DOCKETED	
Docket Number:	20-IEPR-02
Project Title:	Transportation
TN #:	234175
Document Title:	Presentation - EVSE Deployment and Grid Evaluation (EDGE) Tool
Description:	S2. 3 Micah Wofford, CEC
Filer:	Raquel Kravitz
Organization:	California Energy Commission
Submitter Role:	Commission Staff
Submission Date:	8/3/2020 11:18:00 AM
Docketed Date:	8/3/2020

EVSE Deployment and Grid Evaluation (EDGE) Tool

Micah Wofford, Associate Energy Specialist August 4, 2020

Overview

- Context
 - Background
 - Objectives
- Design
 - Data Inputs
 - Model Framework
 - Geospatial Analysis
 - Capacity Allocation
- Concept for Metric: Equitable Smart Charging Factor
- Limitations

Background

Electric vehicles utilizing public charging ports

- AB 2127 assess infrastructure necessary to support 5 million ZEVs on CA roads by 2030
- SB 1000 assess disproportionality of EV charging infrastructure installations
- Infrastructure quantification analyses – number of chargers (by type and location) needed to support ZEV deployment goals

Objectives

- Analytical process flow deploy sufficient infrastructure for all
- Tool to help users strategically target EVSE deployment and plan future infrastructure investments in order to:
 - Minimize/mitigate grid impact
 - Achieve air quality improvement targets
 - Meet EV travel demand in CA
 - Ensure equitable deployment
- EDGE domains
 - Grid impact
 - Air quality
 - Travel demand
 - Equity considerations

Data Inputs

- EVI-Pro/HEVI-Pro quantification results
 - Used as the primary basis upon which other analyses are layered
- G Grid impact
 - Integration Capacity Analysis (ICA) regional distribution grid capacity
- A Air quality
 - Energy Assessments Division GHG emissions factors
- T Travel demand
 - Alternative Fuels Data Center (AFDC) existing infrastructure environment
- E Equity considerations
 - SB 1000 disproportionality assessment/equitable accessibility
- Value of smart-charging solutions
 - Location Affordability Index (LAI)

Model Framework

- Shape/size constraints
 - Origin-destination (O-D) trip totals
 - Intra-zonal trip minimization
 - High statistical precision
- Outcomes
 - Similar trip quantities across TAZs
 - Low relative statistical error
 - TAZ density proportional to O-D trip amounts
- EDGE: CA Statewide Travel Demand Model (CSTDM) data

Geospatial Analysis

- T domain Number of TAZs in counties
- More TAZs → higher travel volume

- G+T domains grid capacity in TAZs
- Preliminary view of existing capacity to host chargers

Capacity Allocation

MW in a TAZ

EDGE Example: Distribution/Fulfillment Centers, San Bernardino

Concept for Metric: Equitable Smart Charging Factor

- Theoretical approach
- Combines household auto ownership burden with regional grid constraints
- Complement to TERPA
 - Assess value of smart charging solutions in low-income communities
 - Target equitable VGI projects

Analytical Limitations

- Data integrity
 - Integration Capacity Analysis (ICA)
 - Spatial discontinuities
 - Validation framework
 - Location Affordability Index dated info
 - Longitudinal Employer-Household Dynamics (LEHD) [2014]
 - Vehicle Miles Traveled (VMT) [2013-2015]
 - American Community Survey (ACS) [2016, 5-year period]
- Data acquisition
- Algorithm design

Stakeholder Feedback

To continue EDGE development, we welcome stakeholder input:

- Additional data sources?
 - Travel volumes between origins and destinations
 - Grid capacity estimation and validation
- How to improve allocation algorithms?
- Use cases in the queue:
 - Smart charging
 - Air quality attainment
 - Carbon emissions intensity
 - Equitable deployment of infrastructure
- User interfaces what features would be most user friendly?
- How to work with utilities to
 - Ensure data access and accuracy?
 - Secure the grid infrastructure data?

Thank You!

Micah Wofford

Associate Energy Specialist California Energy Commission Micah.Wofford@energy.ca.gov

Concept for Metric: Equitable Smart Charging Factor

- *A* = modeled vehicles per household
- V_{sf} = vehicle service flow cost
- V_{fc} = vehicle finance charges
- V_{fixed} = vehicle fixed ownership cost
- VMT = household vehicle miles traveled
- *MPG* = average miles per gallon

- G = average annual \$/gal gasoline
- R = average drivability to fuel cost ratio
- *Y* = household income
- MW_{grid} = areal grid capacity (lower bound)
- MW_{CD} = locational charging demand (upper bound)
- *N* = normalization coefficient (# households per census tract)