

California Energy Commission
DOCKETED
13-IEP-1F

TN 71674

JUL 18 2013

A Simple Definition for ZNE

Jon McHugh, McHugh Energy Consultants

Presentation to CEC

The Definition of Zero Net Energy in Newly Constructed Buildings in California

July 18, 2013

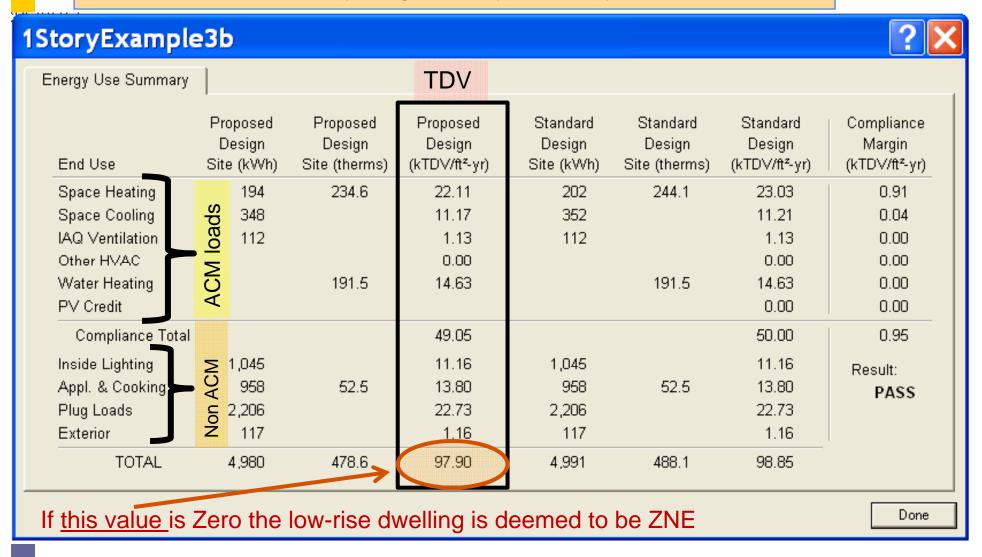
<u>jon @mchughenergy.com</u> <u>www.2020zne.org</u>

Problem Statement

- 2008 EESP developed with goals for res ZNE by 2020 and nonres ZNE by 2030
- Definition of ZNE full of ambiguity
 - OK to have "creative ambiguity" at first so issues can be sorted out but problem when we are half way to 2020 without California sponsored definition and certification.
- Why it is important to have a clear definition of ZNE
 - So brand of ZNE is worth something
 - Little value if lower performing house can claim ZNE
 - Brand undermined by "greenwashing"
 - So efforts can be coordinated
 - Protects builders when they can point to their house having ZNE certification regardless of what utility bill is.
 - So we can get on with making this goal real.

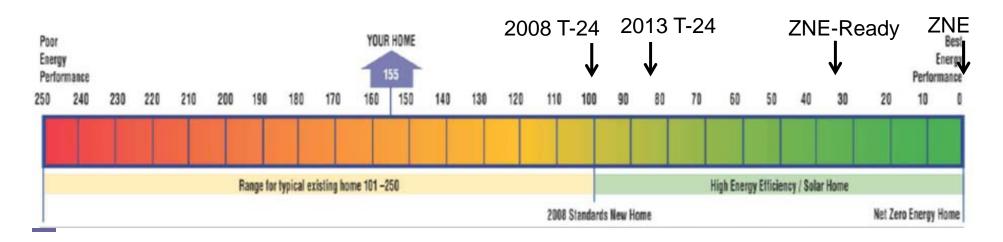
ZNE Proposal

Clarify goals:

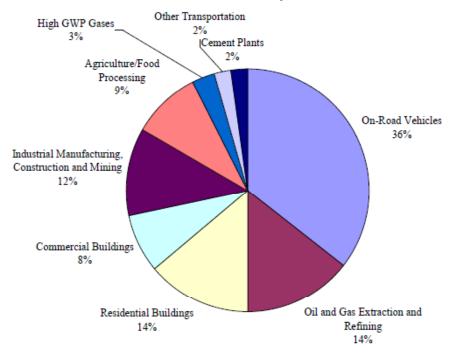

- 1. All new <u>low rise</u> residential construction in California will be zero net energy <u>or equivalent</u> by 2020;
- 2. All new <u>high-rise residential</u> and commercial construction in California will be zero net energy <u>or</u> <u>equivalent</u> by 2030;

Clarify definitions:

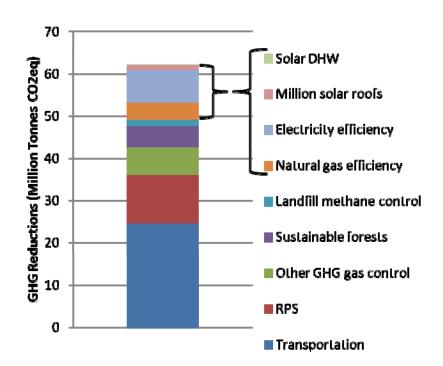
- A new Zero Net Energy Home is one which has a CBECC design rating of Zero or less
 - California Building Energy Compliance Calculator
 - CBECC design rating is in TDV units and includes deemed plug loads
- A new Zero Net Energy Low Rise Multifamily Building is one which has a CBECC rating of Zero or less


CBECC (2013 T-24) Software includes nonregulated loads

Screen Shot of One Story Single Family Summary Results

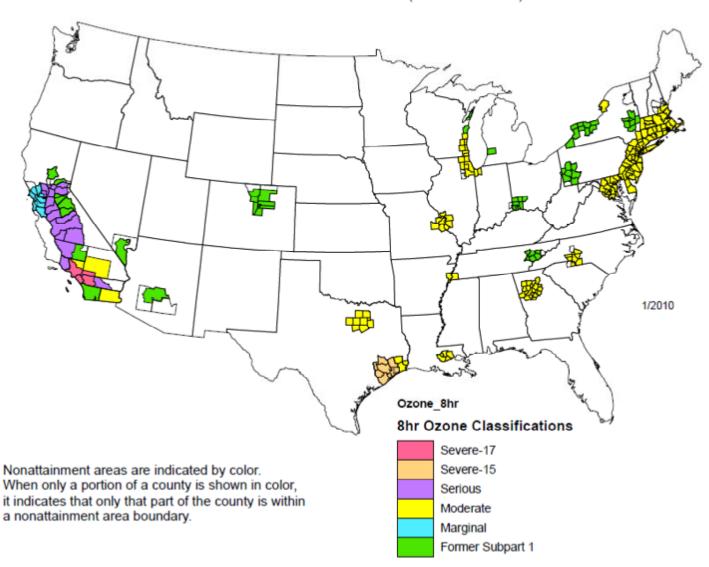

ZNE Definition for Existing Homes

- CA HERS (Home Energy Rating System) Background
 - Whole house rating that includes building measures and plug loads
 - Based on CEC Time Dependent Valuation (TDV)
 - Currently indicates a 0 rating is "Net Zero Energy Home"
- ZNE
 - Infrastructure in place for ZNE existing homes to be based on HERS
 - However could also be based on CBECC design rating if not trying to get credit for efficient appliances
 - Includes photovoltaics to offset remaining loads after energy efficiency
 - Should there be a minimum level of efficiency before PV can be applied?
 - Equates to HERS Rating of 0
 - Makes no claims about utility bill being zero as likely some grid access charges levied (similar to renting battery for energy storage)
 - Clear definition of ZNE from State reduces builder liability

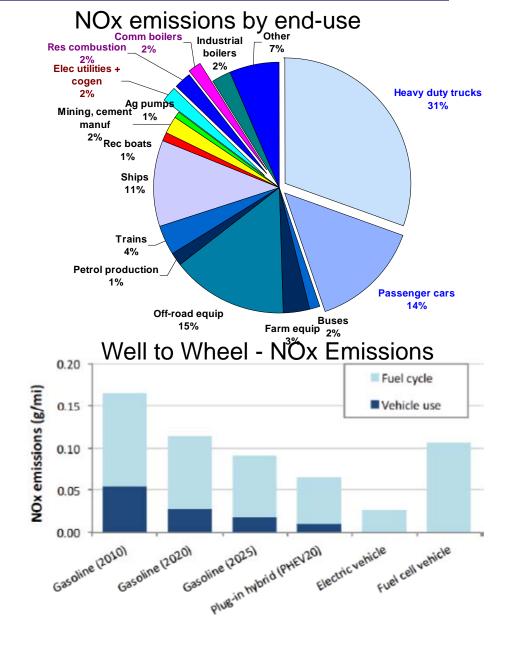


AB32 State Policy: Reduce GHG emissions to 1990 levels by 2020

GHG Emissions by End-use



Building measures account for 13.1 Million Tonnes out of 62 Million tonnes reduction or 21% or planned reductions


It is not just Carbon: Ozone Pollution CA is the national leader

8-hour Ozone Nonattainment (1997 Standard)

Why EV's are key to ZNE future

- Passenger cars are a significant source of NOx.
- Total NOx emissions are least from EV's
- EV's also have one of the least GHG emissions
- Great storage mediuminteracts with DR & renewables
- PV & EV together help flatten load profile

It is not Just Carbon: CPUC Repair vs Displace Decision: Once Through Cooling

- CA Water Control Board Resolution No. 2010-0020
 - phase out once through cooling at 19 plants
 - 21 GW capacity
 - \$2.5 million to \$108 million per site
- CPUC decisions ahead
 - Relicensing and repair of older plants
 - Population expected to grow between 3.6 Million (9.6%) and 6.9 Million (18%)

Coastal Power Plants ocal Reliability Areas (generalized) California Transmission System (partial, generalized) Update: 2GW retired early

http://www.usc.edu/schools/price/futures/pdf/2012_Pitkin-Myers_CA-Pop-Projections.pdf

Does ZNE include plug loads? If Yes, Importance of T-20 Efforts, Whole Building Rating

Over half of home electricity consumption not covered by T-24

Electricity	End-uses	
End-Use	kWh/yr	
Not covered by T-24	3,612	
Dryer	187	
Clothes Washer	109	
Dish Washer	73	
First Refrigerator	707	
Additional Refrigerator	313	
Freezer	138	54%
Range/Oven	105	J 7 70
Television	645	
Microwave	122	
Home Office Equipment	17	
Personal Computer	602	
Well Pump	28	
Miscellaneous	568	
T-24 + Preempted	1,106	
Conv. Space Heating	37	
Heating	13	
Aux Space Heating	0	10%
Central Air Conditioning	876	
Room Air Conditioning	47	
Water Heating	133	
T-24	1,927	
Furnace Fan	164	
Attic Fan	14	
Evaporative Cooling	43	
Solar Water Heating	0	29%
Pool Pump	234	20 /0
Spa	25	
Outdoor Lighting	284	
Spa Electric Heat	28	
Lighting	1,136	
Total	6,645	

Floctricity End-ucoc

Natural Gas E	~ .		
End-Use	Therm/yr	%	
Not Covered by T-24	51.4		
Dryer	16.2	14%	
Range/Oven	31.7	1 7 /0	
Miscellaneous	3.5		
T-24+ preempted	309.0		
Primary Heat	175.8	83%	
Conv. Gas Water Heat	133.2		
T-24	10.2		
Pool Heat	5.6	3%	
Spa Heat	2.9	J /0	
Auxiliary Heat	1.6		
Total	370.5		

Motural Cac End ucac

Not Covered by T-24

Plug loads are installed after building inspection and are not covered by T-24

T-24 + Preempted

T-24 is preempted from requiring higher equipment efficiency but T-24 can impact the loads on equipment (envelope eff, controls etc.)

Covered by T-24

Loads and equipment efficiency can be regulated by T-24

^{* 2009} Residential Appliance Saturation Survey 10

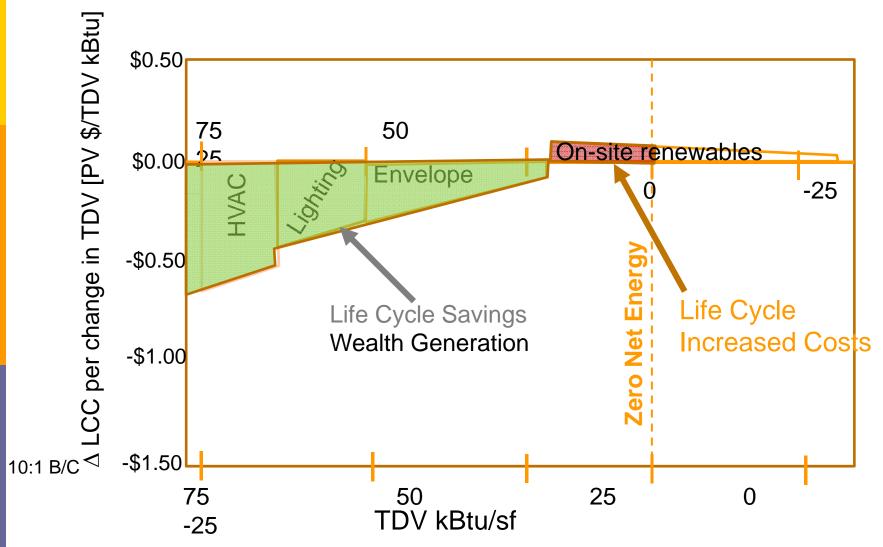
Modify policy: "All new <u>low rise</u> res construction ZNE <u>or equivalent</u> by 2020"

- Prepare for success not failure
 - Low rise residential ZNE is technically feasible and...
 - Cost-effective
- Low rise residential matches the current T-24 structure
 - Low-rise residential vs nonresidential and high rise res
- Equivalency: Objective achieved without watering down definition of ZNE.
- Addresses where ZNE is difficult or even undesirable
 - Building a home in the shade of a 300 year old tree.
 - Building an infill project which is shaded by surrounding buildings
- Equivalency can use Std 189.1 approach
 - Equivalent methods allowed only if no solar access
- □ To maintain ZNE brand, not labeled as "ZNE equivalent" but "code compliant" in 2020

TDV\$/ft2

Technical Potential Study

	Strategy (Baseline is T24 2013 Unless Noted Otherwise)	kBtu/ft2 savings	(30yr) savings	TDV\$ reduction
	Starting EUI:	30.4	18.4	0%
1	Improved Wall Construction: 2x6 walls, R-21 w/ R-4 rigid ext. sheathing. Advanced framing, 24" o.c.	-1.94	-1.15	6%
2	Ceiling Insulation: R-60 blown-in insulation w/ raised heel trusses	-0.43	-0.23	7%
3	Reduced Building Infiltration: 1.8 SLA / 3.15 ACH50	-0.91	-0.24	9%
4	Improved Windows: U-Factor=0.25 / SHGC=0.20	-0.78	-0.16	10%
5	Cool Roof: Reflectivity=0.40 / Emissivity=0.85	0.06	-0.14	10%
6	Additional Thermal Mass	-0.15	-0.20	11%
7	Improved Lighting: High efficacy LED lighting and vacancy controls	-1.32	-2.20	23%
8	High Efficiency Appliances: Clothes washer, Dishwasher, Refrigerator	-1.12	-0.52	26%
9	Reduced Plug Loads & Plug Load Control 20%	-0.71	-1.09	32%
10	Low-Flow Shower & Sinks	-1.84	-0.49	34%
11	Ducts in Conditioned Space	-0.86	-0.54	37%
12	High Efficiency 2-speed AC, SEER 21 w/ Integrated Ventilation Cooling	-0.23	-0.55	40%
13	Condensing Gas Space Heating	-0.78	-0.22	42%
14	Condensing Gas Water Heater	-2.53	-0.85	46%
15	Improved HW Distribution: Compact Design, Insulated HW Pipes	-0.18	-0.06	46%
16	Rooftop PV (see "Solar PV (kW)" in "Building Performance Data" table for PV system sizes)	-16.65	-9.77	100%
	Ending EUI:	0.0	0.00	


Measures similar to those proposed for 2019 codes 2016 &

ZNE Cost-Effective B/C Ratio = 18.43/9.25 = 2.0

Total TDV\$ Savings: -\$18.43
Incremental First Cost: \$9.25*
Net Life Cycle Cost: -\$9.19*

Incremental Cost = \$18,500 for 2,000 sf home

Societal Value (TDV) reduction curve T-24 covered loads

If **life cycle savings** are greater than **life cycle increased costs**, the changes are "cost-effective in their entirety." Units of shaded areas = PV \$/sf

Update the ZNE rating infrastructure (CBECC and HERS2)

- HERS2 rating includes default plug loads
 - Designed to rate existing buildings and advice on EE upgrades
 - Allows the use of PV to displace loads
 - Uses TDV methodology
 - Has ZNE listed on rating of 0
 - Problem that plugs loads are linear function of house sf
 - Model breaks down for large house sizes
- HERS2 model needs updating and validation
- Similar concept was proposed CALGreen Design Rating
 - Planned as add-on calculation to T-24 compliance software design rating adds default plug loads to T-24 regulated loads
 - Must be developed in 2013 for 2014 implementation.
 - Plug load model should be improved ASAP

Require ratings on existing homes so ZNE is valued

- Energy is invisible
- Energy rating or utility bills published in advance of home sale differentiates ZNE and other efficient homes
- With Zip Code, square footage and bills simple rating possible.
 - If seller does not like simple rating they can buy HERS rating
- Ideally automatic process to upload simple rating once home is placed into a MLS (multiple listing service) database
- Rules about billing confidentiality need to be reviewed
- CAR will oppose if it creates a barrier at time of sale or creates a liability.

Multiple listing service (MLS) in the future

Hayward, CA 94542

For Sale \$499,000
Zestimate[®] \$510,568
Est. Mortgage \$1,773/mo ▼

HERS rating: 150

Est Utilities: \$350/mo*

Beds: 3

Baths: 2.5

Sqft: 2,872

Lot: 10,454 sq ft / 0.24 acres

Type: Single Family

Year built: 1982

Parking: Garage - Attached

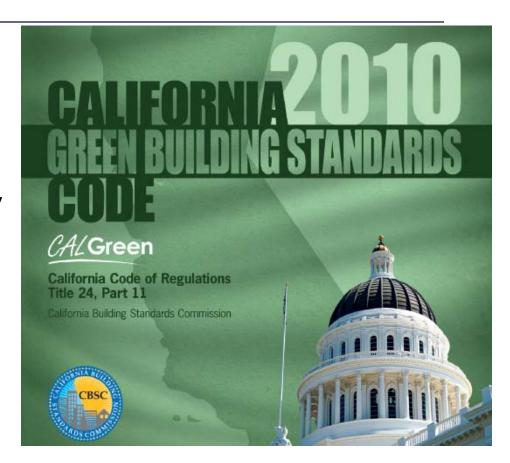
Cooling: Central

Heating: Forced air

Fireplace: Yes

On Zillow: 32 days

Photos | Map | Bird's Eye | Street View



ZNE tier in reach codes for early adopting cities

- Help cities meet their GHG goals
- Prepare market for
 ZNE by having it apply to volunteering cities
- Work out administrative issues on a smaller scale
- Highlight importance to HCD and BSC

HERS and **Design Rating Updates**

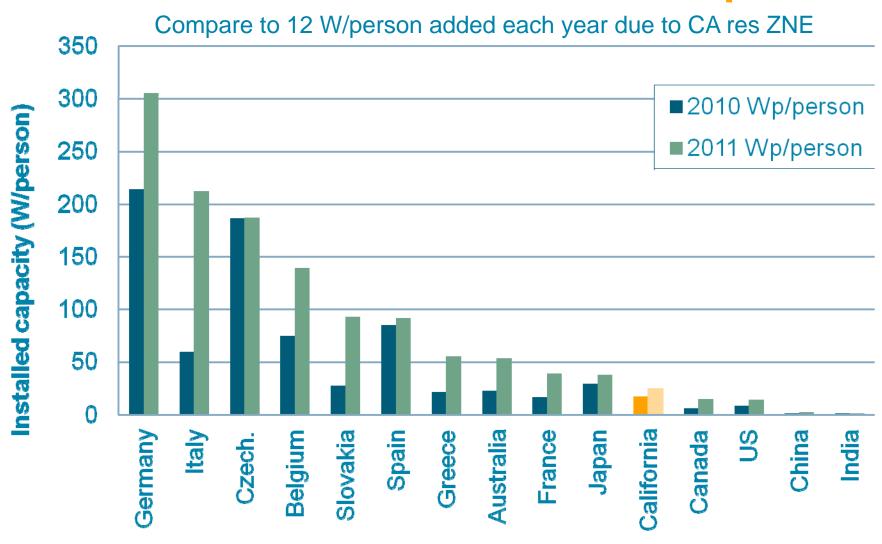
- HERS Proceeding starting at end of 2013, with expected completion in Fall 2014
- Fix known errors in plug load models
 - Short term: adjustment for large homes
 - Long term: fix algorithms for plug loads (need data)
- Consider aligning with National HERS; IECC 2004/2006 = CA HERS 100
 - Easier for builder outreach, EE mortgages etc.
- Results will be used to determine design rating

Discussion Topics

- "No Regrets" approach to ZNE
 - Risk of success;
 - Risk of focus on deep savings? (depth vs volume)
 - Risk of 300 MW/yr of on-site renewables?
 - What other high priorities would we be missing?
- How can state agencies support ZNE goals?
 - See <u>7,000 kWh to Zero in 8 Years Flat</u>: A Strategy for Net Zero Energy Residential Buildings by 2020
 - http://www.2020zne.org/

The German experience:

Freiburg solar settlement and business park



Neighborhood in Hamburg

- Germany population 81 Million
- Germany 25 GW installed PV capacity, 18,000 GWh/yr production
- Germany installed cost is approximately 60% of US installed cost
- California population 38 Million
- CA 1 GW installed capacity, 1,500 GWh/yr production
- CA Solar Initiative program added 310 MW over last 12 months
- All ZNE homes in 2020 would add approximately 400 MW/yr (12 Watt/person-yr)

Installed PV capacity Watt (peak) per person

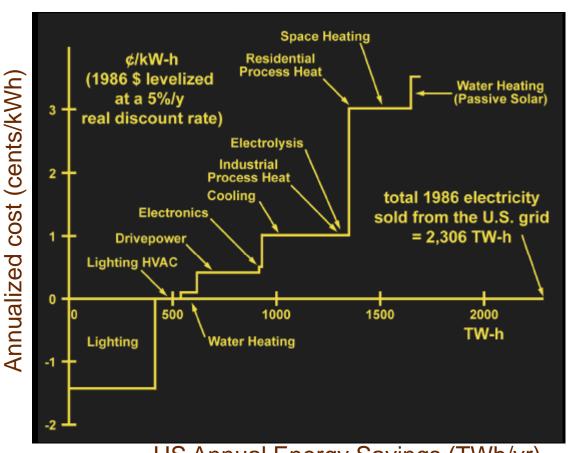
http://en.wikipedia.org/wiki/Solar_power_by_country

CA from http://www.californiasolarstatistics.ca.gov/reports/monthly_stats/

Appendix

What is on-site renewable energy?

- On-site first start with CPUC definition:
 - "...single "project" seeking development entitlements and building code permits ..."
 - Final implementation avenue (2020 and 2030 goals) though building codes.
 - Allows onsite renewables on carports, common areas, club houses, ground mounted on same development site etc.
- On-site renewable energy (only electricity exported)
 - Photovoltaic
 - Small hydro
 - Solar thermal electricity
 - Wind generated electricity
 - Does not include: biomass, landfill gas, fuel cells,
 - □ no imports of fuel to serve device and no on-site emissions

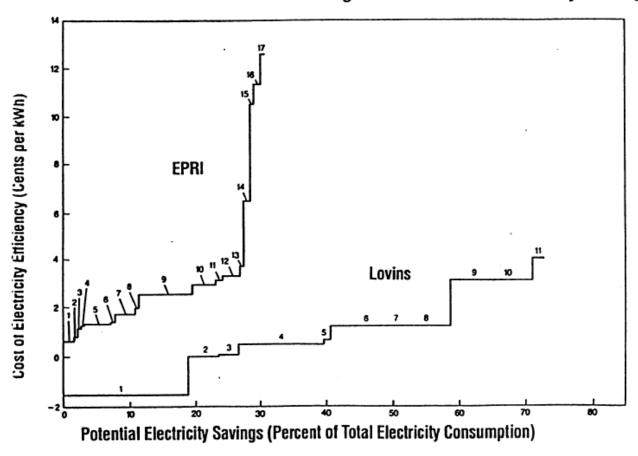

Should ZNE include Embodied Energy and Transportation Energy?

- Transportation energy doubles PV offset
 - Assuming electric vehicles
 - Even more if std combustion vehicle
- Embodied energy in construction materials
 - Embodied energy in homes ~700,000 Btu/sf
 - 2,000 sf house ~1,400 Million Btus.
 - Source energy consumption ~110 Million Btu/yr
 - 13 years of operational energy "in the hole"
 - Could be a burdensome "paper chase"
- Embodied energy in water (typical residence)
 - Northern California 395 kWh/yr
 - Southern California 1,270 kWh/yr
- Good considerations after State achieves initial target
 - Opportunity for ZNE equivalent if no solar access

Life Cycle Cost Curve for TDV Reductions

- Similar to efficiency supply cost curve developed by Lovins
- Similar to Carbon abatement curve by McKinsey Company
- Rank measures by their impact on life cycle cost
- Simulate measures in order of their impact on life cycle cost from lowest (largest decrease in LCC) to greatest (largest increase in LCC)
 - Addresses interaction effects

1989 supply curve for saveable US electricity (Lovins)



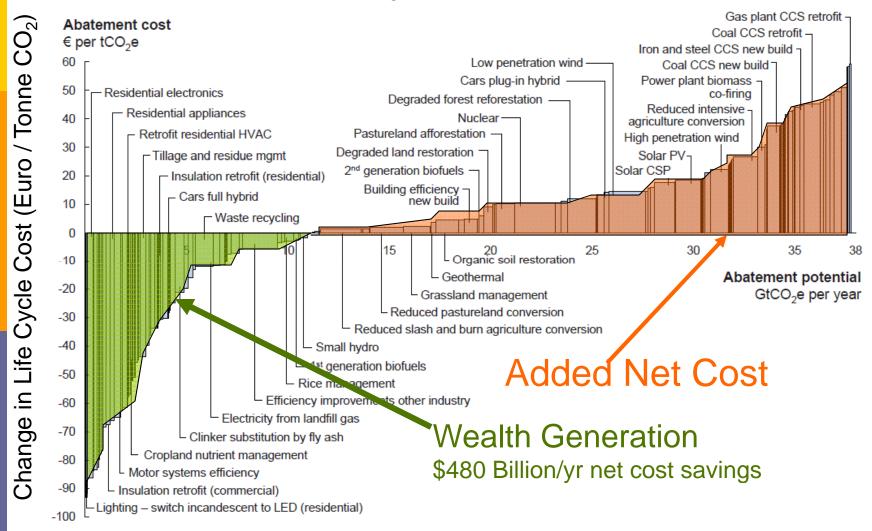
US Annual Energy Savings (TWh/yr)

Amory Lovins. "The Future of Energy," Harvard University, 3 December 2008 Profitable Solutions to Climate, Oil, and Proliferation

Efficiency Supply Cost Curve Lovins vs EPRI

Figure 1: Potential Electricity Savings

EPRI


- 1. Industrial Process Heating
- 2. Residential Lighting
- 3. Residential Water Heating
- 4. Commercial Water Heating
- 5. Commercial Lighting
- 6. Commercial Cooking
- 7. Commercial Cooling
- 8. Commercial Refrigeration
- 9. Industrial Motor Drives
- 10. Residential Appliances
- 11. Electrolytics
- 12. Residential Space Heating
- 13. Commercial and Industrial Space Heating
- 14. Commercial Ventilation
- 15. Commercial Water Heating (Heat Pump or Solar)
- 16. Residential Cooling
- 17. Residential Water Heating (Heat Pump or Solar)

Lovins

- 1. Lighting
- 2. Lighting's Effect on Heating and Cooling
- 3. Water Heating
- 4. Drive Power
- 5. Electronics
- 6. Cooling
- 7. Industrial Process Heat
- 8. Electrolysis
- 9. Residential Process Heat
- 10. Space Heating
- 11. Water Heating (Solar)

McKinsey Supply Curve for Carbon Abatement

Global GHG abatement cost curve beyond business-as-usual - 2030

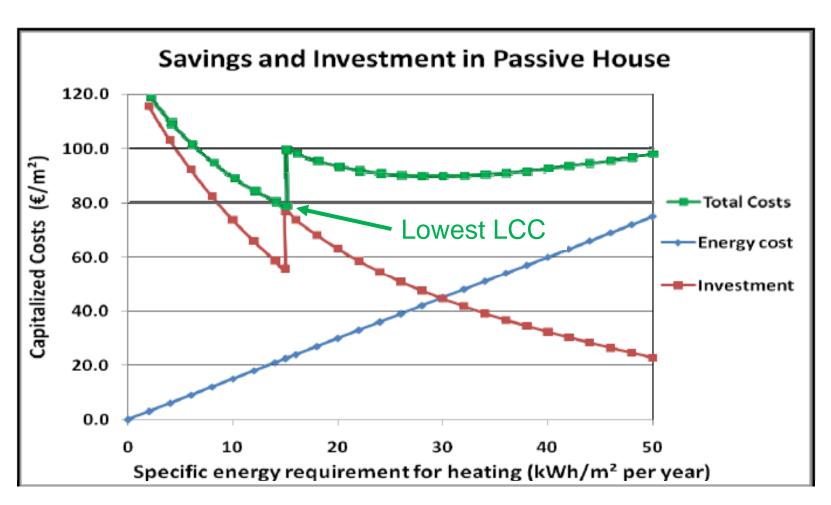
Note: The curve presents an estimate of the maximum potential of all technical GHG abatement measures below €60 per tCO₂e if each lever was pursued aggressively. It is not a forecast of what role different abatement measures and technologies will play.

Source: Global GHG Abatement Cost Curve v2.0

Societal Value (TDV) reduction curve T-24 covered loads

If **life cycle savings** are greater than **life cycle increased costs**, the changes are "cost-effective in their entirety." Units of shaded areas = PV \$/sf

Calculating ΔLCC per TDV [PV \$/TDV kBtu]


 Δ LCC = Change in Life Cycle Cost

$$\Delta LCC = \begin{bmatrix} & \text{Incremental First Cost} \\ + & \text{Present Valued Maintenance Cost} \\ - & \text{Present Valued Energy Cost Savings} \end{bmatrix}$$

PV energy cost savings = TDV energy savings (TDV kBtu) x TDV Conversion (PV\$/kBtu)

- PV Adjustment Factors (2011 \$/kBtu)
- Res (30-yr) 0.173188113
- Non-Res (15-yr) 0.088996791
- Non-Res (30-yr) 0.153990148

Passive House cost-effectiveness curve with elimination of heating system

Similar concept for compressorless comfort home

Societal Value of Energy (TDV)

Carbon not only issue for California

- Generation and transmission capacity
- NOx and particulate air pollution

Societal Value (TDV) unified accounting for policy trade-offs.

- Participant cost plus carbon and other externalities
 - Not societal cost test which is TRC+ externalities

Relatively easy to add other policy decisions to Societal Value

- Value of water
- Transportation (locational efficiency)
- Time Dependent Valuation (TDV) basis of trade-offs in T-24
 ACM and Whole House Home Energy Rating (HERS)
- CPUC program evaluation(E3 calculator) based on similar metric
 - E3 costs are avoided costs (including CO₂)
 - Societal (TDV) values equivalent to E3 + retail rate adder

Residential Building Standards

Zero Net Energy is organizing principle

- Basis of CPUC policy EE Strategic Plan
- Basis of CEC Policy IEPR
- Reduce energy consumption though efficiency first
 - Implement all efficiency that is cheaper than future cost of PV
- Serve remaining load with on-site renewables
 - Remove barriers to PV (cost is 35% cheaper in Germany)
 - Differentiate PV by durability, annual performance and long term performance

Goals by Code Cycle

- "All new residential construction in California will be zero net energy by 2020" CPUC Energy Efficiency Strategic Plan.
 - □ 2019: Title 24 requires renewables and ZNE in all new homes
 - 2016: prepare market by including renewable requirement in ACM.
 - 2013: opportunity to place solar thermal and PV into ACM

Residential Reach Codes

- Local ordinances (reach codes) prepare the market in advance of statewide standards.
- CALGreen voluntary tiers intended for local government adoption
 - □ Tier 1 is one code cycle in advance of Title 24, Part 6
 - 2016 CALGreen Tier 1 should be ZNE
 - □ Tier 2 is two cycles in advance of Title 24, Part 6
 - 2013 CALGreen Tier 2 should be ZNE
- Diversity of approaches depending on local market requirements and conditions
 - Opportunity to learn from leading cities which approach works well for different market sectors and geographic regions

What things should have happened in 2013 code cycle?

- Start allowing PV trade-offs (max kBtu cap, window area trade-off etc)
- Join other states (WA, OR) that are using dual path in lieu of preemption waiver
- Reach Codes (CALGreen) get market ready for future:
 - Residential Tier 2 is ZNE,
 - Residential Tier 1 best estimate of 2016 Title 24
- 1 out of 3 is better than nothing

Which tools must calculate ZNE?

- What trade-offs are allowed with on-site renewables?
- Performance software
 - CBECC design rating
- HERS II rating
- Billing analysis (interval meters)

