

California Energy Commission DOCKETED 14-IEP-1B TN 72915 APR 11 2014

Natural Gas Pathways to Achieve Air Quality Goals

Presentation to CEC-IEPR Workshop on Transportation April 10, 2014

Natural Gas: A Foundational Fuel

✓ Abundant✓ Affordable✓ Domestic

Overview

- Natural Gas technology is relatively mature offering the opportunity to achieve significant emissions reductions in the near term
- Low natural gas prices will aid adoption as an economic decision
- Tanks and fuel systems are the largest contributors to vehicle cost differential – both will come down significantly over the next 10 years
- A variety of technology advances and increasing blends of Renewable Natural Gas will allow NG solutions to meet NOx and GHG goals over the mid and long term

Source:

Curves based on CARB Vision for clean air Scenario 3 in CARB vision model, available at http://www.arb.ca.gov/planning/vision/vision.htm

Natural Gas in Reducing Emissions

Potential for rapid increase in the N-ZEV Fleet

SoCal Regional NG HDV Adoption Firecast Scenario

Market Share Scenarios	CY2013	CY2020	CY2023	CY2030
Refuse	28.0%	55.5%	53.2%	62.4%
Transit	68.8%	68.8%	68.8%	68.8%
Drayage POLA / POLB	6.9%	6.9%	21.5%	22.1%
Regional / Beverage / Delivery	0.2%	5.5%	10.5%	24.5%
Line Haul	0.2%	8.7%	11.1%	21.3%
Total	4.0%	10.9%	14.5%	24.6%

Five Strategies to Further Reduce NOx and GHG Emissions from NGVs

NOx Reduction Pathway

GHG Reduction Pathway

Roadmap for NOx Reductions from Natural Gas HDVs

	Today	Near-term (2013-2023)		Long-term (2023-2032+)	
Targets	<0.2g NOx	<0.05g NOx	<0.02g NOx	ZE Miles, Net Zero, ZE Equivalent	
	Dedicated NG	Advanced Engines (improved combustion and engine efficiency reduce emissions)			
	engines	Hydrogen/methane blends, Improved ultra lean ignition & air/fuel control technologies (Reduces fuel pathway NOx emissions)			
Strategies / Technologies	Three-way catalysts, SCR	Advanced After-treatment	Hybrids: Battery-electric, Hydraulic	Hybrids: Catenary, Plug-in, Fuel Cell CNG/H2 Blends	
	Aerodynamics, Weight Reduction, and Rolling Resistance Reduction Strategies - e.g. DOE SmartWay and Super Truck (reduces vehicle energy needs and related fuel consumption)				
Examples	Thousands of Drayage trucks, transit buses, refuse trucks	 Enhanced 3- way catalyst Low emission Turbine 	Parker's hydraulic hybrid refuse truck	 US Hybrid's PHEV Drayage Truc Siemens Catenary Hybrid Trucl Future CNG PHEV or FCHV usin pipeline supplied RNG 10 	

Roadmap for GHG Reductions from Natural Gas HDVs

	Today	Near-term (20	13-2023)	Long-term (2023-2032+)	
	20% GHG	20%-30% GHG	30-40% GHG	50%+	
Targets	reductions	reductions	reductions	GHG reductions	
	w/o RNG	w/o RNG	w/o RNG	w/o RNG	
	Dedicated NG	Advanced Engines			
	engines	Renewable natural gas, improved ultra lean ignition & air/fuel controls technologies			
Strategies / Technologies	Three-way catalysts, SCR (enables higher efficiency engines)	Advanced After-treatment (enables higher efficiency engines)	Hybrids: Battery- electric, Hydraulic	Hybrids: Catenary, Plug-in CNG/H2 blends, RNG, Fuel Cell Hybrids	
	Aerodynamics, Weight Reduction, and Rolling Resistance Reduction Strategies (e.g. DOE SmartWay and Super Truck)				
Examples	Thousands of Drayage trucks, transit buses, refuse trucks	 Enhanced 3- way catalyst Low emission Turbine 	Parker's hydraulic hybrid refuse truck	 US Hybrid' PHEV Drayage Truck FCHV using pipeline supplied RN Future CNG PHEV 	

Siting Natural Gas Infrastructure in Proximity to Other Fleets Can Accelerate Emission Reductions: Ports Example

IPMEN

FUELING HUB

40% OF SCAQMD MOBILE EMISSIONS

OCEAN

GOING

VESSELS

FREIGHT

COMMERCIAL

HARBOR

CRAFT

NON-DRAVAGE

DRAFAGE

Putting the Strategies Together in a Pathway Example: Long Haul Truck

Putting the Strategies Together in a Pathway Example: Drayage/Short Haul Truck

Extending the Pathways to The Ports Natural Gas for Cargo Handling Equipment

Extending the Pathways to Off Road Locomotives

Today	2013-2015	2015-2023	2023-2032	2032+
Existing Tier 2 Locomotive •5.5 g NOx	 New engine options (HPDI, dynamic gas blending) LNG Tender Car 	 Tier 2 LNG Retrofits (<3 g NOx) Tier 4 LNG Newbuilds (<1.3 g NOx) 	Solid Oxide Fuel Cell Technology Near Zero Emissions Target Renewable NG blending	NZ-Emission Natural Gas Fuel Cell Locomotive •<0.02 g NOx •>60% efficiency
Ongoing RD&D for LNG fuel systems and engine conversions		 Benefits Tier 2: 45% NOx reductions Tier 2 and 4: 20% GHG reductions vs Tier 2 diesel 		Benefits* 98% + NOx reductions vs Tier 2 diesel 55%+ GHG reductions vs Tier 2 diesel w/o RNG
				Apha Test 220kW 203

Extending the Pathways to The Ports LNG for Marine Vessels

Today	2013-2015	2015-2018	2018-2023	2032+	
		Tier 1& 2 LNG rotrofite	Tankan		
Existing Tier 1 & 2 Vessels	• 1,000 ppm fuel sulfur limit for	 Tier 3 LNG new builds First LNG work boats, ferries, short sea shipping vessels 	Container Ships Tug boats	High penetration of LNG into marine vessel fleet – estimated at 10,000+ vessels	
•Ongoing RD&D for LNG fuel systems and vessel retrofits. •Development of	 Summer for marine vessels in ECAs Summer in the formation of the second sec	deployed Benefits • Up to 90% NOx reductions • 98%+ PM and SOx reductions • 20%+ GHG reductions	(new builds) Expanded LNG bunkering Vessel bydrodynamics	Benefits • NOx, PM, and SOx reductions	
LNG bunkering standards and infrastructure			Vessel size increases	 Deyond INIO Tier 3 GHG reductions of up to 70% 	

Numerous RNG and Related H2 Pathways Being Pursued

Technology Development Priorities

- Natural Gas Engine (and Turbine Drive) Development
- Next generation after-treatment
- Mild hybrids for accessories and fuel economy (tailored to duty cycle)
- Low-cost storage tanks (3600 psi and lower-pressure sorbent systems) – note that this is synergistic w/ FCV
- Low-cost compression systems including lowercapacity systems (small fleets... home refueling)
- Renewable Natural Gas pathways