AB 2127 Charging Infrastructure: Other Programs to Accelerate EV Adoption

Noel Crisostomo, Fuels and Transportation Division
August 4, 2020
Outline

• AB 2127 Directive on “Other [needed charging infrastructure] Programs”
• Purpose of Transportation Electrification Regulatory Policies Act (TERPA) Concept
• How could TERPA work?
 • A hypothetical process flow using Charging Infrastructure Deployment Strategies to explain the analysis and delivery of one charging use case

• For reference, see prior presentations on this topic in the CPUC’s Transportation Electrification proceedings and CEC’s June IEPR workshop:
 • Benchmarking the Costs of Charging Infrastructure And Services (link)
 • Investor-Owned Utility Roles in Transportation Electrification (link)
 • Lessons Learned from Electricity Policy for Transportation Electrification (link)
...Consider all necessary charging infrastructure, including, but not limited to:

- **Existing Chargers**
 - Counting Chargers
 - Including in Low-income Communities *(SB 1000)*

- **Future Chargers**
 - Electric Vehicle Infrastructure Projections *(EVI-Pro 2)*
 - EVI-Pro
 - RoadTrip
 - Widespread Infrastructure for Ride-hailing EV Deployment *(WIRED)*
 - Medium- & Heavy-Duty EVI-Projections *(HEVI-Pro)*
 - Off-Road, Port and Airport Electrification

- **Charging Hardware and Software** *(Interoperability and Equipment Standards)*

- **Make- Ready Electrical Equipment** *(Building Codes & EVSE Deployment & Grid Evaluation, EDGE)*

- **Other Programs to Accelerate the Adoption of Electric Vehicles** *(Incentives, Investment, others)*
Purpose of TERPA

Accelerate widespread transportation electrification while leveraging limited public funds with private capital.

We could rise to the charging challenge by tuning our efforts:

Speed: Increase installation rate

Scope: Maximize eMiles enabled

Scale: Manage public investments
How could TERPA work?

Assess The Market

1. Assess Regional “Best Fit” Projects
2. Qualify EVSPs & Technology
3. Confirm Charging Demand
4. Assess The Market
5. Business Models

Invest In & Deliver Projects

1. Discover WTP
2. Select Supply Portfolio
3. Budget Public Investment
4. Tailor Awards to EVSPs
5. Alleviate Market Constraints
6. Utilities Serve EVSPs’ Projects
7. Source Funding
 - Ratepayer
 - Taxpayer
 - Feepayer
8. Acquire Sites
9. Reverse Auction
 - Bids → Supply
 - Laws → Demand

Discover WTP × eMiles Enabled (kWh) = Budget Public Investment

How could TERPA work?
A. Assess regional “best fit” projects

- The Port of Long Beach Community Electric Vehicle Blueprint (2019)
 - 100% ZE Drayage Trucks by 2035
 - Regional infrastructure plans for ZE Drayage Trucks to be developed
Integration Capacity: 51 MW
Charging Capacity: 61 MW
Capacity Shortfall: 10 MW

Transformer Upgrade: $40/kW
Utility Cost: $400,000

EDGE Example: PepsiCo, Quaker, and Amazon Distribution Centers, San Bernardino

Prices and quantities illustrative only
B. Qualify eligible suppliers

<table>
<thead>
<tr>
<th>Harmonize to Scale</th>
<th>Grow Partnerships</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interoperable: Convenient, Controllable, and Competitive</td>
<td>Lever Public and Ratepayer Investment with Private Capital</td>
</tr>
<tr>
<td>Local & Project Level ↔ Statewide Ecosystem</td>
<td>Project Finance and Innovative Economic Models</td>
</tr>
</tbody>
</table>

- CEC qualifies the EVSPs to participate in the RFPs via a two step analysis:
 - Viability to conduct due diligence of company incorporation and model
 - Technical standards to ensure quality

Diagram:

- OpenADR 2.0b or SEP 2.0b (Demand & Price Signals)
 1. Utility Direct Load Control
 2. Aggregator Managed
 3. Energy Management System

- OCPP 1.6J, 2.0 or others IEC 61851 (Equipment Management)

- ISO/IEC 15118 (Vehicle-To-Grid Communication)
 - ENERG STAR (Efficiency)
 - NIST Handbook 44 (Meter Accuracy)
 - Open Public Payment (Access)
B. Eligible EVSPs prepare bids

Avoided Cost of Charging in year for EVSP \((ACC_{y, EVSP}) \)

\[
= \frac{Public \; Investment \; (\$)}{Capability \; (kW \times h) \times Stations \; Installed \; Year} \times \text{Station}
\]

eMiles Enabled in year for EVSP \((E_{y, EVSP}) \)

\[
= \frac{kW \times (h_{measured} + h_{projected})}{Stations \; Installed \; Year} \times \text{Station}
\]

Depth of utilization for current or future technologies and Geographic Breadth of Network
B. Solicit supply (reverse auction)

2020 SCAG Drayage Truck RFP: Responses

<table>
<thead>
<tr>
<th>Bid</th>
<th>ACC ($/kWh)</th>
<th>E (kWh/y)</th>
<th>Project Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVSP1</td>
<td>5</td>
<td>10,000</td>
<td>Smart Depot EVSEs</td>
</tr>
<tr>
<td>EVSP2</td>
<td>10</td>
<td>5,000</td>
<td>Mobile EVSEs</td>
</tr>
<tr>
<td>EVSP3</td>
<td>12</td>
<td>15,000</td>
<td>Depot + mobile EVSE w/ Microgrid</td>
</tr>
</tbody>
</table>

Rank-ordered supply curve for the cost of charging energy (E_{EVSP}, ACC_{EVSP})

Prices and quantities illustrative only
C. Confirm charging demanded

2020 SCAG Drayage Truck RFP: Responses

<table>
<thead>
<tr>
<th>Bid</th>
<th>ACC ($/kWh)</th>
<th>E (kWh/y)</th>
<th>Project Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVSP1</td>
<td>5</td>
<td>10,000</td>
<td>Smart Depot EVSEs</td>
</tr>
<tr>
<td>EVSP2</td>
<td>10</td>
<td>5,000</td>
<td>Mobile EVSEs</td>
</tr>
<tr>
<td>EVSP3</td>
<td>12</td>
<td>15,000</td>
<td>Depot + mobile EVSE w/ Microgrid</td>
</tr>
</tbody>
</table>

Avoided Cost of Charging, $/kWh

- EVSP1 $5
- EVSP2 $10
- EVSP3 $12

Charging Demand by 2020, kWh

- 10k
- 20k
- 30k

e.g. 25,000 kWh of electricity is required by regulation (Advanced Clean Trucks) in the South Coast Air Basin

Prices and quantities illustrative only
D. Discover willingness to pay

2020 SCAG Drayage Truck RFP: Responses

<table>
<thead>
<tr>
<th>Bid</th>
<th>ACC ($/kWh)</th>
<th>E (kWh/y)</th>
<th>Project Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVSP1</td>
<td>5</td>
<td>10,000</td>
<td>Smart Depot EVSEs</td>
</tr>
<tr>
<td>EVSP2</td>
<td>10</td>
<td>5,000</td>
<td>Mobile EVSEs</td>
</tr>
<tr>
<td>EVSP3</td>
<td>12</td>
<td>15,000</td>
<td>Depot + mobile EVSE w/ Microgrid</td>
</tr>
</tbody>
</table>

Cost of sufficiently supplying regulatory demand = $12/kWh

Prices and quantities illustrative only.
E. Analyze sensitivities

2020 SCAG Drayage Truck RFP: Responses

<table>
<thead>
<tr>
<th>Bid</th>
<th>ACC ($/kWh)</th>
<th>E (kWh/y)</th>
<th>Project Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVSP1</td>
<td>5</td>
<td>10,000</td>
<td>Smart Depot EVSEs</td>
</tr>
<tr>
<td>EVSP2</td>
<td>10</td>
<td>5,000</td>
<td>Mobile EVSEs</td>
</tr>
<tr>
<td>EVSP3</td>
<td>12</td>
<td>15,000</td>
<td>Depot + mobile EVSE w/ Microgrid</td>
</tr>
</tbody>
</table>

Avoided Cost of Charging, $/kWh

- e.g. Supply
 - Grid controller (n-1) = $17/kWh
 - Cheaper Storage = $9/kWh

Prices and quantities illustrative only

Charging Demand by 2020, kWh

- HEVI-Pro

Statewide Ecosystem

Assess Needs

Expand Electric Vehicle Infrastructure Projections
F. Select sufficient supply portfolio

2020 SCAG Drayage Truck RFP: Selections

<table>
<thead>
<tr>
<th>Awards</th>
<th>ACC ($/kWh)</th>
<th>E (kWh/y)</th>
<th>Project Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVSP1</td>
<td>5</td>
<td>10,000</td>
<td>Smart Depot EVSEs</td>
</tr>
<tr>
<td>EVSP2</td>
<td>10</td>
<td>5,000</td>
<td>Mobile EVSEs</td>
</tr>
<tr>
<td>EVSP3</td>
<td>12</td>
<td>10,000</td>
<td>Depot + mobile EVSE w/ Microgrid</td>
</tr>
</tbody>
</table>

Prices and quantities illustrative only
G. Budget the public investment

2020 SCAG Drayage Truck RFP: Investments

<table>
<thead>
<tr>
<th>Awards</th>
<th>At Cost</th>
<th>(\Delta = ACC_{MC} - ACC_{EVSP})</th>
<th>Aggressive</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVSP1</td>
<td>$50,000</td>
<td>$70,000</td>
<td>$120,000</td>
</tr>
<tr>
<td>EVSP2</td>
<td>$50,000</td>
<td>$10,000</td>
<td>$60,000</td>
</tr>
<tr>
<td>EVSP3</td>
<td>$120,000</td>
<td>0</td>
<td>$120,000</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$220,000</td>
<td>+ $80,000</td>
<td>$300,000</td>
</tr>
</tbody>
</table>

At Cost Public Investment

\[
\text{At Cost Public Investment} = \sum_{1}^{3} ACC_{EVSP} \times E_{EVSP}
\]

Aggressive Public Investment

\[
\text{Aggressive Public Investment} = ACC_{MC} \times D_{HEVI-Pro}
\]

Prices and quantities illustrative only
2020 SCAG Drayage Truck RFP: Investments

<table>
<thead>
<tr>
<th>Awards</th>
<th>At Cost</th>
<th>(\Delta = \text{ACC}{MC} - \text{ACC}{EVSP})</th>
<th>Aggressive</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVSP1</td>
<td>$50,000</td>
<td>$70,000</td>
<td>$120,000</td>
</tr>
<tr>
<td>EVSP2</td>
<td>$50,000</td>
<td>$10,000</td>
<td>$60,000</td>
</tr>
<tr>
<td>EVSP3</td>
<td>$120,000</td>
<td>0</td>
<td>$120,000</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$220,000</td>
<td>+ $80,000</td>
<td>$300,000</td>
</tr>
</tbody>
</table>

Additional $80,000 *could* alleviate market constraints:
- Add Local Permitting Staff
- Train High Voltage Workforce

…and *could be* less expensive than the $400k grid upgrade

At Cost Public Investment

\[
\text{At Cost Public Investment} = \sum_{1}^{3} \text{ACC}_{EVSP} \times E_{EVSP}
\]

Aggressive Public Investment

\[
\text{Aggressive Public Investment} = \text{ACC}_{MC} \times D_{HEVI-Pro}
\]
H. Tailor awards to EVSPs

2020 SCAG Drayage Truck RFP: Investments

<table>
<thead>
<tr>
<th>Awards</th>
<th>At Cost</th>
<th>Barrier</th>
<th>Need/Use of Public $</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVSP1</td>
<td>$50,000</td>
<td>Low initial fleet use</td>
<td>Phase-in $/kW charges</td>
</tr>
<tr>
<td>EVSP2</td>
<td>$50,000</td>
<td>Small scale manufacturing</td>
<td>Facility Equipment CapEx</td>
</tr>
<tr>
<td>EVSP3</td>
<td>$120,000</td>
<td>Interconnection cost</td>
<td>Grid Controller CapEx</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$220,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prices and quantities illustrative only
I. Utility supports installations

- Construct needed upgrades
- Energize stations
- Design economic rates
How could TERPA work? (Summary)

Phase 1: Assess The Market

A. **Region analyzes needs** and identifies locally-appropriate project types

B. **CEC qualifies EVSPs** upon technical and viability bases. **Program Administrator (PA)** holds a reverse auction, quantifying the cost of charging from EVSPs.

C. **CEC confirms the inelastic demand for charging** consistent with California laws

D. **PA pools funds** and compares supply with demand to discover a **willingness to pay**

E. **PA and CEC analyze supply or demand sensitivities** (e.g. non-EV factors, regulation, innovation, new policy, …) to quantify and mitigate risks or market power

Phase 2: Invest In & Deliver Projects

F. **PA selects the cost-beneficial supply portfolio** from EVSPs to meet the electrification objective

G. Consulting with CEC and Agencies, **PA budgets the public investment needed** to deliver the portfolio according to the state of the broader market

H. **PA tailors the investments** in EVSPs according to their barrier(s) to entry

I. **Utilities serve load, energize, and offer economic rates** to the EVSPs’ projects
If further developed, TERPA could:

- **Speed** deployment on multiple fronts by expanding manufacturing & offering policy certainty to the workforce.

- **Broaden scope** of solutions and promote fair competition among them based on the cost to enable e-miles.

- **Scale** funding reach, fronting VGI value of saved upgrade to customers & offering predictable incentives to innovate.

We welcome additional exploration and your feedback!
Thank you! Questions or comments?

Contact:
Noel.Crisostomo@energy.ca.gov

Webpage:
https://www.energy.ca.gov/programs-and-topics/programs/electric-vehicle-charging-infrastructure-assessment-ab-2127