	2.2	2.1	2.2	1.6	1.6	1.6	1.6	1.7	2.1	2.1	2.1	1.6	1.6	1.5	Rati	8	SCE
																	-15 🛱	9	SCE
B Medium Retail	- 1.5	1.7	1.8	1.8	1.8	1.3	1.3	1.3	1.3	1.4	1.7	1.8	1.8	1.4	1.3	1.3		10	SCE
Small Retail	- 1.7	2	2	2.1	2.1	1.3	1.2	1.2	1.3	1.3	2	2	2	1.3	1.2	1.2	-10	11	PG&E
																		12	PG&E
Small School	- 1.2	1.4	1.5	1.5	1.5	1.2	1.1	1.2	1.2	1.2	1.4	1.4	1.4	1.3	1.2	1.1	- 0.5	13	PG&E
Warehouse	12	1.4	1.4	1.4	1.4	12	12	12	13	13	14	1.4	1.4	13	12	12		14	SCE
warenouse	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	- 0.0	15	SCE
	i	2	ġ.	4	5	6	7	8	9	10	11	12	13	14	15	16		16	SCE
							C	umate	e zon	e									

PV + Storage Optimal Dispatch on Utility Rates Across Building Type w/ LADWP & SMUD

							ι	Jtility	Rate	e								CZ	Utility
	All Electric Load, Optimal Dispatch										1	PG&E							
High Rise Residential	2.4	3	2.9	3.2	3.1	2.1	3.2	2.1	2.1	3.5	3	1.2	3.1	3	2.8	2.5	5.5	2	PG&E
																	- 30	3	PG&E
Large Office	- 1.7	2	2	2.1	2.1	1.3	1.7	1.2	1.3	1.8	2	1	2.1	1.8	1.7	1.6	5.0	4	PG&E
Medium Office	- 1.3	1.6	1.6	1.7	1.7	1.1	1.4	1.1	1.1	1.5	1.6	0.87	1.7	1.5	1.5	1.3	- 2.5	5	PG&E
																		6	LADWP
Small Office	- 1.4	1.6	1.7	1.7	1.8	1.5	1.2	1.5	1.6	1.4	1.6	0.82	1.7	1.4	1.3	1.2	-200	7	SDG&E
Large Retail	- 1.7	2.1	2.2	2.1	2.2	2.3	1.6	2.2	2.3	1.7	2.1	1.2	2.1	1.6	1.6	1.5	Rati	8	LADWP
2																	-15 🛱	9	LADWP
Medium Retail	- 1.5	1.7	1.8	1.8	1.8	1.8	1.3	1.8	1.9	1.4	1.7	0.99	1.8	1.4	1.3	1.3	* * -	10	SCE
Small Retail	- 1.7	2	2	2.1	2.1	1.8	1.2	1.8	1.8	1.3	2	0.97	2	1.3	1.2	1.2	- 1.0	11	PG&E
																		12	SMUD
Small School	1.2	1.4	1.5	1.5	1.5	1.4	1.1	1.4	1.4	1.2	1.4	0.74	1.4	1.3	1.2	1.1	- 0.5	13	PG&E
Warabeura	12	1.4	1.4	1.4	14	15	12	14	1.4	13	14	0.74	14	13	12	12		14	SCE
warenouse		1.4	1.4	1.4	1+		1	1.4	1.4	1.2	1.4	10.7.4	1.4	1.5	1. E.	1.2	- 0.0	15	SCE
	i	ż	ż	4	5	Ġ	7	8	9	10	ú	12	13	14	15	16		16	SCE
							C	limat	e Zon	e									

PV + Storage TOU Dispatch on TDV/Exported on Avoided Costs Across Building Types – All-Electric

					A	ll Ele	ectric	Loa	d, TO)U Di	spate	ch					36
High Rise Residential -	1.1	1.6	1.5	1.7	1.5	1.7	1.6	1.8	1.8	1.8	1.6	1.6	1.6	1.9	1.8	1.5	- 5.5
Large Office -	1.1	1.5	1.4	1.5	1.4	1.5	1.4	1.6	1.6	1.6	1.4	1.4	1.5	1.7	1.6	1.4	- 3.0
Medium Office -	0.9	1.2	1.2	1.2	1.2	1.3	1.2	1.3	1.3	1.3	1.2	1.2	1.3	1.4	1.4	1.1	- 2.5
Small Office -	0.88	1.2	1.1	1.2	1.1	1.2	1.1	1.3	1.3	1.3	1.1	1.1	1.2	1.3	1.3	1.1	-200
Large Retail -	1.3	1.7	1.7	1.8	1.7	1.8	1.7	1.9	1.9	1.9	1.7	1.7	1.8	2	1.9	1.7	C Rati
Medium Retail -	1.1	1.4	1.4	1.5	1.4	1.5	1.4	1.6	1.6	1.5	1.4	1.4	1.4	1.7	1.5	1.4	-15 🖻
Small Retail -	1	1.3	1.3	1.4	1.3	1.4	1.3	1.5	1.5	1.4	1.3	1.3	1.4	1.6	1.5	1.3	- 1.0
Small School -	0.79	1.1	1	1	1	1.1	1	1.1	1.1	1.1	1	1	1.1	1.2	1.2	1	- 0.5
Warehouse -	0.7	0.93	0.9	0.96	0.92	1	0.91	1.1	1.1	1.1	0.93	0.91	0.97	1.2	1.1	0.97	
	i	ż	3	4	5	6	7 C	8 limat	9 e Zon	ıò e	'n	12	13	14	15	16	- 0.0

Export on Avoided Costs

PV + Storage TOU Dispatch on Utility Rates Across Building Types

Utility Rate										CZ	Utility									
	All Electric Load, TOU Dispatch									1	PG&E									
Hig	h Rise Residential -	2.3	2.9	2.8	3.1	3	2.7	3.1	2.6	2.8	3.4	з	3	3	3	2.8	2.5	5.5	2	PG&E
									_									- 30	3	PG&E
	Large Office -	- 1.1	1.4	1.4	1.5	1.5	1.4	1.6	1.3	1.3	1.7	1.4	1.4	1.5	1.4	1.3	1.2	5.0	4	PG&E
	Medium Office -	1.1	1.3	1.4	1.4	1.4	1.2	1.4	1.1	1.1	1.5	1.3	1.4	1.4	1.2	1.1	1	- 2.5	5	PG&E
																			6	SCE
r D	Small Office - 1.4 1.6 1.7 1.7 1.7 0.96 1.1 0.95 0.9 Large Retail - 1.2 1.7 1.8 1.8 1.8 1.3 1.5 1.4 1.4	0.99	1.2	1.6	1.6	1.7	1	0.98	0.86	-200	7	SDG&E								
2		1.4	1.4	1.7	1.7	1.8	1.8	1.4	1.4	1.2	Rati	8	SCE							
																	-15 🛱	9	SCE	
2	Medium Retail -	1.3	1.6	1.6	1.7	1.7	1.1	1.2	1.2	1.2	1.3	1.6	1.6	1.7	1.1	1.1	1	1.5	10	SCE
	Small Retail -	1.7	2	2	2	2.1	1.1	1.2	1.1	11	1.3	2	2	2	11	1.1	0.96	-1.0	11	PG&E
				_									_						12	PG&E
	Small School -	0.9	1.1	1.1	1.2	1.2	0.69	0.72	0.72	0.77	0.87	1.1	1.1	1.1	0.77	0.7	0.67	- 0.5	13	PG&E
	Weerberree	0.00	11	11	11	11	0.09	12	0.07	0.00	12	11	11	11	1	0.02	0.01		14	SCE
	warenouse -	0.03	1.1	1.1	1.1	1.1L	0.50	1.2	0.37	4.33		1.1	1.1	1.1	1	0.50	0.51	- 0.0	15	SCE
		i	ż	З	4	5	6	ż	8	9	10	'n	12	13	14	15	16	0.0	16	SCE
	Climate Zone																			

PV + Storage TOU Dispatch on Utility Rates Across Building Types w/ LADWP & SMUD

Energy+Environmental Economics

Energy+Environmental Economics

Appendix - Rate Assumptions

- + Full TDV: All TDV cost components
- + Non-Bypassable Charges (NBC's): Calculated based on existing NEM2.0 NBC's
- Avoided Costs: All cost components except Retail Adjustment
- + Wholesale Costs All cost components except Retail Adjustment, Emissions Abatement, and GHG Adder

Rate Name	Compensation for Self-Utilized Electricity	Compensation for Exports
NEM 2.0	Full TDV	TDV – NBC's
Export on Avoided Costs	Full TDV	Avoided Costs
Export on Wholesale Costs	Full TDV	Wholesale Costs
Import/export on Avoided Costs	Avoided Costs	Avoided Costs

Virtual NEM Sensitivity Definitions

- + Full TDV: All TDV cost components
- + Non-Bypassable Charges (NBC's): Calculated based on existing NEM2.0 NBC's
- Avoided Costs: All cost components except Retail Adjustment
- + Wholesale Costs All cost components except Retail Adjustment, Emissions Abatement, and GHG Adder

Rate Name	Compensation for Self-Utilized Electricity	Compensation for Exports
NEM 2.0	Full TDV – NBC's	TDV – NBC's
Export on Avoided Costs	Full TDV – NBC's	Avoided Costs
Export on Wholesale Costs	Full TDV – NBC's	Wholesale Costs
Import/export on Avoided Costs	Avoided Costs	Avoided Costs

- T&D
- Emissions Abatement
- GHG Adder
- Cap & Trade Emissions
- Ancillary Services
- Losses
- Energy
- Retail Adjustment

TDV Frequently Asked Questions

+ Why do we measure cost-effectiveness with TDV instead of actual retail rate structures that are in place?

- We want the building code to be relatively stable over time and from cycle to cycle, the TDVs reflect a 'perfect' marginal cost of service which is a long-term signal for retail rates
- By using the underlying system marginal costs we are reflecting building measures that provide the greatest underlying value to the energy system, even if retail rates are flat or have a different time of use period

Climate Zone/Utility Rate Mapping

Climate Zone	PG&E	SCE	SDG&E	LADWP	SMUD
CZ01	X				
CZ02	X				
CZ03	X				
CZ04	X				
CZ05	X	X			
CZ06		X		X	
CZ07			X		
CZ08		X		X	
CZ09		X		X	
CZ10		X			
CZ11	X				
CZ12	X				X
CZ13	X				
CZ14		X	X		
CZ15		X	X		
CZ16		X			

Utility Rates Assumptions - PG&E

+ Retail rates are assigned based on prototype building peak load and CZ

+ Climate Zones in PG&E territory, for example use these rates

Building Type	Mix-fuel Peak Load (kW)	All-electric Peak Load (kW)	PG&E Retail Rate
Large Office	1582	1611	B-20 Extra Large General - Time of Use (1000 +)
Medium Office	210	230	B-10 Medium General - Time of Use
Small Office	23	27	B-6 Small General Time of use (0-75 kW)
Large Retail	808	1012	B-19 Large General Time of use (or Extra large general TOU) (500-1000)
Medium Retail	99	118	B-10 Medium/Large General Time of use
Small Retail	40	54	B-6 Small General Time of use (0-75 kW)
Warehouse	29	210	B-6 Small/Medium General TOU
Large School	574	N/A	B-19 Large General Time of use (or Extra large general TOU) (500-1000)
Small School	87	164	B-10 Medium General TOU
High Rise Residential	5	5	E-TOU-C-NEM2 Residential - Time of Use - Rate C (NEM 2.0)
Mid Rise Residential	5	N/A	E-TOU-C-NEM2 Residential - Time of Use - Rate C (NEM 2.0)

Utility Rates Assumptions - SCE

- + Retail rates are assigned based on prototype building peak load and CZ
- + Climate Zones in SCE territory use these rates

Building Type	Mix-fuel Peak Load (kW)	All-electric Peak Load (kW)	SCE Retail Rate
Large Office	1610	1838	TOU-8 Large General- TOU Option D (Below 2kV) (NEM 2.0)(500+)
Medium Office	236	262	TOU-GS-3 General-TOU Demand Metered, Rate D (NEM 2.0) (200-500kW)
Small Office	25	30	TOU-GS-2 General-TOU Demand Metered, Option D (NEM 2.0) (20-200kW)
Large Retail	960	1117	TOU-8 Large General- TOU Option D (Below 2kV) (NEM 2.0)(500+)
Medium Retail	106	134	TOU-GS-2 General-TOU Demand Metered, Option D (NEM 2.0) (20-200kW)
Small Retail	46	59	TOU-GS-2 General-TOU Demand Metered, Option D (NEM 2.0) (20-200kW)
Warehouse	33	207	TOU-GS-2 General-TOU Demand Metered, Option D (NEM 2.0) (20-200kW)
Large School	685	N/A	TOU-8 Large General- TOU Option D (Below 2kV) (NEM 2.0)(500+)
Small School	104	179	TOU-GS-2 General-TOU Demand Metered, Option D (NEM 2.0) (20-200kW)
High Rise Residential	5	5	TOU-D-4-9PM-NEM2 Domestic - Time of Use, 4-9 PM (NEM 2.0)
Mid Rise Residential	5	N/A	TOU-D-4-9PM-NEM2 Domestic - Time of Use, 4-9 PM (NEM 2.0)

Utility Rates Assumptions - SDG&E

+ Retail rates are assigned based on prototype building peak load and CZ

+ Climate Zones in SDG&E territory use these rates

Building Type	Mix-fuel Peak Load (kW)	All-electric Peak Load (kW)	SDG&E Retail Rate
Large Office	1610	1665	AL-TOU General-Time Metered (20+)
Medium Office	236	262	AL-TOU General-Time Metered (20+)
Small Office	25	27	AL-TOU General-Time Metered (20+)
Large Retail	960	1117	AL-TOU General-Time Metered (20+)
Medium Retail	106	114	AL-TOU General-Time Metered (20+)
Small Retail	46	51	AL-TOU General-Time Metered (20+)
Warehouse	33	207	AL-TOU General-Time Metered (20+)
Large School	565	N/A	AL-TOU General-Time Metered (20+)
Small School	104	148	AL-TOU General-Time Metered (20+)
High Rise Residential	5	5	TOU-DR1-NEM2 Residential - Time of Use, DR1 (NEM 2.0)
Mid Rise Residential	5	N/A	TOU-DR1-NEM2 Residential - Time of Use, DR1 (NEM 2.0)

Energy+Environmental Economics

Utility Rates Assumptions – SMUD

+ Retail rates are assigned based on prototype building peak load and CZ

+ Climate Zones in SMUD territory use these rates

Building Type	Mix-fuel Peak Load (kW)	All-electric Peak Load (kW)	SMUD Retail Rate
Large Office	1423	1523	GS-TOU1 Large General -TOU (1000+)
Medium Office	204	229	GSS_T General-Demand (20+)
Small Office	22	24	GSS_T General-Demand (20+)
Large Retail	764	957	GSS_T General-Demand (20+)
Medium Retail	81	111	GSS_T General-Demand (20+)
Small Retail	40	46	GSS_T General-Demand (20+)
Warehouse	29	205	GSS_T General-Demand (20+)
Large School	574	N/A	GSS_T General-Demand (20+)
Small School	82	164	GSS_T General-Demand (20+)
High Rise Residential	5	5	R-TOD Residential - Time of Day, 5-8pm
Mid Rise Residential	5	N/A	R-TOD Residential - Time of Day, 5-8pm

Utility Rates Assumptions – LADWP

+ Retail rates are assigned based on prototype building peak load and CZ

+ Climate Zones in LADWP territory use these rates

Building Type	Mix-fuel Peak Load (kW)	All-electric Peak Load (kW)	LADWP Retail Rate
Large Office	1582	1485	CG-2 Customer Generation-Primary, Rate A
Medium Office	202	225	CG-2 Customer Generation-Primary, Rate A
Small Office	22	23	A-1 Small General TOU, Rate B
Large Retail	780	964	CG-2 Customer Generation-Primary, Rate A
Medium Retail	87	108	CG-2 Customer Generation-Primary, Rate A
Small Retail	40	42	CG-2 Customer Generation-Primary, Rate A
Warehouse	32	178	CG-2 Customer Generation-Primary, Rate A
Large School	589	N/A	CG-2 Customer Generation-Primary, Rate A
Small School	85	143	CG-2 Customer Generation-Primary, Rate A
High Rise Residential	5	5	R-1-B Residential - Time of Use, Rate B
Mid Rise Residential	5	N/A	R-1-B Residential - Time of Use, Rate B

Energy+Environmental Economics

Appendix – Solar + Storage Tool Details

+ A DER valuation tool with an optimization engine for dispatch

See CEC Docket Log 19-MISC-04 for additional information and documentation: https://efiling.energy.ca.gov/Lists/DocketLog.aspx?docketnumber=19-MISC-04

+ Maximizing net benefits, subject to

- Technology operating constraints
- Program and market rules
- + Value-stacking and customizable benefits selection
- + Co-optimization among DER technologies
 - PV, storage, and other generators can "work" together to maximize net benefits
- + Flexible optimization window (Daily, Monthly, Annual) and Intervals (Hourly, 15mins, 5mins)

See CEC Docket Log 19-MISC-04 for additional information and documentation: https://efiling.energy.ca.gov/Lists/DocketLog.aspx?docketnumber=19-MISC-04

Solar + Storage Tool Capabilities

+ Dispatchable

- Objective function: minimizing net costs
- Subject to technology, market, and incentive (e.g. ITC) constraints
- Co-optimization across multiple technologies with perfect foresight
- Price taker

+ Partial Dispatchable

- Dispatch with the consideration of customer comfort level
- Co-optimize with both dispatchable and partial dispatchable technologies

+ Fixed shapes

- User input based on the specific project or customer
- Default PV shapes pre-loaded for each climate zone

Other highlights

•Temperature-based day mapping

• Flexible Optimization Window (Daily, Monthly, Annual) and Intervals (Hourly, 15mins, 5mins)

Example Dispatch – PV + Storage

Appendix - IRP Reference System Plan for Context of First-Year Statewide Impacts

+ First year forecasted installed capacity (2023)

- PV 280 MW/yr
- Battery Storage 100 MW, 400MWh/yr

+ CPUC IRP Reference System Plan (Incremental Installed Capacity)

Selected Resources (New Build)	Unit	2020	2021	2022	2023	2024	2026	2030
Gas	MW	-	_	-	-	-	-	-
Biomass	MW	-	-	-	-	-	-	-
Geothermal	MW	-	-	-	-	-	-	-
Hydro (Small)	MW	-	-	-	-	-	-	-
Wind	MW	-	34	1,950	1,950	2,737	2,737	3,367
Wind OOS New Tx	MW	-	-	-	-	-	-	892
Offshore Wind	MW	-	-	-	-	-	-	-
Solar	MW	1,551	3,551	5,551	7,551	7,551	7,551	10,041
Customer Solar	MW	-	-	-	-	-	-	-
Battery Storage	MW	163	2,462	2,462	2,462	3,309	5,883	8,988
Pumped Storage	MW	-	-	-	-	-	334	334
Shed DR	MW	-	222	222	222	222	222	222
Gas Capacity Not Retained	MW	-	-	-	-	-	-	(243)

CPUC IRP Reference System Plan Total Installed Capacity

CPUC IRP Total Installed Capacity

	Unit	2020	2021	2022	2023	2024	2026	2030
Nuclear	MW	2,935	2,935	2,935	2,935	1,785	635	635
СНР	MW	2,296	2,296	2,296	2,296	2,296	2,296	2,296
Gas	MW	27,562	25,113	25,113	25,113	25,113	25,113	24,871
Coal	MW	480	480	480	480	480	-	-
Hydro (Large)	MW	7,070	7,070	7,070	7,070	7,070	7,070	7,070
Hydro (NW scheduled imports)	MW	2,852	2,852	2,852	2,852	2,852	2,852	2,852
Biomass	MW	903	903	903	903	903	903	901
Geothermal	MW	1,851	1,851	1,851	1,851	1,851	1,851	1,851
Hydro (Small)	MW	974	974	974	974	974	974	974
Wind	MW	7,357	7,490	9,406	9,406	10,193	10,193	10,823
Wind OOS New Tx	MW	-	-	-	-	-	-	892
Offshore Wind	MW	-	-	-	-	-	-	-
Solar	MW	15,861	18,317	20,438	22,438	22,438	22,438	24,928
Customer Solar	MW	9,827	11,137	12,284	13,303	14,288	16,156	20,066
Battery Storage	MW	1,857	4,624	4,727	4,895	6,083	8,821	12,253
Pumped Storage	MW	1,599	1,599	1,599	1,599	1,599	1,934	1,934
Shed DR	MW	2,195	2,418	2,418	2,418	2,418	2,418	2,418
Shift DR	MW	-	-	-	-	-	-	-
Hydrogen Load	MW	-	-	-	-	-	-	-

Energy+Environmental Economics

Appendix - EV Charging Compliance Option Framework

EV load profile sensitivities examine the impact of load shape and magnitude on compliance credit

+ CEC EVI-Pro preliminary charging profiles levelized to annual work L2 charger load

+ Compliance Credit per Charger

- TDV 5,000 to 22,000 kBtu per charger lifecycle in likely usage scenarios
- Levelized Source Energy 3,000 to 5,200 kBtu per charger per year in likely usage scenarios
- Savings of 0.11 to 0.76 Tonnes CO2-e per charger per year in likely usage scenarios
- + Figures assume EV charges on grid energy greater savings from PV charging

Example Credits per Charger by Profile Comparison and Annual Usage Sensitivities (kBtu)

Base Profile	Nonres Profile	Historical (2.5 MWh)	Forecast (3.9 MWh)
Baseline Total	Public Total	11,026	17,213
Timer Spike Total	Public Total	6,590	10,288
Baseline Total	Baseline Work L2	13,812	21,563
Timer Spike Total	Timer Spike Work L2	5,111	7,980

Example Credits per Charger by Profile Comparison Sensitivities and Prototype – Forecast Usage Case (% of Building Load kBtu)

HRR10 Story	MRMU5 Story	OffLrg	OffMed	OffSml	RetILrg	RetIMed	RetISmI	SchLrg	SchSml	Whse
0.09%	0.10%	0.02%	0.17%	1.19%	0.04%	0.37%	0.69%	0.07%	0.40%	1.14%
0.06%	0.06%	0.01%	0.10%	0.71%	0.02%	0.22%	0.41%	0.04%	0.24%	0.68%
0.12%	0.13%	0.03%	0.21%	1.49%	0.05%	0.46%	0.86%	0.09%	0.50%	1.43%
0.04%	0.05%	0.01%	0.08%	0.55%	0.02%	0.17%	0.32%	0.03%	0.18%	0.53%

Appendix - October 6 Workshop Slides

+ Background and Context

+ Scope of Analysis and Dimensions Considered

+ Medium Office Deep Dive

- PV-only Cost Effectiveness
- Storage-only Cost Effectiveness
- PV + Storage Cost Effectiveness
- + Storage Duration Sensitivity
- + Reliability and Resiliency Sensitivity
- + EV Charging Compliance Option Framework
- + Appendix

- + Evaluate participant benefits and cost effectiveness of behind the meter PV and storage in HRMF and Nonresidential new construction
- + Study multiple configurations and sizes of PV and storage, with focus on limited grid exports
- + Cost-effectiveness measured under both TDV-based rates and current retail rates
 - TDV cost-effectiveness evaluated with multiple configurations to bound potential future rate design
- + Evaluation covers HRMF and nonresidential prototype buildings in each of the 16 climate zones
- + Present data inputs and methodology in a transparent manner
 - Open to improved data on capital costs, technology characteristics, storage control operations, future price signals, etc.

Key Findings

 + PV + Storage as a package (smaller configuration) is cost-effective for most building categories due to co-benefits of combined systems

• PV + Storage provides additional participant benefits, including reliability and resiliency

+ PV is cost effective across all scenarios from participant perspective, except under most significant rate reform

- Minimizing exports allows for significant PV benefits, while having robust cost-effectiveness in all rate sensitivities
- Note: most significant rate reform is analogous to "buy all sell all" on avoided cost treatment of rooftop PV
- + Storage-only presents large grid benefits, but is generally not cost-effective in this analysis

+ Next Steps:

- Collect additional relevant data from stakeholders,
- Perform additional analysis to refine optimal size and configuration in context of building codes and standards

Modeling Inputs and Dimensions

Cost-Effectiveness Modeling Framework

¹See CEC Docket Log 19-MISC-04 for additional information and documentation: https://efiling.energy.ca.gov/Lists/DocketLog.aspx?docketnumber=19-MISC-04

+ 9 major sensitivities – many combinations!

Rates	PV Size	Storage Size	Storage Dispatch	Configur ations	Building Types	Building Fuels	Climate Zones	Reliability/ Resiliency
Full TDV	Full NEM	PV Capacity	Optimal	PV only	Small Office	Mixed Fuel	All CZs	Not included
Export on Avoided	Self-Util	Minimize Solar Exports	Basic	Storage Only	Medium Office	All-Electric		Included
Export on wholesale	15% Exports			PV+ storage	Large Office			
Avoided Cost for all	Roof Space				Small Retail			
Utility Rates					Medium Retail			
					Large Retail			
					Small School			
					Warehouse			
					Large School			
					High-Rise Res			

What are TDVs?

- The TDVs (Time Dependent Value) are a long-term forecast of hourly electricity, natural gas and propane costs to building owners and are used for cost-effectiveness activities in Title 24 Building Code
- + The TDVs answer the question of what is cost-effective in the long term, as required by the Warren-Alquist Act

- Time-differentiation reflects the underlying marginal cost of producing and delivering energy
- Area-correlation reflects underlying marginal cost shapes correlated with each climate zones weather file

Sample Annual Average Electric TDV, 2022, CZ12

Rates Sensitivities Considered

Rate Name	Compensation for Self-Utilized Electricity (Imports)	Compensation for Exports	
Existing Utility Retail Rates	Retail Rate + Non-bypassable charge	Retail Rate	
Full TDV (NEM2.0)	Full TDV	Full TDV – Non-bypassable charges	
Export on Avoided Costs	Full TDV	Avoided Costs	Increasing NEM
Export on Wholesale Costs	Full TDV	Wholesale Costs	
Self-utilized/export on Avoided Costs	Avoided Costs	Avoided Costs	

- + <u>Self-utilized electricity</u> is generated and consumed behind the meter
- + <u>Imported electricity</u> is taken from the grid to power end-use loads
- + Exported electricity is generated behind the meter and sent to the grid

TDV Rate Sensitivities

- + Full TDV is highest, avoided costs and wholesale costs are similar in magnitude
- + Different Climate zones have different hourly profiles due to local T&D peaks
 - Climate zones in inland LA Basin have slightly higher midday rates

Note: TDV rate on y-axis is levelized lifetime present value

PV Sizing

+ Three sizing options for each building type and climate zone

- Max NEM Complaint
 - Annual solar gen = annual total building consumption
 - ~40% of annual PV generation is exported to grid
- Self-utilization (~20% Exports PV)
 - Sized to generate the amount of PV that is selfutilized in *Max NEM Compliant* case
 - ~20% of annual PV generation is exported to grid
- 5% Exports
 - 5% of annual PV generation is exported to grid

+ PV sizes compared to roof area constraints to ensure viable system size

Average PV Size by Building Type

(See appendix for Large Office sizing)

Key PV Inputs

+ PV Costs

- Considers full lifetime capital & replacement costs, fixed O&M costs, investment tax credit
- 2% Inflation rate
- 3% Real discount rate
- + Fixed O&M: \$11/kW_{DC}-yr (2018\$)¹
- **+** ITC: 10%
- + Lifetime: 30 years
- + PV Tilt: assumed zero tilt, to maximize roof utilization
- + PV Azimuth: South-facing
- + Inverter Load Ratio: 1.0

PV (kWdc)	CAPEX (2020\$/W _{DC})	Lifetime NPV Costs used in this analysis (\$2023/kW _{DC})
10	\$3.16	\$3,263
20	\$2.84	\$2,957
50	\$2.46	\$2,594
100	\$2.21	\$2,355
200	\$1.99	\$2,145
500	\$1.73	\$1,897
1000	\$1.55	\$1,725

¹ NREL 2020 Annual Technology Baseline <u>https://atb.nrel.gov/electricity/2020/index.php?t=sd</u>

*Fixed OM costs in 2020 NREL ATB include annualized large component replacement costs over technical life (e.g., inverters at 15 years)

Storage Sizing

+ Two sizing options for each building type, climate zone

- Max Storage: Sized to Self-utilization (~20% Exports) PV capacity
- Min Solar Export: Sized to minimize net solar exports
 - Reduces PV gen exports form 20% to ~10%
- + Typical assumption is 4-hr duration
- + Additional sensitivity with 2-hr duration

Average Storage Size by Building Type

Key Storage Inputs

+ Storage Costs

- Considers full lifetime capital & replacement costs, fixed O&M costs, investment tax credit
- + Fixed O&M: \$29.61/kW_{DC}-yr (2018\$)²
- + 10% ITC
- + Storage RTE: 85%
- + Storage duration: 4 hours
- + Storage lifetime: 10 years (cell replacement)
- + AC-coupled
- + Inverter Load Ratio : 1.0 No PV generation "clipping"
- + Exclude SGIP incentive in cost-effectiveness evaluation for code requirement
- + Assumed only charge from solar to maximize ITC

² NREL 2020 Annual Technology <u>https://atb.nrel.gov/electricity/2020/index.php?t=st</u>

Battery Size (kW)	Battery CAPEX (2020 \$/kWh)	Battery Replacement Cost (2020\$/kWh)
< 100	\$800	\$392 (year 10) \$344 (year 20)
> 100	\$600	\$284 (year 10) \$258 (year 20)

+ Two major factors impact energy storage economic benefit

- Controls scheme: Commercially available energy storage does have sophisticated controls, but cannot match perfect foresight
- Price signal: Current retail rates have limited alignment between participant benefits and grid benefits

Optimal Dispatch Option

- + Optimal dispatch responds based on customer load, PV generation, different rate signals to maximize customer benefit
- + These plots show annual average of rate signals
- + TOU rate also includes demand charges (not shown)

Full TDV

Optimal Dispatch Option

+ Behind the meter PV largely coincides with Medium office load profile

• Some continued load after PV gen decreases, contributing to duck curve

Full TDV

- + Under TDV based rate, optimal storage charging is mid-day, and discharges in evening (spring, summer, fall) and morning (winter), matching grid marginal costs
- + Commercial retail rates are dominated by demand charges, and optimal dispatch focuses on more lucrative demand charge clipping

Full TDV

- + Under TDV based rate, net load is increased mid-day to take advantage of cheap electricity, decreased in late evening to avoid expensive grid power
- + Under retail rate signal, net demand is minimized, even though it does not necessarily align with grid peak

Full TDV

- + Battery charges on PV net exports and discharges when load again exceeds PV production
- + Demonstrates simple "maximize solar consumption" control scheme

PV-Only Cost-Effectiveness

- + Under Full TDV rate, self-utilized electricity generation is compensated nearly the same the same as exported electricity
- + Benefit/Cost ratio stays largely the same, regardless of PV size (except in case of PV cost reductions due to economies of scale)
- + No added incentive for limited exports
- + PV is cost-effective for all sizes

Cost Effectiveness

- "Export on Avoided Costs" and "Export on Wholesale Costs" rates have higher compensation for self-utilized PV generation than exports
- + Benefit/Cost ratio increases with smaller PV size
- + Increased incentive to self-utilize PV generation
- + PV cost effective for all sizes

Cost Effectiveness

- + PV more cost-effective under existing retail rates than all TDV-based rates
- Current utility retail rates compensate exports at nearly the same rate as selfutilized generation (with the exception of "Non-Bypassable Charges")
- Higher mid-day prices during behind the meter PV generation drive higher costeffectiveness
- + Little incentive to limit exports

Cost Effectiveness – B10-TOU Rate

Below chart summarizes preceding benefit/cost charts

- Map of Net Benefit shows that, for medium office, all PV sizes are cost effective under all rate sensitivities except for lowest bound of import/export on avoided costs
- Smaller sized systems with limited exports are insulated to major changes in rate design

Optimal Dispatch

Cost Effectiveness, All Sizes, All Rates

Max NEM PV

~20% Exports PV

5% Exports PV

Roof Constraint

Full TDV

Full TDV

Full TDV

Full TDV

×

Max NEM PV

5% Exports PV

Roof Constraint

- Expanding to Medium office, all climate + zones, general trend stays consistent
- Climate zone 1, 16 are less cost-effective + than other climate zones due to limited PV output
- Rate sensitivity of import/export under + avoided costs are on the brink of costeffectiveness

Cost Effectiveness, All Sizes, Rates, Climate Zones

Energy+Environmental Economics

PV Only Net Benefit on TDV/Exported on Avoided Costs Building Types

~20% Exports PV. No Storage. Export on Avoided Costs.

Mixed Fuel Load, Optimal Dispatch																		
High Rise Residential -	0.95	2	1.9	2.5	2.2	2.6	2.1	3.3	3	3.1	2.3	2.1	2.4	3.2	3	2.1	_	10
Large Office -	1.3	2.4	2.3	2.8	2.5	2.9	2.3	3.3	3.2	3.1	2.3	2.4	2.5	3.6	3.1	2.4		
Medium Office -	0.93	1.9	1.8	2.4	2.1	2.4	1.9	2.9	2.8	2.7	1.9	2	2	3.1	2.9	2	-	8 (\$ ^ (\$)
Small Office -	0.57	1.6	1.5	2.1	1.8	2.1	1.6	2.5	2.5	2.3	1.6	1.6	1.7	2.8	2.3	1.7		Vatt P
Large Retail -	1.5	2.5	2.5	3	2.8	3.1	2.5	3.5	3.4	3.2	2.5	2.5	2.6	3.7	3.1	2.6	-	6 per/
Medium Retail -	0.88	1.9	1.8	2.4	2.1	2.5	1.9	2.9	2.8	2.6	1.9	1.9	2	3.1	2.5	2		enefit
Small Retail -	0.68	1.7	1.7	2.2	2	2.3	1.7	2.7	2.7	2.5	1.7	1.8	1.8	3	2.4	1.9	-	A P
Small School -	0.67	1.6	1.5	2	1.8	2.1	1.6	2.5	2.5	2.3	1.6	1.6	1.7	2.8	2.3	1.7	_	2
Warehouse -	0.47	1.4	1.4	1.9	1.6	1.9	1.4	2.4	2.3	2.2	1.4	1.5	1.6	2.7	2.2	1.5		2
	i	ż	ż	4	5	6	7 c	8 Ilimat	9 e Zon	10 e	11	12	13	14	15	16		

Energy+Environmental Economics

PV Only Net Benefit on Utility Rates Across Building Types

~20% Exports PV, No Storage, Utility Rate														-62	Othity						
Mixed Fuel Load, Optimal Dispatch															1	PG&E					
High Rise Residential	co. Decidential 72 0 02 06 10 92 07 92 94 11 04 04 07 02 97 70															2	PG&E				
nigh Nise Kesidendar		-	2.2	5.0		0.0										- 10			.0	3	PG&E
Large Office	- 2	3.6	3.2	3.4	3.7	2.3	2.5	2.2	2.3	3	3.2	3.3	3.3	2.4	2	2.1				4	PG&E
Medium Office	m Office - 3 41 43 43 47 21 21 19 2 27 4 42 42 22 2 19 - 8 $\$$	4.1	43	43	47	21	21	10	2	2.7	4	4.2	4.2	2.2	2	19			. (\$	5	PG&E
Mediani Onice			-	-1.2	-5.7	-		allers tes?							-	1		- 8	ž	6	SCE
Small Office		Vatt	7	SDG&E																	
- D Large Detail.	- 10	3	20	٦	31	15	2	1.4	15	2.5	28	20	27	17	13	1.4		- 6	er K	8	SCE
	1.5	-	2.5	2	2.1	1.5	£.	1.4	1.5	2.0	2.0	2.5		1.7	1.5	1.4			ts p	9	SCE
Medium Retail	- 2.6	3.6	3.7	3.8	4	1.1	1.4	0.94	1.1	1.8	3.6	3.7	3.6	1.3	0.98	1.1			enefi	10	SCE
Small Detail	. 12	12 54	5.7	5.8	62	0.80	12	0.77	0.88	16	5.5	5.7	5.7	11	0.75	0.01		- 4	t B	11	PG&E
Sman Retain	4.1	2.4		3.0	0.L	0.00	1. I.	10.77	0.00	1.0	3.5			1.1	0.75	0.212			Ne	12	PG&E
Small School	- 2.9	4.1	4.2	4.4	4.9	1.8	1.4	1.7	1.8	2	3.8	4	4	1.8	1.5	1.3				13	PG&E
18 (n m h m m m	4.2	5.4	5.6	5.0	61	16	15	14	15		5.4	5.6	5.6	10	12	15		- 2	2	14	SCE
warenouse	- 4.2	3.4	.3.0	5.0	0.1	1.0		1.4	1.0	2.1	3.4	5.0	5.0	1.5	1.5	1.0				15	SCE
	i	ż	ż	4	5	6	7	8	9	10	ii	12	13	14	15	16				16	SCE
							C	Jimati	e Zon	e											

07 14:1:4

- + With exception of some edge cases, PV is cost effective across building types and climate zones, even under conservative compensation assumptions (TDV rate with exports on avoided costs)
- + Larger buildings have improved cost effectiveness due to lower PV costs
- + Under TDV rates, some further variation in cost effectiveness between building types, likely driven by coincidence of building loads and PV generation
- + Utility rates impact cost-effectiveness of PV, depending on utility, selected rate tariff
 - Note: Some utilities have options for alternative rate tariffs for customers within a given customer class (Ex. one tariff option with high demand charges and low volumetric charges, and one tariff option with low demand charges and high volumetric charges). This analysis did not attempt to optimize rate design for PV customers

Storage-Only Cost-Effectiveness

- + Storage-only is borderline cost-effective under Full TDV Rate
- With Full TDV rate, storage imports energy from the grid, to reduce load in high cost hours, arbitraging high and low price signals
- + Larger battery has higher BC ratio due to proportionally lower battery cost (\$/kWh)
- Note: basic dispatch defined by charging on solar, so only optimal dispatch tested for storage-only

Cost Effectiveness

- + Storage generally less cost-effective under existing utility rates
- Storage benefit is largely comprised of peak demand clipping of monthly demand charges
 - This specific utility rate has lower demand charges than other examined rates
 - Energy arbitrage opportunity is limited
- Note that prototype buildings may have flatter load profiles than actual buildings, limiting opportunity for demand charge reduction
 - Many real-world scenarios where BTM energy storage is cost-effective for participants

Cost Effectiveness – B10-TOU Rate

- Expanding to medium office, all climate zones, cost-effectiveness does not change dramatically based on climate zone for storage-only systems
- Largely not cost-effective, but could change based on storage cost projections, and potential cost declines

Cost Effectiveness, All Sizes, Rates, Climate Zones

Max Storage, Optimal Dispatch
 Export on Wholesale Market Costs
 Min Solar Export Storage, Optimal Dispatch

Max Storage, Optimal Dispatch

Full TDV

Full TDV

Export on Wholesale Market Costs

Min Solar Export Storage, Optimal Dispatch

- Max Storage, Optimal Dispatch
 Export on Avoided Costs
- Min Solar Export Storage, Optimal Dispatch Export on Avoided Costs
- Max Storage, Optimal Dispatch
 Self-Util & Export on Avoided Costs
 - Min Solar Export Storage, Optimal Dispatch
 - Self-Util & Export on Avoided Costs

(without utility retail rate sensitivity)

PV+Storage Cost-Effectiveness

- Focused on Self-utilization (~20% Exports) PV size with larger and smaller storage sizes
- + PV+Storage combined as a package has a lifetime net benefit under Full TDV rate
- + Smaller storage system has higher Benefitcost ratio due to diminishing returns in benefits of storage sizing

Cost Effectiveness

PV+Storage Cost-Effectiveness with Exports on Avoided Costs

- On Export on Avoided Costs rate, smaller system has higher net benefit than larger storage system
- + Smaller system size is more insulated to potential NEM rate reforms

Cost Effectiveness

- Utility retail rate increases on costeffectiveness for PV+Storage for smaller battery size, due to strong costeffectiveness of PV, potential for large demand charge reduction opportunities
- + Net benefit with smaller storage size notably higher than larger storage configuration

Cost Effectiveness – B10-TOU Rate

- + Smaller PV+Storage configuration still costeffective with Basic dispatch under Full TDV rate scenario
 - Battery only charges on PV net exports and discharges when load again exceeds PV production
- Due to diminishing returns, smaller storage size is cost-effective while large storage size is not
- This case represents a low-booked value for PV+storage cost-effectiveness

Cost Effectiveness – Basic Dispatch

PV+Storage System Net Benefits, Optimal Dispatch

- + Expanding to medium office, all climate zones, general trend stays consistent
- Climate zone 1, 16 are less cost-effective than other climate zones due to limited PV output
- + Rate sensitivity of import/export under avoided costs is not cost-effective
- + Utility rate has mixed impacts on costeffectiveness

Cost Effectiveness, All Rates & Climate Zones

- ~20% Exports PV
- Max Storage, Optimal Dispatch Full TDV
 - ~20% Exports PV
- Min Solar Export Storage, Optimal Dispatch Full TDV
 - ~20% Exports PV
- Max Storage, Optimal Dispatch Utility Rate
 - ~20% Exports PV
- Min Solar Export Storage, Optimal Dispatch Utility Rate

- ~20% Exports PV
- Max Storage, Optimal Dispatch Export on Avoided Costs
 - ~20% Exports PV
- Min Solar Export Storage, Optimal Dispatch Export on Avoided Costs

~20% Exports PV

- Max Storage, Optimal Dispatch Export on Wholesale Market Costs
- ~20% Exports PV
- Min Solar Export Storage, Optimal Dispatch Export on Wholesale Market Costs

~20% Exports PV

 Max Storage, Optimal Dispatch Self-Util & Export on Avoided Costs

~20% Exports PV

 Min Solar Export Storage, Optimal Dispatch Self-Util & Export on Avoided Costs

PV + Storage Optimal Dispatch on TDV/Exported on Avoided Costs Across Building Types

-2004 Exports BV Min Solar Export Export on Avoided Costs

Mixed Fuel Load, Optimal Dispatch																		
High Rise Residential -	1.3	1.6	1.6	1.8	1.7	1.8	1.7	2.1	2	2	1.7	1.7	1.8	1.9	2	1.7		25
Large Office -	1.3	1.7	1.6	1.8	1.7	1.8	1.7	2	2	1.9	1.7	1.7	1.8	2	1.9	1.7		- 3.5
Medium Office -	. 1.1	1.3	1.3	1.4	1.3	1.4	1.3	1.5	1.6	1.5	1.3	1.4	1.4	1.6	1.6	1.3		- 3.0
Small Office -	. 1	1.3	1.3	1.4	1.3	1.4	1.3	1.5	1.5	1.4	1.3	1.3	1.3	1.5	1.4	1.3		- 2.5
Large Retail -	1.6	2	2	2.2	2.1	2.2	2.1	2.4	2.4	2.3	2	2	2.1	2.4	2.2	2.1		- 2.0 C
Medium Retail -	1.2	1.5	1.5	1.6	1.6	1.7	1.5	1.8	1.8	1.7	1.5	1.5	1.5	1.8	1.6	1.6		-15
Small Retail -	1.2	1.5	1.5	1.6	1.6	1.6	1.5	1.8	1.7	1.7	1.5	1.5	1.5	1.8	1.6	1.5		-10
Small School -	. 1	1.2	1.2	1.3	1.3	1.3	1.2	1.4	1.4	1.3	1.2	1.2	1.3	1.4	1.4	1.2		- 0.5
Warehouse -	0.89	1.1	1.1	1.2	1.1	1.2	1.1	1.3	1.3	1.2	1.1	1.2	1.2	1.4	1.3	1.2		
	i	ż	ż	4	5	6	ż	8 limat	9 e Zon	10 e	11	12	13	14	15	16		- 0.0

PV + Storage Optimal Dispatch on Utility Rates Across Building Types

	~20% Exports PV. Min Solar Export. Utility Rate														CZ	Utility					
	Mixed Fuel Load, Optimal Dispatch															1	PG&E				
Hia	h Dice Decidential	24	21	32	22	34	3	34	20	3	30	22	32	3.4	20	20	77			2	PG&E
Medi ad Lai Medi Sm Lai	II RISC RESIDENTIAL	2.4			5.5	2.4	-	2.4	3.2	-	3.5	3.3	3.2		2.5		2.7	- 3.	5	3	PG&E
	Large Office -	1.6	2.2	2	2.2	2.2	1.9	1.9	1.8	1.9	2	2.1	2.2	2.2	2	1.9	1.7			4	PG&E
	Madium Offica -	13 16	1.6	16	17	17	15	15	1.5	1.5	1.6	1.6	1.7	1.7	1.6	1.6	1.4	- 3.	0	5	PG&E
	Medium once	allers and					1.5	1.0												6	SCE
	Small Office -	1.5	1.8	1.8	1.8	1.9	1.4	1.4	1.3	1.4	1.5	1.8	1.8	1.8	1.5	1.4	1.3	- 2.	- 2.5	7	SDG&E
	l arge Retail -	19	25	24	25	25	18	19	18	18	2	23	24	24	19	18	17	- 2	Satio	8	SCE
	Large Recan	1	2.2			2.3	1.0	1.2	1.0	1.0	-	2.0		1	1.J	1.0	±	-	3C B	9	SCE
Bu	Medium Retail -	1.5	1.9	1.9	2	2	1.4	1.4	1.4	1.4	1.5	1.8	1.9	1.9	1.5	1.4	1.4	-15		10	SCE
	Small Retail -	18	22	23	23	24	13	13	13	13	1.4	22	23	23	14	13	13			11	PG&E
	ernan recam	allow fast					1.2			1	.	din e din		and and		1.0		- 1.	0	12	PG&E
	Small School -	1.2	1.5	1.5	1.5	1.6	1.2	1.2	1.2	1.2	1.3	1.4	1.5	1.5	1.3	1.2	1.1	- 0	F	13	PG&E
	Warebourg -	13	15	15	16	16	13	13	13	13	1.4	15	16	16	14	13	13	- 0.	- 0.5	14	SCE
	warehouse -	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	- 0.	0	15	SCE
		1	2	3	4	5	6	7	8 Time at	9 • 7~-	10	11	12	13	14	15	16			16	SCE
								~	ann iolus		C										

- With exception of some edge cases, PV+storage with the smaller sizing configuration is cost effective across building types and climate zones, even under conservative compensation assumptions (TDV rate with exports on avoided costs)
- + Basic dispatch diminishes cost effectiveness across building types, yielding some non-costeffective combinations
- + Cost-effectiveness by building type largely driven by cost declines for larger systems
- + Under TDV rates, some further variation in cost effectiveness between building types, likely driven by building load profile and ability for PV+storage to impact net load
- + Using selected utility rates, co-benefits of PV and storage yields a generally cost-effective solution for prototype buildings

Storage Duration & Size Sensitivity

Storage Duration Sensitivity

+ 2-hour duration improves cost-effectiveness

Full TDV Basic Dispatch

- Export on Avoided Costs
 Basic Dispatch
- Export on Wholesale Market Costs
- Basic Dispatch
- Self Util & Export on Avoided Costs
- Basic Dispatch Utility Rate
- Basic Dispatch

- × Full TDV
- Optimal Dispatch
- × Export on Avoided Costs Optimal Dispatch
- Export on Wholesale Market Costs
- Optimal Dispatch
- Self Util & Export on Avoided Costs
- × Optimal Dispatch
- Utility Rate
- × Optimal Dispatch

2-hour Storage

4-hour Storage

Energy+Environmental Economics

Reliability & Resiliency Value Sensitivity

+ If considered, reliability value can largely improve cost-effectiveness

 Reliability benefit comes from having PV generation or reserving storage energy for unplanned short T&D power interruptions

Without Reliability, Resiliency Value

With Reliability Value Only

Energy+Environmental Economics

×

×

 \times

+ If considered, resiliency value can largely improve cost-effectiveness

• Resiliency benefit comes from covering critical load during planned outage days (ex. Public Safety Power Shutoff)

Without Reliability, Resiliency Value

With Resiliency Value Only

Energy+Environmental Economics

Energy+Environmental Economics

EV Charging Compliance Option Framework

Proposed framework for nonresidential EV compliance credit and initial example

- In order to meet California's 2025 ZEV goals, CARB estimates an additional need of 8,000-76,000 public/workplace level 2 (L2, ~7 kW) EV chargers, beyond those forecast under current building codes and incentives
- Title 24, Part 11 (CALGreen) requires ~6% of a building's parking spaces be "EV Capable" cable raceway and sufficient panel capacity to support Electric Vehicle Supply Equipment (EVSE) – but does not require installation of the charger equipment itself
- Granting Title 24, Part 6 compliance credit for EVSE installation in non-residential buildings could help fill this gap
- + Designing proposal so that it does not double count with LCFS
- + This compliance credit is based on chargers in daytime charging locations that provide grid benefits:
 - TDV value of shifting EV charging load from a typical residential charging shape (during peak or evening hours) to a more solar-aligned workplace charging shape

How significant would the credit be?

+ Compliance Credit per Charger

- TDV 8,777 to 19,000 kBtu per charger lifecycle
- Levelized Source Energy 3,172 to 3,194 kBtu per charger per year
- Savings of at least 0.2 Tonnes CO2-e per charger per year

+ Figures assume EV charges on grid energy – greater savings from PV charging

Nonres EV Load Shift Compliance Credit Medium Office

Energy+Environmental Economics

Conclusions and Next Steps

Key Findings

 + PV + Storage as a package (smaller configuration) is cost-effective for most building categories due to co-benefits of combined systems

• PV + Storage provides additional participant benefits, including reliability and resiliency

+ PV is cost effective across all scenarios from participant perspective, except under most significant rate reform

- Minimizing exports allows for significant PV benefits, while having robust cost-effectiveness in all rate sensitivities
- Note: most significant rate reform is analogous to "buy all sell all" on avoided cost treatment of rooftop PV
- + Storage-only presents large grid benefits, but is generally not cost-effective in this analysis

+ Refine sizing and configuration

+ Calculate source energy, emissions impacts of selected configurations

+ Refine battery controls

- Optimal dispatch is an upper bound
- Basic dispatch is likely too conservative
- Explore more realistic controls, or heuristic for benefit captured in real world vs optimal dispatch

+ Collect real-world data from interested stakeholders

- Capital and operating costs
- Technology characteristics
- Battery control schemes
- Typical storage duration
- Future rate design

Energy+Environmental Economics

Appendix Contents

+ Additional Results

- PV-Only and Storage-Only
- PV+Storage
- + Reliability + Resiliency Inputs
- + Net Benefit Results By Building Type (Climate Zone 12)
- + Detailed Rate Scenario Assumptions
- + Solar + Storage Tool Details

Energy+Environmental Economics

Appendix – Additional PV-Only and Storage-Only Results

+ CZ01 has much lower PV output (les cost-effective), CZ14 has much higher PV output (more cost-effective)

Climate Zone	Weather Station Name	Capacity Factor
CZ01	Arcata AP	15.3%
CZ02	Santa Rosa (AWOS)	18.1%
CZ03	Oakland Metro AP	18.7%
CZ04	San Jose Reid Hillv	19.1%
CZ05	Santa Maria Public AP	19.9%
CZ06	Torrance Muni AP	20.1%
CZ07	San Diego Lindbergh F	18.6%
CZ08	Fullerton Muni AP	19.4%
CZ09	Burbank GIndle Pasad	20.3%
CZ10	Riverside Muni	20.3%
CZ11	Red Bluff Muni AP	18.2%
CZ12	Sacramento Executive	18.7%
CZ13	Fresno Yosemite IAP	18.8%
CZ14	Palmdale AP	21.9%
CZ15	Palm Springs IAP	20.3%
CZ16	Blue Canyon AP	19.4%

PV Sizing

+ Three sizing options for each building type and climate zone

- Max NEM Complaint
 - Annual solar gen = annual total building consumption
 - ~40% of annual PV generation is exported to grid
- Self-utilization (~20% Exports PV)
 - Sized to generate the amount of PV that is selfutilized in *Max NEM Compliant* case
 - ~20% of annual PV generation is exported to grid
- 5% Exports
 - 5% of annual PV generation is exported to grid

+ PV sizes compared to roof area constraints to ensure viable system size

Average PV Size by Building Type

PV Only Net Benefit on Utility Rates Across Building Types w/ LADWP & SMUD

~20% Exports PV. No Storage, Utility Rate												CZ	Utility								
Mixed Fuel Load, Optimal Dispatch														1	PG&E						
High	Dica Decidential .	73	0	03	0.6	10	5.5	07	5.5	5.5	11	0.4	2	07	0.2	87	70			2	PG&E
riign	Rise Residential -	3.3	3.7	2.2	2.2	-11	3.4	2	3.7	3.2	0.7	1.5	- 10)	3	PG&E					
	Large Office -	- 2	3.6	3.2	3.4	3.7	2.9	2.5	2.7	3	3	3.2	2.2	3.3	2.4	2	2.1			4	PG&E
Madium Office	3	41	43	43	47	25	21	24	24	27	4	17	4.2	22	2	19		€ ¢	5	PG&E	
	Mediani once					-16.7	2		2.4	2.4		-		-1. L		-		- 8	≥ ∑	6	LADWP
<u>b</u>	Small Office -	4.2	5.4	5.7	5.8	6.1	4.8	1.5	4.6	4.7	2.2	5.5	1.3	5.7	1.8	1.3	1.5		/att	7	SDG&E
laing ly	large Detail .	10	3	20	3	31	53	2	51	5.4	25	28	22	27	17	13	14	- 6	er M	8	LADWP
	Large Retail	1.5	-	2.5	2			£.			2.0	2.0	£.£	2.7	1. r	1.5	1.4		ts p	9	LADWP
ng	Medium Retail -	2.6	3.6	3.7	3.8	4	4.7	1.4	4.4	4.7	1.8	3.6	1.5	3.6	1.3	0.98	1.1		enefi	10	SCE
	Small Retail -	42	54	57	5.8	67	45	12	43	45	16	55	13	57	11	0.75	0.91	- 4	сt В	11	PG&E
	Sman Recan				2.0			ales de			ala a fair		alice and				The first state		Ň	12	SMUD
	Small School -	2.9	4.1	4.2	4.4	4.9	5.4	1.4	5.3	5.3	2	3.8	1.5	4	1.8	1.5	1.3			13	PG&E
	Warehouse .	42	54	5.6	5.8	61	4.4	15	42	45	21	5.4	13	5.6	19	13	15	- 2		14	SCE
	warehouse -	1	1		1		1	1	1	1	1	1	1	1	1	1	1			15	SCE
		1	2	3	4	5	6	7	8 1	9 - 7	10	11	12	13	14	15	16			16	SCE
									JIITIdU	c Zon	C										

- + Storage-only is slightly less cost-effective under Export on Avoided Costs
- + Larger battery has higher BC ratio due to proportionally lower battery cost (\$/kWh)
- + Significant benefits, but benefits do not outweigh costs

Cost Effectiveness

Storage System Net Benefits

- The chart aggregates previous storage only charts, with all rate sensitivities for Medium Office, CZ-12
- Largely not cost-effective, but could change based on storage cost projections, and potential cost declines

Cost Effectiveness, All Sizes, All Rates

Export on Avoided Costs Optimal Dispatch

× Export on Wholesale Market Costs Optimal Dispatch

× Self Util & Export on Avoided Costs Optimal Dispatch

Utility Rate

Optimal Dispatch

Appendix – PV+Storage Additional Results

PV+Storage still cost-effective with Basic dispatch under utility rates

- Battery charges on PV net exports and discharges when load again exceeds PV production
- + Basic dispatch matches TOU-periods, and building load profile reasonably well, to reduce energy costs and demand charges

Cost Effectiveness – B10-TOU Rate, Basic Dispatch

+ For smaller storage size, cost effective across all configurations

Medium Office, CZ 12, Mixed Fuel

PV+Storage System Net Benefits

 Basic dispatch limits cost-effectiveness, but PV+Storage is still cost-effective

Cost Effectiveness, All Sizes, All Rates

- Full TDV Basic Dispatch
- Export on Avoided Costs
 Basic Dispatch
- Export on Wholesale Market Costs
 Basic Dispatch
- Self Util & Export on Avoided Costs Basic Dispatch
- Utility Rate Basic Dispatch

Full TDV

×

- × Optimal Dispatch
 - Export on Avoided Costs Optimal Dispatch
- × Export on Wholesale Market Costs
- Optimal Dispatch Calif Util S. Europet on Aussid
- × Self Util & Export on Avoided Costs Optimal Dispatch
- Utility Rate
- Optimal Dispatch

PV+Storage System Net Benefits, Basic Dispatch

- Expanding to medium office, all climate + zones, general trend stays consistent
- Basic dispatch limits cost-effectiveness, but + smaller PV+Storage is still cost-effective in most climate zones
- Rate sensitivity of import/export under + avoided costs is not cost-effective
- Utility rate has mixed impacts on cost-+ effectiveness

~20% Exports PV Max Storage, Basic Dispatch Full TDV ~20% Exports PV ~20% Exports PV Min Solar Export Storage, Basic Dispatch Full TDV ~20% Exports PV Max Storage, Basic Dispatch Utility Rate ~20% Exports PV

Min Solar Export Storage, Basic Dispatch Utility Rate

~20% Exports PV Max Storage, Basic Dispatch

- Export on Avoided Costs
- Min Solar Export Storage, Basic Dispatch Export on Avoided Costs
- ~20% Exports PV
- Max Storage, Basic Dispatch Export on Wholesale Market Costs
 - ~20% Exports PV
- Min Solar Export Storage, Basic Dispatch Export on Wholesale Market Costs

Cost Effectiveness, All Rates & Climate Zones

~20% Exports PV

Max Storage, Basic Dispatch Self-Util & Export on Avoided Costs

~20% Exports PV

Min Solar Export Storage, Basic Dispatch Self-Util & Export on Avoided Costs

PV + Storage Optimal Dispatch on Utility Rates Across Building Types w/ LADWP & SMUD

~20% Exports PV_Min Solar Export_Utility Bate													CZ	Utility							
Mixed Fuel Load, Optimal Dispatch														1	PG&E						
Hic	High Rise Residential - 2.4 3.1 3.2 3.3 3.4 2.3 3.4 2.4 2.3 3.9 3.3 1.2 3.4 2.9 3.2 2.7													2	PG&E						
1.05																			- 3.5	3	PG&E
	Large Office - 1	.6 2	.2	2	2.2	2.2	1.4	1.9	1.4	1.5	2	2.1	1.1	2.2	2	1.9	1.7			4	PG&E
	Medium Office - 1	.3 1	.7	1.6	1.7	1.7	1.2	1.5	1.2	1.2	1.6	1.6	0.92	1.7	1.6	1.6	1.4		- 3.0 - 2.5	5	PG&E
	Healdin Office																			6	LADWP
g Type	Small Office - 1	.5 1	.8	1.8	1.8	1.9	1.7	1.4	1.7	1.7	1.5	1.8	0.9	1.8	1.5	1.4	1.3			7	SDG&E
	larne Detail - 1	a 7	5	24	25	25	77	10	27	28	2	23	15	2.4	10	1.8	17		- 2 0 S	8	LADWP
ldin	Large Retail * 1			2.4		2	2.7	1.5	2.7	2.0	£.	2.0	1.5	2.4	1.5	1.0	1.7		-15	9	LADWP
Bui	Medium Retail - 1	.5 1	.9	1.9	2	2	2.1	1.4	2	2.1	1.5	1.8	1.1	1.9	1.5	1.4	1.4			10	SCE
	Emall Botail	0 7		22	24	21	12	7	21	1.4	22	11	22	1.4	12	13			11	PG&E	
	Siliali Ketali - 1	.0 .2	.£	2.5	2.3	2.4	2.1	1.5	2	2.1	1.4	2.2	1.1	2.0	1.4	1.5	1.5		- 1.0	12	SMUD
	Small School - 1	.2 1	.5	1.5	1.5	1.6	1.6	1.2	1.6	1.6	1.3	1.4	0.81	1.5	1.3	1.2	1.1			13	PG&E
	Weeshaven 1	2 1	5	15	16	16	15	12	15	15	1.4	15	0.0	16	1.4	12	12		- 0.5	14	SCE
	warenouse - 1			1.5	1.0	1.0	1.5	1.5	1.5	1.5	1.4	1.5	v.o	1.0	1.4	1.5	1.5		- 0.0	15	SCE
		i :	ż	ż.	4	5	6	7	8	9	10	ú	12	13	14	15	16		0.0	16	SCE
								C	limate	e Zonv	8										

PV + Storage Optimal Dispatch on TDV/Exported on Avoided Costs Across Building Types – All-Electric

	~20% Exports PV, Min Solar Export, Export on Avoided Costs																	
	All Electric Load, Optimal Dispatch																	
High Rise Residential ·	- 1.3	1.7	1.6	1.8	1.7	1.9	1.7	2.2	2	2	1.8	1.7	1.8	2	2	1.7		
Large Office	- 1.4	1.7	1.7	1.8	1.8	1.9	1.8	2	2	1.9	1.7	1.8	1.8	2.1	1.9	1.8	-	3.5
Medium Office	- 1.1	1.4	1.3	1.4	1.4	1.5	1.4	1.6	1.6	1.5	1.4	1.4	1.4	1.6	1.6	1.4	-	3.0
Small Office ·	. 1.1	1.3	1.3	1.4	1.4	1.4	1.3	1.5	1.5	1.4	1.3	1.3	1.4	1.6	1.5	1.3	- 1	2.5 . <u>s</u>
Large Retail	- 1.7	2.1	2.1	2.2	2.2	2.3	2.1	2.5	2.4	2.3	2.1	2.1	2.1	2.5	2.3	2.2	-	± 2.0 م
Medium Retail	- 1.3	1.6	1.6	1.7	1.7	1.7	1.6	1.8	1.8	1.7	1.5	1.6	1.6	1.9	1.7	1.6	- 1	1.5 ^a
Small Retail	1.2	1.5	1.5	1.6	1.6	1.6	1.5	1.8	1.8	1.7	1.5	1.5	1.5	1.8	1.6	1.5	- 1	1_0
Small School	. 1	1.2	1.2	1.3	1.3	1.3	1.3	1.4	1.4	1.3	1.2	1.2	1.3	1.4	1.4	1.3	- 1	0.5
Warehouse ·	0.92	1.2	1.1	1.2	1.2	1.2	1.2	1.3	1.4	1.3	1.2	1.2	1.2	1.4	1.3	1.2		0.0
	i	ż	З	4	5	6	ź	8	9	10	'n	12	13	14	15	16		0.0
Climate Zone																		

PV + Storage Basic Dispatch on TDV/Exported on Avoided Costs Across Building Types

~20% Exports PV. Min Solar Export. Export on Avoided Costs.

				N	Μ	ixed	Fuel	Load	l, Ba	sic D	ispat	tch					
High Rise Residential -	0.96	1.3	1.3	1.5	1.4	1.6	1.4	1.9	1.7	1.7	1.4	1.4	1.5	1.6	1.7	1.4	2.5
Large Office -	0.92	1.3	1.2	1.3	1.2	1.4	1.3	1.5	1.5	1.4	1.2	1.2	1.3	1.5	1.5	1.2	- 3.5
Medium Office -	0.74	0.99	0.95	1.1	0.99	1.1	1	1.2	1.2	1.2	1	1	1.1	1.3	1.3	0.97	- 3.0
Small Office -	0.76	1	0.97	1.1	1	1.1	1	1.2	1.2	1.2	1	1	1.1	1.3	1.2	1	- 2.5
Large Retail -	- 1.3	1.7	1.7	1.9	1.8	1.9	1.7	2.1	2	1.9	1.7	1.7	1.7	2.1	1.9	1.7	- 2.0 - US - 2.0 - U
Medium Retail -	0.97	1.3	1.3	1.4	1.4	1.4	1.3	1.6	1.5	1.5	1.3	1.3	1.3	1.6	1.4	1.3	-15
Small Retail -	0.95	1.3	1.3	1.4	1.3	1.5	1.3	1.6	1.5	1.5	1.3	1.3	1.3	1.6	1.4	1.3	-1.0
Small School -	0.67	0.84	0.85	0.9	0.87	0.94	0.88	1	1	0.99	0.86	0.85	0.89	1.1	1	0.85	- 0.5
Warehouse -	0.65	0.87	0.85	0.92	0.87	0.96	0.87	1	1	0.99	0.85	0.86	0.88	1.1	1	0.85	0.5
	i	ź	ż	4	5	6	7	8 Timet	9 9 700	10	11	12	13	14	15	16	- 0.0

Appendix - Reliability & Resiliency Inputs

Key Reliability & Resiliency Assumptions

+ Benefit calculation methodology

- Reliability (ability to cover short-duration unplanned T&D power interruptions)
 - average T&D interruption probability * energy availability in PV and storage * interruption costs (VoLL)
- Resiliency (ability to cover long-duration multi-day planned outage events)
 - covered critical load by PV and storage during outage days * interruption costs (VoLL) + covered non-critical load * VoLL * 50%

+ Reliability metrics

- From PGE 2019 Reliability Report
- SAIDI 117.7
- SAIFI 1.010
- CAIDI 116.5

+ Interruption costs (VoLL)

- From LBNL Interruption Cost Estimate (ICE)
- By building type
 - Medium Office: 85.39 2016\$/kWh

+ Outage events

• A 3-day outage event within the first week of November

+ Critical load

Assume 10% of building load

Storage will be encouraged to cover critical load during planned outage days to obtain resiliency benefits

VoLL Assumptions by Building Type

Building Type	Load Type	MWh	Sector	2016 \$/kWh
High-rise Res	Mixed-fuel	691	Medium and Large C&I	69.86
Large Office	Mixed-fuel	3609	Medium and Large C&I	31.63
Medium Office	Mixed-fuel	453	Medium and Large C&I	85.39
Small Office	Mixed-fuel	62	Small C&I	223.41
Large Office	Mixed-fuel	1754	Medium and Large C&I	44.75
Medium Retail	Mixed-fuel	188	Medium and Large C&I	129.44
Medium Retail	Mixed-fuel	103	Small C&I	145.65
Small School	Mixed-fuel	179	Small C&I	91.17
Warehouse	Mixed-fuel	73	Small C&I	194.73

Detailed Operation – Outage Days

- + Optimal storage dispatch under utility retail rate
- Storage discharges conservatively during non-solar hours to make sure it covers critical loads during these outage days as much as possible
- + Storage still discharges to reduce customer peak demand to minimize demand charges

Appendix - Net Benefit Results By Building Type (CZ 12)

- NEM2.0, Basic Dispath
- Export on Avoided Costs, Basic Dispath
- Export on Wholesale Market Costs, Basic Dispath
- NEM3.0 Lower Bookend, Basic Dispath
- Utility Rate, Basic Dispath

- × NEM2.0, Optimal Dispatch
- × Export on Avoided Costs, Optimal Dispatch
- × Export on Wholesale Market Costs, Optimal Dispatch
- × NEM3.0 Lower Bookend, Optimal Dispatch
- × Utility Rate, Optimal Dispatch

- NEM2.0, Basic Dispath
- Export on Avoided Costs, Basic Dispath
- Export on Wholesale Market Costs, Basic Dispath
- NEM3.0 Lower Bookend, Basic Dispath
- Utility Rate, Basic Dispath

- × NEM2.0, Optimal Dispatch
- × Export on Avoided Costs, Optimal Dispatch
- × Export on Wholesale Market Costs, Optimal Dispatch
- × NEM3.0 Lower Bookend, Optimal Dispatch
- × Utility Rate, Optimal Dispatch

Medium Office

- NEM2.0, Basic Dispath
- Export on Avoided Costs, Basic Dispath
- Export on Wholesale Market Costs, Basic Dispath
- NEM3.0 Lower Bookend, Basic Dispath
- Utility Rate, Basic Dispath

- × NEM2.0, Optimal Dispatch
- × Export on Avoided Costs, Optimal Dispatch
- × Export on Wholesale Market Costs, Optimal Dispatch
- × NEM3.0 Lower Bookend, Optimal Dispatch
- × Utility Rate, Optimal Dispatch

- NEM2.0, Basic Dispath
- Export on Avoided Costs, Basic Dispath
- Export on Wholesale Market Costs, Basic Dispath
- NEM3.0 Lower Bookend, Basic Dispath
- Utility Rate, Basic Dispath

- × NEM2.0, Optimal Dispatch
- × Export on Avoided Costs, Optimal Dispatch
- × Export on Wholesale Market Costs, Optimal Dispatch
- × NEM3.0 Lower Bookend, Optimal Dispatch
- × Utility Rate, Optimal Dispatch

- NEM2.0, Basic Dispath
- Export on Avoided Costs, Basic Dispath
- Export on Wholesale Market Costs, Basic Dispath
- NEM3.0 Lower Bookend, Basic Dispath
- Utility Rate, Basic Dispath

- × NEM2.0, Optimal Dispatch
- × Export on Avoided Costs, Optimal Dispatch
- × Export on Wholesale Market Costs, Optimal Dispatch
- × NEM3.0 Lower Bookend, Optimal Dispatch
- × Utility Rate, Optimal Dispatch

Medium Retail

- NEM2.0, Basic Dispath
- Export on Avoided Costs, Basic Dispath
- Export on Wholesale Market Costs, Basic Dispath
- NEM3.0 Lower Bookend, Basic Dispath
- Utility Rate, Basic Dispath

- × NEM2.0, Optimal Dispatch
- × Export on Avoided Costs, Optimal Dispatch
- × Export on Wholesale Market Costs, Optimal Dispatch
- × NEM3.0 Lower Bookend, Optimal Dispatch
- × Utility Rate, Optimal Dispatch

- NEM2.0, Basic Dispath
- Export on Avoided Costs, Basic Dispath
- Export on Wholesale Market Costs, Basic Dispath
- NEM3.0 Lower Bookend, Basic Dispath
- Utility Rate, Basic Dispath

- NEM2.0, Optimal Dispatch
- × Export on Avoided Costs, Optimal Dispatch
- × Export on Wholesale Market Costs, Optimal Dispatch
- × NEM3.0 Lower Bookend, Optimal Dispatch
- × Utility Rate, Optimal Dispatch

- NEM2.0, Basic Dispath
- Export on Avoided Costs, Basic Dispath
- Export on Wholesale Market Costs, Basic Dispath
- NEM3.0 Lower Bookend, Basic Dispath
- Utility Rate, Basic Dispath

- × NEM2.0, Optimal Dispatch
- × Export on Avoided Costs, Optimal Dispatch
- × Export on Wholesale Market Costs, Optimal Dispatch
- × NEM3.0 Lower Bookend, Optimal Dispatch
- × Utility Rate, Optimal Dispatch

- NEM2.0, Basic Dispath
- Export on Avoided Costs, Basic Dispath
- Export on Wholesale Market Costs, Basic Dispath
- NEM3.0 Lower Bookend, Basic Dispath
- Utility Rate, Basic Dispath

- × NEM2.0, Optimal Dispatch
- × Export on Avoided Costs, Optimal Dispatch
- × Export on Wholesale Market Costs, Optimal Dispatch
- × NEM3.0 Lower Bookend, Optimal Dispatch
- × Utility Rate, Optimal Dispatch

HRMF and Nonresidential PV/Storage Proposed Draft Language

Staff Pre-Rulemaking Workshop

Presenter: Mazi Shirakh, PE: Senior Mechanical Engineer

Date: December 8, 2020

PV/Battery Storage Proposals for HRMF & Nonresidential Buildings

2022 T24 Standards PV Requirements

PV Requirements for:

- 1. MRMF and HRMF
- 2. Office
- 3. Retail and Grocery
- 4. Educational facilities
- 5. Warehouses

- 6. Reduced requirements for Auditorium, Convention Center, Hotel/Motel, Library, Medical/Clinic, Restaurant, Theater
- 7. Mixed occupancy building where one or more of these types-of-uses makeup at least 80 percent of the floor areas of the building

2022 T24 Standards PV Sizing

- i. The PV system size determined by Equation 140.10-A, or (designed limit exports to less than 20% of annual generation)
- ii. The total of all available Effective Annual Solar Access Areas (EASAA) multiplied by 14 W/ft². EASAA are roof and carport areas that are at least 80 contiguous square feet that have Effective Annual Solar Access. EASAA include rooftop areas on the building, covered parking areas and carports, and on other newly constructed structures on the site that are capable of structurally supporting a PV system per Title 24, Part2, Section 1511.2. EASAA exclude occupied roofs as specified by Title 24, Part 2, section 503.1.4.

2022 T24 Standards PV Sizing

EQUATION 140.10-A PHOTOVOLTAIC DIRECT CURRENT SIZE

 $kW_{PVdc} = (CFA \times A)/1000$

WHERE:

- $kW_{PVdc} =$ Size of the PV system in kW
- CFA = Conditioned floor area in square feet
- A = PV capacity factor specified in Table 140.10-A for the building type

2022 T24 Standards PV Sizing

Table 140.10-A – PV Capacity Factors (Partial)

	Factor A – Min cond	imum PV Capa itioned floor ar	icity (W/ft² of ea)
Climate Zone	1, 3, 5, 16	2, 4, 6-14	15
Grocery	TBD	TBD	TBD
Highrise Multifamily	1.82	2.21	2.77
Office, Financial Institutions, Unleased Tenant Space			
< 25,000 ft ²	4.04	4.44	5.02
25,000 ft ² - 150,000 ft ²	2.59	3.13	3.80
> 150,000 ft ²	2.16	2.64	3.00

2022 T24 Standards PV Exceptions

- 1. Exception for small PV systems compared to building loads
- 2. Exception for areas with high snow loads
- 3. Exception for multi-tenant buildings not eligible for VNEM and community solar

2022 T24 Standards Battery Storage Sizing

Battery Storage is sized to limit exports to less than 10% of annual generation

EQUATION 140.10-B - BATTERY STORAGE RATED ENERGY CAPACITY $kWh_{batt} = kW_{PVdc} \times B / D^{0.5}$ WHERE:

kWh_{batt} = Rated Useable Energy Capacity of the battery storage system in kWh

 $kW_{PVdc} = PV$ system capacity required by section 140.10A in kWdc

B = Battery energy capacity factor specified in Table 140.10-B for the building type

D = Rated single charge-discharge cycle AC to AC (round-trip) efficiency

Table 140.10-B – Battery Storage Capacity Factors (Partial)

	Factor B – Energy Capacity	Factor C – Power Capacity
Storage to PV Ratio	Wh/W	W/W
Grocery	TBD	TBD
Highrise Multifamily	1.03	0.26
Office, Financial Institutions, Unleased Tenant Space		
< 25,000 ft ²	1.48	0.37
25,000 ft ² - 150,000 ft ²	1.68	0.42
> 150,000 ft ²	1.73	0.43
Retail		
< 25,000 ft ²	0.93	0.23
25,000 ft ² - 150,000 ft ²	1.03	0.26
> 150,000 ft ²	1.07	0.27

PV and Battery Sizing Example

50,000 Medium Office in CZ12 – The Energy Commission Building, Assuming No Roof Area Limitations

EQUATION 140.10-A PHOTOVOLTAIC DIRECT CURRENT SIZE

 $kW_{PVdc} = (CFA \times A)/1000:$ (50,000 x 3.13)/1000 = 152 kWdc PV System

EQUATION 140.10-B - BATTERY STORAGE RATED ENERGY CAPACITYkWh_{batt} = kW_{PVdc} x B / D^{0.5}: 152 x 1.68 / 0.95 = 268 kWh Battery Storage System

EQUATION 140.10-C - BATTERY STORAGE RATED POWER CAPACITY $kWh_{batt} = kW_{PVdc} \times C:$ 152 x 0.42 = 64 kW Battery Storage System

Actual system will likely be smaller due to roof area limitations

Questions?

2022 Building Energy Efficiency Standards Overview

We will Resume Again at 12:30

Cleanup Language

Staff Pre-Rulemaking Workshop

Presenter: Bill Pennington

Mazi Shirakh, PE: Senior Mechanical Engineer

Date: December 8, 2020

2022 Building Standards

Cleanup Language

Community Solar (CS) Revisions

Resource Requirements

- 1. Location Distribution circuit serving the municipality or county
- 2. Size 20 MW or less
- 3. New Developed for the CS program; cover gaps with retired bundled RECs
- 4. New application if new resources are added (Executive Director review)

Program Requirements

- 1. Energy bill credit clarify \$ benefits must exceed participation costs
- 2. Original Home Purchaser option to install rooftop solar instead
- 3. Home Opt-out anytime if T24 compliant rooftop system is installed at that time
- 4. Public agency Applications public comment before submission to CEC

2022 Building Standards Cleanup

- 1. New exception for PVs systems that are less than 1.9 kWDC per building
 - ✓ Addresses the ADU issue
- Exception 1 Clarify PV systems are not required to be larger than what can be installed in the Available Effective Annual Solar Access Area (EASAA); clarifies what happens when EASAA is greater than 80 square feet, but smaller than the area required for full NEM compliance
- 3. No Longer needed Exceptions to Section 150.1(c)14 since items 1 and 2 above will handle these cases
 - i. Exceptions 2 (CZ15)
 - ii. Exception 3 (2-story buildings)
 - iii. Exception 4 (3-story buildings)
- 4. New Exception for occupied roofs (flat patio areas) As described by Title 24, Part 2, section 503.1.4.
- 5. New Exception for areas for high snow loads

2022 Building Standards Cleanup

Definition of Effective Annual Solar Access Areas:

Effective Annual Solar Access Areas (EASAA) are roof and carport areas that are at least 80 contiguous square feet that have Effective Annual Solar Access. EASAA include rooftop areas on the building, covered parking areas and carports, and on other newly constructed structures on the site that are capable of structurally supporting a PV system per Title 24, Part2, Section 1511.2. EASAA exclude occupied roofs as specified by Title 24, Part 2, section 503.1.4

Cleanup Continued

JA 11- Qualification Requirements for Photovoltaic Systems

- 1. Clarify confusing system orientation language related to prescriptive (90 to 300 DFTN) and performance approach requirements
- 2. Clarify CFI1 (150-270 DFTN) and CFI2 (105-300 DFTN) requirements
- 3. Solar assessment tool Amend language based on lessons learned from prior approval of solar assessment tools: create clear list of functions needed for approval
- 4. Clearly define in Part 6 "Annual Solar Access", "Effective Annual Solar Access", and "Effective Annual Solar Access Areas"; EASAA facing north must use the performance path
- 5. Others?

Cleanup Continued

JA 12 - Qualification Requirements for Battery Storage Systems

- 1. Allow credit for "unpaired" battery storage systems
- 2. Clarify that roundtrip efficiency requirements are for prescriptive approach compliance only; performance modeled with actual RT efficiency
- 3. Add that minimizing GHGs may be a future control strategy for battery storage systems
- Add control strategy requirements for unpaired battery storage systems; include only TOU and Advanced Demand Flexibility control strategies (not Basic)

Questions?

Comments on Todays Workshop

Due Date: December 24, 2020 By 5:00 PM

Comments to be submitted to:

https://efiling.energy.ca.gov/EComment/EComment.aspx?docketnumber=19-BSTD-03