

CalHEAT Research and Market Transformation Roadmap for Medium and Heavy Duty Trucks Joint Lead Commissioners Workshop on Transportation Energy July 31, 2013 -Fred Silver-VP CALSTART

Agenda

- What is CalHEAT and the Roadmap
- Outcomes and Assumption of the Roadmap
 - Key Issues and Recommendations for Going Forward
- Questions

What is CalHEAT?

- State center for research, development, demonstration and commercialization of advanced, efficient truck technologies and systems
- Initial funding by California Energy Commission
- Operated by CALSTART, a CA-based non-profit

Purpose of CalHEAT

- To drive and coordinate accelerated research, development and demonstration of cleaner, more efficient medium- and heavy-duty vehicles (M-HDVs)
- Enable commercialization of M-HDVs that enable State of California to meet its climate protection, air pollution, and energy security goals

CO2 Reduction from Roadmap

CalHEAT Truck Technology Roadmap

- Pathways for staged technology/market milestones to 2020
- Identifies needed actions to achieve milestones:
 - R&D
 - Demonstrations
 - Incentives and policies
- Leverage technology developments across platforms
- Roadmap is based on expected structure of market, applicability, ability to implement and benefits of technologies and approaches based on research
- Roadmap charts course of what's needed to meet 2020 goals (given California's multiple needed) as well as drive solutions needed beyond 2020

Technical Advisory Group

Advisory Council

- Direct Technical inputs into the <u>Transformation Roadmap</u>
- Technical and Industry Experts HTUF -OEMS -Fleets
- Assist with strategic direction with a focus on the <u>Transformation Roadmap</u>
- Govt Agencies, Visionaries, NGO's and Industry Associations.

Steering Committee

- Provide guidance, review and potentially contribute to the <u>Annual Research Plan</u>
- Demonstration and Funding Partners

Advisory Council and Steering Committee Members

- Reynaldo Gonzalez, Program Engineer Public Interest Energy Research California Energy Commission
- Jack Broadbent-Executive Officer- Bay Area Air Quality Management District
- Seyed Sedriden, Air Pollution Control Officer, San Joaquin Air Pollution Control District
- Doug Failing- Executive Director Highway Programs, Los Angeles County MTA
- Mark Duvall, Manager, Technology Development-Electric Power Research Institute
- Erik White- Assistant Division Chief California Air Resources Board Mobile Source Control Division
- Jack Kitowski-Chief Freight Transportation Branch- California Air Resources Board
- Joe Calavita- HVIP Program Manager- California Air Resources Board
- Rick Cameron/Heather Tomley Director of Environmental Planning Port of Long Beach (Advisory)
- Rose Siengsubcharti/Allyson Teramoto Environmental Specialist Associate, Port of Long Beach (Steering)
- Jeffrey Reed Director of Emerging Technologies SoCal Gas
- Ben Machol Manager Clean Energy & Climate Change Office US Environmental Protection Agency Region 9
- Christopher Patton, Environmental Affairs Officer Port of Los Angeles
- Kerry Cartwright Dir Goods Movement Port of Los Angeles
- Felix Oduyemi Senior Program Manager, Smart Grid Policy & Planning Southern California Edison
- Terry Penney, Laboratory Program Manager Vehicle Technologies, National Renewable Energy Laboratories
- Paul Skalny, Managing Director and CTO Venture Management Services
- Michael Roeth Executive Director-North American Council for Freight Efficiency
- Doyle Sumrall -Senior Director of Business Development, Nati'l Truck Equp. Assoc.
- Ben Sharpe International Council on Clean Transportation
- Connie Burek -Solutions Specialist, Heavy Equipment & Truck-IBM Global Business Services

CalHEAT Technical Advisory Group

•	Mark Howerton	Allison Transmission Inc	•	IVI
•	Darren Gosbee	Navistar Hybrid	•	Jo
•	Philip Schnell	AVL Powertrain Engineering	•	Jo
•	Jan Hellaker	Volvo Group	•	Te
•	Dave Mazaika	Quantum Technologies	•	D
•	Joe Vollmer	Sturman Industries	•	Μ
•	Patric Ouellette	Westport Innovations	•	Μ
•	Jim Mancuso	Azure Dynamics	•	A
•	Mike Mekhiche	BAE Systems	•	Μ
•	Rudy Smalling	Cummins Inc	•	G
•	Vincent Duray	Eaton Corp	•	Da
٠	Dan Bowermaster	Electric Power Research Institute	•	Μ
٠	John Duffy	Kenworth Truck Company	•	Jo
٠	Mihai Dorobantu	Eaton Transmissions	•	Jo
٠	Tim Carmichael	Cal Natural Gas Vehicle Coalition	•	A
•	Tony Greszler	Volvo Group	•	Ji
•	John LeGrandeur	Amerigon	•	Je
٠	Mark Greer	Altec		
•	Dennis DePazza	Terex		

. . . .

United Parcel Service Michael Britt . e Gold **Frito-Lay NA** Southern California Edison ordan Smith erry Penney **National Renewable Energy Labs** ovle Sumrall **National Truck Equipment Assoc** arc Wiseman **Ricardo Inc** like Simon Transpower an Welch Westport Innovations like Stark **Freightliner Custom Chassis** ordon Excel **Cummins Westport Daimler Trucks North America** ave Bryant ichele Duhadway Bosch Rexroth n Koszewnik **Achates Power** hn Liputz Westport Light Duty NA bas Goodarzi **US Hybrid** m Kesseli **Brayton Energy** effrey Reed Sempra

6 Truck Categories – Based on Tech Applicability

Class 7/8 Tractors

Over the Road	 Younger Trucks; High Annual VMT Mostly higher average speed, highway driving
Short Haul/ Regional	 Between cities; Drayage; Day Cabs Includes second use trucks; trucks with smaller engines

Class 3-8 Vocational Work Trucks

	Urban	 Cargo, freight, delivery collection Lower VMT; Lower Average speed; Lots of stop start
	Rural/ Intracity	 Cargo, freight, delivery collection Higher VMT; Higher Avg speed; Combined urban/ highway
	Work site support	 Utility trucks, construction, etc. Lots of idle time; Lots of PTO use
Class 2B/3		
	Pickups/ Vans	Commercial use; Automotive OEMs & volumes

Where We Are: Truck Categories, 2010 Populations and CO2e Emissions

	Truck	%	Average	CO2e	%
Vehicle Category	Population	Population	VMT	(MMT/yr)	CO2e
Tractors - OTR	175,000	12%	85,000	12.9	38%
Tractors - Short Haul/ Regional	111,000	8%	55,000	6.3	18%
Class 3 - 8 Work - Urban	253,000	17%	25,000	3.6	11%
Class 3 - 8 Work - Rural/ Intracity	295,000	20%	35,000	6.1	18%
Class 3 - 8 Work - Work Site	77,000	5%	13,000	0.8	2%
Class 2b/3 vans/pickups	531,000	36%	21,000	4.2	12%
Unknown	15,000	1%	8,192	0.1	0%
Total	1,457,000	100%	34,255	34.0	100%

Relative NOx by Truck Category

Area of circle: NOx x axis: truck population in CA y axis: avg. annual VMT

Technology Strategies

Advanced Electrification

- Hybrid-electric
- Electrified accessories
- Full electric powertrains
- Electrified Power take-off (PTO)
- Plug-in hybrid-electric
- External power to electric powertrain for ZEV Corridors
- AF/Hybrid Combinations

Engine and Driveline Efficiency

- Hydraulic hybrid
- Optimized engines for alternative fuel (AF)
- Energy recovery
- Engine efficiency improvements
- Alternative power plants and combustion cycles
- Transmission and driveline improvements

Chassis, Body, and Roadway Systems

- Light weighting
- Aerodynamics
- Lower rolling resistance
- Intelligent vehicle technologies, e.g. forecasting, adapting
- Corridors and platooning
- Longer, heavier single trucks

T e c h n o l o g y	Stage 1 economic goal: Lifetime ROI Stage 1 performance goals may include: • Demonstrate hybrid functionality • Commercially available • Fuel economy improvement of 20 to 30% Stage 1 technical characteristics may include: No engine off at idle, no electric accessories	 Stage 2 builds off Stage 1 Stage 2 economic goal: ROI 5 years w/o incentives Stretch goal: ROI 2-4 years Stage 2 technical characteristics may include: Engine off at idle Electric accessories (may not show up until Stage 3) Improved design and integration (most important) Fuel economy gain of 30-50% (can be sacrificed for low cost system) Alternatively a simpler, light hybrid approach with strong ROI Capable of meeting CA OBD 	Stage 3 build Stage 3 econ 3-5 years Stage 3 techr characteristic • Optimized e and integra • Increase er 5 kWh; des advantage energy stor regen; grea • CARB OBE • Much large (>65 kW), e series arch cost motors	Is off Stage 2 nomic goal: ROI nical cs may include: engine system ation nergy storage to sign to take of greater rage; better ater idle capacity D compliant er electric motors especially for itecture; reduced S	 Stage 4 builds off Stage 3 Stage 4 economic goal: ROI 2-4 years Stage 4 technical characteristics may include: Emergence of OTR hybrid-electric trucks as ROI decreases further and payback is within initial ownership of OTR tractors Enhanced performance from further enlarged energy storage capacity
	Sta	age 1 Hybrid Stage 2 R+D Deployment Stage 3 R+D Stage	Deployment	•	
A c t i o n s		 Stage 2 Action Items (draft list): SAE standardization of OBD interfaces (J1939) Pre-commercial demonstration support to hybrid driveline developers to improve design & integration (3 x \$4m per platform direct); requires ARB OBD compliance Create pull for e-accessories through requirements of solicitations Deployment Incentive support for Stage 2 by bridge start where 2 for a set of the set o	Stae 4 R+D> Stage 3 Action list): • R&D prototon hybrid-spector engines and cycles for har- applications battery, ele power elector advancementor pathways (here)	Deploymen on Items (draft type project for cific optimized id combustion hybrid s Integrate ectric motor and tronics ents from other lower cost,	Stage 4 Action Items (draft list): • Pre-commercial demonstration funding for the more- electric OTR hybrid truck
	2012	hybrids are commercially available (3yrs, lower per-vehicle incentive than today) 2014	2016	2018	2020

Technology Actions

CalHEAT uses five types of actions to accelerate technology solutions in the market

Studies	R&D	Pilot Demo	Precomm. Demos	Deploy. Incentives
Includes business case or technology feasibility studies.	Research and Development is a component or systems development activity for drivetrain systems and software.	A pilot demonstration is the full integration into a truck of a newly developed component or system to evaluate performance.	Pre-commercial demonstrations involve 1 to 50 trucks to evaluate performance in the field. Further system refinement precedes commercial production	Incentives for early deployment (when a supplier sells a commercial product in the marketplace)

CO2 Reduction Methodology

• Fuels accounted for some of CO2 reduction...

Technology Evaluation Grouping

Baseline	Energy recovery Engine efficiency improvements Transmission and driveline improvements Light weighting Aerodynamics Lower rolling resistance Intelligent vehicle technologies, e.g. forecasting, adapting Corridors and platooning Longer, heavier single trucks
New Combustion	Alternative power plants and combustion cycles
Fuel Cells	Alternative power plants / Alt fuels
Hydraulic	Hydraulic hybrid
HEV	Hybrid-electric Electrified accessories Electrified Power take-off (PTO)
xEV	Full electric powertrains Plug-in hybrid-electric External power to electric powertrain for ZEV Corridors

Technology Adoption Rates

Technology Adoption

All Truck Categories

CO2 Reduction from Roadmap

A Most Critical Assumption

- Roadmap assumes greater than two times fuel economy improvement standards to be established by EPA/NHTSA under phase 2 Federal Truck Regulations 2018
 - Phase two standards are under development now
 - Without fuel economy regulations of two times, GHG
 from medium and heavy trucks likely to slide by ten years+
 due to lack of industry investment

General Make up of the 2050 M-HD Truck Solution to Support 2050 GHG Target Reduction

- Growth Areas
 - Nearly 45% of truck 2050
 inventory will include significant
 electrification of the vehicles
 - Pure EV
 - Plugin Electric Hybrid and Dual mode vehicles for the ZE corridor I-710 Los Angeles Ports
 - Hybrid
 - Fuel Cell Range Extension
 - Electrified Accessories and Electric Power Takeoff

General Make up of the 2050 M-HD Truck Solution to Support 2050 GHG Target Reduction

- Growth Areas
 - 4% Hydraulic Hybridization- mostly refuse and delivery vehicles
 - 15-20% New combustion technologies including opposed piston engines, camless-digitally controlled engines and turbines

General Make up of the 2050 M-HD Truck Solution to Support 2050 GHG Target Reduction

- Diminishing Growth
 - Baseline Conventional Engine
 Technology still a robust 35-40 %
 - Include advanced engine efficiency technology derived from Waste heat recovery, general engine efficiency improvements combined with well integrated transmission and driveline efficiency improvements

Need for More Action on Commercialization of Lower GHG Solutions for Over the Road Trucks

	6 Truck Categories – Based on <u>Tech Applicability</u> Class 7/8 Tractors						
\lor		Over the Road	Younger Trucks; High Annual VMT Mostly higher average speed, highway driving				
		Short Haul/ Pogional	Between cities; Drayage; Day Cabs Includes second use trucks; trucks with smaller eng. as				
	Class 3-8	Vocational Wor	k Trucks				
		Urban	Cargo, freight, delivery collection Lower VMT, Lower Average speed; Lots of stop start				
		Rural/ Intracity	Cargo, freight, delivery collection Higher VMT; Higher Avg speed; Combined urban/ highway				
		Work site support	Utility trucks, construction, etc. Lots of idle time; Lots of PTO use				
	Class 2B/	3					
		Pickups/ Vans	Commercial use; Automotive OEMs & volumes				
	De	emo (Commercialization				

Momentum Occurring

Where We Are: Truck Categories, Populations and CO2e Emissions

/ehicle Category	Truck Pepulation Pop	% /	Average	CO2e MMT/vr)	% C02e
fractors - OTR	175,000	12%	85,000	12.9	38%
fractors - Short Haul/ Regional	111,000	8%	55,000	6.3	18%
lass 3 - 8 Work - Urban	253,000	17%	25,000	3.6	11%
lass 3 - 8 Work - Rural/ Intracity	295,000	20%	35,000	6.1	18%
lass 3 - 8 Work - Work Site	77,000	5%	13,000	0.8	2%
lass 2b/3 vans/pickups	531,000	36%	21,000	4.2	12%
Jnknown	15,000	1%	8,192	0.1	0%
fotal	1,457,000	100%	34,255	34.0	100%
WEAT .				1	- 1

A lack of momentum in developing and demonstrating Hi-Efficiency Solutions to address the 38% Problem

Technology Development

- Enabling technologies will be key for cost effective electric vocational work trucks and Class 8 OTR trucks
 - i.e. DC-DC converters , Aux motor drives, Waste heat recovery etc.
 - These enabling technologies need development and pilot demonstration funding

.

A Need for More Investment in Development and Pilot Demonstrations

Studies & Standards	Develop- ment	Pilct Demo	Pre-comm. Demos	Deployment Support and Incentives
Includes business case , technology feasibility , complex modeling, and simulations. Also includes the creation of Standards.	Development of a component, subsystem or complex drivetrain system	A pilot demonstration is the full integration of a component, subsystem or complex drivetrain into 1 to 5 trucks of a newly developed component or system to evaluate performance.	Pre-commercial demonstrations involve 1 to 50 trucks to evaluate performance in the field. Further system refinement precedes commercial production.	Policy and Regulatory Support and Financial Incentives for early deployment (when a supplier sells a commercial product in the marketplace)
l	Prototype develor testing and integ	opment gration	Pre-market	
EPIC/PIER (<\$1 2012/13	10 million _{<}	<u></u>	→ AB-11 2012/	8 \$100million

+ Several High level Follow-on Recommendations

- Perform additional research on new focus areas that have significant impacts on the roadmap but were not necessarily a focus of the initial CalHEAT work
 - Biofuel Availability and Projections for Medium and Heavy Duty Vehicles.
 - Update forecasts for potential production of renewable natural gas, renewable diesel and biodiesel.
 - Develop and implement a Bio-Fuel Adoption Plan
 - Best Policies, Technologies and Practices in Reducing Vehicle Miles Traveled
 - (VMT). State predictions for VMT are significant and can easily contribute up to 25 million metric tons of CO2 per year by 2050.
 - Work with CalHEAT and CAlTrans to Develop and implement action plan for Intelligent vehicles leading to reduced VMT.

Development and Research – Top Issues

- Develop a Center for Class 8 Truck Focus in SJ Valley because of size of challenge
 - 38% of CO2 while 12% of the vehicles
 - Would work with fleets who operate thru the central valley
 - Center could focus on
 - Use of CNG to provide lower Nox and CO2
 - Greater electrification of the powertrain i.e. solid-state waste heat recoveryhotel load electrification and electrifies auxiliaries
- Implementation of the CalHEAT roadmap
 - Technology forums similar to the CALHEAT Forums to keep the industry moving forward
 - Maintain Advisory Council and Steering Committee to arrange and plan the technical interchange and dialogues of the greatest benefits

Questions/Discussion

www.calheat.org