<table>
<thead>
<tr>
<th>DOCKETED</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Docket Number:</td>
<td>19-ALT-01</td>
</tr>
<tr>
<td>Project Title:</td>
<td>2020-2021 Investment Plan Update for the Clean Transportation Program</td>
</tr>
<tr>
<td>TN #:</td>
<td>235807</td>
</tr>
<tr>
<td>Document Title:</td>
<td>2020 - 2023 Investment Plan Update - Commission Report</td>
</tr>
<tr>
<td>Description:</td>
<td>N/A</td>
</tr>
<tr>
<td>Filer:</td>
<td>Christina Cordero</td>
</tr>
<tr>
<td>Organization:</td>
<td>California Energy Commission</td>
</tr>
<tr>
<td>Submitter Role:</td>
<td>Commission Staff</td>
</tr>
<tr>
<td>Submission Date:</td>
<td>11/30/2020 2:09:31 PM</td>
</tr>
<tr>
<td>Docketed Date:</td>
<td>11/30/2020</td>
</tr>
</tbody>
</table>
California Energy Commission

David Hochschild
Chair

Janea A. Scott
Vice Chair

Commissioners
Karen Douglas, J.D.
J. Andrew McAllister, Ph.D.
Patty Monahan

Patrick Brecht
Primary Author

Patrick Brecht
Project Manager

Michael Comiter
Assistant Project Manager

Charles Smith
Office Manager
TRANSPORTATION POLICY AND ANALYSIS OFFICE

Hannon Rasool
Deputy Director
FUELS AND TRANSPORTATION DIVISION

Drew Bohan
Executive Director
ACKNOWLEDGEMENTS

The following California Energy Commission staff members contributed to the development of this Investment Plan Update:

Jennifer Allen Andrew Hom
Jane Berner Elizabeth John
Jean Baronas Thanh Lopez
Jonathan Bobadilla Hieu Nguyen
John P. Butler II Esther Odufuwa
Joji Castillo Tim Olson
Phil Cazel Larry Rillera
Michael Comiter Gordon Schremp
Miki Crowell Charles Smith
Susan Ejlalmaneshan Michelle Vater
Brian Fauble Sarah Williams
Jesse Gage Alexander Wong
Lorraine Gonzalez Taiying Zhang, Ph.D.
Tami Haas
ADVISORY COMMITTEE MEMBERS

The California Energy Commission thanks the Clean Transportation Program Advisory Committee members for their guidance in helping identify opportunities and priorities for consideration in the Investment Plan Update:

Leslie Aguayo — Greenlining Institute
Ruben Aronin — Better World Group
Alfred Artis — Consumer Reports
William Barrett — American Lung Association
Jerome Carman — Schatz Energy Research Center, Humboldt State University
Morgan Caswell — Port of Long Beach
Steve Cliff — California Air Resources Board
Peter Cooper — Employment Training Panel
Tyson Eckerle — Governor’s Office of Business and Economic Development
Bill Elrick — California Fuel Cell Partnership
Larry Englebrecht — Englebrecht Consulting
Casey Gallagher — California Labor Federation
Katherine Garcia — Sierra Club
Matt Gregori — Southern California Gas Company
Kevin Hamilton — Central California Asthma Collaborative
Daryl Lambert — Rising Sun Center
Rey León — The Latino Equity Advocacy and Policy Institute
Jose Lopez — Private Citizen
Bill Magavern — Coalition for Clean Air
David Modisette — Modisette and Associates
Sandy Naranjo — Mothers Out Front
Jimmy O’Dea — Union of Concerned Scientists
Lori Pepper — California State Transportation Agency
Michael Pimentel — California Transit Association
Patricio Portillo — Natural Resources Defense Council
Heidi Sickler — Silicon Valley Leadership Group
Richard Schorske — Electric Vehicle Alliance and ZNE Alliance
Mary Solecki — AJW, Inc.
Tracy Stanhoff — American Indian Chamber of Commerce
Russell Teall — Private Citizen
JB Tengco — BlueGreen Alliance
Zac Thompson — East Bay Community Energy
Eileen Tutt — California Electric Transportation Coalition
Lucas Zucker — Central Coast Alliance United for a Sustainable Economy
DISADVANTAGED COMMUNITIES ADVISORY GROUP MEMBERS

The California Energy Commission thanks the Disadvantaged Communities Advisory Group members for providing feedback on how this Investment Plan Update, and the Clean Transportation Program in general, can promote equity and access for all Californians.

Stan Greschner (Chair) — GRID Alternatives
Angela Islas (Vice Chair) — Self-Help Enterprises
Phoebe Seaton (Secretary) — Leadership Counsel for Justice and Accountability
Fred Beihn — Arrowhead Solutions
Stephanie Chen — Marin Clean Energy
Jana Ganion — Blue Lake Rancheria
Roger Lin — Environmental Law Clinic, UC Berkeley School of Law
Adriano Martinez — Earthjustice
Andres Ramirez — Pacoima Beautiful
Tyrone Roderick Williams — Sacramento Promise Zone
ABSTRACT

The 2020-2023 Investment Plan Update for the Clean Transportation Program (previously known as the Alternative and Renewable Fuel and Vehicle Technology Program) guides the allocation of program funding for Fiscal Years 2020-2023. This is the first time that the update proposes a multiyear allocation. The California Energy Commission will review the proposed allocations annually to adjust as needed.

This 2020-2023 investment plan covers the twelfth year of the program and reflects laws, executive orders, regulations, and other funding programs to reduce greenhouse gas emissions, petroleum dependence, and criteria pollution emissions for all Californians. It details how the Energy Commission determines the goal-driven priorities of the program by incorporating input from stakeholders, the Disadvantaged Communities Advisory Group, and the newly revised Clean Transportation Program Advisory Committee, and by analyzing project opportunities for funding. These priorities are consistent with the overall goal of the program “to develop and deploy innovative technologies that transform California’s fuel and vehicle types to help attain the state’s climate change policies.”

This 2020-2023 investment plan establishes funding allocations based on identified needs and opportunities, including a near-term focus on zero-emission vehicles and infrastructure. The investment plan also prioritizes jobs, economic stimulus, and equity in light of the challenges presented by the COVID-19 pandemic.

This Commission Report represents the final step in developing the 2020-2023 Investment Plan Update and was adopted at the October 14, 2020 Energy Commission business meeting.

Keywords: California Energy Commission, Clean Transportation Program, Alternative and Renewable Fuel and Vehicle Technology Program, AB 118, AB 8, funding program, alternative transportation fuels, investment plan, equity, electric vehicles, hydrogen, biofuels, biomethane, biodiesel, renewable diesel, diesel substitutes, gasoline substitutes, renewable gasoline, ethanol, natural gas, federal cost-sharing, disadvantaged communities, workforce, training, sustainability, fueling stations, fuel production, alternative fuel infrastructure, manufacturing, COVID-19

Please use the following citation for this report:

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020–2023 Investment Plan Update for the Clean Transportation Program</td>
<td>i</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>i</td>
</tr>
<tr>
<td>ADVISORY COMMITTEE MEMBERS</td>
<td>ii</td>
</tr>
<tr>
<td>DISADVANTAGED COMMUNITIES ADVISORY GROUP MEMBERS</td>
<td>iv</td>
</tr>
<tr>
<td>Abstract</td>
<td>v</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>vi</td>
</tr>
<tr>
<td>List of Figures</td>
<td>viii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>viii</td>
</tr>
<tr>
<td>Executive Summary</td>
<td>1</td>
</tr>
<tr>
<td>Purpose of the Clean Transportation Program</td>
<td>1</td>
</tr>
<tr>
<td>Investments to Date</td>
<td>2</td>
</tr>
<tr>
<td>Commitment to Inclusion, Diversity, Equity, and Access</td>
<td>4</td>
</tr>
<tr>
<td>Context of the Investment Plan</td>
<td>5</td>
</tr>
<tr>
<td>Description of the Investment Plan</td>
<td>5</td>
</tr>
<tr>
<td>Zero-Emission Vehicle Infrastructure Gap</td>
<td>6</td>
</tr>
<tr>
<td>Proposed Funding Allocation for 2020-2023</td>
<td>7</td>
</tr>
<tr>
<td>CHAPTER 1: Introduction</td>
<td>10</td>
</tr>
<tr>
<td>Moving Forward</td>
<td>11</td>
</tr>
<tr>
<td>CHAPTER 2: Context of the 2020–2023 Investment Plan</td>
<td>13</td>
</tr>
<tr>
<td>Implementation of the Clean Transportation Program</td>
<td>13</td>
</tr>
<tr>
<td>Description of Funding Mechanisms</td>
<td>14</td>
</tr>
<tr>
<td>Program Outreach and Engagement</td>
<td>15</td>
</tr>
<tr>
<td>Promoting Quality Jobs</td>
<td>16</td>
</tr>
<tr>
<td>Summary of Program Funding to Date</td>
<td>17</td>
</tr>
<tr>
<td>Related Policies and Goals</td>
<td>21</td>
</tr>
<tr>
<td>Federal Law: Clean Air Act, State Implementation Plans, and Mobile Source Strategy</td>
<td>23</td>
</tr>
<tr>
<td>State Laws</td>
<td>23</td>
</tr>
<tr>
<td>Executive Orders (EO)</td>
<td>25</td>
</tr>
<tr>
<td>Regulations by the California Air Resources Board</td>
<td>26</td>
</tr>
<tr>
<td>Complementary Funding Programs</td>
<td>29</td>
</tr>
<tr>
<td>California Energy Commission’s School Bus Replacement Program</td>
<td>29</td>
</tr>
<tr>
<td>California Air Resources Board Funding Programs</td>
<td>30</td>
</tr>
<tr>
<td>Investor-Owned Utility Investments in Electric Vehicle Charging Infrastructure</td>
<td>32</td>
</tr>
<tr>
<td>Settlement Agreements</td>
<td>32</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure ES-1: Proportion of Clean Transportation Program Funding Awarded to Projects Located in Disadvantaged or Low-Income Communities (in Millions) ...5
Figure 1: Schematic of the Clean Transportation Program Implementation ..14
Figure 2: Clean Transportation Program Funding Toward Disadvantaged Communities (in Millions) ...21
Figure 3: Average Monthly Low Carbon Fuel Standard Credit Prices ..27

LIST OF TABLES

Table ES-1: Clean Transportation Program Awards as of May 1, 2020 ..3
Table ES-2: Progress Toward 250,000 Chargers and 200 Hydrogen Stations by 20257
Table ES-3: Investment Plan Allocations for FY 2020-2021 and Subsequent Fiscal Years (in Millions) ...9
Table 1: Clean Transportation Program Awards as of May 1, 2020 ..19
Table 2: Clean Transportation Program Awards by Air District as of May 1, 202020
Table 3: Greenhouse Gas, Fuel, and Air Quality Goals and Milestones22
Table 4: FY 2019-2020 CARB Clean Transportation Incentives Allocations31
Table 5: Investment Plan Allocations for FY 2020-2021 and Subsequent Fiscal Years (in Millions) ...35
Table 6: Progress Toward 250,000 Chargers by 2025 ...39
Table 7: Charging Connectors Funded by the Clean Transportation Program as of August 31, 2020 ...41
Table 8: Advanced Freight and Fleet Vehicle Projects Supported by the Clean Transportation Program as of May 1, 2020 ...46
EXECUTIVE SUMMARY

Over the past decade, California has led the nation in combating climate change through aggressive greenhouse gas (GHG) emission reduction goals and innovative funding programs. The California Energy Commission’s (CEC) Clean Transportation Program (formerly known as the Alternative and Renewable Fuel and Vehicle Technology Program) was one of the first transportation-focused programs created by the California Legislature to help achieve the state’s climate change policies. The program has successfully done so with steady investments designed to transform California’s fuel and vehicle types. Now in the twelfth year, the Clean Transportation Program has provided nearly $900 million to projects covering a broad spectrum of alternative fuels and technologies and in communities that can immediately accrue health, environmental, and economic benefits from these investments. In this time, California has experienced rapid growth in the sales of plug-in electric vehicles, the introduction of hydrogen fuel cell electric vehicles, and a notable increase in the in-state production and use of low-carbon alternative fuels. The Clean Transportation Program has supported this emerging revolution in the transportation sector with significant investments in alternative fuel vehicles and supporting infrastructure and will continue to do so with this 2020-2023 Investment Plan Update.

This Commission Report version of the 2020-2023 Investment Plan Update is the first version of the Clean Transportation Program investment plan to consider the ongoing public health crisis and economic impacts associated with the novel coronavirus, COVID-19. While the long-term goals of the Clean Transportation Program remain the same, the CEC is committed to implementing the program in a manner that further supports in-state employment, economic development, and equity. Furthermore, the CEC will seek to provide 50 percent of Clean Transportation Program funds from this investment plan toward projects that benefit low-income and disadvantaged communities. The CEC will seek to quantify these benefits in ways that go beyond measuring funding amounts within a given location, and will continue to investigate new metrics to ensure these investments enhance equity within the state.

Purpose of the Clean Transportation Program

Since 2006, California has set several pivotal goals to reduce GHG emissions and address the threat posed by global climate change. These goals require incremental progress that will ultimately lead to major emission reductions, including:

- Reducing GHG emissions to 1990 levels by 2020.
- Reducing GHG emissions to 40 percent below 1990 levels by 2030.
- Reducing short-lived climate pollutant emissions, such as methane, to 40 to 50 percent below 2013 levels by 2030.
- Achieving a carbon-neutral economy by 2045.
- Setting specific goals to boost the supply of zero-emission vehicles (ZEVs) and charging and fueling stations, including:
 - Putting at least 1.5 million ZEVs on the road by 2025.
• Installing 200 hydrogen-fueling stations and 250,000 battery-electric vehicle chargers, including 10,000 direct-current fast chargers, by 2025.
• Putting 5 million ZEVs on the road by 2030.
• Transitioning 100 percent of new sales of passenger vehicles and trucks to ZEVs by 2035.
• Transitioning 100 percent of operating medium- and heavy-duty trucks and buses to zero emissions by 2045 everywhere feasible, and 100 percent of drayage trucks by 2035.
• Transitioning 100 percent of operating off-road vehicles and equipment to zero emissions everywhere feasible by 2035.

Achieving these goals will require significant technological and market changes within the transportation sector, which accounts for roughly 50 percent of state greenhouse gas emissions when accounting for “upstream emissions” from fuel production.

In addition to these GHG emission reduction goals, the state must comply with requirements under the federal Clean Air Act to reduce emissions of criteria air pollutants. Reducing air pollution is important from an equity context, given that air quality burdens fall disproportionately on vulnerable and disadvantaged communities within the state.

To help address these goals, the California Legislature passed Assembly Bill 118 (Núñez, Chapter 750, Statutes of 2007). This legislation created the Clean Transportation Program, which is administered by the CEC. With funds collected from vehicle and vessel registration, vehicle identification plates, and smog-abatement fees, the Clean Transportation Program funds projects that will "transform California’s fuel and vehicle types to help attain the state’s climate change policies." Assembly Bill 8 (Perea, Chapter 401, Statutes of 2013) subsequently extended the collection of fees that support the Clean Transportation Program to January 1, 2024.

Investments to Date

Since the first Clean Transportation Program investment plan was released in 2009, the CEC has invested nearly $900 million in projects that support the advancement and use of alternative fuels and advanced vehicle technologies. A detailed summary of all projects funded to date by the Clean Transportation Program can be found in Table ES-1.
Table ES-1: Clean Transportation Program Awards as of May 1, 2020

<table>
<thead>
<tr>
<th>Funded Activity</th>
<th>Cumulative Awards to Date (in Millions)*</th>
<th># of Projects or Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative Fuel Production</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomethane Production</td>
<td>$73.08</td>
<td>28 Projects</td>
</tr>
<tr>
<td>Gasoline Substitutes Production</td>
<td>$31.94</td>
<td>15 Projects</td>
</tr>
<tr>
<td>Diesel Substitutes Production</td>
<td>$63.94</td>
<td>26 Projects</td>
</tr>
<tr>
<td>Renewable Hydrogen Production</td>
<td>$7.93</td>
<td>2 Projects</td>
</tr>
<tr>
<td>Alternative Fuel Infrastructure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electric Vehicle Charging Infrastructure**</td>
<td>$182.81</td>
<td>11,276 Level 2 Chargers/DC Fast Chargers</td>
</tr>
<tr>
<td>Hydrogen Fueling Infrastructure</td>
<td>$135.58</td>
<td>62**** Public Fueling Stations, plus Fleets</td>
</tr>
<tr>
<td>E85 Fueling Infrastructure</td>
<td>$3.61</td>
<td>57 Fueling Stations</td>
</tr>
<tr>
<td>Upstream Biodiesel Infrastructure</td>
<td>$3.98</td>
<td>4 Infrastructure Sites</td>
</tr>
<tr>
<td>Natural Gas Fueling Infrastructure</td>
<td>$24.11</td>
<td>70 Fueling Stations</td>
</tr>
<tr>
<td>Alternative Fuel and Advanced Technology Vehicles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural Gas Vehicle Deployment***</td>
<td>$86.84</td>
<td>3,152+ Vehicles</td>
</tr>
<tr>
<td>Propane Vehicle Deployment</td>
<td>$5.98</td>
<td>514 Trucks</td>
</tr>
<tr>
<td>Hybrid and ZEV Deployment (Including CVRP, HVIP, and Low-Income Mobility Incentives)</td>
<td>$32.02</td>
<td>10,700 Cars and 150 Trucks</td>
</tr>
<tr>
<td>Advanced Technology Freight and Fleet Vehicles****</td>
<td>$125.67</td>
<td>54 Demonstrations</td>
</tr>
<tr>
<td>Related Needs and Opportunities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturing</td>
<td>$55.54</td>
<td>24 Manufacturing Projects</td>
</tr>
<tr>
<td>Workforce Training and Development</td>
<td>$33.33</td>
<td>17,440 Trainees</td>
</tr>
<tr>
<td>Fuel Standards and Equipment Certification</td>
<td>$3.90</td>
<td>1 Project</td>
</tr>
<tr>
<td>Sustainability Studies</td>
<td>$2.04</td>
<td>2 Projects</td>
</tr>
<tr>
<td>Regional Alternative Fuel Readiness</td>
<td>$11.11</td>
<td>51 Regional Plans</td>
</tr>
<tr>
<td>Centers for Alternative Fuels</td>
<td>$5.41</td>
<td>5 Centers</td>
</tr>
<tr>
<td>Technical Assistance and Program Evaluation</td>
<td>$9.22</td>
<td>n/a</td>
</tr>
<tr>
<td>Total</td>
<td>$898.92</td>
<td></td>
</tr>
</tbody>
</table>

Source: California Energy Commission. Totals may not match due to rounding. *Includes all agreements that have been approved at an Energy Commission business meeting or are expected for business meeting approval following a notice of proposed award. For canceled and completed projects, includes only funding received from the Clean Transportation Program, which may be smaller than initial award. Due to rounding, “total” may not match sum of rows. **Includes $75.97 million for the California Electric Vehicle Infrastructure Project to provide EV incentives throughout California, which will fund a yet-to-be-determined number of EV chargers. ***Funding includes both completed and pending vehicle incentives, as well as funds reserved for future incentives. ****Includes projects from the former Medium- and Heavy-Duty Vehicle Technology Demonstration category. *****Reduced from previous draft due to two cancelled stations. This number also includes one station that was funded but has closed.
Commitment to Inclusion, Diversity, Equity, and Access

The CEC is committed to inclusion, diversity, equity, and access, ensuring that all Californians have an opportunity to participate in and benefit from programs and services. In 2015, the CEC adopted a resolution committing the CEC to improving fair and equal opportunities for economically disadvantaged and underserved communities to participate in and benefit from CEC programs. One important metric for evaluating impacts is the share of funding awarded to projects within disadvantaged or low-income communities. As depicted in Figure ES-1, roughly 36 percent of Clean Transportation Program project funds have been awarded to projects within disadvantaged or low-income communities or both. When excluding Clean Transportation Program projects that occur statewide or without an applicable site address, this funding share is closer to 50 percent.

The CEC recognizes project location is but one metric for evaluating the equity implications of specific projects. The Disadvantaged Communities Advisory Group (DACAG), established under Senate Bill 350 (De León, Chapter 547, Statutes of 2015), reviews and advises the CEC and the California Public Utilities Commission (CPUC) in determining to what extent proposed programs will be effective and useful in disadvantaged communities.

In its comment letter to the CEC on June 28, 2019, the DACAG included a recommendation to “prioritize and invest in proper community outreach and engagement.” In its letter, the DACAG encourages investment into outreach to disadvantaged communities in partnership with local community-based organizations. This outreach is particularly true for smaller, tribal, or rural communities or a combination that may not have the resources to compete for funding opportunities. Improving such outreach has the potential to create more equitable opportunities to participate in the Clean Transportation Program Advisory Committee, the identification of funding priorities (such as the program’s Investment Plan Update), the development of funding solicitation criteria, and the funding application and award-making process.

The CEC issued a request for new members to the Advisory Committee for the Clean Transportation Program in December 2019 and appointed 34 members in response. The membership of the committee reflects a broad array of stakeholders representing community-based organizations, social and environmental justice advocates, alternative vehicle technologies, as well as workforce and labor interests. The perspectives and recommendations of the members will help guide and ensure an inclusive approach for all Clean Transportation Program investments.

The CEC is also incorporating the “Health in All Policies” collaborative approach to improving the health of all people by incorporating health, equity, and sustainability considerations into decision-making across sectors and policy areas. The approach recognizes that the greatest health challenges — like chronic illness, climate change, health inequities among populations, and increasing health care costs — are highly complex and influenced by policies, programs, and investments across sectors, including the Clean Transportation Program.

Senate Bill 1000 (Lara, Chapter 368, Statutes of 2018) requires the CEC, in consultation with the California Air Resources Board (CARB), to assess whether light-duty electric vehicle
charging station infrastructure is disproportionately deployed. This assessment includes whether direct current fast charging stations are disproportionately distributed and access to stations is disproportionately available. CEC staff has begun to identify, collect, and analyze data on populations and charging availability by census tract. Staff held a public workshop on June 4, 2020, to solicit stakeholder feedback on proposed methods and the results of preliminary analysis. Staff will incorporate feedback from the workshop in CEC’s analysis and reporting. Staff will continue to assess charging station distribution and report findings to annual Investment Plan updates, beginning with the 2021–2023 Investment Plan report. The results of these assessments may affect allocations of future investment plans, as well as the CEC’s approach toward implementing those allocations.

Figure ES-1: Proportion of Clean Transportation Program Funding Awarded to Projects Located in Disadvantaged or Low-Income Communities (in Millions)

- $319.9, 35%
- $254.7, 28%
- $286.4, 32%
- $32.4, 4%
- $5.4, 1%

Source: California Energy Commission. Totals may not match due to rounding. As of May 2020. “Disadvantaged communities” are defined as communities within the top 25 percent scoring areas under CalEnviroScreen, as well as areas of high pollution and low population. “Low-income communities” are defined as communities that are at or below 80 percent of the statewide median income.

Context of the Investment Plan

Description of the Investment Plan

As part of the Clean Transportation Program, the CEC prepares and adopts an annual investment plan update that identifies the funding priorities for the coming fiscal year. Assembly Bill 1314 (Wieckowski, Chapter 487, Statutes of 2011) reduced the scope of the annual Clean Transportation Program investment plan to an update. The update builds on the work of previous investment plans while highlighting differences from previous years. The
resulting funding allocations are intended to reflect the unique technological and market conditions for each of these fuels and technologies, as well as state goals, policies, and directives. The funding allocations reflect the potential for each alternative fuel and vehicle technology to contribute to the goals of the program; the anticipated barriers and opportunities associated with each fuel or technology; and the effect of other investments, policies, programs, and statutes.

Funds appropriated to the CEC for the Clean Transportation Program shall be available for encumbrance by the CEC for up to four years from the date of the appropriation and for liquidation up to four years after expiration of the deadline to encumber. Each annual investment plan update allows the program to be responsive and can shift funds in response to shortfalls provided by utilities, the private sector, settlement agreements, and unforeseen state budgetary shortfalls.

The funding recommendations in this report are guided by, and complementary to, the state’s energy policies, executive orders, regulations, and actions by other state agencies. The CEC is committed to ensuring that the Clean Transportation Program funding is complementary to policies and grant programs administered by other agencies, including CARB and the CPUC.

Zero-Emission Vehicle Infrastructure Gap

Executive Order B-48-18 directs the state government to work with the private sector and other levels of government to dispatch at least 5 million zero-emission vehicles in California by 2030. The executive order also calls for the installation and construction of 250,000 electric vehicle charging ports, including 10,000 direct-current, fast-charging ports, and 200 hydrogen-fueling stations by 2025.

Executive Order N-79-20, signed by Governor Gavin Newsom on September 23, 2020, provides even more ambitious goals and requirements for vehicles. The Order sets the state goal that 100 percent of in-state sales of new passenger cars and trucks will be ZEVs by 2035; 100 percent of operating medium- and heavy-duty vehicles will be ZEVs by 2045; and 100 percent of drayage trucks and off-road vehicles and equipment will be ZEVs by 2035. The Order also tasks CEC with providing an updated assessment of the infrastructure needed to support this level of ZEV adoption.

To date, the Clean Transportation Program has funded (or committed to funding) the installation of nearly 7,400 public and shared chargers for California’s more than 600,000 plug-in electric vehicles on the road at the end of 2019. The state’s electric utilities and Electrify America (a company established in the wake of the Volkswagen emissions scandal) are also investing in public charging station installations.

Despite these investments, Clean Transportation Program staff estimates that the sum of existing and expected future charging ports will not be enough to meet the state’s goal of 250,000 chargers and 10,000 fast-chargers by 2025. As depicted in Table ES-2, the currently identified investments still leave a gap of more than 66,000 Level 2 chargers and over 800 DC fast-chargers by 2025. Level 2 chargers use alternating current electricity to charge a PEV at 240 volts and can provide about 14 to 35 miles of range per hour of charging. DC fast charging uses DC electricity at 480 volts to recharge a battery electric vehicle up to 100 miles
in 30 minutes or less (depending on the size of the battery, the power level of the charger, and the charging capability of the vehicle). Because of this continued shortfall, the 2020-2023 Investment Plan Update reflects considerable investments in vehicle charging infrastructure to narrow the deployment gap.

In addition to the charging infrastructure gap, there is a need to address the hydrogen infrastructure gap. Table ES-2 shows the number of hydrogen fueling stations from existing and allocated funds, which indicates an identified gap of 28 hydrogen stations from the state’s goal of 200 stations.

<table>
<thead>
<tr>
<th>Category</th>
<th>Level 2 Chargers</th>
<th>DC Fast Chargers</th>
<th>Hydrogen Fueling Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Chargers/Open Retail Hydrogen Fueling Stations (Estimated)*</td>
<td>56,643</td>
<td>4,889</td>
<td>44</td>
</tr>
<tr>
<td>Number of Chargers/Fueling Stations For Which Funding Has Been Allocated (includes anticipated funding from Clean Transportation Program)**</td>
<td>117,316</td>
<td>4,296</td>
<td>128</td>
</tr>
<tr>
<td>Total</td>
<td>173,959</td>
<td>9,185</td>
<td>172</td>
</tr>
<tr>
<td>2025 Goal (Executive Order B-48-18)</td>
<td>240,000</td>
<td>10,000</td>
<td>200</td>
</tr>
<tr>
<td>Gap From Goal</td>
<td>66,041</td>
<td>815</td>
<td>28</td>
</tr>
</tbody>
</table>

Source: California Energy Commission. Analysis as of September 2020. *Existing charging ports estimated based on available data from U.S. Department of Energy’s Alternative Fuels Data Center, as well as Governor’s Office of Business and Economic Development’s The Plug and the Nozzle: ZEV Infrastructure Permitting Newsletter No. 2 as of February 2020. Not included in this table are an estimated 505 statewide public or shared-private Level 1 chargers, which are included in statewide charger counts (available at https://www.energy.ca.gov/data-reports/energy-insights/zero-emission-vehicle-and-charger-statistics) but not the goal of 250,000 chargers. **Estimate of ports from other state programs derived from public presentations and statements by utilities, CPUC, CARB, other entities, and Energy Commission. This analysis includes the $51 million one-time legislative appropriation from the Alternative and Renewable Fuel and Vehicle Technology Fund for FY 2020-2021 dedicated to electric vehicle charging infrastructure.

Funding Allocations for 2020-2023

For the first time, the CEC proposed a multiyear funding plan to provide the public and stakeholders improved funding certainty and convey short-term and long-term transformative goals of the Clean Transportation Program. There will be modest annual updates to evaluate whether adjustments should be made to the allocations.

In recognition of COVID-19 and its financial and budgetary impacts, the 2020-2023 Investment Plan Update will stress even more the need to leverage Clean Transportation Program funds to support jobs, economic development, and equity. Key adjustments include:

- A new funding allocation for “Recovery and Reinvestment” that is intended to address needs and resiliency measures for the COVID-19 response, including creative financial
opportunities that can best leverage Clean Transportation Program funding, private investments, and federal cost-sharing.

- A program-wide focus on creating high-quality job opportunities through its investments.
- An early focus on the needs of light-duty passenger vehicles within the ZEV infrastructure allocation. This focus is intended to help narrow the charging and hydrogen fueling gap anticipated by 2025, as depicted in Table ES-2, and fund shovel-ready projects that promote job creation and economic recovery. It is vital to ensure the public adoption of ZEVs is not stymied by lack of infrastructure. The CEC expects to follow this with a long-term focus on ZEV infrastructure for trucks, buses, and off-road equipment.

In addition to prioritizing investments in response to COVID-19, the CEC is taking measures to support current grant recipients and their individual needs as they navigate through these extraordinary times.

Table ES-3 shows the funding allocations for FY 2020-2021, as well as funding projections for the remainder of the Clean Transportation Program. For FY 2020-2021, $146.2 million (which includes a $51 million one-time legislative expenditure specific to light-duty electric vehicle infrastructure) may be available for the purposes described in this Investment Plan Update.

The continued emphasis on zero-emission vehicles (both battery-electric and hydrogen fuel cells) and infrastructure for FY 2020-2021 reflects the state’s goals for zero-emission vehicles as well as near- and long-term carbon reduction, improved air quality, and equity, with a focus on providing benefits for disadvantaged communities.

As shown in Table ES-3, the CEC directs significant investments in light-duty electric vehicle charging infrastructure for Fiscal Years 2020–2021 and 2021–2022 to narrow the charging gap as described in earlier analysis, with further depth later in this report. Furthermore, it is vital to front-load funding to ensure the public adoption of electric vehicles is not stymied by lack of charging infrastructure.

In Fiscal Years 2021–2022 and 2022–2023, the CEC will concentrate investments toward medium- and heavy-duty zero-emission vehicles and infrastructure for both battery-electric and hydrogen fuel cell technologies. By this time, CEC staff will benefit from the inaugural charging infrastructure assessment required in Assembly Bill 2127 (Ting, Chapter 365, Statutes of 2018). Current charging assessments have focused only on light-duty vehicles; however, estimating the charging needs of medium- and heavy-duty vehicles will become a key area for additional analysis.

Assembly Bill 8 directs the CEC to allocate $20 million annually, not to exceed 20 percent of the funds appropriated by the Legislature, from the Clean Transportation Program to deploy hydrogen fueling stations until there are at least 100 publicly available stations. The CEC has allocated $20 million for Fiscal Year 2020-2021 and proposes funding $20 million annually through 2022-2023 to support light-duty, medium-duty, and heavy-duty hydrogen infrastructure. While the CEC expects there will be 100 stations in operation by 2023, the CEC
plans to split the $10 million allocation (which equates to 20 percent of the expected funds for the Clean Transportation Program in 2023) between light-duty and heavy-duty hydrogen fueling infrastructure.

Table ES-3: Investment Plan Allocations for FY 2020-2021 and Subsequent Fiscal Years (in Millions)

<table>
<thead>
<tr>
<th>Category</th>
<th>Funded Activity</th>
<th>2020-2021</th>
<th>2021-2022</th>
<th>2022-2023</th>
<th>2023</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero-Emission Vehicles and Infrastructure</td>
<td>Light-Duty Electric Vehicle Charging Infrastructure and eMobility</td>
<td>$41.7</td>
<td>$30.2</td>
<td>$10.0</td>
<td>-</td>
<td>$81.9</td>
</tr>
<tr>
<td>Zero-Emission Vehicles and Infrastructure</td>
<td>Light-Duty Electric Vehicle Charging Infrastructure and eMobility</td>
<td>$51.0*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>$51.0</td>
</tr>
<tr>
<td>Zero-Emission Vehicles and Infrastructure</td>
<td>Medium- and Heavy-Duty Zero-Emission Vehicles and Infrastructure</td>
<td>$20.0</td>
<td>$30.0</td>
<td>$52.2</td>
<td>$27.6</td>
<td>$129.8</td>
</tr>
<tr>
<td>Zero-Emission Vehicles and Infrastructure</td>
<td>Public Hydrogen Fueling Infrastructure</td>
<td>$20.0</td>
<td>$20.0</td>
<td>$20.0</td>
<td>$10.0**</td>
<td>$70.0</td>
</tr>
<tr>
<td>Alternative Fuel Production and Supply</td>
<td>Zero- and Near Zero-Carbon Fuel Production and Supply</td>
<td>-</td>
<td>$10.0</td>
<td>$10.0</td>
<td>$5.0</td>
<td>$25.0</td>
</tr>
<tr>
<td>Related Needs and Opportunities</td>
<td>Manufacturing</td>
<td>$2.0</td>
<td>$3.0</td>
<td>$1.5</td>
<td>$2.5</td>
<td>$9.0</td>
</tr>
<tr>
<td>Related Needs and Opportunities</td>
<td>Workforce Training and Development</td>
<td>$1.5</td>
<td>$2.0</td>
<td>$1.5</td>
<td>$2.5</td>
<td>$7.5</td>
</tr>
<tr>
<td>Related Needs and Opportunities</td>
<td>Recovery and Reinvestment</td>
<td>$10.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>$10.0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>$146.2</td>
<td>$95.2</td>
<td>$95.2</td>
<td>$47.6</td>
<td>$384.2</td>
</tr>
</tbody>
</table>

Source: California Energy Commission. *FY 2020-2021 includes a one-time legislative appropriation from the Alternative and Renewable Fuel and Vehicle Technology Fund for $51 million to increase and accelerate electric vehicle charging infrastructure. **In the final half year of funding, the CEC is planning to split funding for hydrogen infrastructure between light-duty and medium- and heavy-duty hydrogen infrastructure. The CEC will re-evaluate whether the proposed $5 million allocation for light-duty public fueling infrastructure in the final year of the program is sufficient to meet the needs of the FCEV market, and will adjust as needed in annual revisions to the plan.
CHAPTER 1: Introduction

California has been at the forefront of national efforts to combat climate change since the passage of the Global Warming Solutions Act of 2006, which established a goal of reducing statewide greenhouse gas (GHG) emissions to 1990 levels by 2020.¹ Senate Bill 32 established a goal of 40 percent below 1990 levels by 2030.² Executive Order B-55-18 established a goal to achieve carbon neutrality as soon as possible, and no later than 2045, and achieve and maintain net negative emissions thereafter.³

The state’s efforts against global climate change have begun to show progress, and in 2016, California achieved its goal of reducing GHG emissions to 1990 levels, four years ahead of schedule. Despite the overall reduction in GHG emissions, emissions from the transportation sector have increased over the last several years, as Californians purchased more light trucks (sport utility vehicles, pickups, and vans) instead of cars and drove more miles.⁴ When including upstream emissions, the transportation sector is the largest source of GHG emissions in California, with vehicles, oil extraction, and oil refining accounting for roughly 50 percent of in-state emissions.⁵ California has made progress in implementing low-carbon transportation options, with sales of low-carbon alternative fuels and zero-emission vehicles steadily increasing and new transportation technologies becoming commercially available. Even with these advances, petroleum-based fuels still account for about 90 percent of California ground transportation fuel and result in significant GHG emissions.⁶

In addition to greenhouse gases, the transportation sector is also a major emitter of criteria pollutants, with mobile sources responsible for nearly 80 percent of nitrogen oxide emissions and 90 percent of diesel particulate matter emissions statewide.⁷ Protecting and improving

¹ Assembly Bill 32 (Núñez, Chapter 488, Statutes of 2006).
² Senate Bill 32, Pavley (Chapter 249, Statutes of 2016).
⁶ Based on analysis from California Energy Commission Energy Assessments Division.
public health in the state will require substantial reductions in criteria pollutant emissions. The California Air Resources Board (CARB) estimates that attaining federal air quality standards in 2023 and 2031 may require up to an 80 percent reduction of smog-forming emissions in parts of the state.

To help address state climate change and air quality objectives, the California Legislature passed Assembly Bill 118 (Núñez, Chapter 750, Statutes of 2007). This legislation created the Clean Transportation Program (formerly known as the Alternative and Renewable Fuel and Vehicle Technology Program). With funds collected from vehicle and vessel registration, vehicle identification plates, and smog abatement fees, the Clean Transportation Program funds projects that will "transform California’s fuel and vehicle types to help attain the state’s climate change policies." Assembly Bill 8 (Perea, Chapter 401, Statutes of 2013) extended the collection of fees that support the Clean Transportation Program to January 1, 2024.

As part of the Clean Transportation Program, the California Energy Commission (CEC) prepares and adopts an annual Investment Plan Update that identifies the funding priorities for the coming fiscal year. The funding allocations reflect the potential for each alternative fuel and vehicle technology to contribute to the goals of the program; the anticipated barriers and opportunities associated with each fuel or technology; and the effect of other investments, policies, programs, and statutes. The Investment Plan Update also describes how the allocations will complement existing public and private efforts, including related state programs.

Moving Forward

This 2020-2023 Investment Plan Update is the twelfth investment plan in the history of the Clean Transportation Program and builds on the analyses and recommendations contained in prior documents. This is the first time in the history of the Clean Transportation Program that the investment plan proposes a multiyear funding plan. The Commission Report is the final version of the 2020-2023 Investment Plan Update. In developing the 2020-2023 Investment Plan Update, the CEC held two public meetings with the Clean Transportation Program Advisory Committee. The advisory committee was reconstituted in early 2020 to include a broader representation of interests, better reflect California communities, and provide increased representation of program beneficiaries, environmental justice communities, rural communities, tribes, and others. The first meeting took place at the CEC on March 3, 2020, with the second meeting held virtually on June 19, 2020. Representatives from the advisory committee, other stakeholders, and the public are encouraged to discuss and comment on drafts of this document during these meetings and through the CEC's docket system.

8 Ibid.

version of the investment plan incorporates discussion from the first and second advisory committee meetings, as well as comments received through the docket system.

The unexpected conditions brought on by the COVID-19 pandemic will have a significant effect on the CEC’s continued implementation of the Clean Transportation Program and related investment plan. Long-term Clean Transportation Program priorities remain the same, but the program must also play an immediate role in addressing job creation and economic recovery. Prioritizing investments in ZEV infrastructure, especially in the short term, can spur near-term employment and economic development. Furthermore, the CEC will seek to maintain flexibility to respond to emerging needs and opportunities for public funding to promote economic recovery and reinvestment in all California communities.

Chapter 2 of this document provides the context for the investment plan, including an update on the CEC’s implementation of the Clean Transportation Program to date and a review of the most relevant federal and state laws, executive orders, state regulations, and funding programs. Chapter 3 proposes funding allocations for 2020–2023 based upon the context setting in Chapter 2. The subsequent chapters are organized by specific investment areas. Chapter 4 focuses on zero-emission vehicles and the infrastructure necessary to support them. Chapter 5 addresses the types of opportunities for zero- and near-zero-emission fuel production and supply within California. Chapter 6 describes related opportunities to support the development and deployment of alternative fuels and advanced technology vehicles.
CHAPTER 2:
Context of the 2020–2023 Investment Plan

Implementation of the Clean Transportation Program
Since the inception of the program, the CEC has followed a consistent approach toward implementing the Clean Transportation Program. This year, for the first time, the investment plan proposes a multiyear funding approach. Each annual investment plan update allows the program to be responsive and can shift funds in response to shortfalls provided by utilities, the private sector, settlement agreements, and unforeseen state budgetary shortfalls. As summarized in Figure 1, the process begins with an annual investment plan that determines the coming fiscal-year funding allocation for categories of projects. CEC staff initially proposes funding allocations based on consideration of policy priorities such as air quality standards, environmental justice, and zero-emission vehicle deployment; evaluation of complementary funding or regulations; identification of the primary market and technological opportunities and barriers; and the greenhouse gas (GHG) emission reduction potential of alternative fuels and technologies (near-term and long-term). Before official adoption by the CEC at a public business meeting, the Investment Plan Update is proposed and revised across several drafts and incorporates stakeholder input from public Clean Transportation Program Advisory Committee meetings.

Each investment plan identifies funding allocations for specific segments of the supply chain for alternative fuel or vehicle technologies. The funding allocations typically do not determine the specific focus of future funding solicitations. Based on these funding allocations, the CEC subsequently issues a series of competitive solicitations, known as “grant funding opportunities” (GFOs). Each solicitation has a set of unique scoring criteria that reflect the selection preferences set by law.10 Priority is also given to projects that will benefit economically disadvantaged areas or areas with poor air quality. Some funding opportunities are first-come, first-served and establish minimum requirements that must be achieved to be eligible for funding.

CEC staff reviews, scores, and ranks the proposals for each solicitation using the evaluation criteria developed for the solicitation. Other state agencies and contractors may also provide technical assessments of the proposals. Based on the total scores of each application, the CEC releases a notice of proposed awards (NOPA) for each solicitation. The NOPA ranks each application by score and provides a proposed funding amount for each proposal in order of score until available funding within the solicitation has been recommended for award. For specialized agreements with certain partner agencies, the CEC may develop interagency agreements without using the solicitation process.

10 These preference criteria are listed in Health and Safety Code Section 44272 (c) and (d) and are applied when ranking funding proposals under Clean Transportation Program solicitations.
Each funded application becomes a funding agreement once it has been approved and signed by the CEC and the applicant. CEC staff oversees completion of these agreements according to the respective schedules, budgets, scopes of work, and terms and conditions.

Data collection and project review are also key parts of the Clean Transportation Program implementation. The CEC surveys funding recipients on the anticipated results of their projects, with questions relating to alternative fuel use, petroleum displacement, GHG emission reductions, air quality benefits, and in-state economic benefits. The CEC also continues to collect data from funding recipients after completion of a project, typically for six months. Information from these efforts provide the Clean Transportation Program a method to measure, verify, and evaluate program effectiveness.

Figure 1: Schematic of the Clean Transportation Program Implementation

Source: California Energy Commission

Description of Funding Mechanisms

To date, the CEC has used predominantly grants to distribute funding, with awardees selected through competitive solicitations. As alternative fuels and technologies have advanced in the marketplace, the CEC has also implemented alternative funding and financing mechanisms, when appropriate. Each of these mechanisms has respective strengths and weaknesses, and the CEC weighs these options when developing the funding implementation strategy for each allocation. The most prominent funding mechanisms used for the Clean Transportation Program by the CEC are described below.

- **Competitive Solicitation for Grants** — This type of solicitation represents the most common funding mechanism for the Clean Transportation Program to date. It is flexible, as project requirements and scoring criteria can be adapted for a broad variety of commercial and technological maturity levels. Competitive scoring allows increased
scrutiny on key issues for each project type. However, it also requires significant time and attention to review each application and oversee each subsequent funding agreement.

- **First-Come, First-Served** — This type of funding mechanism has been used by the Clean Transportation Program for vehicle and infrastructure incentives. Once eligibility requirements are established, the funding can be administered relatively quickly and can provide greater market certainty for a project type.

- **Production or Operation Incentives** — The CEC has used these types of incentives for in-state ethanol production and hydrogen fueling station operation and maintenance. The primary aim of these incentives is to provide greater market certainty, which allows further investment from nongovernment sources.

- **Loan Loss Reserve/Loan Guarantees** — These financing types are being tested by the Clean Transportation Program to potentially increase opportunities to leverage private financing and transition alternative fuel and vehicle investments from public to private sources.

- **Block Grants** — The CEC has used this funding mechanism to distribute Clean Transportation Program funding through other organizations such as local and regional governments, academic institutions, or nonprofit groups. Block grants allow the CEC to select another organization to administer Clean Transportation Program funding while following set procedures for project and applicant eligibility.

- **Direct Agreements** — The CEC may make a single source award for applied research. The CEC may also establish contracts for, or through, interagency agreements to obtain technical, scientific, or administrative services to support the Clean Transportation Program.

- **Federal Cost Sharing** — This mechanism will provide the needed match to support applicants of federal funding opportunities.

- **Alternative Financing Mechanisms** — Pursuing innovative financing methods could increase private capital investment in projects that will be cofunded by the CEC’s Clean Transportation Program. The CEC will explore pathways to redirect some projects to other financing options.

In general, the most important factor in considering the appropriate funding mechanism for an activity has been the technological and market maturity of the fuel or technology. Public subsidies, most commonly in the form of grants, are vital to advancing early stage technologies because private financiers are often unwilling to accept the high risks associated with these projects. As a technology or market matures, however, alternative financing mechanisms become a more effective method of support and can better leverage public funds with private financing.

Program Outreach and Engagement

In 2015, the CEC adopted a resolution committing the agency to ensuring that a diverse range of applicants can participate in Clean Transportation Program projects, including small businesses, women, minorities, the LGBT community, and disabled veterans. The CEC is
similarly committed to increasing their Clean Transportation Program participation rates. The CEC also seeks to increase the participation of disadvantaged and underrepresented communities from a diverse range of geographical regions. The CEC seeks to effectively engage equity communities disproportionately burdened by pollution and improve economic resiliency, including rural and tribal communities. This effort includes:

- Diversifying the Clean Transportation Program Advisory Committee, as accomplished in December 2019, to better reflect California communities and provide increased representation of program beneficiaries, environmental justice communities, rural communities, tribes, and others.
- Consulting with the Disadvantaged Communities Advisory Group for guidance and recommendations on program effectiveness as it relates to disadvantaged communities and other vulnerable and underrepresented groups.
- Consulting with the CEC’s Tribal Program and the Tribal Lead Commissioner for assistance with outreach and promotion of transportation-related funding opportunities to tribes.
- Consult with the Greenlining Guidebook *Making Equity Real in Climate Adaptation and Community Resilience Policies and Programs* when creating strategies to tackle climate change and the need to prioritize the most impacted and least resourced communities.
- Assessing whether electric vehicle charging station infrastructure is disproportionately distributed as a result of the SB 1000 analysis. If the infrastructure is found to be disproportionately distributed, the CEC will use Clean Transportation Program funding to install more new charging station infrastructure proportionately.

In addition to the above actions, the CEC has provided a scoring preference for projects located in or benefitting disadvantaged communities, as defined by the California Communities Environmental Health Screening Tool (CalEnviroScreen tool). These preferences have been used in most recent Clean Transportation Program solicitations, where appropriate, and nearly half of site-specific Clean Transportation Program funding is in or benefitting disadvantaged communities.

Promoting Quality Jobs

In June 2020, the California Workforce Development Board (CWDB) released a report in response to Assembly Bill 398 (Garcia, Chapter 135, Statutes of 2017) that addresses how to

support workers in declining industries such as fossil fuel industries. The CEC will review the report and evaluate recommendations with respect to opportunities to transition workers to clean transportation industries.

Summary of Program Funding to Date
As of May 2020, the CEC has provided nearly $900 million in Clean Transportation Program funding. Table 1 shows a detailed listing of Clean Transportation Program awards to date. In many cases, projects are in progress, with ongoing siting, installation, construction, and demonstrations. Major highlights of the Clean Transportation Program funding portfolio through May 1, 2020, include:

- **Alternative Fuel Production**
 - 71 projects to promote the production of sustainable, low-carbon alternative fuels within California, with a cumulative annual production capacity equivalent to more than 158 million gallons of diesel fuel. Most will use waste-based feedstocks, which have some of the lowest carbon intensity pathways recognized under the Low Carbon Fuel Standard.

- **Electric Vehicles and Chargers**
 - 11,276 installed or planned chargers for plug-in electric vehicles, including 4,293 at multi- and single-family homes, 383 fleets, and 531 workplaces; 4,920 public and shared private Level 2 and Level 1 chargers; and 898 public direct-current (DC) fast-charge and 251 Level 2 chargers along highway corridors and urban metropolitan areas.
 - $24.5 million to fund incentives for all-electric and plug-in hybrid electric vehicles via the California Air Resources Board Clean Vehicle Rebate Project (CVRP)

- **Hydrogen Fueling**
 - 62 new or upgraded publicly available hydrogen-fueling stations that will help serve an emerging population of fuel cell electric vehicles, plus the development of retail fueling standards to enable hydrogen sales on a per-kilogram basis. Of the 62 stations funded, one has been taken out of service. Once built, the 61 stations will represent two-thirds of the initial network of at least 100 hydrogen-fueling stations called for by AB 8.

- **Advanced Technology Freight and Fleet Vehicles**
 - 54 projects to demonstrate zero- and near-zero-emission advanced technologies and alternative fuels in a variety of medium- and heavy-duty vehicle applications. This number includes five projects at major California seaports to support Executive Order B-32-15 on sustainable freight, which will launch a variety of zero- and near-zero-emission freight vehicles.

• Natural Gas Vehicles and Infrastructure
 ○ More than 3,000 natural gas vehicles operating or soon to be operating in a variety of applications.
 ○ 70 natural gas fueling stations to support a growing population of natural gas vehicles. These include at least six stations that will incorporate low-carbon biomethane into some, if not all, of the dispensed fuel. Thirty of these stations serve California school districts and will help provide air quality benefits to children and local communities.

• In-State Manufacturing and Workforce Development
 ○ 24 manufacturing projects supporting in-state economic growth while reducing the supply-side barriers for alternative fuels and advanced technology vehicles, primarily in electric drive-related components and vehicles.
 ○ Workforce training for more than 17,000 trainees and 277 businesses, investments in preparing workers for the clean transportation economy that lead to sustainable wages and translate clean technology investments into sustained employment opportunities.

• Alternative Fuel Readiness Planning
 ○ Five centers for alternative fuels and advanced vehicle technologies throughout the state dedicated to expanding the role of alternative fuels and advanced vehicle technologies in California.
 ○ More than 50 alternative fuels readiness planning and implementation grants to help regions plan for alternative fuel vehicle deployment, new fueling infrastructure, and permit streamlining.
Table 1: Clean Transportation Program Awards as of May 1, 2020

<table>
<thead>
<tr>
<th>Funded Activity</th>
<th>Cumulative Awards to Date (in Millions)*</th>
<th># of Projects or Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative Fuel Production</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomethane Production</td>
<td>$73.96</td>
<td>28 Projects</td>
</tr>
<tr>
<td>Gasoline Substitutes Production</td>
<td>$31.94</td>
<td>15 Projects</td>
</tr>
<tr>
<td>Diesel Substitutes Production</td>
<td>$63.94</td>
<td>26 Projects</td>
</tr>
<tr>
<td>Renewable Hydrogen Production</td>
<td>$7.93</td>
<td>2 Projects</td>
</tr>
<tr>
<td>Alternative Fuel Infrastructure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electric Vehicle Charging Infrastructure**</td>
<td>$182.81</td>
<td>11,276 Level 2 Chargers/DC Fast Chargers</td>
</tr>
<tr>
<td>Hydrogen Fueling Infrastructure (Including Operations and Maintenance)</td>
<td>$135.8</td>
<td>62**** Public Fueling Stations, plus Fleets</td>
</tr>
<tr>
<td>E85 Fueling Infrastructure</td>
<td>$3.61</td>
<td>57 Fueling Stations</td>
</tr>
<tr>
<td>Upstream Biodiesel Infrastructure</td>
<td>$3.98</td>
<td>4 Infrastructure Sites</td>
</tr>
<tr>
<td>Natural Gas Fueling Infrastructure</td>
<td>$24.11</td>
<td>70 Fueling Stations</td>
</tr>
<tr>
<td>Alternative Fuel and Advanced Technology Vehicles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural Gas Vehicle Deployment***</td>
<td>$86.84</td>
<td>3,152+ Vehicles</td>
</tr>
<tr>
<td>Propane Vehicle Deployment</td>
<td>$5.98</td>
<td>514 Trucks</td>
</tr>
<tr>
<td>Hybrid and ZEV Deployment (Including CVRP, HVIP, and Low-Income Mobility Incentives)</td>
<td>$32.02</td>
<td>10,700 Cars and 150 Trucks</td>
</tr>
<tr>
<td>Advanced Technology Freight and Fleet Vehicles****</td>
<td>$125.67</td>
<td>54 Demonstrations</td>
</tr>
<tr>
<td>Related Needs and Opportunities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturing</td>
<td>$55.54</td>
<td>24 Manufacturing Projects</td>
</tr>
<tr>
<td>Workforce Training and Development</td>
<td>$33.33</td>
<td>17,440 Trainees</td>
</tr>
<tr>
<td>Fuel Standards and Equipment Certification</td>
<td>$3.90</td>
<td>1 Project</td>
</tr>
<tr>
<td>Sustainability Studies</td>
<td>$2.04</td>
<td>2 Projects</td>
</tr>
<tr>
<td>Regional Alternative Fuel Readiness</td>
<td>$11.11</td>
<td>51 Regional Plans</td>
</tr>
<tr>
<td>Centers for Alternative Fuels</td>
<td>$5.41</td>
<td>5 Centers</td>
</tr>
<tr>
<td>Technical Assistance and Program Evaluation</td>
<td>$9.22</td>
<td>n/a</td>
</tr>
<tr>
<td>Total</td>
<td>$898.92</td>
<td></td>
</tr>
</tbody>
</table>

Source: California Energy Commission. Totals may not match due to rounding. *Includes all agreements that have been approved at an Energy Commission business meeting or are expected for business meeting approval following a notice of proposed award. For canceled and completed projects, includes only funding received from the Clean Transportation Program that may be smaller than initial award. Due to rounding, “total” may not match sum of rows. **Includes $75.97 million for the California Electric Vehicle Infrastructure Project to provide EV incentives throughout California, which will fund a yet-to-be-determined number of EV chargers. ***Funding includes both completed and pending vehicle incentives, as well as funds reserved for future incentives. ****Includes projects from the former Medium- and Heavy-Duty
Vehicle Technology Demonstration category. *****Reduced from previous draft due to two cancelled stations. This number also includes one station that was funded but has closed.

Using funds from the Clean Transportation Program, the CEC has also leveraged the additional investment of nearly $880 million in private and other public funds. However, this amount represents only the minimal, contractually obligated amount of match funding provided toward Clean Transportation Program projects; the actual amount of investment prompted by the Clean Transportation Program funding exceeds this amount.

The geographic distribution of Clean Transportation Program funding is shown in Table 2, sorted by air district.

Table 2: Clean Transportation Program Awards by Air District as of May 1, 2020

<table>
<thead>
<tr>
<th>Air District</th>
<th>Cumulative Awards (in Millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Joaquin</td>
<td>$117</td>
</tr>
<tr>
<td>Bay Area</td>
<td>$105</td>
</tr>
<tr>
<td>Sacramento</td>
<td>$31</td>
</tr>
<tr>
<td>Yolo-Solano</td>
<td>$11</td>
</tr>
<tr>
<td>Monterey</td>
<td>$14</td>
</tr>
<tr>
<td>Other Northern California Districts</td>
<td>$22</td>
</tr>
<tr>
<td>South Coast</td>
<td>$253</td>
</tr>
<tr>
<td>San Diego</td>
<td>$42</td>
</tr>
<tr>
<td>Other Southern California Districts</td>
<td>$17</td>
</tr>
<tr>
<td>Statewide</td>
<td>$219</td>
</tr>
<tr>
<td>Location not yet determined</td>
<td>$67</td>
</tr>
<tr>
<td>Total</td>
<td>$898</td>
</tr>
</tbody>
</table>

Source: California Energy Commission. Totals may not match due to rounding.

Summary of Program Funding for Disadvantaged Communities

The CEC also seeks to increase participation of disadvantaged and underrepresented communities from a diverse range of regions in implementing the Clean Transportation Program. As depicted in Figure 2, roughly 32 percent of Clean Transportation Program project funding has gone into disadvantaged communities as defined by CalEnviroScreen. When excluding Clean Transportation Program projects that occur statewide or without an applicable site address, this funding share is closer to 50 percent. The CEC is seeking to commit 50 percent of net funding to low-income and disadvantaged communities for the remainder of the Clean Transportation program. The CEC will continue to work with the Clean Transportation Program Advisory Committee, DACAG, and stakeholders to define and track benefits to ensure equitable disbursement of funding.

However, the funding amounts of projects are not a complete metric for assessing the benefit of a project to disadvantaged communities. For instance, investments into large-scale fuel production or vehicle manufacturing plants might provide economic benefit to a region but may also risk increasing localized criteria emissions from fuel production or vehicle
manufacturing. Similarly, investing in zero-emission fueling infrastructure within a disadvantaged community might reduce local tailpipe emissions but might overlook the mobility needs of residents. Given these realities, the Disadvantaged Community Advisory Group recommended that the CEC revise the approach of the program toward defining, measuring, and tracking the program benefits toward disadvantaged communities. The CEC continues to advance and embed equity and inclusion within the Clean Transportation Program. These efforts include engaging partnerships with community-based organizations and community organizers in project scoping and grant applications. Efforts also include identifying new qualitative and quantitative metrics beyond project location to evaluate the effects of the program projects on local communities.

Figure 2: Clean Transportation Program Funding Toward Disadvantaged Communities (in Millions)

<table>
<thead>
<tr>
<th>Category</th>
<th>Amount (in Millions)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disadvantaged Communities</td>
<td>$286.4</td>
<td>32%</td>
</tr>
<tr>
<td>Low Income Communities</td>
<td>$254.7</td>
<td>28%</td>
</tr>
<tr>
<td>Low Income and Disadvantaged Communities</td>
<td>$5.4</td>
<td>1%</td>
</tr>
<tr>
<td>Neither Low Income nor Disadvantaged Communities</td>
<td>$32.4</td>
<td>4%</td>
</tr>
<tr>
<td>Statewide or Not Applicable</td>
<td></td>
<td>35%</td>
</tr>
</tbody>
</table>

Source: California Energy Commission. Totals may not match due to rounding. As of May 1, 2020.

Related Policies and Goals

The CEC’s implementation of the Clean Transportation Program reflects the effect of numerous policies and goals. Table 3 highlights examples of the significant policy goals and milestones developed to address these issues, reduce emissions, and reduce petroleum use in California.

CEC staff consulted with other state agencies and considered these policies when developing this Investment Plan Update.

<table>
<thead>
<tr>
<th>Policy Origin</th>
<th>Objectives</th>
<th>Goals and Milestones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly Bill 32</td>
<td>GHG Reduction</td>
<td>Reduce GHG emissions to 1990 levels by 2020</td>
</tr>
<tr>
<td>Senate Bill 32</td>
<td>GHG Reduction</td>
<td>Reduce GHG emissions to 40 percent below 1990 levels by 2030</td>
</tr>
<tr>
<td>Executive Order B-55-18</td>
<td>GHG Reduction</td>
<td>Achieve carbon neutrality by 2045</td>
</tr>
<tr>
<td>Low Carbon Fuel Standard</td>
<td>GHG Reduction</td>
<td>Reduce carbon intensity of transportation fuels in California by 20 percent by 2030. Increase zero-emission vehicle infrastructure</td>
</tr>
<tr>
<td>Clean Air Act; California State Implementation Plans</td>
<td>Air Quality</td>
<td>80 percent reduction in NOx by 2031</td>
</tr>
<tr>
<td>Senate Bill 1275; Executive Order B-16-2012; Executive Order B-48-18; Executive Order N-79-20</td>
<td>Increase Zero-Emission Vehicles</td>
<td>Infrastructure to accommodate 1 million electric vehicles by 2020. 1 million zero-emission and near-zero-emission vehicles by 2023. 1.5 million electric vehicles by 2025. 250,000 electric vehicle chargers, including 10,000 DC fast chargers, and 200 hydrogen fueling stations by 2025. 5 million zero-emission vehicles by 2030. 100% of new passenger cars and trucks will be ZEVs by 2035. 100% of operating drayage trucks, off-road vehicles, and equipment will be ZEVs by 2035. 100% of operating medium- and heavy-duty trucks and buses will be ZEVs by 2045.</td>
</tr>
<tr>
<td>Zero-Emission Vehicle Regulation</td>
<td>Increase Zero-Emission Vehicles</td>
<td>Increase the deployment of plug-in hybrid, battery, and fuel cell electric vehicles.</td>
</tr>
<tr>
<td>Innovative Clean Transit Regulation</td>
<td>Increase Zero-Emission Vehicles</td>
<td>100 percent of all new transit buses will be zero-emission by 2029; all operating buses will be zero-emission by 2040.</td>
</tr>
<tr>
<td>Advanced Clean Trucks Regulation</td>
<td>Increase Zero-Emission Vehicles</td>
<td>Requires truck manufacturers to transition from diesel trucks and vans to zero-emission trucks beginning in 2024. By 2045, every new truck sold in California will be zero-emission.</td>
</tr>
<tr>
<td>Executive Order B-32-15 on Sustainable Freight</td>
<td>Air Quality GHG Reduction Petroleum Reduction</td>
<td>Improve freight efficiency and transition freight movement to zero-emission technologies.</td>
</tr>
</tbody>
</table>

Source: California Energy Commission. *Senate Bill 1275 (De León, Chapter 530, Statutes of 2014) subsequently established a target of 1 million zero-emission and near-zero-emission vehicles in California by 2023, as well as increased access to such vehicles for disadvantaged, low-income, and moderate-income communities and consumers.
Federal Law: Clean Air Act, State Implementation Plans, and Mobile Source Strategy

The federal Clean Air Act of 1970 (42 U.S.C. 7401) authorizes the U.S. Environmental Protection Agency (U.S. EPA) to establish National Ambient Air Quality Standards (NAAQS) for criteria air pollutants that are harmful to public health. To achieve these standards, the Clean Air Act directs states to develop State Implementation Plans (SIPs) that describe how an area will attain the NAAQS.

The state SIP strategy is one of several planning elements based on the 2016 Mobile Source Strategy, which outlines an integrated strategy to meet air quality standards, achieve state greenhouse gas emission targets, minimize exposure to toxic air contaminants, reduce petroleum use by up to 50 percent by 2030, and increase energy efficiency and renewable electricity generation. Many actions recommended in the strategy, such as increasing the use of ZEVs and renewably sourced alternative fuels, complement the activities of the Clean Transportation Program.

CARB reports that 12 million Californians live in communities that exceed the ozone and particulate matter standards set by the U.S. Environmental Protection Agency (EPA), and that the South Coast and San Joaquin Valley are the only two areas in the nation in extreme nonattainment for the federal ozone standard.16 The actions described in the state SIP strategy intend to resolve these problems and are expected to result in up to an 80 percent reduction in smog-forming emissions and a 45 percent reduction in diesel particulate emissions by 2031.17 Since exposure to elevated levels of air pollutants causes significant health and economic impacts in the state, reducing emissions of criteria and toxic air pollutants will have corresponding benefits for Californians.

Clean Transportation Program investments frequently provide significant air quality benefits by replacing conventional gasoline- and diesel-fueled vehicles with near-zero- and ZEVs, as well as providing the fueling infrastructure required for these vehicles to operate. These Clean Transportation Program-funded vehicle and infrastructure projects complement and assist other California efforts in achieving the goals of the federal Clean Air Act.

State Laws

Assembly Bill 32, Senate Bill 32, and the Greenhouse Gas Reduction Fund

Assembly Bill 32 (Núñez, Chapter 488, Statutes of 2006), also known as the Global Warming Solutions Act of 2006, required CARB to adopt a statewide GHG emission limit for 2020 equivalent to the statewide GHG emission levels in 1990. Senate Bill 32 (Pavley, Chapter 249, Statutes of 2016) amended the Global Warming Solutions Act of 2006 to extend the emission

targets of AB 32. The amendment set a statewide GHG emission limit for 2030 equivalent to 40 percent below emission levels in 1990. AB 32 and SB 32 directed CARB to develop a climate change scoping plan to describe the approach that California will take to reduce GHG emissions and achieve the state’s climate change goals. *California’s 2017 Climate Change Scoping Plan*, published by CARB in November 2017, helped inform and guide the development of this Investment Plan Update.18

As part of its regulation, CARB developed a Cap-and-Trade Program that set a limit on the amount of permissible GHG emissions from entities in regulated sectors. The Cap-and-Trade Program includes an auction system where tradable permits, or allowances, can be purchased from the state at quarterly auctions. A portion of the proceeds from these auctions is deposited into the Greenhouse Gas Reduction Fund (GGRF). The Governor and Legislature enact GGRF appropriations for state agencies to implement a variety of programs that reduce greenhouse gases. Assembly Bill 398 (Garcia, Chapter 135, Statutes of 2017) extended California’s Cap-and-Trade Program through 2030.

Senate Bill 1275

Senate Bill 1275 (De León, Chapter 530, Statutes of 2014) established the Charge Ahead California Initiative, administered by CARB in consultation with the CEC and related agencies. This statute establishes a goal of placing 1 million zero-emission and near-zero-emission vehicles in service by January 1, 2023, as well as increasing access to these vehicles for disadvantaged, low-income, and moderate-income communities and consumers. In implementing the initiative, CARB must include a three-year funding forecast for near-zero- and zero-emission vehicles. CARB released the first of these forecasts, the *Fiscal Year 2016-17 Funding Plan for Low Carbon Transportation and Fuels Investments and the Air Quality Improvement Program*,19 in 2016. CARB also adopted revisions to the Clean Vehicle Rebate Project to phase down rebate levels based on cumulative sales, limit eligibility based on income, and consider other methods of incentives.

Senate Bill 350 and the Disadvantaged Communities Advisory Group

SB 350, the Clean Energy and Pollution Reduction Act of 2015, requires that the CPUC and the CEC create a Disadvantaged Communities Advisory Group (DACAG) to advise on programs proposed to achieve clean energy and pollution reduction. In early 2018, the CPUC and the CEC jointly approved members of a new advisory group consisting of representatives of disadvantaged communities. As defined in Senate Bill 350, disadvantaged communities are the most burdened census tracts in California. Relative burden is determined by review of data on 20 pollution/health and socioeconomic factors. The DACAG will advise on programs related to renewable energy, energy efficiency, transportation electrification, distributed generation, and

clean energy research and development and determine whether those proposed programs will be effective and useful in disadvantaged communities.

At a June 21, 2019, meeting of the DACAG, Clean Transportation Program staff solicited feedback on the March 27, 2019, draft of the 2019-2020 Investment Plan Update from the DACAG members. In response, the DACAG provided comments on the 2019-2020 Investment Plan Update on June 28, 2019. These comments included recommendations on how the 2019-2020 Investment Plan Update can effectively benefit communities disproportionately burdened by pollution and socioeconomic challenges. Recommendations from the DACAG included:

- Moving 100 percent of program funding toward zero-emission fuels.
- Funding projects exclusively in and benefiting disadvantaged communities.
- Expanding the definition of disadvantaged communities beyond the CalEnviroScreen definition.
- Increasing transparency and tracking expanded metrics to measure how projects “benefit” disadvantaged communities.
- Prioritizing and investing in community outreach and engagement.
- Expanding support for workforce development.
- Expanding the Clean Transportation Program Advisory Committee to increase representation of program beneficiaries, environmental justice communities, rural communities, tribes, and others.

Executive Orders (EO)

EO B-55-18: Carbon Neutrality

EO B-55-18 established a goal to achieve carbon neutrality as soon as possible and no later than 2045. The executive order also requires the state to achieve and maintain net negative greenhouse gas emissions thereafter.

EO B-16-12, B-48-18, and N-79-20: Zero-Emission Vehicles

EO B-16-12 set a target of 1.5 million zero-emission vehicles on the road by 2025 and tasked various state agencies with specific actions needed to support this goal. Subsequently, in January 2018, EO B-48-18 set an expanded target of 5 million zero-emission vehicles on the road by 2030, as well as a network of 200 hydrogen fueling stations and 250,000 electric vehicles.

vehicle charging stations, including 10,000 DC fast chargers, installed or constructed by 2025. These executive orders have guided the electric vehicle charging and hydrogen fueling infrastructure investments of the Clean Transportation Program to date.

Executive Order N-79-20, signed by Governor Gavin Newsom on September 23, 2020, provides even more ambitious goals and requirements. These include 100 percent of in-state sales of passenger cars and trucks being ZEVs by 2035; 100 percent of operating medium- and heavy-duty vehicles being ZEVs by 2045; and 100 percent of drayage trucks and off-road vehicles and equipment being ZEVs by 2035. The order also tasks CEC with providing an updated assessment of the infrastructure needed to support this level of ZEV adoption.

The Governor’s Interagency Working Group on Zero-Emission Vehicles (ZEVs) developed the ZEV Action Plan, issued in 2013 and subsequently updated in 2016 and 2018, to identify actions that support the state’s ZEV goals. Some actions in the ZEV Action Plan that are particularly relevant to the Clean Transportation Program include ensuring ZEVs are accessible to a broad range of Californians and making ZEV technologies commercially viable in the medium- and heavy-duty and freight sectors. Many recommendations in the ZEV Action Plan have been captured in the Clean Transportation Program since the inception of the program and continue to be program priorities.

EO B-32-15: Sustainable Freight

Issued in 2015, EO B-32-15 ordered the development of an integrated action plan to improve freight efficiency, transition to zero-emission technologies, and increase the competitiveness of California’s freight system. The resulting California Sustainable Freight Action Plan, released in 2016, identifies state policies, programs, and investments to achieve these targets. The California State Transportation, California Environmental Protection, and California Natural Resources Agencies, including the CEC, CARB, the California Department of Transportation, and the Governor’s Office of Business and Economic Development, in partnership with the public and stakeholders, developed the plan as a joint effort. In addition, the executive order directs the CEC and other state agencies to initiate work on corridor-level freight pilot projects within the state’s primary trade corridors that integrate advanced technologies, alternative fuels, freight and fuel infrastructure, and local economic development opportunities.

Regulations by the California Air Resources Board

Low Carbon Fuel Standard

CARB adopted the Low Carbon Fuel Standard (LCFS) regulation in April 2009 with a goal of reducing the overall carbon intensity of fuels within the transportation sector by 20 percent by

2030. The LCFS sets a carbon intensity standard (or benchmark) that declines each year. Providers of low-carbon fuels earn credits under the LCFS by producing fuels with a carbon intensity below the annual carbon intensity standard. These credits can be used or sold to offset deficits caused by high-carbon fuels that exceed the annual carbon intensity standard. Through this mechanism, the LCFS allows the market to determine what mix of fuels will be used to achieve the program carbon intensity reduction goals.

LCFS credits and deficits are denominated in metric tons of CO$_2$e. Credit prices reached all-time highs in 2019 and 2020, as shown in Figure 3, ranging from a low of $22 in May 2015 to a high of $206 in February 2020. Prices remain near $200 through May 2020.

Figure 3: Average Monthly Low Carbon Fuel Standard Credit Prices

The LCFS has significance for the Clean Transportation Program in several ways. Most important, the CEC frequently relies on LCFS-derived carbon intensity numbers in numerous phases of Clean Transportation Program implementation. This reliance is due to the LCFS program life-cycle analysis of GHG emissions, the specificity of the analysis to California, and the consistent method of calculation across fuel pathways. The life-cycle GHG emission numbers are used in assessing the opportunities for GHG reduction from different alternative

fueled within the Investment Plan Update, estimating the GHG reduction potential from applicants during solicitations, and analyzing Clean Transportation Program benefits.

The LCFS also provides a direct financial incentive per gallon, kilowatt-hour, therm, or kilogram to the producers and distributors of low-carbon alternative fuels. At the 2019 average price of about $192 per credit, the LCFS value of an alternative fuel offering a 50 percent GHG emission reduction compared to gasoline would be about $0.96 per gasoline gallon equivalent (GGE). This value complements the investments of the Clean Transportation Program by creating market incentives for near-term GHG reductions, allowing the Clean Transportation Program to focus more resources on longer-term market transformation goals.

In September 2018, CARB also adopted changes to the LCFS regulations that will benefit the launch of ZEVs and ZEV infrastructure. The amendments allow publicly accessible hydrogen fueling stations to earn hydrogen fueling infrastructure credits based on the capacity of the station. The amendments also provide credits for DC fast-charging equipment based on the power rating of the equipment. On the vehicles side, the amendments also restructure the existing approach for providing PEV rebates through utilities to create a statewide rebate that would be offered at the dealership, funded through LCFS credit proceeds.

Zero-Emission-Vehicle Regulation

CARB’s Advanced Clean Cars rulemaking consists of a suite of regulations for reducing emissions from the state’s light-duty fleet. One element of the Advanced Clean Cars program is the ZEV Regulation, which requires auto manufacturers to offer for sale specific numbers of the cleanest cars available, including full battery-electric vehicles, hydrogen fuel cell electric vehicles, and plug-in hybrid electric vehicles. CARB is working on the update to the ZEV Regulation for the Advanced Clean Cars 2 program, which will look at regulations beyond 2025 and help ensure zero- and near-zero-emission technology options continue to grow in the market.

Innovative Clean Transit Regulation

CARB heavy-duty vehicle legacy programs have been focused on reducing vehicle tailpipe emissions. New heavy-duty zero-emission vehicle programs complement these programs and focus on a long-term goal of full transition of the heavy-duty transportation sector to zero-emission technologies. They are part of California’s holistic plan to address challenging mandates and needs for public health protection and meet federal air quality standards and

28 LCFS credit value for a liquid gasoline substitute with CI score of 50 gCOe/MJ in 2019, with Energy Economy Ratio (EER) of 1, derived from the CARB LCFS Credit Price Calculator Version 1.2, available at https://www.arb.ca.gov/fuels/lcfs/dashboard/creditpricecalculator.xlsx.
climate protection goals. The Innovative Clean Transit Regulation\(^\text{29}\) is the first to support these programs. It was adopted in December 2018 to replace the Fleet Rule for Transit Agencies. The regulation requires all public transit agencies to transition gradually to a 100-percent zero-emission bus fleet and encourages them to provide innovative first- and last-mile connectivity and improved mobility for transit riders. This regulation also provides various exemptions and compliance options to provide safeguards and flexibility for transit agencies through this transition. The Zero-Emission Airport Shuttle Regulation will promote the development and use of zero-emission technologies in airport shuttles that operate on fixed routes at 13 California airports. This regulation requires airport shuttle operators to transition their vehicles to zero-emission technologies beginning in 2027, with a complete transition by the end of 2035. The regulation provides compliance extensions and other flexibilities to ensure service continuity as operators transition to zero-emission shuttles.

Advanced Clean Trucks Regulation

Within California, trucks are the largest source of air pollution among all vehicles, responsible for 70 percent of smog-causing pollution and 80 percent of carcinogenic diesel soot, despite numbering only 2 million among the 30 million registered vehicles in the state. To address this sector, on June 25, 2020, CARB adopted a first-in-the-world rule requiring truck manufacturers to transition trucks and vans toward zero-emission technologies beginning in 2024. By 2045, every new truck sold in California will be zero-emission.\(^\text{30}\)

As the Advanced Clean Trucks Regulations are implemented, CARB will continue to serve as the lead agency on ZEV deployment, while the CEC will continue to be the lead agency on ZEV fueling infrastructure and vehicle-grid integration. Coordination between the agencies will be instrumental in ensuring the strategic use of limited state funds.

Complementary Funding Programs

California Energy Commission’s School Bus Replacement Program

In the November 2012 California general election, voters approved Proposition 39 to improve energy efficiency and expand clean energy generation in schools and community colleges. This proposition provided up to $550 million annually for five fiscal years for these purposes, beginning with FY 2013–2014. Senate Bill 110 (Committee on Budget and Fiscal Review, Chapter 55, Statutes of 2017) allocated the available remaining funds from the implementation of Proposition 39 to improve energy efficiency at California schools. The energy efficiency measures in SB 110 include one-time funding of $75 million for the retrofit or replacement of school buses.

\(^\text{29}\) California Air Resources Board. [Innovative Clean Transit](https://ww2.arb.ca.gov/our-work/programs/innovative-clean-transit/about).

\(^\text{30}\) California Air Resources Board. [California Takes Bold Step to Reduce Truck Pollution](https://ww2.arb.ca.gov/news/california-takes-bold-step-reduce-truck-pollution).
The CEC administers this funding, and priority is given to school districts operating the oldest and most polluting diesel school buses, as well as to school buses operating in disadvantaged and low-income communities. The $75 million in funding provided by SB 110 will be used exclusively for the purchase of battery-electric school buses, and this amount will be supplemented with up to $13 million in Clean Transportation Program funds to provide the necessary charging infrastructure to operate the buses. For circumstances in which battery-electric propulsion is not feasible, nearly $4 million in Clean Transportation Program natural gas vehicle funding and $2.1 million in Clean Transportation Program natural gas fueling infrastructure funds from previous fiscal years are being made available for natural gas-powered school buses and necessary fueling infrastructure.

California Air Resources Board Funding Programs

In addition to the CEC’s Clean Transportation Program, AB 118 also created the Air Quality Improvement Program (AQIP), which the CARB administers. The CEC and CARB have complementary responsibilities, with CARB serving as the lead agency on ZEV deployment and the CEC as the lead agency on ZEV fueling infrastructure and vehicle-grid integration. Coordination between agencies continues to be of paramount importance to ensure strategic use of limited state funds. Since 2009, the AQIP has provided deployment incentives for light-duty electric vehicles through the CVRP, deployment incentives for alternative medium- and heavy-duty vehicles through the Hybrid and Zero-Emission Truck and Bus Voucher Incentive Project (HVIP), as well as funding for other advanced emission reduction technologies for vehicles. Before the availability of appropriations from the GGRF, the Clean Transportation Program provided $49.1 million in funding\(^{31}\) to backfill CVRP needs, as well as $4 million for HVIP incentives.

CARB also distributes GGRF funding through its Low Carbon Transportation Investments (LCTI) program. Projects that were originally funded by the AQIP, such as the CVRP, are now funded by the LCTI program because demand has exceeded available funding from the AQIP. The LCTI provides incentives for light-duty vehicle and transportation equity projects, as well as heavy-duty vehicle and off-road equipment projects.

In October 2019, CARB approved the *Proposed FY 2019-2020 Funding Plan for Clean Transportation Incentives* that includes funding totaling $533 million for LCTI and AQIP projects.\(^ {32}\) Table 4 summarizes the funding allocations. The plan includes $182 million for clean trucks, buses, and off-road freight equipment, including $142 million for the HVIP and $40 million for advanced technology demonstration and pilot projects in the heavy-duty sector. The plan also includes $48 million in Air Quality Improvement Program funding to clean up heavy-duty truck emissions. More than 90 percent of funding for the plan, or $485 million, comes from California Climate Investments, a statewide program that puts billions of capital and...

\(^{31}\) Including budgetary transfers.

trade dollars to work reducing greenhouse gas emissions, strengthening the economy, and improving public health and the environment — particularly in disadvantaged communities.

Senate Bill 1403 (Lara, Chapter 370, Statutes of 2018) requires CARB to develop a three-year investment strategy for zero-emission and near-zero-emission heavy-duty vehicles and equipment. This bill also requires CARB to provide information on milestones achieved by the state’s school bus incentive programs and the projected need for funding. The CEC will closely follow the progress by CARB on these subjects.

| Table 4: FY 2019-2020 CARB Clean Transportation Incentives Allocations |
|-----------------------------|-----------------------------|-----------------------------|
| Project Category | Vehicle Purchase Incentives and Clean Mobility Projects (Allocation in Millions) | Heavy-Duty and Off-Road Equipment Investments (Allocation in Millions) | AQIP-Funded Heavy-Duty Investments (Allocation in Millions) |
| Clean Vehicle Rebate Project| $238 | | |
| Clean Transportation Equity Projects | $65 | | |
| Clean Truck and Bus Vouchers (HVIP) | $142 | | |
| Heavy-Duty Advanced Technology Demonstration and Pilot Projects | $40 | | |
| Truck Loan Assistance Program | | | $48 |
| **Total** | **$303** | **$182** | **$48** |

Source: California Air Resources Board

Community Air Protection Program

In 2017, Assembly Bill 617 (C. Garcia, Chapter 136, Statutes of 2017) was signed into law establishing the Community Air Protection Program. The law requires new community-focused and community-driven action to reduce air pollution and improve public health in communities that experience disproportionate burdens from exposure to air pollutants. In September 2018, CARB adopted a Community Air Protection Blueprint, describing how it will work with residents, air districts, and other partners to identify local air quality problems, develop solutions, and track progress.

Between Fiscal Years 2017–2018 and 2018–2019, the state budget has allocated $495 million of GGRF funding for early actions under AB 617 to be administered by air districts in partnership with local communities. This funding emphasizes cleaner vehicles, equipment, and stationary sources of emissions, with a priority on zero-emission projects. In April 2018, CARB approved guidelines for the 2017–2018 Community Air Protection funds and updated the guidelines in May 2019 to address additional direction from the Legislature for the 2018–2019 funds. In addition, the Legislature has provided $15 million in community assistance grants to

support community participation in the AB 617 process, and CARB has already awarded the first $10 million to 28 groups.

Many project categories listed above have importance to the goals and strategies of the Clean Transportation Program and are discussed in subsequent chapters of this Investment Plan Update.

Investor-Owned Utility Investments in Electric Vehicle Charging Infrastructure

In 2014, the California Public Utilities Commission (CPUC) adopted Decision 14-12-079 to allow consideration of utility ownership of electric vehicle charging stations and infrastructure on a case-specific basis. Subsequently, the CPUC approved infrastructure pilot programs for Pacific Gas and Electric Company (PG&E), San Diego Gas & Electric Company (SDG&E), and Southern California Edison (SCE) to install 7,500, 3,500, and 1,500 charging stations, respectively. The utility programs for light-duty infrastructure are described further in the Electric Vehicle Charging Infrastructure section in Chapter 4 of this report.

The CPUC is also working to implement provisions of SB 350 by directing the six investor-owned electric utilities under the CPUC’s jurisdiction to propose portfolios of transportation electrification programs and investments that can be implemented over the next five years. The three major investor-owned utilities submitted more than $1 billion in applications to the CPUC for electric vehicle charging infrastructure projects, with $780 million of these projects approved in January and May 2018. These projects include roughly $592 million for medium- and heavy-duty vehicle infrastructure and $171 million for light-duty vehicle infrastructure. The projects for medium- and heavy-duty electric vehicle infrastructure are discussed in the Medium- and Heavy-Duty Zero-Emission Vehicles and Infrastructure section in Chapter 4 of this report.

Settlement Agreements

Volkswagen Diesel Emissions Settlement

Beginning with its 2009 model year, Volkswagen sold 2.0- and 3.0-liter diesel vehicles in the United States, including in California, violating federal and state law by using illegal devices to defeat emission tests. To remedy the harm caused by these defeat devices, California entered into a series of settlement agreements with Volkswagen. From these agreements, California will receive about $423 million from a national Environmental Mitigation Trust for projects to reduce fully the lifetime excess oxides of nitrogen (NO\textsubscript{X}) emissions caused by the illegal devices. In May 2018, CARB approved a Beneficiary Mitigation Plan outlining how these funds will be spent. In addition, Volkswagen will invest $800 million in ZEV-related projects in the

state and must offer and sell additional battery-electric vehicle models in California between 2019 and 2025.

Volkswagen’s ZEV investments will occur over a 10-year period, and eligible projects include fueling infrastructure for plug-in electric vehicles and hydrogen fuel cell electric vehicles, consumer awareness campaigns, and car-sharing programs. Volkswagen will submit four ZEV investment plans, each of which will cover 30 months and total $200 million, to CARB for approval. The first of these plans was approved in July 2017. In December 2018, CARB approved Electrify America’s investment plan for the second 30-month cycle, which began July 1, 2019. The ZEV infrastructure funding will complement Clean Transportation Program investments in electric vehicle charging infrastructure. In addition, CARB allocated $10 million from the Environmental Mitigation Trust for light-duty zero-emission vehicle infrastructure projects. The CEC will monitor the development of the Volkswagen settlement investment plans to ensure that investments are coordinated.\(^\text{36}\)

Furthermore, California’s Beneficiary Mitigation Plan for the Volkswagen Environmental Mitigation Trust will provide $130 million for zero-emission school, shuttle, and transit buses, administered on a first-come, first-served basis throughout the state. About $65 million was released for the first installment, and the second installment will be out in two years. The plan also includes $90 million for zero-emission Class 8\(^\text{37}\) freight and port drayage trucks (the first $27 million installment is expected to be released later this year), $60 million for combustion freight and marine projects (the first $30 million installment was released in December 2019), and $70 million for zero-emission freight and marine projects\(^\text{38}\) (the solicitation for the first $35 million installment is active).

CPUC/NRG Settlement Agreement

In 2012, the Federal Energy Regulatory Commission approved an agreement between NRG Energy and the CPUC to settle outstanding legal issues regarding the 2001 California energy crisis. The settlement required NRG to invest $102.5 million (original settlement amount) to install electric vehicle charging infrastructure across the state. The NRG settlement included project designs with four key components: public fast-charging stations, electrical upgrades for electric vehicle charging stations at existing buildings, research and development on advanced charging technologies, and programs to increase electric vehicle access for underserved communities. The CPUC and NRG have agreed to amendments that have extended and increased the public benefits related to the settlement agreement.

\(^{36}\) Information on CARB activities associated with the [VW Environmental Mitigation Trust](https://www.arb.ca.gov/msprog/vw_info/vw-mititrust/vw-mititrust.htm) is available at https://www.arb.ca.gov/msprog/vw_info/vw-mititrust/vw-mititrust.htm.

\(^{37}\) Class 8 trucks include all trucks with weight limits more than 33,000 pounds.

\(^{38}\) California Air Resources Board. [California’s Beneficiary Mitigation Plan for the Volkswagen Environmental Mitigation Trust](https://www2.arb.ca.gov/resources/documents/californias-beneficiary-mitigation-plan). Available at https://ww2.arb.ca.gov/resources/documents/californias-beneficiary-mitigation-plan.
CHAPTER 3: Funding Allocations for 2020–2023

The funding allocations for FY 2020-2021, and the projected funding allocations for subsequent fiscal years, are outlined in Table 5. If a different amount of funding is available, the allocations in this document may be amended after final adoption.

The CEC will seek to provide 50 percent of Clean Transportation Program funds from this investment plan toward projects that benefit low-income and disadvantaged communities. The CEC will seek to measure these benefits in ways that go beyond measuring funding amounts within a given location, and will continue to investigate new metrics to ensure these investments enhance equity within the state.

For FY 2020–2021, $146.2 million (including $51 million in one-time legislative expenditure) may be available for the purposes described in this Investment Plan Update. The continued emphasis on zero-emission vehicles and infrastructure for FY 2020–2021 reflects the state’s goals for zero-emission vehicles and fuels, both battery-electric and hydrogen fuel cell electric, as well as near- and long-term carbon reduction, and air quality, with a focus on benefits for disadvantaged communities.

As shown in Table 5, the CEC directs significant investments in light-duty electric vehicle charging infrastructure for Fiscal Years 2020–2021 and 2021–2022 to narrow the charging gap as described in earlier analysis, with further depth later in this report. Furthermore, it is vital to front-load funding to ensure the public adoption of electric vehicles is not stymied by lack of charging infrastructure.

In Fiscal Years 2021–2022 and 2022–2023, the CEC will concentrate investments toward medium- and heavy-duty zero-emission vehicles and infrastructure for both battery-electric and hydrogen fuel cell electric technologies. By this time, CEC staff will benefit from the inaugural charging infrastructure assessment required in Assembly Bill 2127 (Ting, Chapter 365, Statutes of 2018). Current charging assessments have focused only on light-duty vehicles; however, estimating the charging needs of medium- and heavy-duty vehicles will become a key area for additional analysis. Similarly, the AB 8 report annually assesses anticipated hydrogen fueling gaps for light-duty vehicles, and the CEC will consider future work to assess medium- and heavy-duty hydrogen infrastructure needs.

As the state’s lead agency for ZEV infrastructure deployment, the CEC is making strategic investments in innovative solutions to fill anticipated gaps in charging infrastructure and avoid a slowdown of light-duty electric vehicle adoption. The CEC is also proposing significant investments in medium- and heavy-duty zero-emission vehicles and infrastructure to meet this growing need, as well as demonstrate the state’s commitment to improving air quality.

The following chapters describe each funded activity in more depth.
Table 5: Investment Plan Allocations for FY 2020-2021 and Subsequent Fiscal Years (in Millions)

<table>
<thead>
<tr>
<th>Category</th>
<th>Funded Activity</th>
<th>2020-2021</th>
<th>2021-2022</th>
<th>2022-2023</th>
<th>2023</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero-Emission Vehicles and Infrastructure</td>
<td>Light-Duty Electric Vehicle Charging Infrastructure and eMobility</td>
<td>$41.7</td>
<td>$30.2</td>
<td>$10.0</td>
<td>-</td>
<td>$81.9</td>
</tr>
<tr>
<td>Zero-Emission Vehicles and Infrastructure</td>
<td>Light-Duty Electric Vehicle Charging Infrastructure and eMobility</td>
<td>$51.0*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>$51.0</td>
</tr>
<tr>
<td>Zero-Emission Vehicles and Infrastructure</td>
<td>Medium- and Heavy-Duty Zero-Emission Vehicles and Infrastructure</td>
<td>$20.0</td>
<td>$30.0</td>
<td>$52.2</td>
<td>$27.6</td>
<td>$129.8</td>
</tr>
<tr>
<td>Zero-Emission Vehicles and Infrastructure</td>
<td>Public Hydrogen Fueling Infrastructure</td>
<td>$20.0</td>
<td>$20.0</td>
<td>$20.0</td>
<td>$10.0**</td>
<td>$70.0</td>
</tr>
<tr>
<td>Alternative Fuel Production and Supply</td>
<td>Zero- and Near Zero-Carbon Fuel Production and Supply</td>
<td>$0</td>
<td>$10.0</td>
<td>$10.0</td>
<td>$5.0</td>
<td>$25.0</td>
</tr>
<tr>
<td>Related Needs and Opportunities</td>
<td>Manufacturing</td>
<td>$2.0</td>
<td>$3.0</td>
<td>$1.5</td>
<td>$2.5</td>
<td>$9.0</td>
</tr>
<tr>
<td>Related Needs and Opportunities</td>
<td>Workforce Training and Development</td>
<td>$1.5</td>
<td>$2.0</td>
<td>$1.5</td>
<td>$2.5</td>
<td>$7.5</td>
</tr>
<tr>
<td>Related Needs and Opportunities</td>
<td>Recovery and Reinvestment</td>
<td>$10.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>$10.0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>$146.2</td>
<td>$95.2</td>
<td>$95.2</td>
<td>$47.6</td>
<td>$384.2</td>
</tr>
</tbody>
</table>

Source: California Energy Commission. *FY 2020-2021 includes a one-time legislative expenditure authority from the Alternative and Renewable Fuel and Vehicle Technology Fund for $51 million to increase and accelerate electric vehicle charging infrastructure. **In the final half year of funding, the CEC is planning to split funding for hydrogen infrastructure between light-duty and medium- and heavy-duty hydrogen infrastructure. The CEC will re-evaluate whether the proposed $5 million allocation for light-duty public fueling infrastructure in the final year of the program is sufficient to meet the needs of the FCEV market, and will adjust as needed in annual revisions to the plan.
CHAPTER 4:
Zero-Emission Vehicles and Infrastructure

The mass adoption of zero-emission vehicles (ZEVs), including plug-in electric vehicles (PEVs) and fuel cell electric vehicles (FCEVs), is critical to California’s decarbonization goals, air quality standards goals, and petroleum reduction goals. This mass adoption has been recognized in several state laws and policies, including: SB 1275, which established a target of 1 million ZEVs and near-ZEVs in California by 2023; Executive Order B-16-12, which calls for 1.5 million ZEVs on California roads by 2025; Executive Order B-48-18, which set a goal of achieving 5 million ZEVs by 2030; and Executive Order N-79-20, which set a goal of 100% ZEV sales among passenger cars and trucks by 2035, plus full adoption of zero emission technologies by medium- and heavy-duty trucks operating in the state by 2045 (or 2035, in the case of drayage trucks and off-road vehicles).

However, the expansion of ZEVs will depend on the availability of fueling infrastructure that meets consumers’ needs and expectations. In recognizing this dependence, Executive Order B-48-18 also set goals for installing 250,000 electric vehicle chargers (including 10,000 DC fast chargers) and 200 hydrogen fueling stations by 2025.

Relative to most previous Investment Plan Updates, the FY 2020–2021 funding allocations for ZEV infrastructure represent a drastic increase in funding, specifically for electric vehicle charging infrastructure. The increase includes a one-time $51 million legislative appropriation from the Alternative and Renewable Fuel and Vehicle Technology Fund to increase and accelerate the installation of electric vehicle charging infrastructure, which will support increased ZEV adoption and deployment in California. The increase reflects a near-term need to achieve the number of charging points needed to support the state’s goals of 1.5 million ZEVs by 2025, as well as a long-term commitment to decarbonizing the transportation sector.

Light-Duty Electric Vehicle Charging Infrastructure

Cumulative sales of PEVs, which include battery-electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), are growing rapidly in California, with more than 600,000 on the road at the end of 2019.39 These sales account for about half of the vehicles sold in the United States. In the first quarter of 2020, the most purchased model vehicle in California was the Tesla Model 3, which indicates the rapid pace of electric vehicle adoption by consumers.40 Furthermore, the CEC forecasts that between 1.5 million and 2.4 million ZEVs will be in the

39 Based on CEC staff analysis of data from the California Department of Motor Vehicles. Cumulative PEV sales through end of 2019 (regardless of vehicle status) were estimated around 640,000.

state by 2025, setting California on track to meet or exceed the state’s ZEV deployment goals for 2025.

A convenient, reliable network of public electric vehicle charging stations (EVCS) will be critical to continuing support of the expansion of PEV ownership in California and ensuring state ZEV deployment goals are realized. (Most California ZEVs in the near term are expected to be PEVs, as CARB manufacturer surveys forecast 48,000 FCEVs on California roads in 2025.)

In response to COVID-19, light-duty charging infrastructure construction presents the best opportunity for stimulating the economy by investing in shovel-ready projects that can provide much needed job creation quickly and efficiently and support California businesses. In addition to supporting aggressive ZEV deployment goals, a greater focus on infrastructure will also provide the hiring, training, and retaining of high-quality jobs at a crucial moment when the state is seeking ways to recover from a severe economic challenge.

Technology Overview

Charging infrastructure is typically categorized into three power ratings: Level 1, Level 2, and direct-current (DC) fast charging. Level 1 chargers use alternating current electricity at 120 volts to provide about 3.5–6.5 miles range per hour of charging. Level 2 chargers use alternating current electricity to charge a PEV at 240 volts and can provide about 14 to 35 miles of range per hour of charging. Finally, DC fast charging uses DC electricity at 480 volts to recharge a BEV up to 100 miles in 30 minutes or less (depending on the size of the battery, the power level of the charger, and the charging capability of the vehicle).

In addition to varying by charging rate, charging infrastructure varies by location type. As at-home Level 2 chargers became readily available and affordable, the CEC discontinued funding for private-use residential charging stations. Shared-use residential charging stations, which are predominantly used in multifamily housing, still face barriers that impede PEV adoption. Projects at multifamily housing have been historically underrepresented by applicants despite efforts to target incentives toward electric vehicle charging station installations at these locations. However, increased DC fast charging could be one solution to help address the lack of residential charging at multiunit dwellings.

Workplace and public charging stations are another major component of the state’s portfolio of charging stations. Public chargers include charging locations at stores, parking garages, universities, municipal governments, curbside locations, and other common, publicly accessible destinations. When residents of multifamily housing are unable to charge at home, having an available site to charge at work or access to other public locations can serve as an alternative.

If located far from home, workplace and public charging can also help BEV owners extend their range and PHEV owners increase their electric miles driven. When located along major interregional routes, DC fast chargers can enable long-distance travel by BEVs. Fast-charger plazas, which consist of two or more fast chargers at a location, can charge multiple PEVs quickly and simultaneously. These plazas can alleviate charger congestion in areas with large PEV populations. Fast chargers can also provide a quicker alternative to charging at destinations. Next-generation BEVs with higher-capacity batteries will require higher-powered fast chargers than what are adequate for the current generation of BEVs.

Assessing Charging Infrastructure Needs for Light-Duty Vehicles

To quantify the number of charging stations needed to service the growing number of PEVs in California, the CEC and the National Renewable Energy Laboratory (NREL) developed the Electric Vehicle Infrastructure Projections (EVI-Pro) tool. EVI-Pro estimates the number of charging connectors that will be needed at the local level while accounting for differing charger power levels, location types, land use, and PEV adoption rates. This tool allows the CEC to estimate where local and regional gaps exist in charging station deployment, how many electric vehicle chargers will be needed to meet the goals of the ZEV Action Plan, how much this infrastructure will cost, and how differences in travel behavior and housing types will affect PEV charging demand. The EVI-Pro estimates of the amount of charging infrastructure needed to support 1.5 million ZEVs by 2025 helped inform Executive Order B-48-18, which calls for 250,000 charging points (including at least 10,000 DC fast chargers) by 2025.

To track progress toward this 2025 goal, CEC is conducting quarterly surveys, starting in July 2020, to get combined counts of public- and shared-access chargers that exist within California, as well as the recent and proposed charging infrastructure investments of the Clean Transportation Program and other key state funding mechanisms. 43 Table 6 below provides estimates of the existing number of public or shared Level 2 and DC fast-charging connectors or a combination within the state as of May 2020. The table also provides estimates of the number of connectors to be installed from allocated or upcoming Clean Transportation Program funds, as well as the number of connectors to be installed based on announced plans from other major funding programs. Finally, the table summarizes the estimated shortfall in charging infrastructure relative to the goals of Executive Order B-48-18.

| 43 The number of existing charging ports within California is difficult to measure and imprecise, as available data and reporting requirements vary widely. Notably, these estimates do not include private, nonshared charging ports, such as household garages or private (nonshared) fleets or workplaces. Additionally, CEC is working with stakeholders to collect data for shared, private chargers (workplace and multifamily), which are not typically reported to public databases. |
Table 6: Progress Toward 250,000 Chargers by 2025

<table>
<thead>
<tr>
<th></th>
<th>Level 2 Chargers</th>
<th>DC Fast Chargers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Chargers (Estimated)*</td>
<td>56,643</td>
<td>4,889</td>
</tr>
<tr>
<td>Number of Charging Connectors For Which Funding Has Been Allocated (includes anticipated funding from Clean Transportation Program)**</td>
<td>117,316</td>
<td>4,296</td>
</tr>
<tr>
<td>Total</td>
<td>173,959</td>
<td>9,185</td>
</tr>
<tr>
<td>2025 Goal (Executive Order B-48-18)</td>
<td>240,000</td>
<td>10,000</td>
</tr>
<tr>
<td>Gap From Goal</td>
<td>66,041</td>
<td>815</td>
</tr>
</tbody>
</table>

Source: California Energy Commission. Analysis as of September 2020. *Existing charging ports estimated based on available data from U.S. Department of Energy’s Alternative Fuels Data Center, as well as Governor’s Office of Business and Economic Development’s The Plug and the Nozzle: ZEV Infrastructure Permitting Newsletter No. 2 as of February 2020. Not included in this table are an estimated 505 statewide public or shared-private Level 1 chargers, which are included in statewide charger counts (available at https://www.energy.ca.gov/data-reports/energy-insights/zero-emission-vehicle-and-charger-statistics) but not the goal of 250,000 chargers. **Estimate of ports from other state programs derived from public presentations and statements by utilities, California Public Utilities Commission, CARB, other entities, and the Energy Commission. This analysis includes the $51 million one-time legislative appropriation from the Alternative and Renewable Fuel and Vehicle Technology Fund for FY 2020-2021 dedicated to electric vehicle charging infrastructure.

As indicated in the final row of Table 6, CEC staff estimates that there is a sizable gap (more than 66,000) between the number of charging connectors needed in 2025 and the number of expected charging connectors available that year. Electric vehicle infrastructure investments are growing at a slower pace compared to trajectories of PEV adoption. It is also possible that California will exceed the goal of 1.5 million zero-emission vehicles on the road by 2025, and the state will need more chargers to meet the expanded market. In that case, it is likely that the gap underestimates the shortfall of charging needed for PEVs in 2025.

In September 2018, Governor Edmund G. Brown Jr. signed Assembly Bill 2127 (Ting, Chapter 365, Statutes of 2018). The legislation requires the CEC, working with CARB and the CPUC, to prepare and update biennially a statewide assessment of the electric vehicle charging infrastructure. The assessment will focus on the number and types of charging infrastructure needed to support levels of electric vehicle adoption required for the state to meet its goals of deploying at least 5 million vehicles on California roads by 2030 and reducing emissions of GHGs to 40 percent below 1990 levels by 2030. The assessment will also provide the CEC direction on charging infrastructure priorities that relate to special location types, such as railyards and airports. Under a recent amendment to the CEC’s contract with NREL, NREL will revise and extend EVI-Pro to look further ahead to the state’s goal of 5 million ZEVs by 2030. These findings will significantly inform the CEC’s charging infrastructure assessment required under AB 2127. The recently signed Executive Order N-79-20 directs the CEC to update the AB 2127 statewide assessment to evaluate the ZEV infrastructure needed to meet the new targets.

The CEC expects that additional (and significant) public funding is still appropriate and necessary toward meeting the needs of prospective PEV buyers through 2025. In recognition of this need, the funding allocation for this activity in 2020–2023 Investment Plan Update is
notably higher than in most previous investment plan updates to meet the growing needs of PEV charging.

In September 2018, Governor Brown signed Senate Bill 1000 (Lara, Chapter 368, Statutes of 2018). The legislation requires the CEC, in consultation with CARB, to assess whether electric vehicle charging station infrastructure is disproportionately distributed. As used in the legislation, “disproportionate” refers to population density, geographical area, or income level. If the infrastructure is found to be disproportionately deployed, the Commission must use Clean Transportation Program funding to install more proportionately new charging station infrastructure, unless the CEC finds the disproportionate deployment reasonable and in furtherance of state energy or environmental policy goals. CEC staff is beginning to identify and collect the requisite data that will inform this analysis (and other transportation electrification analysis).

Clean Transportation Program Funding to Date

The CEC has supported the rollout of PEVs by awarding nearly $183 million in Clean Transportation Program funding for electric vehicle charging infrastructure. Partly because of these investments, California has the largest network of publicly accessible electric vehicle chargers in the nation.

Clean Transportation Program investments have funded EVCS at many types of locations, as detailed in Table 7. The “private access” chargers include residential chargers that are generally dedicated to serving only one vehicle; the CEC has moved away from providing incentives for these chargers over the life of the Clean Transportation Program. The “shared access” chargers include fleets, workplaces, and multifamily housing chargers that may serve multiple vehicles but are not necessarily open to the public. The “public access” chargers include public Level 2 chargers, as well as corridor and urban metropolitan DC fast chargers. Finally, the “mixed access” chargers include shared private and public access chargers.

44 Senate Bill 1000 (Lara, Chapter 368, Statutes of 2018).
Table 7: Charging Connectors Funded by the Clean Transportation Program as of August 31, 2020

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Installed</td>
<td>3,936</td>
<td>155</td>
<td>531</td>
<td>357</td>
<td>3,236</td>
<td>324</td>
<td>471</td>
<td>9,010</td>
</tr>
<tr>
<td>Planned</td>
<td>0</td>
<td>228</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>211</td>
<td>1,812</td>
<td>2,266</td>
</tr>
<tr>
<td>Total</td>
<td>3,936</td>
<td>383</td>
<td>531</td>
<td>357</td>
<td>3,251</td>
<td>535</td>
<td>2,283</td>
<td>11,276</td>
</tr>
</tbody>
</table>

Source: California Energy Commission. Does not include connectors that have yet to be approved at an Energy Commission business meeting or connectors that have yet to be funded under CALeVIP. * Planned CALeVIP chargers = number of chargers with rebate funding reserved. Mixed Access includes shared private and public access chargers.

California Electric Vehicle Infrastructure Project (CALeVIP)

In December 2017, the CEC introduced the California Electric Vehicle Infrastructure Project (CALeVIP) to provide streamlined Clean Transportation Program incentives for light-duty electric vehicle charging infrastructure. The incentives provided through CALeVIP simplify the funding process and accelerate charger deployment compared to the previously used grant solicitations. Each CALeVIP project provides incentives for the purchase and installation of electric vehicle infrastructure in specific regions throughout the state, with funding targeted at regions that have low rates of infrastructure installation or lack adequate incentives from utilities and other sources.

Through 2019, the CEC has allocated $71 million for charger rebates through CALeVIP, and the Commission may make up to $200 million available through this funding mechanism depending on demand, project performance, and funding availability. CALeVIP incentives for Level 2 and DC fast chargers have been made available in Sacramento, Humboldt, Shasta, Tehama, Santa Cruz, Monterey, San Benito, Fresno, San Joaquin, and Kern Counties. In 2020, additional CALeVIP incentive projects will include those in Santa Clara, San Mateo, San Diego, Sonoma, and Mendocino Counties. Incentives for DC fast chargers have been made available for businesses and public agencies in Los Angeles, Orange, Riverside, and San Bernardino Counties. Dedicated funding amounts or higher incentive amounts or both are also available under CALeVIP for project sites within disadvantaged communities and multifamily complexes. Energy Commission staff continues to coordinate closely with local governments and councils of governments to leverage other funding opportunities to increase chargers in focused locations to maximize the effectiveness of limited Clean Transportation Program funds. To this end, there are no plans to make CALeVIP a statewide program; however, incentives may end up covering each county in the state.
Innovations in Charging Technology and Use Cases

Most charging at workplaces is expected to occur during the day, which is likely to create opportunities for electricity demand management at these sites. Electric vehicle charging with demand-side management can increase charging during times of excess electricity and decrease use during peak times. As more intermittent renewable energy is available to the electricity grid, such as solar and wind, the electricity supply available during the day will increase and possibly result in overgeneration. Vehicle-to-grid technologies and daytime PEV charging, especially at workplace and fleet-use stations, can reduce the negative effects of overgeneration.

The CEC seeks ways to advance innovative and transformative technologies and transportation trends that can increase the efficiency and the effectiveness of zero-emission charging infrastructure. Newer recharging technologies, such as robotic charging (which can initiate charging sessions without human involvement), pantograph charging (which can provide electricity to vehicles while in motion via contact), and wireless charging (which can recharge vehicles without direct contact) have shown great potential to improve upon the speed and cost-effectiveness of charging infrastructure. Mobile charging that is supported with energy storage can also be deployed quickly and replaced during emergencies or during peak travel demand. Such advancements could greatly increase use of existing equipment and enable new private investments. Supporting innovative technologies and emerging transportation trends, such as TNCs and autonomous vehicles, can have a real effect in accelerating zero-emission vehicles toward broader commercialization. The CEC is also committed to enabling “smart” charging (controlling when and how charging occurs) and vehicle-grid integration, which help reduce costs for PEV drivers and all electricity customers.

As the market for PEVs becomes more developed, financing for electric vehicle charging stations will eventually need to shift from government incentives to private sector lending. Electric vehicle chargers, however, may require innovative business models because of uncertain long-term payoff and risk, and these uncertainties may reduce the willingness of lenders to fund EVCS with competitive financing terms. To validate the profitability and feasibility of financing charging stations, the Clean Transportation Program funded the Electric Vehicle Charging Station Financing Program, which is administered by the California Pollution Control Financing Authority. Because potential borrowers have shown limited interest in this demonstration-scale financing program, CEC staff expects to reevaluate and modify this program to best meet the needs for charging infrastructure development in the state. Other advanced financing mechanisms may also be considered as EVCS markets continue to mature.

eMobility

New mobility services, including car- and ridesharing and autonomous and connected vehicles, present other opportunities to expand the use of ZEVs. Thus far, ZEV use has been limited largely to those who have the means to purchase a new vehicle. Dedicated ZEV car- and ridesharing services, however, can provide zero-emission transportation options for drivers and passengers who would otherwise have no alternatives to conventional automobiles. To advance ZEV adoption and provide equity, the CEC is researching grant opportunities to fund innovative electric mobility projects, focusing on partnerships with community-centric
organizations. These alliances could include partnering with community services in rural locations, churches, community centers, tribal communities and rancherias, and locations identified using indices such as California Healthy Places Index or communities with a high-number of subsidized school lunches.\(^{45}\) The funding would be directed toward projects that provide clean, shared light- and medium-duty vehicle mobility options for three types of disadvantaged populations within 10 specified California areas to provide needed charging infrastructure. The proposed regions are disadvantaged communities as identified by Senate Bill 535 (De León, Chapter 830, Statutes of 2012), low-income communities as identified by Assembly Bill 1550 (Gomez, Chapter 369, Statutes of 2016), and California native tribal communities. These demonstrations may be targeted in disadvantaged and rural communities to provide further benefits to Californians who lack adequate transportation options. The $65 million CARB is investing in car- and ridesharing in disadvantaged communities with its Low Carbon Transportation funding would complement Clean Transportation Program investments in this area.

Planning and Readiness

The CEC has provided funding to other project types that can indirectly achieve the goals of the Clean Transportation Program, including regional alternative fuel readiness plans. The Regional Alternative Fuel Readiness Planning allocation provided a funding source for planning that prepares for and expedites the launch of alternative fuel infrastructure and vehicles.

The CEC has conducted six grant solicitations for regional readiness planning, providing more than $11 million for 51 agreements to prepare for and expedite the deployment of alternative fuel infrastructure and vehicles. Since the first regional readiness planning projects were approved in 2011, the zero-emission vehicle sector has matured significantly. Most regions in California have developed regional readiness plans because of this funding, and the plans have aided the launch of the first generation of zero-emission vehicles and the continued installation of charging and fueling infrastructure.

Most recently, the CEC released Solicitation GFO-17-604 to provide grant funding for the EV Ready Communities Challenge competition. GFO-17-604 is the first phase of a two-phase effort that provided funds to develop replicable blueprints that identify the actions needed to accelerate implementation of electrified transportation at the regional level. Twenty organizations applied for funding under GFO-17-604, and the CEC provided a total of $2 million in grants to nine recipients. All organizations successfully completed Phase I blueprints and will be eligible to apply for blueprint implementation funding under the second phase of the EV Ready Communities Challenge solicitation with planned release in the second quarter of 2020.

Other Sources of Funding for PEV Infrastructure

As referenced in Chapter 2, CEC staff will continue to monitor and coordinate with other EVCS deployment projects, such as CPUC transportation electrification activities and the Volkswagen

\(^{45}\) Healthy Places. [Healthy Places Index](https://healthyplacesindex.org/map/).
diesel emissions settlement, to ensure the strategic placement of electric vehicle infrastructure and avoid duplication. As more funding sources become available, all agencies, utilities, and companies providing EVCS funding will need to coordinate to expedite expansion of the charging network and avoid duplication.

Summary
Issued in January 2018, Executive Order B-48-18 set a directive to install 250,000 ZEV charging ports, including 10,000 DC fast charging ports, in California by 2025. CEC staff, using NREL’s EVI-Pro modeling, estimates that the sum of existing charging ports and charging ports funding across all state funding programs will result in 173,959 Level 2 charging ports and 9,185 DC fast charging ports by 2025, leaving gaps of nearly 66,041 Level 2 charging ports and 815 DC fast charging ports by 2025. Staff recommends an aggressive near-term funding solution to help close this gap. Staff will also consider land use, housing policies, and Sustainable Community Strategies as they relate to ZEV infrastructure investments. To help achieve this adoption, the CEC is allocating $92.7 million (including the $51 million one-time legislative appropriation) for light-duty electric vehicle charging infrastructure for FY 2020-2021. The buildout of EV infrastructure can potentially create much needed jobs and support economic development in response to COVID-19 while narrowing the EVSE gap.

Medium- and Heavy-Duty Zero-Emission Vehicles and Infrastructure
Freight and transit vehicles serve as a pillar to the California economy, providing indispensable functions for domestic goods movement, international trade, mass transportation, and other essential services. Clean Transportation Program funding in this sector has historically focused on medium- and heavy-duty vehicles, defined here as vehicles with a gross vehicle weight rating above 10,000 pounds. These vehicles represent a small share of California registered vehicle stock, accounting for about 1 million out of 31 million vehicles, or 3 percent; however, this small number of vehicles is responsible for about 23 percent of on-road GHG emissions in the state because of comparatively low fuel efficiency and high number of miles traveled per year.46 Medium- and heavy-duty vehicles additionally account for nearly 60 percent of NOX and 52 percent of PM2.5 emissions from on-road transportation in California.47 For these reasons, medium- and heavy-duty vehicles represent a significant opportunity to reduce GHG emissions and criteria emissions while focusing on a small number of vehicles. Nonroad freight vehicles,
such as forklifts and other cargo handlers, have similar or supporting purposes and potential for emission reductions.

In October 2019, CEC staff conducted a workshop to explore various solicitation concepts that will prioritize infrastructure to support the use of zero-emission medium- and heavy-duty advanced vehicle technologies within the California freight system, transit bus fleets, and other sectors in need.48 The five concepts introduced at the workshop will be developed into solicitations over the next year and provide a wide range of support for medium- and heavy-duty zero-emission vehicle infrastructure. These concepts could draw upon nearly $47.5 million available from prior investment plans. Concepts proposed at the workshop include:

- Transit Fleets, Capital Expenses Assistance for Zero-Emission Infrastructure Deployment.
- ZEV Blueprints for Medium- and Heavy-Duty Vehicles Infrastructure (including small seaports and disadvantaged communities).
- Hydrogen Rail and Marine Applications.
- Innovative Charging and Fueling Solutions.

In June 2020, CEC and CARB staff announced the development of the first-of-its-kind joint funding solicitation that will provide up to $20 million from CARB’s Fiscal Year 2019-20 Funding Plan for Clean Transportation Incentives for large-scale deployments of zero-emission Class 8 trucks and up to $20 million from the CEC’s Clean Transportation Program funds for equipment and infrastructure to support those vehicles. The goal of this zero-emission drayage truck and infrastructure pilot project is to fund large-scale deployments of 50 or more Class 8 zero-emission trucks per fleet to assess the ability of vehicle manufacturers to produce large numbers of zero-emission Class 8 trucks. The project would also assess the ability of fleets to recharge or refuel large numbers of trucks daily in regular use.

Clean Transportation Program Funding to Date

The CEC has provided more than $125 million in Clean Transportation Program funding for a wide variety of alternative fuel and advanced technology powertrains that can be incorporated into California trucks and buses. Table 8 summarizes the portfolio of the advanced technology freight and fleet vehicle projects supported through the Clean Transportation Program.

Table 8: Advanced Freight and Fleet Vehicle Projects Supported by the Clean Transportation Program as of May 1, 2020

<table>
<thead>
<tr>
<th>Medium- and Heavy-Duty Vehicle Demonstrations</th>
<th># of Demonstration Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium-Duty BEVs</td>
<td>5</td>
</tr>
<tr>
<td>Medium-Duty PHEVs</td>
<td>2</td>
</tr>
<tr>
<td>Medium-Duty Hybrids</td>
<td>1</td>
</tr>
<tr>
<td>Heavy-Duty BEVs</td>
<td>10</td>
</tr>
<tr>
<td>Heavy-Duty PHEVs</td>
<td>7</td>
</tr>
<tr>
<td>Heavy-Duty Hybrids</td>
<td>4</td>
</tr>
<tr>
<td>Electric Buses</td>
<td>4</td>
</tr>
<tr>
<td>Natural Gas Trucks</td>
<td>7</td>
</tr>
<tr>
<td>Fuel Cell Trucks</td>
<td>2</td>
</tr>
<tr>
<td>Fuel Cell Buses</td>
<td>5</td>
</tr>
<tr>
<td>Off-Road Hybrids</td>
<td>1</td>
</tr>
<tr>
<td>E85 Hybrids</td>
<td>1</td>
</tr>
<tr>
<td>Vehicle-to-Grid</td>
<td>3</td>
</tr>
<tr>
<td>Intelligent Transportation Systems</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>54</td>
</tr>
</tbody>
</table>

Source: California Energy Commission

Other Sources of Funding

As referenced in Chapter 2, CEC staff will continue to monitor and coordinate with other freight and fleet deployment projects. These include CARB’s Low Carbon Transportation Investments and SB 1403 investment strategy for zero-emission and near-zero emission heavy-duty vehicles and equipment, as well as the planning efforts associated with the California’s Beneficiary Mitigation Plan for the Volkswagen Mitigation Trust. As more funding sources become available, all agencies and companies providing freight and fleet funding will need to coordinate to avoid duplication.

Charging for Medium- and Heavy-Duty Vehicles

Medium- and heavy-duty vehicles with electric powertrains may have charging infrastructure requirements that are incompatible with those of light-duty vehicles. These vehicles may require charging infrastructure with specialized connectors or higher voltage and power levels than what are typically provided for light-duty PEVs. In addition, heavy-duty vehicle operators may need to locate chargers in areas that are inaccessible to the public for security and safety reasons. CEC staff is developing a set of guidelines specific to medium- and heavy-duty vehicles and expects that a portion of the funding from this allocation may be used to support the installment of charging infrastructure specifically for medium- and heavy-duty PEVs. Moreover, the CEC will be seeking ways to incorporate charging infrastructure along trade corridors and within seaports, railyards, and warehousing and distribution centers.
Many alternative-fueled freight and fleet vehicles also require specialized fueling infrastructure. While light-duty PEVs use standard Level 1, Level 2, or DC fast chargers, medium- and heavy-duty electric vehicles can require charging systems that provide significantly higher voltage and power levels. Medium- and heavy-duty PEV manufacturers have not yet agreed to standardize electric vehicle chargers, and some use specialized charging systems that can be significantly more expensive than light-duty counterparts. This specialized and dedicated electric charging fueling infrastructure can add significant cost and affect the financial viability of alternatively fueled vehicle projects.

The CEC is seeking ways to assist transit agencies with their transition to zero-emission buses. The objective would be to provide targeted capital assistance to install transit zero-emission fueling infrastructure (in other words, “make-ready” equipment and infrastructure for battery charging systems and hydrogen fueling equipment) throughout the state where transit buses operate. By providing funding assistance for fueling infrastructure and grid infrastructure improvements needed to support zero-emission transit buses and equipment, the CEC would accelerate the modernization of California’s public transport system, support compliance with CARB’s Innovative Clean Transit bus regulation for transit operators, and spread the benefits of transportation electrification to diverse communities.

As mentioned in the previous section, the CEC has used the EVI-Pro tool to estimate charging infrastructure needs for the light-duty sector. However, the EVI-Pro tool is not configured to provide similar estimates for medium- and heavy-duty vehicles because of comparative lack of information regarding travel patterns and preferred approaches for recharging. As the CEC prepares to conduct its inaugural charging infrastructure assessment as part of Assembly Bill 2127 (Ting, Chapter 365, Statutes of 2018), estimating the charging needs of medium- and heavy-duty vehicles will be one of the key areas of analysis. The analysis will also involve the development of the Heavy Electric Vehicle Infrastructure Projection tool, or “HEVI-Pro” for short. HEVI-Pro will assist with analyzing smart charging load profiles and providing a framework for potential grid upgrades. The analysis is expected by the late summer of 2020, in alignment with the requirement to complete the first biennial AB 2127 infrastructure assessment by the end of 2020.

CEC staff is exploring the option for developing a streamlined, continuous incentive project for medium- and heavy-duty charging infrastructure. If pursued, this funding mechanism could be structured as a block grant, with similarities to CALeVIP (which promotes charging infrastructure aimed at the light-duty sector).

Hydrogen Fueling Infrastructure for Medium- and Heavy-Duty Vehicles

Fuel cell electric vehicles using hydrogen fuel offer another zero-emission transportation option for California’s medium- and heavy-duty sectors and short-range and long-range applications. Hydrogen fuel cell and battery-electric technologies present different strengths and challenges, and hydrogen fuel cell vehicles may serve an important role in applications that would be difficult to transition to battery electric. The CEC has funded projects that use hydrogen infrastructure for freight vehicles at California seaports and inland warehouses and distribution centers, and the Commission continues to explore new options for advancing this technology.
Companies are also producing or are planning to produce heavy-duty vehicles with hydrogen fuel cell electric powertrains, including transit buses and tractor-trailer trucks. These vehicles, and the fleets that operate them, may require dedicated fueling infrastructure to ensure the safety, security, and fuel supply of the vehicles. CEC staff expects that some portion of Clean Transportation Program funding will be used to support the construction and installation of hydrogen fueling infrastructure specifically for medium- and heavy-duty FCEVs, especially to fuel Class 8 trucks to support the urgent need to electrify trucks to meet the Advanced Clean Trucks regulation. As a result, and in anticipation of having more than 100 public hydrogen stations in operation by 2023, the CEC proposes splitting the $10 million annual allocation for hydrogen fueling infrastructure between light-duty and heavy-duty.

Planning and Readiness for Medium- and Heavy-Duty Vehicle Infrastructure

The CEC is seeking ways to assist commercial and bus fleet operators with transitioning to zero-emission medium- and heavy-duty vehicles by providing funding for ZEV readiness blueprints. Funding can promote planning efforts that prepare for and expedite the use of ZEVs and infrastructure that are integrated smartly into the grid to reduce charging and fueling costs, provide grid benefits, and reduce costs for all electricity users. Commercial and bus fleets throughout the state are facing significant barriers with infrastructure installation as they prepare to incorporate electrification or fuel cell technology or both. Guidance is critical, and CEC staff is working on ways to provide a mechanism for planning, as well as outreach and education to help achieve this transition.

Summary

To meet state GHG and air quality goals, this sector will need to transition to zero-emission technologies, and the resources required for this transition far exceed available funding. CEC staff expects an increasing demand for dedicated charging and fueling infrastructure for medium- and heavy-duty ZEVs funded through the Clean Transportation Program and by other state incentive programs. As the state’s lead agency for ZEV infrastructure deployment, the CEC will focus on the infrastructure needs of medium- and heavy-duty ZEVs; however, the option to fund medium- and heavy-duty ZEV demonstrations will remain eligible. In addition to vehicle and infrastructure investments, the CEC will seek ways to include grid integration, integrated storage solutions, and charging management as complementary technologies. Staff will also consider land use, housing policies, and Sustainable Community Strategies as they relate to medium- and heavy-duty ZEV infrastructure investments, as well from the forthcoming HEVI-Pro assessments.

For FY 2020–2021, the CEC allocates $20 million for this category dedicated to medium- and heavy-duty ZEV and infrastructure. However, looking beyond the time frame in which CEC staff will implement the five previously proposed concepts, the CEC expects the need for medium- and heavy-duty ZEV infrastructure to ramp up drastically. For this reason, the

funding allocation for this activity will increase dramatically in subsequent fiscal years to meet the growing needs of charging and hydrogen fueling infrastructure for medium- and heavy-duty ZEVs, as well as demonstrate the state’s commitment to improving air quality.

Hydrogen Fueling Infrastructure

Assembly Bill 8 (Perea, Chapter 401, Statutes of 2013) directs the CEC to allocate $20 million annually, not to exceed 20 percent of the funds appropriated by the Legislature, from the Alternative and Renewable Fuel and Vehicle Technology Fund for planning, developing, and building hydrogen-fueling stations until there are at least 100 publicly available stations in California. The Clean Transportation Program funds the development of hydrogen fueling stations to support the early fuel cell electric vehicle (FCEV) market and the increasing population of on-road FCEVs. These annual allocations also support the goal of having 200 hydrogen fueling stations by 2025, which was established by Governor Edmond G. Brown Jr. Executive Order B-48-18.

Technology Overview

FCEVs using hydrogen fuel offer another zero-emission transportation option for Californians. Like electricity, hydrogen can be produced from a variety of pathways, including renewable sources of energy. FCEVs can also travel farther and be refueled more quickly than BEVs. Fuel cells enable electrification of a broad range of vehicles, including passenger cars, light-duty trucks and SUVs, transit buses, and heavy-duty trucks and can complement BEVs by offering zero-emission vehicles to drivers who need more range or faster fueling.

FCEVs are available in California for lease or sale from Toyota, Honda, and Hyundai. In July 2018, Mercedes-Benz announced a concept hydrogen fuel cell Sprinter F-Cell. In October 2019, Toyota announced the next generation Mirai, “Mirai Concept,” with a targeted 30 percent increase in range, scheduled for launch in late 2020.

The CEC, through the Clean Transportation Program, has supported the development of hydrogen fueling regulations and test procedures, hydrogen fueling infrastructure test equipment, and regional readiness plans for FCEV and fueling station development. The CEC also provides data on Clean Transportation Program-funded hydrogen fueling infrastructure to the NREL Technology Validation Program. NREL combines these data with other nationally sourced data to assess hydrogen fueling systems and components under real-world conditions; analyze the availability and performance of existing hydrogen fueling stations; and provide feedback regarding capacity, use, station build time, maintenance, fueling, and geographic coverage. The technology validation analyses help inform state and national hydrogen fueling infrastructure installation.

Clean Transportation Program Funding to Date

Through the Clean Transportation Program, the CEC has provided nearly $125 million of funding to install or upgrade 62 publicly available hydrogen stations capable of light-duty vehicle fueling, including associated operations and maintenance. As of August 2020, 44 hydrogen fueling stations were open retail in California.
Furthermore, the Clean Transportation Program recently issued a solicitation, GFO-19-602, announcing the availability of up to $115.7 million in grant funds (subject to future appropriations and Clean Transportation Program Investment Plan funding allocations). The solicitation is to fund hydrogen fueling infrastructure projects that will expand California’s early commercial light-duty hydrogen fueling and FCEV markets and accommodate the projected FCEV rollout in 2021–2024. The solicitation was designed to help station developers achieve economies of scale and reduce equipment costs by offering the remaining funding allocations for hydrogen fueling infrastructure. The CEC anticipates that the $115.7 million in grant funding available in GFO-19-602 will result in as many as 110 additional stations.

GFO-19-602 allows projects to include fueling for commercial fuel cell vehicles and buses with light-duty vehicle fueling without diminishing the light-duty customer experience. This approach has the potential to aid in the transition of California’s commercial vehicle and bus fleets to a zero-emission alternative while strengthening the business case for light-duty hydrogen fueling through increased station throughput and stations with common designs and fuel supply. This strategy also reduces costs of hydrogen production and distribution as hydrogen-powered commercial fleet and bus vehicles are launched in greater numbers.

Overall, stations funded by the Clean Transportation Program so far are expected to dispense fuel with an average of 39 percent renewable hydrogen content. Any stations resulting from GFO-19-602 are mandated to meet requirements for the LCFS Hydrogen Fueling Infrastructure (HRI) credit, which requires at least 40 percent of the hydrogen from renewable sources. The renewable hydrogen from these agreements is typically derived from either renewable electricity via electrolysis or biomethane via steam methane reformation (a method for producing synthesis gas by reaction of hydrocarbons with water) at central production plants.

In addition to funding for infrastructure development, the CEC offered operations and maintenance (O&M) funding for the initial network of hydrogen fueling stations in the past. This funding provided ongoing support to station developers who build and operate stations before the mass introduction of FCEVs and was meant to sustain the stations until enough vehicles are on the roads to be profitable. With the introduction of the LCFS HRI program in 2019, the Clean Transportation Program decided not to offer O&M funding in GFO-19-602 to maximize the number of hydrogen fueling stations the CEC can fund.

Other Sources of Project Support

The HRI credit provision of the LCFS became effective in January 2019. This provision allows eligible hydrogen fueling station operators to earn HRI credits based on the capacity of the hydrogen station, in addition to credits earned for the fuel dispensed.50 The expected value of these HRI credits and the duration of the incentive exceed the O&M funding that was offered

50 California Air Resources Board Resolution 18-34 information is available at https://www.arb.ca.gov/fuels/lcfs/rulemakingdocs.htm. This modification to the LCFS provides credits to hydrogen fueling station owners for 15 years, with the credits being calculated based on the nameplate capacity of the station not to exceed 1,200 kilograms of hydrogen per day, and the availability (or uptime) of the station relative to the permitted hours of operation. The amount of dispensed hydrogen is subtracted from the calculation of HRI credits so that credits are not double earned.
through the Clean Transportation Program in the past, and the value and duration should reduce investment risk and provide a stable source of operating capital. The CEC will continue discussions with CARB and stakeholders to ensure that all available funding for hydrogen fueling is used in the most effective manner for encouraging early FCEV adoption.

In 2018, CARB selected the Bay Area Air Quality Management District (BAAQMD) to administer $10 million of the Volkswagen Mitigation Trust funds for light-duty zero-emission infrastructure projects, evenly allocated between electric vehicle charging stations and hydrogen fueling stations. In 2019, CARB and BAAQMD executed an agreement confirming BAAQMD as the project administrator. CEC will receive and use mitigation trust funds from BAAQMD to augment the CEC’s competitive hydrogen fueling station solicitation that will allow CEC to fund additional stations.

Use of the $5 million mitigation trust funds will accelerate the Clean Transportation Program development of at least 100 publicly available hydrogen fueling stations in California, as specified in Assembly Bill 8. The use of the $5 million mitigation trust funds and cooperation among CARB, BAAQMD, and the CEC will ensure that hydrogen fueling infrastructure funding decisions are optimized and reduce the time and funding required to reach the statutory goal of at least 100 publicly available hydrogen fueling stations operating in California. This approach will fund additional stations that set California on the path toward 200 stations.

Evaluating the Deployment of FCEVs and Hydrogen Fueling Stations

Assembly Bill 8 requires CARB to evaluate the need annually for additional publicly available hydrogen fueling stations. This evaluation includes the quantity of fuel needed for the actual and projected number of hydrogen-fueled vehicles (based on DMV registrations and automaker projections), geographic areas where fuel will be needed, and station coverage.

Based on this evaluation, CARB reports to the CEC the number of stations; areas where additional stations will be needed; and minimum operating standards, such as number of dispensers, filling protocols, and pressure. CARB determines station and fuel cell electric vehicle projections for up to six years in the future, based on mandatory survey information provided by vehicle manufacturers for the next three model years and voluntary information for an additional three following model years.

CARB released the 2019 Annual Evaluation of Fuel Cell Electric Vehicle Deployment & Hydrogen Fuel Station Network Deployment report in July 2019 to comply with the requirements of Assembly Bill 8. In this assessment, CARB determined that today’s network of open retail hydrogen fueling stations has established the early fueling market that enabled the launch of the FCEV consumer market in California. CARB also determined that the Clean Transportation Program funding and CARB’s LCFS HRI program are major steps that should

provide certainty to the market for the 200-station goal. Manufacturer surveys project 48,000 FCEVs will be on California roads by the end of 2025.

In December 2019, the CEC and CARB released the *Joint Agency Staff Report on Assembly Bill 8: 2019 Annual Assessment of Time and Cost Needed to Attain 100 Hydrogen Fueling Stations in California*.52 This annual joint report evaluates progress in establishing a network of 100 publicly available hydrogen fueling stations, the factors affecting timely station development, the time and public funding needed to reach the goal of at least 100 publicly available stations by 2024, and the ability of the hydrogen fueling network to serve the anticipated 48,000 FCEVs projected by the end of 2025. Among the key findings of the joint report:

- California needs more hydrogen fueling capacity to support the anticipated numbers of FCEVs in the years to come. The network capacity of the 44 open retail stations is more than 3,305 kilograms per day. Considering the entire funded network of 61 stations that are either open or under development, the capacity is nearly 25,547 kilograms per day. The vehicle projections from the auto manufacturer survey will require another 10,000 kilograms of daily capacity by 2025 at minimum.
- GFO-19-602 stands to fund the installation of the necessary hydrogen fueling infrastructure to allow the acceleration of FCEV deployment such that these vehicles can provide significant emissions reductions and help achieve the goal of having 5 million zero-emission vehicles in California by 2030.
- CARB has approved 48 stations to participate in the HRI program thus far. The program encouraged several hydrogen fueling station operators to increase the renewable hydrogen content of their fuel to increase the potential to earn more credits.
- The hydrogen station network experienced a hydrogen supply disruption that affected most Northern California stations for more than six months. To develop a more resilient system, the CEC included more comprehensive requirements for hydrogen supply agreements under GFO-19-602.
- The cost per kilogram of station capacity and development time are decreasing.
- Grant solicitations through the Clean Transportation Program and LCFS credit generation through the new HRI program are the principal financial mechanisms by which the state supports its hydrogen station targets. Achieving further growth in FCEVs beyond 2025 (including a self-sufficient market) may require the expansion or addition of programs.

Summary
As the market for hydrogen fuel matures, station developers become more experienced. With the funding structure set up in GFO-19-602, hydrogen station capital expenses are expected to decrease.

For FY 2020–2021, the CEC allocates $20 million for hydrogen fueling infrastructure, which is the maximum allocation allowable under current law. With anticipated allocations of $20 million per year in FY 2021-2022 and FY 2022-2023, CEC staff analysis predicts that the Clean Transportation Program will be able to fund a statewide network exceeding 100 publicly available hydrogen fueling stations that will be open retail by the end of 2023. These stations are expected to have larger fueling capacities than most of the stations that the CEC funded early in the program. These stations should be able to provide fueling adequate to support the number of FCEVs that CARB predicts will be on the roads in 2025 and enable additional FCEV market penetration beyond then. This investment plan allocates $20 million for Fiscal Year 2020-2021 and proposes funding of $20 million annually through Fiscal Years 2022-2023. While staff expects there will be 100 stations in operation by 2023, the funding allocations of this investment plan split the $10 million allocation (which equates to 20 percent of the expected funds for the Clean Transportation Program in 2023) between light-duty and heavy-duty hydrogen fueling infrastructure. The CEC will evaluate whether the proposed $5 million allocation for light-duty hydrogen infrastructure for the final year of the program is sufficient to meet the needs of the FCEV market, and will adjust as needed in annual revisions to the plan. This evaluation will be informed by the AB 8 report as well as input from the Advisory Committee, Disadvantaged Communities Advisory Group, and other stakeholders.

53 California Health and Safety Code Section 43018.9.
Summary of Zero-Emission Vehicles and Infrastructure Allocations

Table 9: Multiyear Funding for Zero-Emission Vehicles and Infrastructure

<table>
<thead>
<tr>
<th>Category</th>
<th>FY 2020-2021</th>
<th>FY 2021-2022</th>
<th>FY 2022-2023</th>
<th>FY 2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light-Duty Electric Vehicle Charging Infrastructure and eMobility</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relevant Policy Goals:</td>
<td>$41.7 Million</td>
<td>$30.2 Million</td>
<td>$10 Million</td>
<td>-</td>
</tr>
<tr>
<td>- GHG Reduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Petroleum Reduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Low Carbon Fuel Standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Air Quality</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- ZEV Regulations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Environmental Equity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Economic Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Job Creation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light-Duty Electric Vehicle Charging Infrastructure and eMobility*</td>
<td>$51 Million*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Medium- and Heavy-Duty Zero-Emission Vehicles and Infrastructure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relevant Policy Goals:</td>
<td>$20 Million</td>
<td>$30 Million</td>
<td>$52.2 Million</td>
<td>$27.6 Million</td>
</tr>
<tr>
<td>- GHG Reduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Air Quality</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Petroleum Reduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Low Carbon Fuel Standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Sustainable Freight Action Plan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Hydrogen Fueling Infrastructure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relevant Policy Goals:</td>
<td>$20 Million</td>
<td>$20 Million</td>
<td>$20 Million</td>
<td>$10 Million**</td>
</tr>
<tr>
<td>- GHG Reduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Petroleum Reduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Low Carbon Fuel Standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Air Quality</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- ZEV Regulations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>$132.7 Million</td>
<td>$80.2 Million</td>
<td>$82.2 Million</td>
<td>$37.6 Million</td>
</tr>
</tbody>
</table>

Source: California Energy Commission. *For FY 2020-2021 the Light-Duty Vehicle Charging Infrastructure and eMobility funding category received a $51 million one-time legislative expenditure authority from the Alternative and Renewable Fuel and Vehicle Technology Fund to increase and accelerate electric vehicle charging infrastructure, which will support increased zero-emission vehicle adoption and deployment in California. **In the final half year of funding, the CEC is planning to split funding for hydrogen infrastructure between light-duty and medium- and heavy-duty hydrogen infrastructure. The CEC will re-evaluate whether the proposed $5 million allocation for light-duty public fueling infrastructure in the final year of the program is sufficient to meet the needs of the FCEV market, and will adjust as needed in annual revisions to the plan.
CHAPTER 5: Alternative Fuel Production and Supply

Zero- and Near-Zero-Carbon Fuel Production and Supply
The California transportation sector depends largely on petroleum, which accounts for 89 percent of ground transportation fuel used in the state. Any low-carbon substitute fuel that can displace the roughly 14 billion gallons of petroleum-based gasoline and 3.3 billion gallons of petroleum-based diesel used per year in California can provide an immediate and long-term opportunity to reduce GHG emissions and criteria air pollution. Biofuels — defined in this document as nonpetroleum diesel substitutes, gasoline substitutes, and biomethane — represent the largest existing stock of alternative fuel in the California transportation sector. In addition, production of and demand for renewable hydrogen are expected to increase in the coming years as more hydrogen fuel cell electric vehicles are sold.

The carbon intensity of renewable fuels can vary significantly depending on the pathway, which accounts for the specific feedstock and production process of the fuel. CARB provides carbon intensity values for most transportation fuels as part of the LCFS. The carbon intensity value accounts for the life-cycle GHG emissions of the fuel, including production, transportation, and consumption, and is reported in grams of carbon dioxide equivalent greenhouse gases per megajoule (gCO₂e/MJ). Maximizing renewable fuel production from the lowest carbon pathways represents a key opportunity to reduce near-term GHG emissions in combustion engines and fuel cell electric vehicles. Biofuels derived from waste-based feedstocks (such as municipal solid waste or dairy waste) typically have the lowest carbon intensity of all transportation fuels. Clean Transportation Program funding uniquely drives innovative biofuel production plants to California, which may otherwise come from out of state through other funding mechanisms.

Past Clean Transportation Program fuel production awards have been disproportionately located in disadvantaged communities. The projects were funded because of the various possible economic benefits associated with the installation, expansion, and operation of the

54 Based on analysis from California Energy Commission Energy Assessments Division, with data from the California Department of Motor Vehicles.

55 Ibid.

56 The term “gasoline substitutes” refers to any liquid fuel that can directly displace gasoline in internal combustion engines, including ethanol and renewable drop-in gasoline substitutes. The term “diesel substitutes” refers to any liquid fuel that can significantly displace diesel fuel, including biodiesel and renewable diesel. These definitions differ from similar terms used by CARB under the LCFS, which are broader and include fuels such as electricity, natural gas, and hydrogen.

57 Consult the glossary for the definition of "megajoule."
plants. Such anticipated benefits included increases of tax bases and job creation. However, local pollution costs and benefits are less certain. The CEC will seek to ensure that alternative fuel production projects provide economic and environmental benefits within disadvantaged communities.

Fuel Type Overview

Renewable Diesel and Biodiesel

In 2018, renewable diesel was the most common diesel substitute in California with 384 million gallons used.\(^{58}\) Renewable diesel that meets the fuel specification requirements of ASTM International Standard D975 is fungible, or interchangeable, with conventional diesel fuel and can be used in existing diesel engines and fuel infrastructure.

Biodiesel is another diesel substitute; however, unlike renewable diesel, it is not fully fungible with conventional diesel fuel. Many modern diesel vehicles can use biodiesel in concentrations ranging from 5 to 20 percent, depending on the requirements and limitations of the engine and blend robustness, without special modifications to the vehicle. Renewable diesel and biodiesel have carbon intensities up to 92 percent lower than diesel fuel, depending on the pathway used.\(^{59}\) Together, renewable diesel and biodiesel accounted for about 45 percent of LCFS credits in 2019.\(^{60}\)

Within California, there are limited distribution methods for the different types of low-carbon fuels. As LCFS continues to encourage increased production and supply of low carbon fuels in California, the infrastructure to distribute low-carbon fuels will have to be in place to meet California’s low-carbon fuel production potential and consumption needs, as well as accomplish California’s greenhouse gas emission goals.

Ethanol and Renewable Gasoline

Ethanol is the only widely available gasoline substitute and is used primarily as a fuel additive with gasoline. California limits ethanol blends in conventional gasoline to 10 percent, although the U.S. EPA permits blends of up to 15 percent for a conventional engine and 85 percent for a flex-fuel engine. Though ethanol continues to be the largest volume alternative fuel used in California, in-state ethanol use has not substantially changed since 2011.

\(^{59}\) Compared to California diesel (102.01 gCO2e/MJ), with biodiesel carbon intensity as low as 8.63 gCO2e/MJ and renewable diesel carbon intensity as low as 16.89 gCO2e/MJ. Based on data from the LCFS Fuel Pathway Table (April 16, 2019), available at https://www.arb.ca.gov/fuels/lcfs/fuelpathways/current-pathways_all.xlsx.

Renewable gasoline is a potential gasoline substitute, although it is undergoing research and development and is not commercially available. Like renewable diesel, it will need to conform to relevant ASTM International standard specifications to operate in unmodified spark ignition (for example, gasoline) engines. Renewable crude oil products can serve as a fully fungible substitute for petroleum crude oil at refineries. Renewable crude oil is in the research and development phase and, if developed into a commercially viable product, may contribute significantly to California’s environmental and energy goals.

Biomethane

Biomethane is a commercially mature biofuel that serves as a low- or negative-carbon substitute for conventional natural gas. Biomethane from anaerobic digestion of wastewater sludge can reduce GHG emissions by as much as 92 percent below diesel. Biomethane derived from high-solids anaerobic digestion of prelandfill food and green wastes has a carbon intensity around negative 23 grams of carbon dioxide equivalent greenhouse gases per megajoule (gCO\(_2\)e/MJ) (or roughly 125 percent below diesel), indicating that the pathway contributes a net GHG emission reduction. Biomethane derived from dairy biogas has the lowest carbon intensity approved under the LCFS — about negative 255 gCO\(_2\)e/MJ.\(^6\)

The potential of low-carbon biomethane to replace natural gas in the transportation sector is based on the availability of waste-based feedstocks, and estimates vary on technical and economical availability. Based on a 2013 study from the National Renewable Energy Laboratory (NREL), the Union of Concerned Scientists suggests that capturing biomethane from all potential sources of organic waste in California could represent up to 450 million diesel gallon equivalents (DGE) or roughly 15 percent of diesel fuel use in California.\(^6\) The University of California, Davis, Institute of Transportation Studies indicated in 2016 a slightly higher economically feasible potential of roughly 623 million DGE. However, based on other studies provided by NREL, the technical availability (under preferable market conditions) could be four times higher.\(^6\) Regardless, given the limited availability, the carbon reduction benefits from biomethane need to be prioritized for specific transportation applications (as well as other purposes) in which no zero-emission alternative is available.

The Legislature passed SB 1383 with the intent to, among other things, support policies that improve the cost-effectiveness and environmentally beneficial uses of biomethane derived from solid waste. As part of this legislation, the CPUC is directing natural gas utilities to undertake at least five pilot projects to demonstrate pipeline injection of biomethane at

California dairies. These pilot projects are expected to demonstrate the feasibility of these project types and provide a model to increase the use of biomethane fuel in California. With funding from the Clean Transportation Program, the CEC will consider the prospective needs and opportunities for supplying biomethane to on-site vehicles and equipment, directed pipeline opportunities, and common carrier distribution opportunities.

Renewable Hydrogen

Senate Bill 1505 (Lowenthal, Chapter 877, Statutes of 2006) requires that 33 percent of hydrogen used for transportation come from renewable sources. As part of the Low Carbon Fuel Standard credits for ZEV infrastructure that took effect in January 2019, qualifying stations must have a renewable content of 40 percent or higher. Renewable hydrogen is a relatively new transportation fuel, as hydrogen fuel cell electric vehicles (FCEVs) have only recently become commercially available. The production methods, however, are commercially mature; renewable hydrogen can be produced through steam reformation of biomethane or through electrolysis using water and renewable electricity.

According to the California Independent System Operator, increasing amounts of renewable power generation may result in electricity oversupply as California renewable power requirements grow from 33 percent to 50 percent. Renewable hydrogen production is being investigated as a viable technology for beneficial use of this surplus renewable energy. Several Clean Transportation Program projects already use electrolysis to generate modest volumes of hydrogen at fueling stations. Potential renewable hydrogen production projects may include using renewable energy to produce large volumes of renewable hydrogen through electrolysis, or commercial-scale steam reformation plants that exclusively use biomethane as a feedstock.

Clean Transportation Program Funding to Date

To date, the CEC has awarded nearly $210 million to 74 low-carbon fuel production projects. These awards are summarized by fuel type in Table 10.

The Clean Transportation Program investments into low-carbon fuel production are typically focused on either smaller precommercial projects or large community- or commercial-scale projects. The smaller, precommercial projects have typically focused on transformative technology solutions that have the potential to increase yields, productivity, or cost-effectiveness of low-carbon fuel production. The CEC funds these pilot and demonstration projects with the expectation that, after successful operations at this scale, the technology will be suitable for commercial use. These precommercial projects are focused on advanced new technologies and approaches that can subsequently be expanded into wider markets.

In August 2019, the CEC released GFO-19-601 titled “Low-Carbon Fuel Production Program.” The solicitation was an offer to fund ultra-low-carbon transportation fuel production at new and existing advanced fuel production plants. The solicitation provided $12.5 million from the Greenhouse Gas Reduction Fund, and on January 21, 2020, the CEC issued a notice of proposed awards of four grants. The solicitation produced $53 million in requested funds, indicating a strong interest in the sector.

Other Sources of Funding

Other state and federal programs also provide support and incentives to low-carbon fuel producers. The California Department of Resources Recycling and Recovery (CalRecycle) Organics Grant Program conducted three grant cycles in 2014, 2017, and 2018, which awarded $32.9 million to nine biomethane-producing projects. For Fiscal Year 2018–2019, slightly more than $25 million is available for waste diversion using greenhouse gas reduction funds.

The California Department of Food and Agriculture awarded $35.2 million in October 2017 for anaerobic digesters at dairies through the Dairy Digester Research and Development Program and awarded $72.4 million for additional dairy digester projects in 2018. For 2019, the California Department of Food and Agriculture anticipates making between $61 million and $75 million available for these activities. The CEC will work with these agencies to ensure future funding awards are complementary rather than duplicative.
In addition, the LCFS and RFS requirements can support low-carbon fuel producers by creating markets for carbon credits and renewable fuels. The incentives earned through the LCFS provide steady financial support to low-carbon fuel producers, distributors, and blenders in California. In 2018, 88 percent of LCFS credits were granted for biofuels including biomethane, ethanol, biodiesel, and renewable diesel. These credits equate to an incentive of more than $1.1 billion for biofuel producers and retailers, if sold at the average credit price of $154 for 2018. CARB and CEC staff expects that the LCFS will serve as the state’s primary source of financial support for low-carbon fuel production and distribution.

Summary
Given the near-term petroleum and GHG emission reduction potential of any low-carbon, drop-in gasoline or petroleum replacement, future solicitations under this category may emphasize renewable gasoline, renewable crude oil, and similar products to accelerate development. There may also be opportunities to expand or otherwise improve the limited distribution of liquid biofuels (whether for drop-in substitutes or blending), which impedes the state’s supply of low-carbon transportation fuel.

Some fuel types and pathways have shown minimal improvement in carbon intensity or cost-effectiveness in recent funding solicitations, which may indicate that the technology or process has fully matured. The CEC may evaluate renewable fuel types and production pathways to determine when state incentives are no longer necessary. As the market for low-carbon fuels continues to develop, the CEC may also consider alternative funding mechanisms, such as revolving loan or loan guarantee programs, which may be more suitable for large projects and developed industries.

For FY 2020–2021, the CEC is redirecting Clean Transportation Program funding for Zero- and Near-Zero Carbon Supply Production and Supply as a response to shifting needs related to COVID-19 and to address urgent economic development and job creation needs. Furthermore, the CEC is accessing ways to spend prior Clean Transportation Program allocations for this upcoming fiscal year. Future funding priorities for this allocation may include increasing the in-state production of low-carbon fuels from waste-based feedstocks, supporting upstream blending infrastructure, and improving the state’s supply of renewable hydrogen from renewable electricity overgeneration or biomethane.

Table 11: Multiyear Funding for Alternative Fuel Production and Supply

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Relevant Policy Goals:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>− GHG Reduction</td>
<td>-</td>
<td>$10 Million</td>
<td>$10 Million</td>
<td>$5 Million</td>
</tr>
<tr>
<td>− Short-Lived Climate Pollutant Reduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>− Petroleum Reduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>− In-State Low-Carbon Fuel Production</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>− Low Carbon Fuel Standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>-</td>
<td>$10 Million</td>
<td>$10 Million</td>
<td>$5 Million</td>
</tr>
</tbody>
</table>

Source: California Energy Commission
CHAPTER 6:
Related Opportunities

Manufacturing
Providing funding and support for manufacturing and scale production of ZEV and ZEV infrastructure technologies is a hallmark of the Clean Transportation Program. California’s emerging ZEV supply chain leverages the state’s innovations and investments. Companies that produce clean transportation technologies employ workers and have an economic impact in regions of the state from disadvantaged communities and low-income communities to the Silicon Valley. Without private capital for companies to scale production of their early clean transportation technologies, companies encounter technology and commercialization risk. Some of this risk can be reduced through state incentives, technology advancement programs, and procurement policies.

California is home to nearly 40 PEV and charging infrastructure manufacturing companies. The range of technologies includes light-, medium, and heavy-duty, on- and off-road vehicles. Some of the companies are completely vertically integrated such as Tesla and Proterra (a Clean Transportation Program-funded company). Others produce components such as powertrains and control systems. California is also home to EV charging manufacturers that provide a range of products and technologies over domestically and globally distributed markets.

Since the inception of the Clean Transportation Program, five solicitations have been issued under the manufacturing category for a total of $52 million over 24 projects. The range of products includes ZEV powertrains; fully integrated ZE buses, trucks, and motorcycles; and EV chargers. Recent new additions to the Clean Transportation Program manufacturing portfolio include Enel X North America, FreeWire Technologies, and Meritor Inc. (acquired TransPower). Consistently oversubscribed to these solicitations, Clean Transportation Program investments into manufacturing help companies bridge the investment gap as capital needs grow with scale.

Some California ZEV manufacturers have established formal worker relationships with labor. BYD Coach and Bus in Lancaster (Los Angeles County) has established an apprenticeship program with Sheet Metal Workers Local 105 and Antelope Valley College. Proterra Inc. in the City of Industry (Los Angeles County) announced in November 2019 it’s joining the United Steelworkers (USW). In this announcement, USW International President Thomas M. Conway noted “that the development and production of clean technology promote good jobs and healthy communities in the United States. This includes ensuring that the materials and components in the transportation supply chain are made in America and that the workers who make them earn fair wages and good benefits.”

In California, technology-driven transportation electrification regulations are drivers of clean transportation innovation and product commercialization. Air quality goals also drive the need to scale manufacturing of these clean transportation technologies. This need is evidenced,
most recently, by the CARB’s adoption of the Innovative Clean Transit Regulation (ICT)71 and the ACT. Proterra, Inc., through a Clean Transportation Program grant, will scale up the manufacturing of its all-electric buses in California in 2020 to meet increasing demand. Furthermore, ChargePoint, Inc., through a Clean Transportation Program grant, will also scale DC fast-charger manufacturing to meet the needs of the ICT for buses and ACT for trucks domestically and abroad. In addition to benefits that accrue to product manufacturing, economic and workforce benefits accrue to equity communities where these supply chain companies reside. In some communities, manufacturing jobs are critical to disadvantaged communities, low-income communities, and small businesses. More than 700 manufacturing jobs have been created or retained or both under the Clean Transportation Program manufacturing portfolio.

Summary

For FY 2020-2021, the CEC is allocating $2 million in Clean Transportation Program funding for manufacturing. This increase is in response to COVID-19 and stakeholder input. Investments will continue to emphasize zero-emission vehicle infrastructure deployment. Recently awarded manufacturing projects are in the initial stages of project delivery, and feedback will inform future manufacturing investments.

Workforce Training and Development

Central to the advancement of clean transportation technologies in commercial markets are investments made by the program into various workforce training and development projects. More than $33 million has been invested in workforce projects for more than 17,000 trainees. Since the inception of the program, the initial delivery of workforce investments has been through state entities as the CEC relied on these entities for early workforce knowledge and partnerships. The state agencies then distributed those funds annually, providing funding continuity through municipalities, community colleges, and private businesses. In addition to workforce training and development of advanced vehicle technology maintenance and service sectors, the CEC also supports upstream workforce support for clean transportation technology innovation, demonstration, deployment, and manufacturing. Workers in the entire clean transportation supply chain in California benefit from Clean Transportation Program investments, as well as other CEC investments.

In addition to investments into manufacturing workforce projects, other key workforce investments include transit workforce development, ZEV curricula at California community colleges, and sustainable freight workforce assessments.

The California Community Colleges Chancellor’s Office, in partnership with the California Workforce Development Board (WDB) and Mission Community College, developed the Energy Transit Apprenticeship Program (ETAP). The Clean Transportation Program funded the apprenticeship program. The ETAP was institutionalized by the California Division of Apprenticeship Standards (DAS) for the Santa Clara Valley Transportation Authority (VTA) with Mission Community College as the lead educational agency. The project established the DAS-registered apprenticeships for municipal coach operators and service mechanics. The project supported an initial enrollment of more than 200 apprentices, established the Mission
Community College Department of Transportation Studies, and created 29 transit career pathway courses and two certificates. The project included ongoing collaboration with the transit districts of San Mateo, Alameda County, Golden Gate Bridge Highway and Transportation, the City of Fresno, and the City of Stockton. The ETAP is a transferable model available to regional WDBs. The ETAP is designed to meet the projected growth in zero-emission bus procurement and accompanying demand for transit workers that can service and operate these electric bus fleets throughout the state.

The CEC has a long-standing partnership with the community colleges through their Advanced Transportation and Logistics Initiative (ATL, formerly the Advanced Transportation and Technology Centers). This partnership includes:

- **ZEV Curricula** — College faculty developed ZEV curricula for degrees, credit, and certificates at their college for zero-emission vehicle technology for light-duty and truck/bus platforms. A new training project focuses on ZEV curricula in community colleges in communities that serve students in disadvantaged communities and low-income populations.

- **Electric School Bus Training Project** — The CEC awarded funding to school districts to replace diesel school buses with electric school buses in 2019. School districts will receive customized training from nearby experienced community college faculty on these buses for maintenance/service technician staff and school bus operators.

- **ZEV Pilot Career Opportunity Project** — In 2018, ATL, led by Cerritos Community College, developed a pilot training project at high school career technical education (CTE) automotive programs. The project builds on existing high school automotive programs and increases awareness for the state’s high school students in clean transportation careers. Twenty-seven high schools have been awarded funds to establish “Auto 3: ZEV Technology” credit technical training programs that have a career pathway to clean automotive programs offered at California the community colleges.

These projects have already provided a significant return on investment, especially in equity communities where schools are located. A next step will be to strategically evaluate innovations in training that can lead to higher wages through Automotive Service Excellence (ASE) certifications for automotive and truck ZEV technologies and facilities at high schools.

As ZEV technology spreads to the freight sector, workforce training and development are critical. Workers at seaports and neighboring communities throughout the state are exposed to significant pollution and deleterious health impacts. The use of zero-emission freight technology and the freight workforce is noted in the *California Sustainable Freight Action Plan* (CSFAP) and in the work of the CEC’s Ports Energy Collaborative. The CEC recognizes the importance of a sustainable freight workforce and funded two projects:

- **Zero-Emission Port Equipment: Workforce Assessment** — The Port of Long Beach was awarded Clean Transportation Program funds to demonstrate 25 zero-emission freight vehicles. The Port of Long Beach hired Long Beach City College to perform a workforce gap analysis. The Freight Workforce Assessment addresses issues regarding the deployment of
these pieces of equipment, equipment/vehicle adoption projections, potential job growth, and job competencies.

- **Sustainable Freight Foundations Certificate** — The CSFAP identified as a priority action the analysis of key freight workforce skills needed for a sustainable freight system. The CEC, in partnership with California State University, Long Beach, and the University of Southern California, are establishing a pilot project for a sustainable freight foundations certificate. The pilot project will inform the most critical issues for workforce development in the freight industry.

In a March 2019 “*Integrated Energy Policy Report* Staff Workshop on the Electric Vehicle Charging Infrastructure Assessment AB 2127,” CARB provided a presentation on the effect and growth of state policies/regulations for zero-emission vehicle/equipment technologies. In addition to the ICT and ACT Regulations noted above, CARB noted that at least five other regulations are in development. The procurement horizons for these ZEV technologies is now. These regulations will require an analysis of affected occupations and skillsets to transform the workforce across all job classifications, industries, and markets of public and private employers.

Executive Order N-33-20 directed all Californians to abide by the state health directives to stay at home “except as needed to maintain continuity of essential critical infrastructure sectors ... critical to protect health and well-being of all Californians.” Exclusions to this directive included automotive service and repair shops and vehicle manufacturing plants that produce products used by health care workers, such as face masks and ventilators, during this pandemic.

As the world and California wrestles with the effects of COVID-19 and impacts to lives and livelihood, strategic thinking and investments of limited workforce funds must be used to support a recovering economy that continues toward the clean transportation economy. Clean air has been on display during this time and reminds Californians that ZEV technology and the people who manufacture and service these technologies are key to achieving a reduced pollution future. Alignment with new initiatives, policies, and high road approaches such as Just Transition, reentry training for formerly incarcerated, clean transportation literacy, and others must be evaluated as a new framework for future funding and partnership opportunities. Moreover, future investments must consider new service, training, and educational delivery methods and creative solutions as discovered during the pandemic as educational institutions adjusted their teaching systems and platforms for continued education.

As this Investment Plan Update has noted, CALeVIP is the primary investment instrument of the CEC for EVSE funding in meeting the state’s ZEV infrastructure goals. Analysis of workload, key occupations, training, licensing, and projections for the numbers of workers needed should be analyzed to ensure that ZEV infrastructure goals can be met considering COVID-19 impacts to the construction and electrical industries.

Summary

Based on the state’s development of zero-emission transportation regulations and shifts in training delivery in the near term and needed funds in FY 2021–2022, the CEC allocates $1.5
million for workforce training and development projects. The CEC will continue to explore new public-private partnerships and leverage limited capital to determine how Clean Transportation Program funding can best be invested to maximize the benefits of this funding. Workforce training and development investments will prioritize disadvantaged communities, low-income communities, underrepresented populations, and economically disadvantaged high schools to ensure equitable participation in the clean transportation economy.

Recovery and Reinvestment
The CEC is reviewing ideas for projects that accelerate clean transportation growth in California while addressing the devastating social and economic fallout from COVID-19. Such projects could address near-term improvements to existing projects, as well as longer-term initiatives to increase private capital commitments. Federal cost-share opportunities may also be considered. An early priority will be to create jobs through EV charging infrastructure using pilot financing mechanisms for EV charging projects. These mechanisms may include integration with the electricity grid and renewable electricity sources, energy storage, demand charge management, and energy resiliency for locations in transmission-constrained and wildfire-prone areas. The programs will consider other state incentive funds and will fill gaps to complement and attract private capital or leverage federal incentives or both at high ratios of private capital-to-state investment. Concepts may include EV charging in homes, multiunit dwellings, fleets, workplaces, travel corridors, faith-based institutions, and other locations including truck, bus, and commercial vehicle facilities.

The CEC will also pursue concepts to demonstrate pilot financing mechanisms for low-carbon fuel production plants and distribution blending facilities, hydrogen fueling infrastructure, zero- and near-zero-emission trucks and buses, biofuel and renewable gas distribution and storage systems, and other clean transportation projects.

The CEC will also pursue broader private investment options that will reconfigure existing government programs. The investments and new initiatives will create jobs, achieve greater reductions of GHG and criteria air pollutants and displacement of petroleum fuels. The increased private capital flow through investment funds, green bonds, and other mechanisms can help address the total investment needed.

Summary
For FY 2020–2021, the CEC is allocating $10 million to leverage Clean Transportation Program to provide quick recovery and reinvestment measures that build infrastructure while supporting job creation, economic development, and equity, especially for areas and people most affected by COVID-19.

School Bus Replacement Program
As mentioned in Chapter 2, the School Bus Replacement Program is helping schools throughout the state transition from old, polluting diesel school buses to zero- or low-emissions vehicles, improving children’s health by limiting their exposure to transportation-related air pollution and building the green economy. School districts applied for grants to replace more than 1,600 diesel school buses, but the program had enough funding for only
233 zero-emission buses and charging infrastructure. Given the harmful impacts to children from exposure to toxic diesel exhaust, the state should prioritize replacing older diesel school buses with clean, new electric buses, particularly in disadvantaged communities.

Senate Bill 110 (Committee on Budget and Fiscal Review, Chapter 55, Statutes of 2017) appropriated the available remaining funds from the implementation of the Proposition 39 K-12 Program to establish the School Bus Replacement Program at the CEC. SB 110 provided one-time funding of $75 million for the replacement of old diesel school buses with battery-electric school buses in disadvantaged and low-income communities throughout California.

The $75 million from Proposition 39 funding is being used exclusively for the purchase of battery-electric school buses. In addition, about $14 million in Clean Transportation Program funds is available to provide the necessary charging infrastructure to operate the buses. Finally, the CEC is providing $1 million in Clean Transportation Program funds for workforce training and development, collaborating with local community colleges to develop curricula for school districts that were awarded electric school buses.

Solicitations and Awards

The School Bus Replacement Program used a two-phased approach to select buses for funding. During the first phase, staff released a solicitation allowing all school districts, county offices of education, and joint power authorities in California to apply for up to 10 buses for replacement. The CEC received more than 200 applications with more than 1,600 diesel school buses requested for replacement, the oldest of which was a 1978 diesel school bus. School buses were evaluated based on three factors: age of bus, applicant’s percentage of free and reduced-price meals recipients, and applicant’s disadvantaged community score from CalEnviroScreen 3.0.

The second phase of the program also kicked off in November 2018 with a solicitation to select an electric school bus manufacturer(s) or dealer to design, construct, and deliver the electric school buses. This solicitation sought to establish a bulk purchase price for school districts, COEs, and JPAs to use. Applications passing a technical evaluation competed in the bus bid evaluation, where the lowest cost bid was selected for each bus type.

From the initial rank list of buses, the CEC was able to fund 233 electric school buses, with an additional $60,000 in infrastructure funding per bus. Table 12 shows a breakdown of the number of awardees, number of buses awarded, total number of seats available on the electric buses in each region, and the total bus and infrastructure awards in each of the four regions. With almost $75 million in funding for school buses, the CEC can fund 12,185 seats for students. Nearly 90 percent of the awardees are in disadvantaged communities.
Table 12: School Bus Replacement Program Awardees

<table>
<thead>
<tr>
<th>Region</th>
<th>Number of Awardees</th>
<th>Number of Buses Awarded</th>
<th>Total Number of Seats Funded</th>
<th>Total Bus Award</th>
<th>Total Infrastructure Award</th>
</tr>
</thead>
<tbody>
<tr>
<td>North</td>
<td>18</td>
<td>59</td>
<td>3,183</td>
<td>$18,581,444</td>
<td>$3,540,000</td>
</tr>
<tr>
<td>Central</td>
<td>23</td>
<td>58</td>
<td>3,662</td>
<td>$18,974,613</td>
<td>$3,480,000</td>
</tr>
<tr>
<td>Los Angeles</td>
<td>12</td>
<td>59</td>
<td>2,250</td>
<td>$18,638,763</td>
<td>$3,540,000</td>
</tr>
<tr>
<td>South</td>
<td>11</td>
<td>57</td>
<td>3,090</td>
<td>$18,719,024</td>
<td>$3,420,000</td>
</tr>
<tr>
<td>Total</td>
<td>64</td>
<td>233</td>
<td>12,185</td>
<td>$74,913,844</td>
<td>$13,980,000</td>
</tr>
</tbody>
</table>

Source: California Energy Commission.

In July 2019, the CEC approved most of the electric school bus replacement and manufacturing agreements. Recipients with fully executed agreements are placing orders with manufacturers for new battery-electric school buses and working with their local utilities to install the necessary electric infrastructure. All buses are expected to be delivered by October 2022.

Further Opportunities

There remain more than 1,300 buses that could not be funded under the CEC’s School Bus Replacement Program because of insufficient funding. Fully funding the remaining buses would require an additional $422 million, as well as $79 million in needed infrastructure.

For FY 2020–2021, the CEC is not funding the School Bus Replacement Program or folding school buses into the Medium- and Heavy-Duty Zero-Emission Vehicle and Infrastructure funding category because of the emphasis on COVID-19 economic recovery priorities and job creation. School bus replacement is an important to the CEC and will be assessed in future funding plans.
Summary of Related Opportunities Allocations

Table 13: Multiyear Funding for Related Opportunities

<table>
<thead>
<tr>
<th>Category</th>
<th>FY 2020-2021</th>
<th>FY 2021-2022</th>
<th>FY 2022-2023</th>
<th>FY 2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relevant Policy Goals:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– GHG Reduction</td>
<td>$2.0 Million</td>
<td>$3.0 Million</td>
<td>$1.5 Million</td>
<td>$2.5 Million</td>
</tr>
<tr>
<td>– Petroleum Reduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Air Quality</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Equitable Economic Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workforce Training and Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relevant Policy Goals:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– GHG Reduction</td>
<td>$1.5 Million</td>
<td>$2.0 Million</td>
<td>$1.5 Million</td>
<td>$2.5 Million</td>
</tr>
<tr>
<td>– Petroleum Reduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Air Quality</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Equitable Economic Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recovery and Reinvestment</td>
<td>$10.0 Million</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relevant Policy Goals:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Equitable Economic Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Job Creation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>$13.5 Million</td>
<td>$5 Million</td>
<td>$3 Million</td>
<td>$5 Million</td>
</tr>
</tbody>
</table>

Source: California Energy Commission
GLOSSARY

AIR POLLUTANT – Amounts of foreign or natural substances occurring in the atmosphere that may result in adverse effects to humans, animals, vegetation, or materials or any combination thereof.

ANAEROBIC DIGESTION – A biological process in which biodegradable organic matter is broken down by bacteria into biogas, which consists of methane (CH₄), carbon dioxide (CO₂), and trace amounts of other gases. The biogas can be further processed into a transportation fuel or combusted to generate heat or electricity.

BATTERY-ELECTRIC VEHICLE – A type of electric vehicle that derives power solely from the chemical energy stored in rechargeable batteries.

BIOGAS – A mixture of biodegradable organic waste and methane (CH₄) gas that is produced during the anaerobic digestion process. The biogas can be further processed into a transportation fuel or combusted to generate heat or electricity.

BATTERY – A device that stores electrical energy in a form that can be drawn upon to supply power. Batteries are used in electric vehicles to store the electrical energy needed to power the vehicle's propulsion system.

BIOENERGY – Renewable energy derived from organic material that has been newly or recently formed OR has a partial ecological life cycle reformation. It includes biomass and, more narrowly, biofuels.

BIOMETHANE – A pipeline-quality gas that is fully interchangeable with conventional natural gas and can be used as a transportation fuel to power natural gas engines. Biomethane is most commonly produced through anaerobic digestion or gasification using various biomass sources. Also known as renewable natural gas (RNG).

BRITISH THERMAL UNIT (Btu) – A unit of heat energy. One Btu is equal to the amount of energy required to raise the temperature of 1 pound of water by 1 degree Fahrenheit at sea level. One Btu is equivalent to 252 calories, 778 foot-pounds, 1,055 joules, or 0.293 watt-hours.

CARBON DIOXIDE EQUIVALENT – A measure used to compare emissions from various greenhouse gases based upon the related global warming potential. The carbon dioxide equivalent for a gas is derived by multiplying the mass of the gas by the associated global warming potential.

CARBON INTENSITY – A measure of greenhouse gas emissions by weight per unit of energy. A common measure of carbon intensity is grams of carbon dioxide equivalent greenhouse gases per megajoule of energy (gCO₂e/MJ).

CRITERIA AIR POLLUTANT – An air pollutant for which acceptable levels of exposure can be determined and for which the U.S. Environmental Protection Agency has set an ambient air quality standard. Examples include ozone (O₃), carbon monoxide (CO), nitrogen oxides (NOₓ), sulfur oxides (SOₓ), and particulate matter (PM₁₀ and PM₂.₅).

DIRECT-CURRENT FAST CHARGER – Equipment that provides charging through a direct-current plug, typically at a rate of 50 kilowatts or higher.

ELECTRIC VEHICLE – A vehicle that uses an electric propulsion system. Examples include battery-electric vehicles, hybrid electric vehicles, and fuel cell electric vehicles.
ELECTROLYSIS – A process by which a chemical compound is broken down into associated elements by passing a direct current through it. Electrolysis of water, for example, produces hydrogen and oxygen.

ETHANOL – A liquid that is produced chemically from ethylene or biologically from the fermentation of various sugars from carbohydrates found in agricultural crops and cellulosic residues. Used in the United States as a gasoline octane enhancer and oxygenate, or in higher concentration (E85) in flex-fuel vehicles.

FEEDSTOCK – Any material used directly as a fuel or converted into fuel. Biofuel feedstocks are the original sources of biomass. Examples of biofuel feedstocks include corn, crop residue, and waste food oils.

FLEX-FUEL VEHICLE – A vehicle that uses an internal combustion engine that can operate on alcohol fuels (methanol or ethanol), regular unleaded gasoline, or any combination of the two from the same fuel tank.

FUEL CELL – A device capable of generating an electrical current by converting the chemical energy of a fuel (for example, hydrogen) directly into electrical energy.

FUEL CELL ELECTRIC VEHICLE – A type of electric vehicle that derives power from an onboard fuel cell.

GREENHOUSE GAS – Any gas that absorbs infrared radiation in the atmosphere. Common examples of greenhouse gases include water vapor, carbon dioxide (CO₂), methane (CH₄), nitrous oxide (N₂O), halogenated fluorocarbons (HCFCs), ozone (O₃), perfluorinated carbons (PFCs), and hydrofluorocarbons (HFCs).

HIGH-SOLIDS ANAEROBIC DIGESTION – High-solids anaerobic digestion process is one in which the percentage of total solids of the feedstock is greater than 15 percent, and little or no water is added to the digester.

HYBRID VEHICLE – A vehicle that uses two or more types of power, most commonly using a combustion engine together with an electric propulsion system. Hybrid technologies typically expand the usable range of electric vehicles beyond what an electric vehicle can achieve with batteries alone and increase fuel efficiency beyond what an internal combustion engine can achieve alone.

INTELLIGENT TRANSPORTATION SYSTEM – The application of advanced information and communications technology to surface transportation to achieve enhanced safety, efficiency, and mobility while reducing environmental impact.

INVESTOR-OWNED UTILITY – A private company that provides a utility, such as water, natural gas, or electricity, to a specific service area. The California Public Utilities Commission regulates investor-owned utilities that operate in California.

LANDFILL GAS – Gas generated by the natural degradation and decomposition of municipal solid waste by anaerobic microorganisms in sanitary landfills. The gases produced, carbon dioxide and methane, can be collected by a series of low-level pressure wells and can be
processed into a medium Btu gas that can be further processed into a transportation fuel or combusted to generate heat or electricity.

LEVEL 1 CHARGER – Equipment that provides charging through a 120-volt alternative-current plug.

LEVEL 2 CHARGER – Equipment that provides charging through a 240-volt (typical in residential applications) or 208-volt (typical in commercial applications) alternative-current plug. This equipment requires a dedicated 40-amp circuit.

MEGAJOULE – One million joules. A joule is a unit of work or energy equal to the amount of work done when the point of application of force of 1 newton is displaced 1 meter in the direction of the force. One British thermal unit is equal to 1,055 joules.

METHANE – A light hydrocarbon that is the main component of natural gas. It is the product of the anaerobic decomposition of organic matter or enteric fermentation in animals and is a greenhouse gas. The chemical formula is CH₄.

MICROMETER – One millionth of a meter, equal to roughly 0.00004 inches.

NATIONAL AMBIENT AIR QUALITY STANDARDS – A set of standards established by the U.S. EPA for six criteria air pollutants, measured by the amount of each pollutant for a specified period.

NATURAL GAS – A hydrocarbon gas found in the earth composed of methane, ethane, butane, propane, and other gases.

NOₓ – Oxides of nitrogen, a chief component of air pollution that is commonly produced by the burning of fossil fuels.

OVERGENERATION – A condition that occurs when total electricity supply exceeds total electricity demand. This condition may negatively affect the reliable operation of the regional, state, or interstate electrical grid.

PARTICULATE MATTER – Any material, except pure water, that exists in a solid or liquid state in the atmosphere. The size of particulate matter can vary from coarse, wind-blown dust particles to fine particle combustion products.

PATHWAY – A descriptive combination of three components including feedstock, production process, and fuel type.

PLUG-IN ELECTRIC VEHICLE – A type of vehicle that is equipped with a battery than can be recharged from an external source of electricity. It may or may not also have an internal combustion engine.

PLUG-IN HYBRID ELECTRIC VEHICLE – A type of hybrid vehicle that is equipped with a larger, more advanced battery that can be recharged from an external source of electricity. This larger battery allows the vehicle to be driven on battery power alone, gasoline fuel alone, or a combination of electricity and gasoline.

ZERO-EMISSION VEHICLE – A vehicle that produces no pollutant emissions from the onboard source of power.
APPENDIX A:
LIST OF ACRONYMS

AB Assembly Bill
AQIP Air Quality Improvement Program
ARPA-E Advanced Research Projects Agency – Energy
ASE Automotive Serve Excellence
ATL Initiative Advanced Transportation and Logistics Initiative
BEV battery-electric vehicle
CaFCP California Fuel Cell Partnership
CA-GREET California Greenhouse Gases, Regulated Emissions, and Energy Use in
Transportation Model
CALeVIP California Electric Vehicle Infrastructure Project
CalRecycle California Department of Resources Recycling and Recovery
CARB California Air Resources Board
CEC California Energy Commission
CHIT California Hydrogen Infrastructure Tool
CNG compressed natural gas
CO₂e carbon dioxide-equivalent greenhouse gases
COE county office of education
CPUC California Public Utilities Commission
CSFAP California Sustainable Freight Action Plan
CVRP Clean Vehicle Rebate Project
DAS Division of Apprenticeship Standards
DC direct current
DGE diesel gallon-equivalent
EPIC Electric Program Investment Charge
ETAP Energy Transit Apprenticeship Program
EVs electric vehicles
EVCS electric vehicle charging station
EVI-Pro Electric Vehicle Infrastructure Projections
FCEV fuel cell electric vehicle
FRPM free and reduced-price meals recipient
FY fiscal year
GFO grant funding opportunity
GGE gasoline gallon-equivalent
GGRF Greenhouse Gas Reduction Fund
gCO₂e/MJ grams of carbon dioxide-equivalent greenhouse gases per megajoule
GVW gross vehicle weight
GHG greenhouse gas
HVIP Hybrid and Zero-Emission Truck and Bus Voucher Incentive Project
HRI hydrogen fueling infrastructure