DOCKETED			
Docket Number:	20-IEPR-02		
Project Title:	Transportation		
TN #:	233575		
Document Title:	Use Case Assessment in the Joint Agencies VGI Working Group		
Description:	Presentation by Eric Martinot, Gridworks		
Filer:	Raquel Kravitz		
Organization:	Energy Commission		
Submitter Role:	Commission Staff		
Submission Date:	6/22/2020 1:54:08 AM		
Docketed Date:	6/22/2020		

Use Case Assessment in the Joint Agencies VGI Working Group

Eric Martinot Ph.D., Gridworks Senior Fellow
CEC Webinar on VGI and Charging Infrastructure
June 22, 2020

VGI Working Group and Use Case Assessment

Working Group addressed three scoped questions (Aug 2019 to Jun 2020):

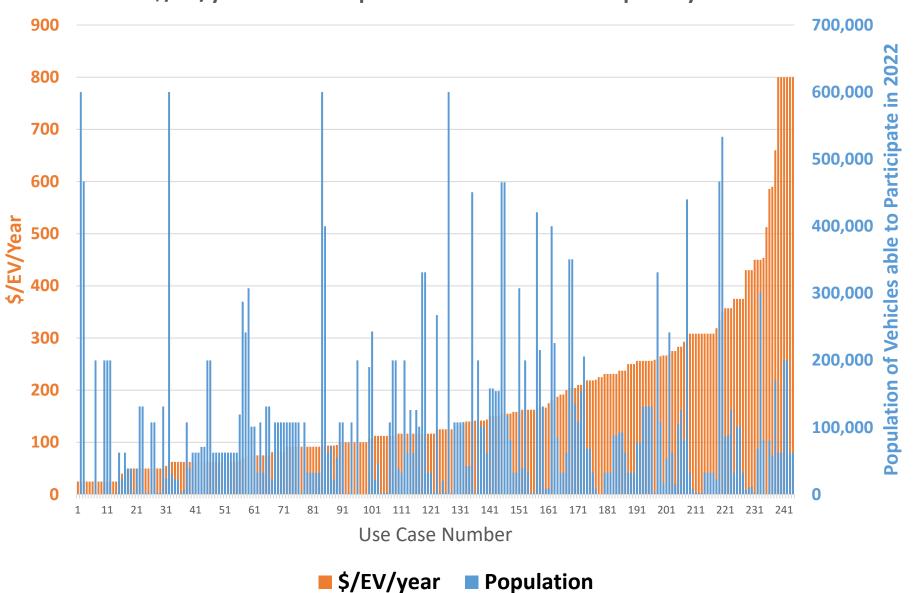
- a) What VGI use cases can provide value now, and how can that value be captured?
- b) What policies need to be changed or adopted to allow additional use cases to be deployed in the future?
- c) How does the value of VGI use cases compare to other storage or DER?

Use case assessment framework:

Sector Residential SFH/MUD, commercial, rideshare, truck & bus fleets

Application Customer (bill mgmt, backup, RE self-consumption, grid deferral) vs.

system services (ancillary, RE integration, etc.)


Type V1G or V2G

Approach Direct (managed charging) vs. Indirect (response to time-varying rates)

Resource EV and EVSE ownership/operation are unified or fragmented

Average Benefit Scores for LDV Use Cases (draft version) \$/EV/year and EV Population That Could Participate by 2022

Medium- and Heavy-Duty Vehicle Types & Policies GRIDWORKS

	Battery Capacity (kwh)	Charger Power (kw)	Other Technology Notes
Small Truck A	70-100 kWh	10-19 kW	Small Truck A: Class 5 Last Mile Delivery with L2 charging; Daytime deliveries, full charge satisfies duty cycle; needs 100% SOC to start shift between 1 and 6 AM.
Small Truck B	70-100 kWh	25 kW	Small Truck B: Class 5 Last Mile Delivery with low power DCFC; Daytime deliveries, full charge satisfies duty cycle; needs 100% SOC to start shift between 1 and 6 AM.
Long Range Transit Bus A	440 kWh	125 kW	Long Range Bus/Average Mile Route - depot overnight charging; duty cycle 06:00-20:00; 170 miles/day
Long Range Transit Bus B	440 kWh	125 kW	Long Range Bus/Average Mile Route - Enroute charging; duty cycle 06:00-20:00; 170 miles/day
Long Range Transit Bus C	440 kWh	125 kW	Long Range Bus/High Mileage Route - Depot and Enroute charging; duty cycle 04:00 to 01:00 next day; 230 miles/day
Short Range Transit Bus A	330 kWh	125 kW	Short Range Bus/Commuter Route - Overnight Depot Charging; Duty cycle 06:00-09:00 AND 14:00-18:00
Short Range Transit Bus B	330 kWh	125 kW	Short Range Bus/Commuter Route - Afternoon and Overnight Depot Charging; Duty cycle 06:00-09:00 AND 14:00-18:00
Airport Shuttle Bus		50 kW	Airport Shuttle Bus: frequent short trips, in use 5 AM-midnight; overnight charge, may be able to charge at midday
Transit Shuttle Van		L2	less frequent trips to serve transit need; overnight charging
Large Truck A	200-300 kWh	30-50 kW DC	Class 6 Short Haul Delivery - overnight charging, opportunistic daytime charging; duty cycle 03:00 start, return to depot b/w 14:00-19:00
Large Truck B	300 kWh	100 kW DC	Class 8 drayage/delivery - overnight charging only; duty cycle 03:00 start, return to depot b/w 14:00-19:00
Large Truck C	450 kWh	150 kW DC	Class 8 Drayage/Delivery - overnight charging, opportunistic daytime charging; duty cycle 03:00 start, return to depot b/w 14:00-19:00
School Bus A	156 kWh	18 kW L2 or 60 kW with V2G	School Bus Type D (36,200 lbs. GVWR): duty cycle 07:00-0:900 and 014:00-16:00
School Bus B	106-127 kWh	25 kW 3-phase L2	School Bus Type C (22,000 lbs. GVWR): duty cycle 07:00-0:900 and 014:00-16:00
School Bus C	85-127 kWh	25 kW 3-phase L2	School Bus Type B (14,000 lbs. GVWR): duty cycle 07:00-0:900 and 014:00-16:00

Customer bill management use cases

- Highest scored application in terms of benefits for both LDV and MHDV (plus RE self-consumption for MHDV)
- Highly-scored use cases (all V1G; both direct and indirect):
 - Residential SFH & MUD; Residential SFH & MUD Rideshare
 - Commercial Public Commute, Rideshare and Workplace
 - Workplace both unified and fragmented resource scored highly
- Some policy recommendations with "strong agreement"
 - Create an "EV fleet" commercial rate that allows commercial and industrial customers to switch from a monthly demand charge to a more dynamic rate structure
 - Require utilities to broadcast signals to a DER marketplace of qualified vendors (curtailment and load)
 - Enable customers to employ load management technologies to avoid distribution upgrades

V2G use cases and V2B/V2H backup/resiliency

- Highly-scored use cases:
 - Residential SFH for backup and resiliency
 - Commercial workplace for bill management & backup/resiliency
 - Commercial fleet transit and school buses for bill management and system day-ahead energy
- Some policy recommendations with "strong agreement"
 - V2G systems become eligible for some form of SGIP incentives
 - Coordinated utility and CCA incentives for EVs, solar PV, inverters, battery storage, capacity, and charging infrastructure to support resilience efforts in communities impacted by PSPS events
 - Develop standards and requirements for buildings which will support the use of EV batteries for customer resiliency
 - Pilot funding for EV backup power to customers not on microgrids, including state-wide goals
 - Pilot funding for V1G and V2G for microgrid and V2M solutions, including a state-wide near-term goal; and utilities' PSPS plans and microgrid frameworks should consider EVs for grid services