

1

Probabilistic forecasts for the energy sector

David W. Pierce

Daniel R. Cayan

Division of Climate, Atmospheric Sciences, and Physical Oceanography Scripps Institution of Oceanography

4 June 2013

Stations used for utility load forecasting

Predict load from T_{max} , T_{min} , and weekend/holiday

Summer only

Let "error" be (actual load) – (load expected from regression)

Effect of low stratus

Effect of low stratus

Effect of low stratus

/home/pierce/projects/cec_heatwaves/analyze_load_fcst_err_vs_clouds_v3.R Thu Feb 14 13:12:59 2013

Example: 2 weekdays with same temperature

Tmax:	95.15 F
Tmin:	65.47 F
SCE Load:	20,700 MW

11

Sources of seasonal predictability

El Nino/Southern Oscillation (ENSO)

Sources of seasonal predictability

El Nino/Southern Oscillation (ENSO)

Pacific Decadal Oscillation (PDO)

Sources of seasonal predictability

El Nino/Southern Oscillation (ENSO)

Pacific Decadal Oscillation (PDO)

• Soil moist or dry

What we're trying to predict

- □ For each utility (PGAE, SCE, SDGE):
 - Number of hot days (>= 95 F)
 - Cooling degree days
 - Tavg, Tmax, Tmin

Details

- 1950-2010
- Using terciles (lowest third, middle third, top third)

Seasons:

- □ spring (Mar-Apr-May) and summer (Jun-Jul-Aug)
- Warm season (May-Oct)

A <u>posteriori</u> significance values:

- □ >= 11 or <= 3: 10%
- □ >= 12 or <= 2: 5% and 1%
- \square >= 13 or <= 1: better than 1%

□ 17% relationships significant at 5-10% level or better (89 of 528)

□ 7% significant at 1-5% level or better (37 of 528)

Number of hot (>= 95 F) days per year

16

El Nino/Southern Oscillation

ENSO summary:

- Strongest relation is to PGAE:
 - 95 F days in early season only (May-June)
 - Weak relationships to Tmin, Tmax
- SCE:
 - 95 F days relationship in early season (May-Jun)
- SDGE:
 - 95 F days weak relationship in May-Jun

Pacific Decadal Oscillation

PDO summary:

- 31 significant relationships, mostly to *seasonal* quantities
- Few relationships with hot days (only 4)
- Warm PDO goes with a warm season, cool PDO goes with a cool season

Soil moisture

Summary:

- 33 significant relationships, mostly to seasonal quantities
- Few relationships with hot days (only 3)
- Mostly spring coincident signal falls off by summer
- Strongest effect seems to be on below average temperatures; enhanced in wet years, suppressed in dry years

Hottest day in 1 and 20 years

Hottest day in 1 and 20 years (existing method)

-110

Hottest day in 1 and 20 years (new method)

Obs 20-year max TMAX deg-C Std BCCA 20-year max tasmax deg-C Diff, model - obs 50 50 50 45 45 40 4(35 35 35 -120 -110 -110-115 -115 -120 -115 -120 -110 x X х 34 2630 34 38 42 30 42 -2 SSRCA 20-year max tasmax deg-C Obs 20-year max tasmax deg-C Diff, model - obs (Mean= 0.11 deg-C) 50 F 50 F 50 45 4545 40 40 35 35 35 -125 -120 -125 -125 -120 -115 -110 -120 -115 -110 -115 -110 22 24 26 28 30 32 34 36 38 40 42 44 46 48 22 24 26 28 30 32 34 36 38 40 42 44 46 -2 Ó 48

Key Points

- Marine layer cloud cover is implicated in load forecast "errors" in the LA basin
- Probabilistic seasonal outlooks are possible
 - ENSO has some relationships to 95 F days
 - PDO relates more strongly than ENSO, but to seasonal averages
 - Dry conditions influence spring conditions, but not later in summer
- Hottest day in 1 and 20 years not well captured by current models
 - New methods we're working on may help

Decadal prediction?

Decadal prediction? MPI ESM LR MPI ESM LR starting 1981 MPI ESM LR starting 1986 CA coastal х х MPI ESM LR starting 1991 MPI ESM LR starting 1996 temperature anoms 7 realizations 90% conf. int х х MPI ESM LR starting 2006 MPI ESM LR starting 2001 х /data/misc/cmip5/decadal/mpiesmlr/plot_tser_coast_v2.R Fri Feb 15 13:14:56 2013