

California Energy Commission DOCKETED 08-AFC-8A TN 70895 MAY 20 2013

May 17, 2013

CALIFORNIA ENERGY COMMISSION – DOCKET UNIT Attn: Docket No. 08-AFC-08A 1516 Ninth Street, MS-4 Sacramento, CA 95814-5512

Re: HECA Updated Emissions and Modeling Report

Enclosed is the Updated Emissions and Modeling Report prepared by URS Corporation for the HECA Project. The enclosed report is intended to consolidate Project refinement information provided since the Authority to Construct Permit Application and Supplemental Information for the Prevention of Significant Deterioration Permit Application submitted to SJVAPCD and the Amended Application for Certification submitted to CEC in May 2012 in one place for ease of use. It is being provided at this time to accompany the Applicant's comments on the SJVAPCD Preliminary Determination of Compliance.

The vast majority of this information has been previously presented in various Data Requests (from both the CEC and interveners) and agency communications, and is in the public forum. None of the information contained within represents substantive Project changes.

Modeling files burned to DVD are also being sent to the CEC.

Sincerely,

URS Corporation

a Ala la kão

Dale Shileikis Project Manager URS Corporation

Enclosure: Updated Emissions and Modeling Report Modeling Files DVD

cc: Marisa Mascaro, HECA

URS Corporation One Montgomery Street, Suite 900 San Francisco, CA 94104 Tel: 415.896.5858 Fax: 415.882.9261

HYDROGEN ENERGY CALIFORNIA KERN COUNTY, CALIFORNIA

UPDATED EMISSIONS AND MODELING REPORT

Prepared for: San Joaquin Valley Air Pollution Control District

Prepared on behalf of: Hydrogen Energy California LLC

Prepared by: URS Corporation Post Montgomery Center One Montgomery Street, Suite 900 San Francisco, CA 94104-4538

URS Project Number 28068052

May 2013

Section 2 Project Description 2-1 2.1 HECA Project Refinements 2-1 Section 3 Emissions Calculations 3-1 3.1 Permit Units and Descriptions 3-1 3.2 Stationary Sources 3-3 3.2.1 CTG/HRSG and Feedstock Dryer (S-7616-26-0) 3-3 3.2.2 Process, Air Separation Unit (ASU), and Power Block Cooling Towers (S-7616-27, Su, ad 29) 3-5 3.2.3 Auxiliary Boiler (S-7616-25) 3-5 3.2.4 Gasification, SRU, and Rectisol® Flares (S-7616-30, 31, 32) 32 3.2.5 Sulfur Recovery Unit and Tail Gas Thermal Oxidizer (TGTO) (S-7616-23-0) 3-8 3.2.6 Carbon Dioxide Vent (S-7616-21-0) 3-10 3.2.7 Gasification System (S-7616-31-0) 3-11 3.2.8 Ammonia Synthesis Unit (S-7616-33-0) 3-12 3.2.10 Nitric Acid Unit (S-7616-31-0) 3-12 3.2.11 Ammonia Wintrate Unit (S-7616-37-0) 3-13 3.2.12 Material Handling (S-7616-17, 18, 19, 20, 22, 37) 3-13 3.2.13 Emergency Generator Engines and Firewater Pump Engine (S-7616-37, 38, 39, 40) 3-13 3.2.14 HECA Facilit	Section 1	Introd	uction		1-1
3.1 Permit Units and Descriptions 3-1 3.2 Stationary Sources 3-3 3.2.1 CTG/HRSG and Feedstock Dryer (S-7616-26-0) 3-3 3.2.2 Process, Air Separation Unit (ASU), and Power Block Cooling Towers (S-7616-27, 28, and 29) 3-5 3.2.3 Auxiliary Boiler (S-7616-27, 28, and 29) 3-5 3.2.4 Gasification, SRU, and Rectisol [®] Flares (S-7616-30, 31, 32) 32) 3.2.5 Sulfur Recovery Unit and Tail Gas Thermal Oxidizer (TGTO) (S-7616-23-0) 3-8 3.2.6 Carbon Dioxide Vent (S-7616-24-0) 3-10 3.2.7 Gasification System (S-7616-24-0) 3-11 3.2.8 Ammonia Synthesis Unit (S-7616-24-0) 3-12 3.2.9 Urea Unit (S-7616-34-0) 3-12 3.2.10 Nitric Acid Unit (S-7616-35-0) 3-12 3.2.12 Material Handling (S-7616-17, 18, 19, 20, 22, 37) 3-13 3.2.13 Emergency Generator Engines and Firewater Pump Engine (S-7616-38, 39, 40) 3-13 3.2.14 HECA Facility-Wide Criteria Pollutant Emissions 3-13 3.3 Mobile Sources 3-20 3.4 Greenhouse Gas Emissions 3-20 3.4 Gr	Section 2	-			
3.2 Stationary Sources 3-3 3.2.1 CTG/HRSG and Feedstock Dryer (S-7616-26-0) 3-3 3.2.2 Process, Air Separation Unit (ASU), and Power Block Cooling Towers (S-7616-27, 28, and 29) 3-5 3.2.3 Auxiliary Boiler (S-7616-25) 3-5 3.2.4 Gasification, SRU, and Rectisol® Flares (S-7616-30, 31, 32) 3-8 3.2.5 Sulfur Recovery Unit and Tail Gas Thermal Oxidizer (TGTO) (S-7616-23-0) 3-8 3.2.6 Carbon Dioxide Vent (S-7616-24-0) 3-10 3.2.7 Gasification System (S-7616-21-0) 3-11 3.2.8 Ammonia Synthesis Unit (S-7616-33-0) 3-12 3.2.9 Urea Unit (S-7616-35-0) 3-12 3.2.11 Ammonia Synthesis Unit (S-7616-33-0) 3-13 3.2.12 Material Handling (S-7616-17, 18, 19, 20, 22, 37) 3-13 3.2.13 Emergency Generator Engines and Firewater Pump Engine (S-7616-38, 39, 40) 3-13 3.2.13 Emergency Generator Engines and Firewater Pump Engine (S-7616-38, 39, 40) 3-13 3.2.14 HECA Facility-Wide Criteria Pollutant Emissions 3-13 3.2.13 Emergency Generator Engines and Firewater Pump Engine (S-7616-38, 39, 40) 3-13 3.2.14	Section 3				
3.2.1 CTG/HRSG and Feedstock Dryer (S-7616-26-0)					
3.2.2 Process, Air Separation Unit (ASU), and Power Block Cooling Towers (S-7616-27, 28, and 29) 3-5 3.2.3 Auxiliary Boiler (S-7616-25) 3-5 3.2.4 Gasification, SRU, and Rectisol [®] Flares (S-7616-30, 31, 32) 3-8 3.2.5 Sulfur Recovery Unit and Tail Gas Thermal Oxidizer (TGTO) (S-7616-23-0) 3-8 3.2.6 Carbon Dioxide Vent (S-7616-24-0) 3-10 3.2.7 Gasification System (S-7616-24-0) 3-10 3.2.8 Ammonia Synthesis Unit (S-7616-33-0) 3-12 3.2.9 Urea Unit (S-7616-35-0) 3-12 3.2.10 Nitric Acid Unit (S-7616-35-0) 3-13 3.2.12 Material Handling (S-7616-17, 18, 19, 20, 22, 37) 3-13 3.2.13 Emergency Generator Engines and Firewater Pump Engine (S-7616-38, 39, 40) 3-13 3.2.14 HECA Facility-Wide Criteria Pollutant Emissions 3-13 3.2.17 Trains 3-18 3.3.1 Trains 3-18 3.3.2 Trucks 3-20 3.4 Greenhouse Gas Emissions 3-20 3.4 Greenhouse Gas Emissions 3-20 3.4 Greenhouse Gas Emissions 4-10 <tr< td=""><td></td><td>3.2</td><td></td><td>•</td><td></td></tr<>		3.2		•	
Cooling Towers (S-7616-27, 28, and 29) 3-5 3.2.3 Auxiliary Boiler (S-7616-25) 3-5 3.2.4 Gasification, SRU, and Rectisol® Flares (S-7616-30, 31, 32) 3-8 3.2.5 Sulfur Recovery Unit and Tail Gas Thermal Oxidizer (TGTO) (S-7616-23-0) 3-8 3.2.6 Carbon Dioxide Vent (S-7616-24-0) 3-10 3.2.7 Gasification System (S-7616-21-0) 3-11 3.2.8 Ammonia Synthesis Unit (S-7616-33-0) 3-12 3.2.9 Urea Unit (S-7616-34-0) 3-12 3.2.10 Nitric Acid Unit (S-7616-35-0) 3-12 3.2.11 Ammonium Nitrate Unit (S-7616-36-0) 3-13 3.2.12 Material Handling (S-7616-17, 18, 19, 20, 22, 37) 3-13 3.2.13 Beregency Generator Engines and Firewater Pump Engine (S-7616-38, 39, 40) 3-13 3.2.14 HECA Facility-Wide Criteria Pollutant Emissions 3-13 3.3.1 Trains 3-18 3.3.1 Trains 3-18 3.3.1 Trains 3-20 Section 4 Air Quality Impact Analysis 4-1 4.1 Model and Model Option Sele					3-3
3.2.3 Auxiliary Boiler (S-7616-25)			3.2.2		
3.2.4 Gasification, SRU, and Rectisol® Flares (S-7616-30, 31, 32) 3-8 3.2.5 Sulfur Recovery Unit and Tail Gas Thermal Oxidizer (TGTO) (S-7616-23-0) 3-8 3.2.6 Carbon Dioxide Vent (S-7616-24-0) 3-10 3.2.7 Gasification System (S-7616-24-0) 3-10 3.2.7 Gasification System (S-7616-24-0) 3-11 3.2.8 Ammonia Synthesis Unit (S-7616-34-0) 3-12 3.2.9 Urea Unit (S-7616-35-0) 3-12 3.2.10 Nitric Acid Unit (S-7616-35-0) 3-12 3.2.12 Material Handling (S-7616-36-0) 3-13 3.2.12 Material Handling (S-7616-17, 18, 19, 20, 22, 37) 3-13 3.2.13 Emergency Generator Engines and Firewater Pump Engine (S-7616-38, 39, 40) 3-13 3.2.14 HECA Facility-Wide Criteria Pollutant Emissions 3-13 3.3.1 Trains 3-18 3.3.2 Trucks 3-20 3.4 Greenhouse Gas Emissions 3-20 3.4 Greenhouse Gas Emissions 3-20 Section 4 Air Quality Impact Analysis 4-1 4.1 Dispersion Modeling Methodology 4-1 4.1					
32)					3-5
(TGTO) (S-7616-23-0) 3-8 3.2.6 Carbon Dioxide Vent (S-7616-24-0) 3-10 3.2.7 Gasification System (S-7616-21-0) 3-11 3.2.8 Ammonia Synthesis Unit (S-7616-33-0) 3-12 3.2.9 Urea Unit (S-7616-34-0) 3-12 3.2.10 Nitric Acid Unit (S-7616-35-0) 3-12 3.2.11 Ammonium Nitrate Unit (S-7616-36-0) 3-13 3.2.12 Material Handling (S-7616-17, 18, 19, 20, 22, 37) 3-13 3.2.12 Emergency Generator Engines and Firewater Pump Engine (S-7616-38, 39, 40) 3-13 3.2.14 HECA Facility-Wide Criteria Pollutant Emissions 3-13 3.2.13 Emergency Generator Engines and Firewater Pump Engine (S-7616-38, 39, 40) 3-13 3.2.14 HECA Facility-Wide Criteria Pollutant Emissions 3-13 3.2.13 Emergency Generator Engines and Firewater Pump Engine (S-7616-38, 39, 40) 3-13 3.2.14 HECA Facility-Wide Criteria Pollutant Emissions 3-13 3.3.1 Trains 3-13 3.4 Greenhouse Gas Emissions 3-20 Section 4 Air Quality Impact Analysis 4-1 4.1 Dispersion Modeling Methodology			3.2.4	32)	3-8
3.2.7 Gasification System (S-7616-21-0) 3-11 3.2.8 Ammonia Synthesis Unit (S-7616-33-0) 3-12 3.2.9 Urea Unit (S-7616-34-0) 3-12 3.2.10 Nitric Acid Unit (S-7616-35-0) 3-12 3.2.11 Ammonium Nitrate Unit (S-7616-36-0) 3-13 3.2.12 Material Handling (S-7616-17, 18, 19, 20, 22, 37) 3-13 3.2.13 Emergency Generator Engines and Firewater Pump Engine (S-7616-38, 39, 40) 3-13 3.2.14 HECA Facility-Wide Criteria Pollutant Emissions 3-13 3.3.1 Trains 3-18 3.3.1 Trains 3-20 Section 4 Air Quality Impact Analysis 4-1 4.1 Modeling Methodology 4-1 4.1 Modeling Methodology 4-1 4.1 Modeling Scenarios 4-2 4.1.1 Modeling Scenarios 4-2 4.1.2 Building Wake and Good Engineering Practice 4-1 4.1.3 Receptor Locations 4-2 4.1.4 Sections 4-2 4.1.5 Modeling Scenarios 4-2 4.2 Compliance with Ambient Air Qu			3.2.5		3-8
3.2.7 Gasification System (S-7616-21-0) 3-11 3.2.8 Ammonia Synthesis Unit (S-7616-33-0) 3-12 3.2.9 Urea Unit (S-7616-34-0) 3-12 3.2.10 Nitric Acid Unit (S-7616-35-0) 3-12 3.2.11 Ammonium Nitrate Unit (S-7616-36-0) 3-13 3.2.12 Material Handling (S-7616-17, 18, 19, 20, 22, 37) 3-13 3.2.13 Emergency Generator Engines and Firewater Pump Engine (S-7616-38, 39, 40) 3-13 3.2.14 HECA Facility-Wide Criteria Pollutant Emissions 3-13 3.3.1 Trains 3-18 3.3.1 Trains 3-20 Section 4 Air Quality Impact Analysis 4-1 4.1 Modeling Methodology 4-1 4.1 Modeling Methodology 4-1 4.1 Modeling Scenarios 4-2 4.1.1 Modeling Scenarios 4-2 4.1.2 Building Wake and Good Engineering Practice 4-1 4.1.3 Receptor Locations 4-2 4.1.4 Sections 4-2 4.1.5 Modeling Scenarios 4-2 4.2 Compliance with Ambient Air Qu			3.2.6		
3.2.8 Ammonia Synthesis Unit (S-7616-33-0) 3-12 3.2.9 Urea Unit (S-7616-34-0) 3-12 3.2.10 Nitric Acid Unit (S-7616-35-0) 3-12 3.2.11 Ammonium Nitrate Unit (S-7616-36-0) 3-13 3.2.12 Material Handling (S-7616-36-0) 3-13 3.2.13 Emergency Generator Engines and Firewater Pump Engine (S-7616-38, 39, 40) 3-13 3.2.14 HECA Facility-Wide Criteria Pollutant Emissions 3-13 3.3.1 Trains 3-18 3.3.1 Trains 3-18 3.3.1 Trains 3-18 3.3.2 Trucks 3-20 3.4 Greenhouse Gas Emissions 3-20 3.4 Greenhouse Gas Emissions 3-20 Section 4 Air Quality Impact Analysis 4-1 4.1 Dispersion Modeling Methodology 4-1 4.1 Dispersion Modeling Methodology 4-1 4.1.1 Model Option Selections 4-1 4.1.2 Building Wake and Good Engineering Practice 4-1 4.1.3 Receptor Locations 4-2 4.1.4 Sensitivity Modeling <td< td=""><td></td><td></td><td>3.2.7</td><td></td><td></td></td<>			3.2.7		
3.2.9 Urea Unit (S-7616-34-0)			3.2.8		
3.2.10 Nitric Acid Unit (S-7616-35-0) 3-12 3.2.11 Ammonium Nitrate Unit (S-7616-36-0) 3-13 3.2.12 Material Handling (S-7616-17, 18, 19, 20, 22, 37) 3-13 3.2.13 Emergency Generator Engines and Firewater Pump Engine (S-7616-38, 39, 40) S.2.14 HECA Facility-Wide Criteria Pollutant Emissions 3-13 3.2.14 HECA Facility-Wide Criteria Pollutant Emissions 3-13 3.3 Mobile Sources 3-18 3.3.1 Trains 3-18 3.3.2 Trucks 3-20 3.4 Greenhouse Gas Emissions 3-20 3.4 Greenhouse Gas Emissions 3-20 Section 4 Air Quality Impact Analysis 4-1 4.1 Dispersion Modeling Methodology 4-1 4.1.1 Model and Model Option Selections 4-1 4.1.2 Building Wake and Good Engineering Practice 4-1 4.1.3 Receptor Locations 4-2 4.1.4 Sensitivity Modeling 4-2 4.1.5 Modeling Scenarios 4-2 4.1.4 Sensitivity Modeling 4-4 4.2.2 Odor Impacts 4-4 4.2.1 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
3.2.11 Ammonium Nitrate Unit (S-7616-36-0)3-133.2.12 Material Handling (S-7616-17, 18, 19, 20, 22, 37)3-133.2.13 Emergency Generator Engines and Firewater Pump Engine (S-7616-38, 39, 40)3-133.2.14 HECA Facility-Wide Criteria Pollutant Emissions3-133.3 Mobile Sources3-183.3.1 Trains3-183.3.2 Trucks3-203.4 Greenhouse Gas Emissions3-203.4 Greenhouse Gas Emissions3-20Section 4Air Quality Impact Analysis4.14.1Dispersion Modeling Methodology4-14.1.2 Building Wake and Good Engineering Practice4-14.1.3 Receptor Locations4-24.1.4 Sensitivity Modeling.4-24.1.5 Modeling Scenarios4-24.2Compliance with Ambient Air Quality Standards4-44.2.1 Operational Impacts4-10Section 5Health Risk Assessment5-15.1Operational-Phase Air Toxics Emissions5-15.1.2Fugitive Emissions5-15.1.3Mobile Sources5-15.1.3Mobile Sources5-1					
3.2.12 Material Handling (S-7616-17, 18, 19, 20, 22, 37)					
3.2.13 Emergency Generator Engines and Firewater Pump Engine (S-7616-38, 39, 40) 3-13 3.2.14 HECA Facility-Wide Criteria Pollutant Emissions 3-13 3.3 Mobile Sources 3-18 3.3.1 Trains 3-18 3.3.2 Trucks 3-20 3.4 Greenhouse Gas Emissions 3-20 3.4 Greenhouse Gas Emissions 3-20 Section 4 Air Quality Impact Analysis 4-1 4.1 Dispersion Modeling Methodology 4-1 4.1.1 Model and Model Option Selections 4-1 4.1.2 Building Wake and Good Engineering Practice 4-1 4.1.3 Receptor Locations 4-2 4.1.4 Sensitivity Modeling 4-2 4.1.5 Modeling Scenarios 4-2 4.2 Compliance with Ambient Air Quality Standards 4-4 4.2.2 Odor Impacts 4-10 Section 5 Health Risk Assessment 5-1 5.1 Operational Phase Air Toxics Emissions 5-1 5.1.1 Stationary Sources 5-1 5.1.2 Fugitive Emissions 5-3 5.1.3 Mobile Sources 5-4 <td></td> <td></td> <td></td> <td></td> <td></td>					
(S-7616-38, 39, 40)3-133.2.14 HECA Facility-Wide Criteria Pollutant Emissions3-133.3 Mobile Sources3-183.3.1 Trains3-183.3.2 Trucks3-203.4 Greenhouse Gas Emissions3-203.4 Greenhouse Gas Emissions3-20Section 4Air Quality Impact Analysis4.11 Dispersion Modeling Methodology4.14.14.1.1Model and Model Option Selections4.1.2Building Wake and Good Engineering Practice4.1.3Receptor Locations4.1.4Sensitivity Modeling4.24.154.1.5Modeling Scenarios4.24.24.2Compliance with Ambient Air Quality Standards4.44.2.14.2.2Odor Impacts4.10Section 5Health Risk Assessment5.1Operational Impacts5.1.1Stationary Sources5.1.3Mobile Sources5.1.3Mobile Sources5.13Mobile Sources5.14Sources5.155.135.14Sources5.155.145.16Sources5.175.145.18Sources5.195.145.10Sources5.11Stationary Sources5.12Sources5.13Sources5.14Sources5.155.145.16Sources5.17Sources5.18Sources5.19 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
3.2.14 HECA Facility-Wide Criteria Pollutant Emissions3-133.3Mobile Sources3-183.3.1Trains3-183.3.2Trucks3-203.4Greenhouse Gas Emissions3-20Section 4Air Quality Impact Analysis4-14.1Dispersion Modeling Methodology4-14.1.1Model and Model Option Selections4-14.1.2Building Wake and Good Engineering Practice4-14.1.3Receptor Locations4-24.1.4Sensitivity Modeling4-24.1.5Modeling Scenarios4-24.1.6Operational Impacts4-44.2.1Operational Impacts4-10Section 5Health Risk Assessment5-15.1Operational-Phase Air Toxics Emissions5-15.1.2Fugitive Emissions5-35.1.3Mobile Sources5-4					3-13
3.3Mobile Sources3-183.3.1Trains3-183.3.2Trucks3-203.4Greenhouse Gas Emissions3-20Section 4Air Quality Impact Analysis4-14.1Dispersion Modeling Methodology4-14.1Model and Model Option Selections4-14.1.2Building Wake and Good Engineering Practice4-14.1.3Receptor Locations4-24.1.4Sensitivity Modeling4-24.1.5Modeling Scenarios4-24.2Compliance with Ambient Air Quality Standards4-44.2.1Operational Impacts4-10Section 5Health Risk Assessment5-15.1Operational-Phase Air Toxics Emissions5-15.1.1Stationary Sources5-15.1.2Fugitive Emissions5-35.1.3Mobile Sources5-4			3.2.14		
3.3.1Trains3-183.3.2Trucks3-203.4Greenhouse Gas Emissions3-20Section 4Air Quality Impact Analysis4-14.1Dispersion Modeling Methodology4-14.1Nodel and Model Option Selections4-14.1.2Building Wake and Good Engineering Practice4-14.1.3Receptor Locations4-24.1.4Sensitivity Modeling4-24.1.5Modeling Scenarios4-24.2Compliance with Ambient Air Quality Standards4-44.2.1Operational Impacts4-10Section 5Health Risk Assessment5-15.1Operational-Phase Air Toxics Emissions5-15.1.1Stationary Sources5-15.1.2Fugitive Emissions5-35.1.3Mobile Sources5-4		3.3		•	
3.3.2Trucks3-203.4Greenhouse Gas Emissions3-20Section 4Air Quality Impact Analysis4-14.1Dispersion Modeling Methodology4-14.1.1Model and Model Option Selections4-14.1.2Building Wake and Good Engineering Practice4-14.1.3Receptor Locations4-24.1.4Sensitivity Modeling4-24.1.5Modeling Scenarios4-24.1.6Operational Impacts4-44.2.1Operational Impacts4-44.2.2Odor Impacts4-10Section 5Health Risk Assessment5-15.1Operational-Phase Air Toxics Emissions5-15.1.3Mobile Sources5-35.1.3Mobile Sources5-4					
3.4Greenhouse Gas Emissions3-20Section 4Air Quality Impact Analysis4-14.1Dispersion Modeling Methodology4-14.1.1Model and Model Option Selections4-14.1.2Building Wake and Good Engineering Practice4-14.1.3Receptor Locations4-24.1.4Sensitivity Modeling4-24.1.5Modeling Scenarios4-24.2Compliance with Ambient Air Quality Standards4-44.2.1Operational Impacts4-10Section 5Health Risk Assessment5-15.1Operational-Phase Air Toxics Emissions5-15.1.1Stationary Sources5-35.1.3Mobile Sources5-4			3.3.2		
4.1Dispersion Modeling Methodology4-14.1.1Model and Model Option Selections4-14.1.2Building Wake and Good Engineering Practice4-14.1.3Receptor Locations4-24.1.4Sensitivity Modeling4-24.1.5Modeling Scenarios4-24.1.5Modeling Scenarios4-24.2Compliance with Ambient Air Quality Standards4-44.2.1Operational Impacts4-44.2.2Odor Impacts4-10Section 5Health Risk Assessment5-15.1Operational-Phase Air Toxics Emissions5-15.1.1Stationary Sources5-35.1.3Mobile Sources5-4		3.4			
4.1Dispersion Modeling Methodology4-14.1.1Model and Model Option Selections4-14.1.2Building Wake and Good Engineering Practice4-14.1.3Receptor Locations4-24.1.4Sensitivity Modeling4-24.1.5Modeling Scenarios4-24.1.5Modeling Scenarios4-24.2Compliance with Ambient Air Quality Standards4-44.2.1Operational Impacts4-44.2.2Odor Impacts4-10Section 5Health Risk Assessment5-15.1Operational-Phase Air Toxics Emissions5-15.1.1Stationary Sources5-35.1.3Mobile Sources5-4	Section 4	Air Qu	ality Imp	act Analysis	4-1
4.1.1Model and Model Option Selections4-14.1.2Building Wake and Good Engineering Practice4-14.1.3Receptor Locations4-24.1.4Sensitivity Modeling4-24.1.5Modeling Scenarios4-24.1.5Modeling Scenarios4-24.2Compliance with Ambient Air Quality Standards4-44.2.1Operational Impacts4-44.2.2Odor Impacts4-10Section 5Health Risk Assessment5.1Operational-Phase Air Toxics Emissions5-15.1.1Stationary Sources5-15.1.2Fugitive Emissions5-35.1.3Mobile Sources5-4				5	
4.1.2Building Wake and Good Engineering Practice4-14.1.3Receptor Locations4-24.1.4Sensitivity Modeling4-24.1.5Modeling Scenarios4-24.2Compliance with Ambient Air Quality Standards4-44.2.1Operational Impacts4-44.2.2Odor Impacts4-44.2.1Operational Impacts5-15.1Operational-Phase Air Toxics Emissions5-15.1.1Stationary Sources5-15.1.2Fugitive Emissions5-35.1.3Mobile Sources5-4			-		
4.1.3Receptor Locations4-24.1.4Sensitivity Modeling4-24.1.5Modeling Scenarios4-24.2Compliance with Ambient Air Quality Standards4-44.2.1Operational Impacts4-44.2.2Odor Impacts4-10Section 5Health Risk Assessment5.1Operational-Phase Air Toxics Emissions5-15.1.1Stationary Sources5-15.1.2Fugitive Emissions5-35.1.3Mobile Sources5-4				-	
4.1.4Sensitivity Modeling4-24.1.5Modeling Scenarios4-24.2Compliance with Ambient Air Quality Standards4-44.2.1Operational Impacts4-44.2.2Odor Impacts4-10Section 5Health Risk Assessment5.1Operational-Phase Air Toxics Emissions5-15.1.1Stationary Sources5-15.1.2Fugitive Emissions5-35.1.3Mobile Sources5-4					
4.1.5Modeling Scenarios4-24.2Compliance with Ambient Air Quality Standards4-44.2.1Operational Impacts4-44.2.2Odor Impacts4-10Section 5Health Risk Assessment5.1Operational-Phase Air Toxics Emissions5.1Sources5-15.1.2Fugitive Emissions5-35.1.3Mobile Sources5-4				-	
4.2Compliance with Ambient Air Quality Standards4-44.2.1Operational Impacts4-44.2.2Odor Impacts4-10Section 5Health Risk Assessment5.1Operational-Phase Air Toxics Emissions5-15.1.1Stationary Sources5-15.1.2Fugitive Emissions5-35.1.3Mobile Sources5-4					
4.2.1Operational Impacts4-44.2.2Odor Impacts4-10Section 5Health Risk Assessment5-15.1Operational-Phase Air Toxics Emissions5-15.1.1Stationary Sources5-15.1.2Fugitive Emissions5-35.1.3Mobile Sources5-4		4.2			
4.2.2Odor Impacts4-10Section 5Health Risk Assessment5-15.1Operational-Phase Air Toxics Emissions5-15.1.1Stationary Sources5-15.1.2Fugitive Emissions5-35.1.3Mobile Sources5-4			-	-	
5.1Operational-Phase Air Toxics Emissions5-15.1.1Stationary Sources5-15.1.2Fugitive Emissions5-35.1.3Mobile Sources5-4				1 1	
5.1Operational-Phase Air Toxics Emissions5-15.1.1Stationary Sources5-15.1.2Fugitive Emissions5-35.1.3Mobile Sources5-4	Section 5	Health	Risk As	sessment	5-1
5.1.1 Stationary Sources 5-1 5.1.2 Fugitive Emissions 5-3 5.1.3 Mobile Sources 5-4					
5.1.2Fugitive Emissions5-35.1.3Mobile Sources5-4			1		
5.1.3 Mobile Sources				•	
				•	

6.1Class I Area SIL Analysis6-16.2Air Quality Related Values6-26.2.1Class I Areas6-76.2.2Class II Area Visibility Analysis6-76.3Soils and Vegetation Analyses6-76.4Growth-Induced Impacts6-7Section 7Emission Reduction Credits Package7-17.1New Source Review Emission Reduction Credits7-17.2General Conformity and CEQA Mitigation7-1Section 8References8-1Tables		5.2	Estimated Lifetime Cancer Risk and Chronic and Acute Total	
Section 6 Class I Area and Additional Impacts Analysis 6-1 6.1 Class I Area SIL Analysis 6-1 6.2 Air Quality Related Values 6-2 6.2.1 Class I Area SIL Analysis 6-7 6.2 Class I Area SIL Analysis 6-7 6.3 Soils and Vegetation Analyses 6-7 6.4 Growth-Induced Impacts 6-7 6.4 Growth-Induced Impacts 6-7 Section 7 Emission Reduction Credits Package 7-1 7.1 New Source Review Emission Reduction Credits. 7-1 7.2 General Conformity and CEQA Mitigation. 7-1 Section 8 References 8-1 Table 3-3 Maximum Short-Term Emissions From CTG/HRSG And Feedstock Dryer Stack During On-Peak Operations 3-4 Revised Table 3-4 CTG/HRSG and Feedstock Dryer Maximum Annual Operation missions 3-4 Revised Table 3-5 CTG/HRSG and Feedstock Dryer Stack Emissions During Start-Up and Shut-Down and Shut-Down 3-6 Revised Table 3-11 Onsite Maximum Trucks and Trains by Averaging Period 3-18 Revised Table 3-12 Operations 3-22 Revised Table 3-14 Ma		53		
6.1 Class I Area SIL Analysis 6-1 6.2 Air Quality Related Values 6-2 6.2.1 Class II Areas 6-7 6.2.2 Class II Area Visibility Analysis 6-7 6.3 Soils and Vegetation Analyses 6-7 6.4 Growth-Induced Impacts 6-7 6.4 Growth-Induced Impacts 6-7 Section 7 Emission Reduction Credits Package 7-1 7.1 New Source Review Emission Reduction Credits 7-1 7.2 General Conformity and CEQA Mitigation 7-1 Section 8 References 8-1 Tables Tables 3-4 Trol/HRSG and Feedstock Dryer Maximum Annual Operation Emissions 3-4 Revised Table 3-5 CTG/HRSG and Feedstock Dryer Stack Emissions During Start-Up and Shut-Down 3-6 Revised Table 3-10 Operational Transportation Emissions Related to the Project 3-1 Revised Table 3-11 Onsite Maximum Trucks and Trains by Averaging Period. 3-18 Revised Table 3-15 Annual CO ₂ Emissions Associated with Mobile Sources During Project Operations. 3-22 Revised Table 3-15 Annual CO ₂ Emissions Associated with Mobile		5.5	Witigation Measures	-0
6.2 Air Quality Related Values 6-2 6.2.1 Class II Areas 6-7 6.2.2 Class II Area Visibility Analysis 6-7 6.3 Soils and Vegetation Analyses 6-7 6.4 Growth-Induced Impacts 6-7 Section 7 Emission Reduction Credits Package 7-1 7.1 New Source Review Emission Reduction Credits 7-1 7.2 General Conformity and CEQA Mitigation 7-1 Section 8 References 8-1 Tables Table 3-3 Maximum Short-Term Emissions From CTG/HRSG And Feedstock Dryer Stack During On-Peak Operations 3-4 Revised Table 3-4 CTG/HRSG and Feedstock Dryer Maximum Annual Operation Emissions. 3-4 Revised Table 3-5 CTG/HRSG and Feedstock Dryer Stack Emissions During Start-Up and Shut-Down 3-6 Revised Table 3-10 Onsite Maximum Trucks and Trains by Averaging Period. 3-18 Revised Table 3-10 Operational Transportation Emissions Caltact to the Project. 3-21 Revised Table 3-15 Annual CO2 e Emissions - Early Operations. 3-26 Revised Table 3-16 Greenhouse Gas Emission Associated with Mobile Sources During Project Operations. 3-26	Section 6	Class I	Area and Additional Impacts Analysis)-1
6.2.1 Class I Areas 6-7 6.2.2 Class II Area Visibility Analysis 6-7 6.3 Soils and Vegetation Analyses 6-7 6.4 Growth-Induced Impacts 6-7 7 6.4 Growth-Induced Impacts 6-7 Section 7 Emission Reduction Credits Package 7-1 7.1 New Source Review Emission Reduction Credits 7-1 7.2 General Conformity and CEQA Mitigation 7-1 Section 8 References 8-1 Tables Tables 8-1 Tables CTG/HRSG and Feedstock Dryer Maximum Annual Operation Emissions 3-4 Revised Table 3-4 CTG/HRSG and Feedstock Dryer Stack Emissions During Start-Up and Shut-Down 3-6 Revised Table 3-5 Total Combined Annual Criteria Pollutant Emissions ¹ 3-9 Revised Table 3-10 Onsite Maximum Trucks and Trains by Averaging Period 3-18 Revised Table 3-12 Operational Transportation Emissions Related to the Project 3-22 Revised Table 3-15 Annual CO ₂ Emissions Associated with Mobile Sources During Project Operations. 3-26 Revised Table 3-14 Maximum Annual CO ₂ e Emissions Associated with Mobile Sources Dur		6.1		
6.2.2 Class II Area Visibility Analysis 6-7 6.3 Soils and Vegetation Analyses 6-7 6.4 Growth-Induced Impacts 6-7 Section 7 Emission Reduction Credits Package 7-1 7.1 New Source Review Emission Reduction Credits 7-1 7.2 General Conformity and CEQA Mitigation 7-1 Section 8 References 8-1 Tables Tables 8-1 Table 3-3 Maximum Short-Term Emissions From CTG/HRSG And Feedstock Dryer Stack During On-Peak Operations 3-4 Revised Table 3-4 CTG/HRSG and Feedstock Dryer Maximum Annual Operation Emissions 3-4 Revised Table 3-5 CTG/HRSG and Feedstock Dryer Stack Emissions During Start-Up and Shut-Down 3-6 Revised Table 3-10 Onsite Maximum Trucks and Trains by Averaging Period 3-18 Revised Table 3-11 Onsite Maximum Trucks and Trains by Averaging Period 3-21 Revised Table 3-14 Maximum Annual Coge Emissions - Early Operations 3-22 Revised Table 3-16 Greenhouse Gas Emissions Associated with Mobile Sources During Project Operations. 3-24 Revised Table 4-3 AERMOD Modeling Results for Project Operations. 4-5		6.2	Air Quality Related Values	-2
6.3 Soils and Vegetation Analyses 6-7 6.4 Growth-Induced Impacts 6-7 Section 7 Emission Reduction Credits Package 7-1 7.1 New Source Review Emission Reduction Credits 7-1 7.2 General Conformity and CEQA Mitigation 7-1 Section 8 References 8-1 Tables 8-1 Tables Table 3-3 Maximum Short-Term Emissions From CTG/HRSG And Feedstock Dryer Stack During On-Peak Operations 3-4 Revised Table 3-4 CTG/HRSG and Feedstock Dryer Maximum Annual Operation Emissions 3-4 Revised Table 3-5 CTG/HRSG and Feedstock Dryer Stack Emissions During Start-Up and Shut-Down 3-6 Revised Table 3-6 Total Combined Annual Criteria Pollutant Emissions ¹ 3-9 Revised Table 3-10 Onsite Maximum Trucks and Trains by Averaging Period 3-18 Revised Table 3-12 Operational Transportation Emissions Related to the Project 3-21 Revised Table 3-14 Maximum Annual CO ₂ Emissions Associated with Mobile Sources During Project Operations 3-26 Revised Table 4-2 Project Operations Modeling Impacts Compared with Significant Impact Levels and Monitoring Concentrations 4-5 Revised Table 4-3				
6.4 Growth-Induced Impacts 6-7 Section 7 Emission Reduction Credits Package 7-1 7.1 New Source Review Emission Reduction Credits 7-1 7.2 General Conformity and CEQA Mitigation 7-1 Section 8 References 8-1 Tables 8-1 Tables 8-1 Table 3-3 Maximum Short-Term Emissions From CTG/HRSG And Feedstock Dryer Stack During On-Peak Operations 3-4 Revised Table 3-4 CTG/HRSG and Feedstock Dryer Maximum Annual Operation Emissions 3-4 Revised Table 3-5 CTG/HRSG and Feedstock Dryer Stack Emissions During Start-Up and Shut-Down 3-6 Revised Table 3-6 Total Combined Annual Criteria Pollutant Emissions' 3-9 Revised Table 3-10 Onsite Maximum Trucks and Trains by Averaging Period 3-18 Revised Table 3-12 Operational Transportation Emissions Related to the Project 3-21 Revised Table 3-14 Maximum Annual CO2 Emissions for SB 1368 Emission Performance Standard 3-24 Revised Table 3-15 Revised Table 3-16 Greenhouse Gas Emissions Associated with Mobile Sources During Project Operations 3-26 Revised Table 4-2 Project Operations Modeling Results for Project Operations 4-56			6.2.2 Class II Area Visibility Analysis	-7
Section 7 Emission Reduction Credits Package 7-1 7.1 New Source Review Emission Reduction Credits 7-1 7.2 General Conformity and CEQA Mitigation 7-1 Section 8 References 8-1 Tables Table 3-3 Maximum Short-Term Emissions From CTG/HRSG And Feedstock Dryer Stack During On-Peak Operations 3-4 Revised Table 3-4 CTG/HRSG and Feedstock Dryer Maximum Annual Operation Emissions 3-4 Revised Table 3-5 CTG/HRSG and Feedstock Dryer Stack Emissions During Start-Up and Shut-Down 3-6 Revised Table 3-6 Total Combined Annual Criteria Pollutant Emissions ¹ 3-9 Revised Table 3-10 Onsite Maximum Trucks and Trains by Averaging Period 3-18 Revised Table 3-12 Operational Transportation Emissions Related to the Project 3-21 Revised Table 3-15 Annual CO ₂ Emissions for SB 1368 Emission Performance Standard .3-24 Revised Table 3-15 Greenhouse Gas Emissions Associated with Mobile Sources During Project Operations 3-26 Revised Table 4-2 Project Operations Modeling Impacts Compared with Significant Impact Levels and Monitoring Concentrations 4-5 Revised Table 4-3 AERMOD Modeling Results for Project Operations 4-5 Revised Table		6.3	Soils and Vegetation Analyses	-7
7.1 New Source Review Emission Reduction Credits 7-1 7.2 General Conformity and CEQA Mitigation 7-1 Section 8 References 8-1 Tables 7-1 8-1 Tables Tables 8-1 Table 3-3 Maximum Short-Term Emissions From CTG/HRSG And Feedstock Dryer Stack During On-Peak Operations 3-4 Revised Table 3-4 CTG/HRSG and Feedstock Dryer Maximum Annual Operation Emissions 3-4 Revised Table 3-5 CTG/HRSG and Feedstock Dryer Stack Emissions During Start-Up and Shut-Down 3-6 Revised Table 3-10 Onsite Maximum Trucks and Trains by Averaging Period 3-18 Revised Table 3-11 Onsite Maximum Trucks and Trains by Averaging Period 3-21 Revised Table 3-12 Operational Transportation Emissions Related to the Project 3-22 Revised Table 3-14 Maximum Annual CO ₂ e Emissions - Early Operations 3-26 Revised Table 3-15 Annual CO ₂ Emissions for SB 1368 Emission Performance Standard .3-24 Revised Table 4-2 Project Operations Modeling Impacts Compared with Significant Impact Levels and Monitoring Concentrations 4-5 Revised Table 4-3 AERMOD Modeling Results for Project Operations 4-9 Revised Table 5-2 <td></td> <td>6.4</td> <td>Growth-Induced Impacts</td> <td>-7</td>		6.4	Growth-Induced Impacts	-7
7.1 New Source Review Emission Reduction Credits 7-1 7.2 General Conformity and CEQA Mitigation 7-1 Section 8 References 8-1 Tables 7-1 8-1 Tables Tables 8-1 Table 3-3 Maximum Short-Term Emissions From CTG/HRSG And Feedstock Dryer Stack During On-Peak Operations 3-4 Revised Table 3-4 CTG/HRSG and Feedstock Dryer Maximum Annual Operation Emissions 3-4 Revised Table 3-5 CTG/HRSG and Feedstock Dryer Stack Emissions During Start-Up and Shut-Down 3-6 Revised Table 3-10 Onsite Maximum Trucks and Trains by Averaging Period. 3-18 Revised Table 3-11 Onsite Maximum Trucks and Trains by Averaging Period. 3-21 Revised Table 3-12 Operational Transportation Emissions Related to the Project. 3-22 Revised Table 3-14 Maximum Annual CO ₂ Emissions For SB 1368 Emission Performance Standard. 3-24 Revised Table 3-15 Annual CO ₂ Emissions Associated with Mobile Sources During Project Operations. 3-26 Revised Table 4-2 Project Operations Modeling Impacts Compared with Significant Impact Levels and Monitoring Concentrations. 4-5 Revised Table 4-3 AERMOD Modeling Results for Project Operations.	Section 7	Fmissi	on Reduction Credits Package	/-1
7.2 General Conformity and CEQA Mitigation 7-1 Section 8 References 8-1 Tables Table 3-3 Maximum Short-Term Emissions From CTG/HRSG And Feedstock Dryer Stack During On-Peak Operations 3-4 Revised Table 3-4 CTG/HRSG and Feedstock Dryer Maximum Annual Operation Emissions 3-4 Revised Table 3-5 CTG/HRSG and Feedstock Dryer Stack Emissions During Start-Up and Shut-Down 3-6 Revised Table 3-10 Onsite Maximum Trucks and Trains by Averaging Period 3-18 Revised Table 3-11 Onsite Maximum Trucks and Trains by Averaging Period 3-22 Revised Table 3-15 Annual CO ₂ e Emissions - Early Operations 3-22 Revised Table 3-15 Annual CO ₂ Emissions for SB 1368 Emission Performance Standard .3-24 Revised Table 3-15 Greenhouse Gas Emissions Associated with Mobile Sources During Project Operations 4-5 Revised Table 4-2 Project Operations Modeling Impacts Compared with Significant Impact Levels and Monitoring Concentrations. 4-5 Revised Table 4-3 AERMOD Modeling Results for Project Operations. 4-6 Revised Table 4-5 SCREEN3 Fumigation Modeling Results for Project Operations. 4-5 Revised Table 5-2 HECA Total Toxic Air Contaminant Annual Emission Rates 5-5				
Section 8 References 8-1 Tables Table 3-3 Maximum Short-Term Emissions From CTG/HRSG And Feedstock Dryer Stack During On-Peak Operations 3-4 Revised Table 3-4 CTG/HRSG and Feedstock Dryer Maximum Annual Operation Emissions 3-4 Revised Table 3-5 CTG/HRSG and Feedstock Dryer Stack Emissions During Start-Up and Shut-Down 3-6 Revised Table 3-5 CTG/HRSG and Feedstock Dryer Stack Emissions During Start-Up and Shut-Down 3-9 Revised Table 3-6 Total Combined Annual Criteria Pollutant Emissions' 3-9 Revised Table 3-11 Onsite Maximum Trucks and Trains by Averaging Period 3-18 Revised Table 3-12 Operational Transportation Emissions Related to the Project 3-21 Revised Table 3-15 Annual CO ₂ Emissions for SB 1368 Emission Performance Standard .3-24 Revised Table 3-16 Greenhouse Gas Emissions Associated with Mobile Sources During Project Operations. 3-26 Revised Table 4-2 Project Operations Modeling Impacts Compared with Significant Impact Levels and Monitoring Concentrations. 4-5 Revised Table 4-3 AERMOD Modeling Results for Project Operations. 4-6 Revised Table 5-2 HECA Total Toxic Air Contaminant Annual Emission Rates 5-5 Revised Table 5-3 Sestimated Cancer Ris				
Tables Table 3-3 Maximum Short-Term Emissions From CTG/HRSG And Feedstock Dryer Stack During On-Peak Operations 3-4 Revised Table 3-4 CTG/HRSG and Feedstock Dryer Maximum Annual Operation Emissions 3-4 Revised Table 3-5 CTG/HRSG and Feedstock Dryer Stack Emissions During Start-Up and Shut-Down 3-6 Revised Table 3-6 Total Combined Annual Criteria Pollutant Emissions ¹ 3-9 Revised Table 3-10 Onsite Maximum Trucks and Trains by Averaging Period 3-18 Revised Table 3-12 Operational Transportation Emissions Related to the Project 3-21 Revised Table 3-14 Maximum Annual CO ₂ e Emissions - Early Operations 3-22 Revised Table 3-15 Annual CO ₂ Emissions for SB 1368 Emission Performance Standard . 3-24 Revised Table 3-16 Greenhouse Gas Emissions Associated with Mobile Sources During Project Operations. 3-26 Revised Table 4-2 Project Operations Modeling Impacts Compared with Significant Impact Levels and Monitoring Concentrations. 4-5 Revised Table 4-3 AERMOD Modeling Results for Project Operations. 4-9 Revised Table 4-5 SCREEN3 Fumigation Modeling Results for Project Operations. 4-9 Revised Table 5-3 HECA Total Toxic Air Contaminant Annual Emission Rates 5-5 <		D (
Table 3-3 Maximum Short-Term Emissions From CTG/HRSG And Feedstock Dryer Stack During On-Peak Operations 3-4 Revised Table 3-4 CTG/HRSG and Feedstock Dryer Maximum Annual Operation Emissions 3-4 Revised Table 3-5 CTG/HRSG and Feedstock Dryer Stack Emissions During Start-Up and Shut-Down 3-6 Revised Table 3-6 Total Combined Annual Criteria Pollutant Emissions ¹ 3-9 Revised Table 3-10 Operational Transportation Emissions Related to the Project 3-21 Revised Table 3-12 Operational Transportation Emissions Related to the Project 3-22 Revised Table 3-14 Maximum Annual CO ₂ e Emissions - Early Operations 3-22 Revised Table 3-15 Annual CO ₂ Emissions for SB 1368 Emission Performance Standard. 3-24 Revised Table 3-16 Greenhouse Gas Emissions Associated with Mobile Sources During Project Operations. 3-26 Revised Table 4-2 Project Operations Modeling Impacts Compared with Significant Impact Levels and Monitoring Concentrations. 4-5 Revised Table 4-3 AERMOD Modeling Results for Project Operations. 4-9 Revised Table 4-5 SCREEN3 Fumigation Modeling Results for Project Operations. 4-9 Revised Table 5-3 HECA Total Toxic Air Contaminant Annual Emission Rates 5-5 Revised Table 5-4	Section 8	Referer	1Ces)- I
Dryer Stack During On-Peak Operations3-4Revised Table 3-4CTG/HRSG and Feedstock Dryer Maximum Annual OperationEmissions3-4Revised Table 3-5CTG/HRSG and Feedstock Dryer Stack Emissions During Start-Upand Shut-Down3-6Revised Table 3-6Total Combined Annual Criteria Pollutant Emissions ¹ Revised Table 3-10Onsite Maximum Trucks and Trains by Averaging PeriodRevised Table 3-11Operational Transportation Emissions Related to the ProjectRevised Table 3-12Operational Transportation Emissions - Early OperationsRevised Table 3-15Annual CO2 Emissions for SB 1368 Emission Performance StandardRevised Table 3-16Greenhouse Gas Emissions Associated with Mobile Sources During Project OperationsProject Operations3-26Revised Table 4-2Project Operations Modeling Impacts Compared with Significant Impact Levels and Monitoring ConcentrationsRevised Table 4-3AERMOD Modeling Results for Project OperationsRevised Table 4-5SCREEN3 Fumigation Modeling Results for Project OperationsRevised Table 5-2HECA Total Toxic Air Contaminant Annual Emission RatesRevised Table 5-3Estimated Cancer Risk, Acute and Chronic Non-Cancer THI due to HECA OperationsHECA Emissions5-78Revised Table 6-1Comparison of Maximum HECA Concentrations and USEPA Screening ConcentrationsRevised Table 6-1Emission Reduction Credits DeterminationRevised Table 6-2Fermission Reluction Credits Determination	Tables			
Revised Table 3-4 CTG/HRSG and Feedstock Dryer Maximum Annual Operation Emissions 3-4 Revised Table 3-5 CTG/HRSG and Feedstock Dryer Stack Emissions During Start-Up and Shut-Down 3-6 Revised Table 3-6 Total Combined Annual Criteria Pollutant Emissions ¹ 3-9 Revised Table 3-6 Total Combined Annual Criteria Pollutant Emissions ¹ 3-9 Revised Table 3-10 Onsite Maximum Trucks and Trains by Averaging Period 3-18 Revised Table 3-12 Operational Transportation Emissions Related to the Project 3-21 Revised Table 3-14 Maximum Annual CO ₂ e Emissions - Early Operations 3-22 Revised Table 3-15 Annual CO ₂ Emissions for SB 1368 Emission Performance Standard .3-24 Greenhouse Gas Emissions Associated with Mobile Sources During Project Operations 3-26 Revised Table 4-2 Project Operations Modeling Impacts Compared with Significant Impact Levels and Monitoring Concentrations 4-5 Revised Table 4-3 AERMOD Modeling Results for Project Operations 4-9 Revised Table 5-2 HECA Total Toxic Air Contaminant Annual Emission Rates 5-5 Revised Table 5-3 Estimated Cancer Risk, Acute and Chronic Non-Cancer THI due to HECA Operations 5-8 Revised Table 5-4 Class I Significant Impact Levels 5-8	Table 3-3			
Emissions3-4Revised Table 3-5CTG/HRSG and Feedstock Dryer Stack Emissions During Start-Up and Shut-Down3-6Revised Table 3-6Total Combined Annual Criteria Pollutant Emissions ¹ 3-9Revised Table 3-11Onsite Maximum Trucks and Trains by Averaging Period3-18Revised Table 3-12Operational Transportation Emissions Related to the Project3-21Revised Table 3-14Maximum Annual CO ₂ e Emissions - Early Operations3-22Revised Table 3-15Annual CO ₂ Emissions for SB 1368 Emission Performance Standard .3-24Revised Table 3-16Greenhouse Gas Emissions Associated with Mobile Sources During Project Operations3-26Revised Table 4-2Project Operations Modeling Impacts Compared with Significant Impact Levels and Monitoring Concentrations4-5Revised Table 4-3AERMOD Modeling Results for Project Operations4-6Revised Table 4-5SCREEN3 Fumigation Modeling Results for Project Operations4-9Revised Table 5-2HECA Total Toxic Air Contaminant Annual Emission Rates5-5Revised Table 5-3Estimated Cancer Risk, Acute and Chronic Non-Cancer THI due to HECA Operations5-8Revised Table 6-1Class I Significant Impact Levels5-8Revised Table 6-2Comparison of Maximum HECA Concentrations and USEPA Screening Concentrations6-8Revised Table 6-1Emission Reduction Credits Determination7-2				-4
Revised Table 3-5CTG/HRSG and Feedstock Dryer Stack Emissions During Start-Up and Shut-Down3-6Revised Table 3-6Total Combined Annual Criteria Pollutant Emissions13-9Revised Table 3-11Onsite Maximum Trucks and Trains by Averaging Period3-18Revised Table 3-12Operational Transportation Emissions Related to the Project3-21Revised Table 3-14Maximum Annual CO2e Emissions - Early Operations3-22Revised Table 3-15Maximum Annual CO2e Emissions - Early Operations3-24Revised Table 3-16Greenhouse Gas Emission Sociated with Mobile Sources During Project Operations3-26Revised Table 4-2Project Operations Modeling Impacts Compared with Significant Impact Levels and Monitoring Concentrations4-5Revised Table 4-3AERMOD Modeling Results for Project Operations4-6Revised Table 4-4AERMOD Modeling Results for Project Operations4-9Revised Table 4-5FRECA Total Toxic Air Contaminant Annual Emission Rates5-5Revised Table 5-3HECA Toxic Air Contaminant Annual Emission Rates5-7Revised Table 5-4Acute Hazard Index for TACs with 8-hour RELs Predicted from Peak HECA Emissions5-8Revised Table 6-1Class I Significant Impact Levels6-1Revised Table 6-2Comparison of Maximum HECA Concentrations and USEPA Screening Concentrations6-8Revised Table 7-1Emission Reduction Credits Determination7-2	Revised Table	3-4		
and Shut-Down3-6Revised Table 3-6Total Combined Annual Criteria Pollutant Emissions ¹ 3-9Revised Table 3-11Onsite Maximum Trucks and Trains by Averaging Period3-18Revised Table 3-12Operational Transportation Emissions Related to the Project3-21Revised Table 3-13Maximum Annual CO2e Emissions - Early Operations3-22Revised Table 3-15Maximum Annual CO2 Emissions for SB 1368 Emission Performance Standard3-24Revised Table 3-16Greenhouse Gas Emissions Associated with Mobile Sources During Project Operations3-26Revised Table 4-2Project Operations Modeling Impacts Compared with Significant Impact Levels and Monitoring Concentrations4-5Revised Table 4-3AERMOD Modeling Results for Project Operations4-6Revised Table 4-4AERMOD Modeling Results for Project Operations4-9Revised Table 5-2HECA Total Toxic Air Contaminant Annual Emission Rates5-5Revised Table 5-3Estimated Cancer Risk, Acute and Chronic Non-Cancer THI due to HECA Operations5-7Revised Table 5-4Class I Significant Impact Levels6-1Revised Table 6-1Comparison of Maximum HECA Concentrations and USEPA 				-4
Revised Table 3-6Total Combined Annual Criteria Pollutant Emissions13-9Revised Table 3-11Onsite Maximum Trucks and Trains by Averaging Period3-18Revised Table 3-12Operational Transportation Emissions Related to the Project3-21Revised Table 3-14Maximum Annual CO2e Emissions - Early Operations3-22Revised Table 3-15Maximum Annual CO2 Emissions for SB 1368 Emission Performance Standard3-24Revised Table 3-16Greenhouse Gas Emissions Associated with Mobile Sources During Project Operations3-26Revised Table 4-2Project Operations Modeling Impacts Compared with Significant Impact Levels and Monitoring Concentrations4-5Revised Table 4-3AERMOD Modeling Results for Project Operations4-6Revised Table 4-4SCREEN3 Fumigation Modeling Results for Project Operations4-9Revised Table 5-2HECA Total Toxic Air Contaminant Annual Emission Rates5-5Revised Table 5-3Estimated Cancer Risk, Acute and Chronic Non-Cancer THI due to HECA Operations5-7Revised Table 5-4Acute Hazard Index for TACs with 8-hour RELs Predicted from Peak HECA Emissions5-8Revised Table 6-1Comparison of Maximum HECA Concentrations and USEPA Screening Concentrations6-8Revised Table 6-2Emission Reduction Credits Determination6-8	Revised Table	3-5	• • •	_
Revised Table 3-11Onsite Maximum Trucks and Trains by Averaging Period3-18Revised Table 3-12Operational Transportation Emissions Related to the Project3-21Revised Table 3-14Maximum Annual CO2e Emissions - Early Operations3-22Revised Table 3-15Annual CO2 Emissions for SB 1368 Emission Performance Standard3-24Revised Table 3-16Greenhouse Gas Emissions Associated with Mobile Sources During Project Operations3-26Revised Table 4-2Project Operations Modeling Impacts Compared with Significant Impact Levels and Monitoring Concentrations4-5Revised Table 4-3AERMOD Modeling Results for Project Operations4-6Revised Table 4-5SCREEN3 Fumigation Modeling Results for Project Operations4-9Revised Table 5-2HECA Total Toxic Air Contaminant Annual Emission Rates5-5Revised Table 5-3Estimated Cancer Risk, Acute and Chronic Non-Cancer THI due to HECA Operations5-7Revised Table 6-1Class I Significant Impact Levels6-1Revised Table 6-2Comparison of Maximum HECA Concentrations and USEPA Screening Concentrations6-8Revised Table 6-1Emission Reduction Credits Determination6-8	D 1 D 1 D 1	0		
Revised Table 3-12Operational Transportation Emissions Related to the Project3-21Revised Table 3-14Maximum Annual CO2e Emissions - Early Operations3-22Revised Table 3-15Annual CO2 Emissions for SB 1368 Emission Performance Standard . 3-24Revised Table 3-16Greenhouse Gas Emissions Associated with Mobile Sources During Project Operations.3-26Revised Table 4-2Project Operations Modeling Impacts Compared with Significant Impact Levels and Monitoring Concentrations.4-5Revised Table 4-3AERMOD Modeling Results for Project Operations.4-6Revised Table 4-4AERMOD Modeling Results for Project Operations.4-9Revised Table 5-2HECA Total Toxic Air Contaminant Annual Emission Rates5-5Revised Table 5-3Estimated Cancer Risk, Acute and Chronic Non-Cancer THI due to HECA Operations.5-7Revised Table 6-1Class I Significant Impact Levels5-8Revised Table 6-1Comparison of Maximum HECA Concentrations and USEPA Screening Concentrations.6-8Revised Table 6-1Emission Reduction Credits Determination.6-8				
Revised Table 3-14Maximum Annual CO2e Emissions - Early Operations3-22Revised Table 3-15Annual CO2 Emissions for SB 1368 Emission Performance Standard . 3-24Revised Table 3-16Greenhouse Gas Emissions Associated with Mobile Sources During Project Operations				
Revised Table 3-15Annual CO2 Emissions for SB 1368 Emission Performance Standard . 3-24Revised Table 3-16Greenhouse Gas Emissions Associated with Mobile Sources During Project Operations			1 1	
Revised Table 3-16Greenhouse Gas Emissions Associated with Mobile Sources During Project Operations				
Project Operations.3-26Revised Table 4-2Project Operations Modeling Impacts Compared with SignificantImpact Levels and Monitoring Concentrations.4-5Revised Table 4-3AERMOD Modeling Results for Project OperationsRevised Table 4-4AERMOD Modeling Results for PM2.5 from HECA OperationsRevised Table 4-5SCREEN3 Fumigation Modeling Results for Project OperationsRevised Table 5-2HECA Total Toxic Air Contaminant Annual Emission RatesRevised Table 5-3Estimated Cancer Risk, Acute and Chronic Non-Cancer THI due toHECA Operations5-7Revised Table 5-4Acute Hazard Index for TACs with 8-hour RELs Predicted from PeakHECA Emissions5-8Revised Table 6-1Class I Significant Impact LevelsRevised Table 6-2Comparison of Maximum HECA Concentrations and USEPAScreening Concentrations6-8Revised Table 7-1Emission Reduction Credits Determination				24
Revised Table 4-2Project Operations Modeling Impacts Compared with Significant Impact Levels and Monitoring Concentrations	Revised Table	3-16		76
Impact Levels and Monitoring Concentrations4-5Revised Table 4-3AERMOD Modeling Results for Project Operations4-6Revised Table 4-4AERMOD Modeling Results for PM2.5 from HECA Operations4-9Revised Table 4-5SCREEN3 Fumigation Modeling Results for Project Operations4-9Revised Table 5-2HECA Total Toxic Air Contaminant Annual Emission Rates5-5Revised Table 5-3Estimated Cancer Risk, Acute and Chronic Non-Cancer THI due to HECA Operations5-7Revised Table 5-4Acute Hazard Index for TACs with 8-hour RELs Predicted from Peak HECA Emissions5-8Revised Table 6-1Class I Significant Impact Levels6-1Comparison of Maximum HECA Concentrations and USEPA Screening Concentrations6-8Revised Table 7-1Emission Reduction Credits Determination7-2	Davised Table	1 2	5 1	20
Revised Table 4-3AERMOD Modeling Results for Project Operations4-6Revised Table 4-4AERMOD Modeling Results for PM2.5 from HECA Operations4-9Revised Table 4-5SCREEN3 Fumigation Modeling Results for Project Operations4-9Revised Table 5-2HECA Total Toxic Air Contaminant Annual Emission Rates5-5Revised Table 5-3Estimated Cancer Risk, Acute and Chronic Non-Cancer THI due to5-7Revised Table 5-4Acute Hazard Index for TACs with 8-hour RELs Predicted from Peak5-8Revised Table 6-1Class I Significant Impact Levels6-1Revised Table 6-2Comparison of Maximum HECA Concentrations and USEPA6-8Revised Table 7-1Emission Reduction Credits Determination7-2	Revised Table	4-2		5
Revised Table 4-4AERMOD Modeling Results for PM2.5 from HECA Operations4-9Revised Table 4-5SCREEN3 Fumigation Modeling Results for Project Operations4-9Revised Table 5-2HECA Total Toxic Air Contaminant Annual Emission Rates5-5Revised Table 5-3Estimated Cancer Risk, Acute and Chronic Non-Cancer THI due to HECA Operations5-7Revised Table 5-4Acute Hazard Index for TACs with 8-hour RELs Predicted from Peak HECA Emissions5-8Revised Table 6-1Class I Significant Impact Levels6-1Revised Table 6-2Comparison of Maximum HECA Concentrations and USEPA Screening Concentrations6-8Revised Table 7-1Emission Reduction Credits Determination7-2	Davised Table	12		
Revised Table 4-5SCREEN3 Fumigation Modeling Results for Project Operations4-9Revised Table 5-2HECA Total Toxic Air Contaminant Annual Emission Rates5-5Revised Table 5-3Estimated Cancer Risk, Acute and Chronic Non-Cancer THI due to HECA Operations5-7Revised Table 5-4Acute Hazard Index for TACs with 8-hour RELs Predicted from Peak HECA Emissions5-8Revised Table 6-1Class I Significant Impact Levels6-1Revised Table 6-2Comparison of Maximum HECA Concentrations and USEPA Screening Concentrations6-8Revised Table 7-1Emission Reduction Credits Determination7-2				
Revised Table 5-2HECA Total Toxic Air Contaminant Annual Emission Rates5-5Revised Table 5-3Estimated Cancer Risk, Acute and Chronic Non-Cancer THI due to HECA Operations5-7Revised Table 5-4Acute Hazard Index for TACs with 8-hour RELs Predicted from Peak HECA Emissions5-8Revised Table 6-1Class I Significant Impact Levels6-1Revised Table 6-2Comparison of Maximum HECA Concentrations and USEPA Screening Concentrations6-8Revised Table 7-1Emission Reduction Credits Determination7-2				
Revised Table 5-3Estimated Cancer Risk, Acute and Chronic Non-Cancer THI due to HECA OperationsRevised Table 5-4Acute Hazard Index for TACs with 8-hour RELs Predicted from Peak HECA EmissionsRevised Table 6-1Class I Significant Impact LevelsRevised Table 6-2Comparison of Maximum HECA Concentrations and USEPA Screening ConcentrationsRevised Table 7-1Emission Reduction Credits Determination			6 6 5 1	
HECA Operations5-7Revised Table 5-4Acute Hazard Index for TACs with 8-hour RELs Predicted from Peak HECA Emissions5-8Revised Table 6-1Class I Significant Impact Levels6-1Revised Table 6-2Comparison of Maximum HECA Concentrations and USEPA Screening Concentrations6-8Revised Table 7-1Emission Reduction Credits Determination7-2				-3
HECA Emissions5-8Revised Table 6-1Class I Significant Impact LevelsRevised Table 6-2Comparison of Maximum HECA Concentrations and USEPAScreening Concentrations6-8Revised Table 7-1Emission Reduction Credits Determination	Revised Table	5-5		-7
Revised Table 6-1Class I Significant Impact Levels6-1Revised Table 6-2Comparison of Maximum HECA Concentrations and USEPA Screening Concentrations6-8Revised Table 7-1Emission Reduction Credits Determination7-2	Revised Table	5-4	Acute Hazard Index for TACs with 8-hour RELs Predicted from Peak	
Revised Table 6-2Comparison of Maximum HECA Concentrations and USEPA Screening Concentrations				
Revised Table 6-2Comparison of Maximum HECA Concentrations and USEPA Screening Concentrations	Revised Table	6-1	Class I Significant Impact Levels	-1
Screening Concentrations6-8Revised Table 7-1Emission Reduction Credits Determination7-2	Revised Table	6-2		
Revised Table 7-1 Emission Reduction Credits Determination				-8
Revised Table 7-2 ERCs Procured by HECA	Revised Table	7-1		
	Revised Table	7-2	ERCs Procured by HECA7	-3

Figures

Revised Figure 1-1	Project Site Plan and Vicinity	1-2
Revised Figure 1-2	HECA Plot Plan with Emission Source Locations	1-3
Figure 3-1	Process Flow Diagram Coal Rail Unloading System	
Figure 3-2	Process Flow Diagram Coal/Coke Storage and Reclaim System	
Figure 3-3	Process Flow Diagram Coal/Coke Crushing and Plant Feed System.	
Figure 3-4	Process Flow Diagram Urea Transfer and Storage System	
Figure 3-5	HECA CO ₂ e Emissions and Product Summary	3-25
Revised Figure 4-3	Locations of Maximum Predicted Ground Level Pollutant	
	Concentrations	4-8
Revised Figure 6-1	Extent of NO ₂ Annual Class I SIL from HECA Operations	6-2
Revised Figure 6-2	Extent of PM ₁₀ Annual Class I SIL from HECA Operations	6-3
Revised Figure 6-3	Extent of PM _{2.5} Annual Class I SIL from HECA Operations	6-4
Revised Figure 6-4	Extent of PM ₁₀ 24-hour Class I SIL from HECA Operations	6-5
Revised Figure 6-5	Extent of PM _{2.5} 24-hour Class I SIL from HECA Operations	6-6

Appendices

Appendix A	Revised Operational Criteria Pollutant Emissions
Appendix B	Revised Toxic Air Contaminant Emissions

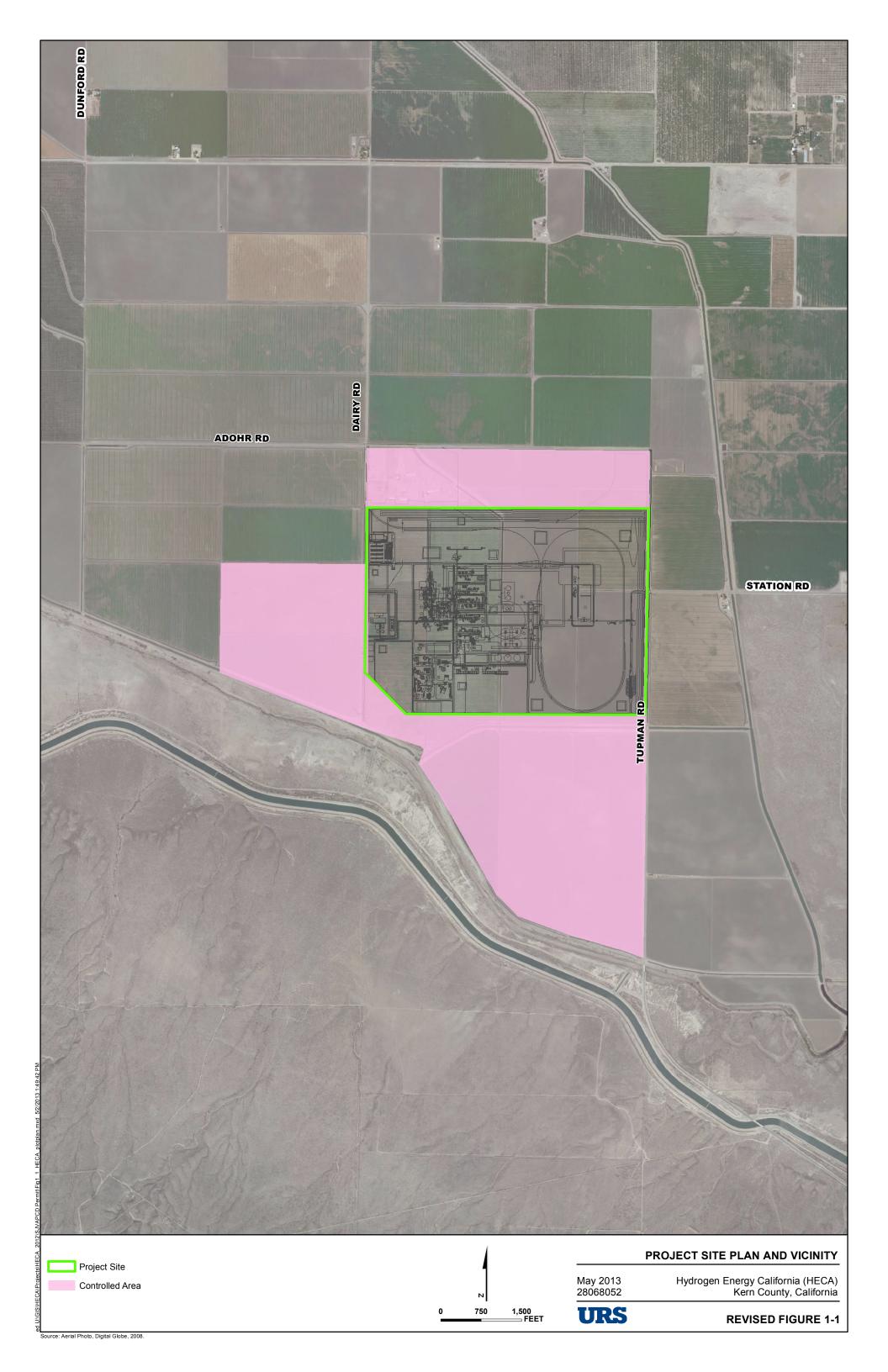
- Appendix C Appendix D Revised Operational Transportation Emissions for Alternative 1 Revised Operational Transportation Emissions for Alternative 2
- Appendix E Revised Operational Greenhouse Gas Emissions
- Appendix F Revised Fumigation Modeling Results

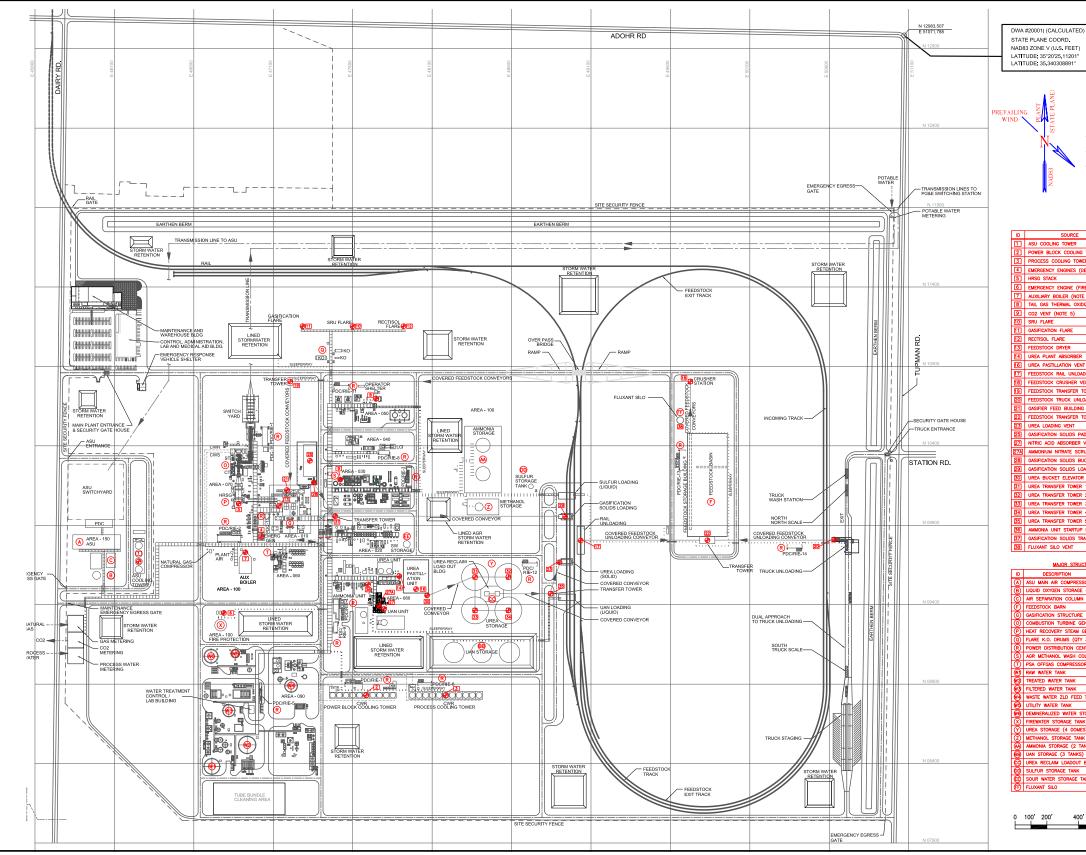
Acronyms

AAQS	Ambient Air Quality Standards
AERMOD	American Meteorological Society/Environmental Protection Agency
	Regulatory Model
AFC	Application for Certification
AGR	acid gas removal
AQRV	Air quality related values
ASU	air separation unit
ATC	Authority to construct
BACT	Best available control technology
BPIP-Prime	Building Parameter Input Program – Prime
CAAQS	California Ambient Air Quality Standards
CaCO ₃	calcium carbonate
CARB	California Air Resources Board
CAS	Chemical Abstract Service
CEC	California Energy Commission
CEQA	California Environmental Quality Act
CO	carbon monoxide
CO_2	carbon dioxide
CO ₂ e	carbon dioxide equivalent
CTG	combustion turbine generator
DPM	Diesel particulate matter
EOR	enhanced oil recovery
EPS	Emission Performance Standard
ERC	emissions reduction credits
°F	degrees Fahrenheit
FLAG	Federal Land Managers' Air Quality Related Values Workgroup
GCD	General Conformity Determination
GEP	Good Engineering Practices
GHG	Greenhouse gas
gr/dscf	grain per dry standard cubic foot
\tilde{H}_2	hydrogen
H_2S	Hydrogen sulfide
HAP	hazardous air pollutant
HARP	Hotspots analysis and reporting program
HECA	Hydrogen Energy California (or Applicant)
HHV	higher heating value
HP	high pressure
HRA	Health risk assessment
HRSG	heat recovery steam generator
ID	Identification

Ibs/hrpounds per hourLDARLeak detection and repairLPlow pressureLTCGlow-temperature cooling gasMEIRMaximally exposed individual residentMEIWMaximally exposed individual vorkerµg/m ³ micrograms per cubic meterMHIMitsubishi Heavy IndustriesMMHumillion British thermal unitsMMBtu/hrmillion British thermal units per hourMWmegawattMWhmegawatt per hourN2ONitrous oxideNAAQSNational Ambient Air Quality StandardsNAAQSNational Ambient Air Quality StandardsNOxNitrogen oxidesNSRNew source reviewO3ozoneOEHIOccidental of Elk Hills, IncorporatedpetcokePetroleum and cokePMparticulate matterPM10particulate matter less than 10 µm in diameterPM2.5particulate matter less than 10 µm in diameterPM3.6Pressure Swing AdsorptionPSAPressure Swing AdsorptionPSDPrevention of significant deteriorationPVMRMPlume Volume Molar Ratio MethodQ/dsum of the annualized daily emissions of PM10, NO2, SO2, and H2SO4 divided by the distance to the nearest Class I AreaRELReference Exposure LevelSBSenate BillSCRSelative catalytic reductionSF6Sulfur hexafluorideSUVAPCDSan Joaquin Valley Air BasinSUVAPCDSan Joaquin Valley Air Basin </th <th>lb/MWh</th> <th>pound per megawatt-hour</th>	lb/MWh	pound per megawatt-hour
LPlow pressureLTCGlow-temperature cooling gasMEIRMaximally exposed individual residentMEIWMaximally exposed individual workerMEIWMaximally exposed individual workerMHIMitsubishi Heavy IndustriesMHIMitsubishi Heavy IndustriesMMBtu/hrmillion British thermal unitsMMBtu/hrmillion British thermal units per hourMWmegawattMWmegawattMVmegawattNVmegawattNAAQSNational Ambient Air Quality StandardsNAAQSNational Ambient Air Quality StandardsNO2Nitrogen dioxideNO2Nitrogen dioxideNO3ozoneOEHIOccidental of Elk Hills, IncorporatedpetcokePetroleum and cokePMparticulate matterPM10particulate matter less than 10 µm in diameterPM25particulate matter less than 2.5 µm in diameterPpmvparts per millionppmVparts per million by volumePSAPressure Swing AdsorptionPSDPrevention of significant deteriorationPVMRMPlume Volume Molar Ratio MethodQ/dsum of the annualized daily emissions of PM10, NO2, SO2, and H2SO4 divided by the distance to the nearest Class I AreaRELReference Exposure LevelSBSenate BillSCRSelective catalytic reductionSF4Sulfur hexafluorideSIVAPCDSan Joaquin Valley Air BasinSIVAPCDSan Joaquin Valley	lbs/hr	· · · ·
LTCGIow-temperature cooling gasMEIRMaximally exposed individual residentMEIRMaximally exposed individual worker $\mu g/m^3$ micrograms per cubic meterMHIMitsubishi Heavy IndustriesMMBtumillion British thermal unitsMMBtu/hrmillion British thermal units per hourMWmegawattMWmegawatt per hourNVMmegawatt per hourNQ0Nitrous oxideNAQSNational Ambient Air Quality StandardsNN43AmmoniaNO2Nitrogen dioxideNO3ozoneOEHIOccidental of Elk Hills, IncorporatedpetcokePetroleum and cokePMparticulate matterPM10particulate matter less than 10 µm in diameterPM2.5particulate matter less than 2.5 µm in diameterPM3particulate matter less than 2.5 µm in diameterPM40particulate matter less than 10 µm in diameterPM51pervention of significant deteriorationPVMRMPlume Volume Molar Ratio MethodQ/dsum of the annualized daily emissions of PM10, NO2, SO2, and H2SO4 divided by the distance to the nearest Class I AreaRELReference Exposure LevelSBSenate BillSCRSlective catalytic reductionSF6Sulfur hexafluorideSIVAPCDSan Joaquin Valley Air BasinSIVAPCDSan Joaquin Valley Air BasinSIVAPCDSan Joaquin Valley Air Pollution Control DistrictSNCSignificant Monitoring Concentrations <td>LDAR</td> <td>Leak detection and repair</td>	LDAR	Leak detection and repair
LTCGlow-temperature cooling gasMEIRMaximally exposed individual residentMEIWMaximally exposed individual workerµg/m ³ micrograms per cubic meterMHIMitsubishi Heavy IndustriesMMBumillion British thermal unitsMMBtu/hrmillion British thermal units per hourMWmegawattMWmegawatt per hourN2ONitrous oxideNAQSNational Ambient Air Quality StandardsNAQSNational Ambient Air Quality StandardsNQ1Nitrogen dioxideNO2Nitrogen oxidesNSRNew source reviewO3ozoneOEHIOccidental of Elk Hills, IncorporatedpetcokePetroleum and cokePMparticulate matterPM10particulate matter less than 10 µm in diameterPM25particulate matter less than 2.5 µm in diameterPM3Particulate matter less than 2.5 µm in diameterPM40particulate matter less than 2.5 µm in diameterPM25particulate matter less than 2.5 µm in diameterPM30Preseure Swing AdsorptionPSDPreseure Swing AdsorptionPSDPreseure Exposure LevelSBSenate BillSCRSelerice catalytic reductionSF6Sulfur hexafluorideSIVAPCDSan Joaquin Valley Air BasinSIVAPCDSan Joaquin Valley Air BasinSIVAPCDSan Joaquin Valley Air Basin	LP	low pressure
MEIRMaximally exposed individual residentMEIWMaximally exposed individual worker $\mu g/m^3$ micrograms per cubic meterMH1Mitsubishi Heavy IndustriesMMBumillion British thermal unitsMMBtu/hrmillion British thermal units per hourMWmegawattMWhmegawatt per hourMVmegawatt per hourN2ONitrous oxideNAAQSNational Ambient Air Quality StandardsNH3AmmoniaNO2Nitrogen oxidesNSRNew source reviewO3ozoneOEH1Occidental of Elk Hills, IncorporatedPM0Particulate matter less than 10 µm in diameterPM10particulate matter less than 2.5 µm in diameterPM2-5particulate matter less than 2.5 µm in diameterPM10particulate matter less than 2.5 µm in diameterPSAPreseure Swing AdsorptionPSAPreseure Swing AdsorptionPSAPreseure Swing AdsorptionPSDPrevention of significant deteriorationPVMRMPlume Volume Molar Ratio MethodQ/dsum of the annualized daily emissions of PM10, NO2, SO2, and H2SO4 divided by the distance to the nearest Class I AreaRELReference Exposure LevelSBSenate BillSCRSlective catalytic reductionSF6Sulfur hexafluorideSUVAPCDSan Joaquin Valley Air BasinSUVAPCDSan Joaquin Valley Air BasinSUVAPCDSan Joaquin Valley Air Basin	LTCG	-
MEIWMaximally exposed individual worker $\mu g/m^3$ micrograms per cubic meterMHIMitsubishi Heavy IndustriesMMBtumillion British thermal unitsMMBtu/hrmillion British thermal units per hourMMBtu/hrmillion British thermal units per hourMWmegawattMWhmegawatts per hourNy0Nitrous oxideNAAQSNational Ambient Air Quality StandardsNH3AmmoniaNO2Nitrogen dioxideNO3ozoneOEHIOccidental of Elk Hills, IncorporatedPM00particulate matterPM10particulate matterPM10particulate matterPM2.5particulate matter less than 10 µm in diameterPM2.5particulate matter less than 2.5 µm in diameterPM10parts per million by volumePSAPresent Swing AdsorptionPSDPrevention of significant deteriorationPVMRMPlume Volume Molar Ratio MethodQ/dsum of the annualized daily emissions of PM10, NO2, SO2, and H2SO4 divided by the distance to the nearest Class I AreaSBSenate BillSCRSelective catalytic reductionSF6Sulfur hexafluorideSIVAPCDSan Joaquin Valley Air BasinSIVAPCDSan Joaquin Valley Air BasinSIVAPCDSan Joaquin Valley Air Basin	MEIR	
μg/m³micrograms per cubic meterMHIMitsubishi Heavy IndustriesMHBumillion British thermal unitsMMBtu/hrmillion British thermal unitsMMMmegawattMWmegawattMWmegawattMWhmegawatts per hourN2ONitrous oxideNAAQSNational Ambient Air Quality StandardsNH3AmmoniaNO2Nitrogen dioxideNOxNitrogen oxidesNSRNew source reviewO3ozoneOEHIOccidental of Elk Hills, IncorporatedpetcokePetroleum and cokePMparticulate matterPM10particulate matter less than 10 µm in diameterPM2.5particulate matter less than 2.5 µm in diameterppmparts per millionpmtvparts per swing AdsorptionPSDPrevention of significant deteriorationPVMRMPlume Volume Molar Ratio MethodQ/dsum of the annualized daily emissions of PM10, NO2, SO2, and H2SO4 divided by the distance to the nearest Class I AreaRELReference Exposure LevelSBSenate BillSCRSelective catalytic reductionSF6Sulfur hexafluorideSUVAPCDSan Joaquin Valley Air BasinSUVAPCDSan Joaquin Valley Air BasinSUVAPCDSan Joaquin Valley Air BasinSUVAPCDSan Joaquin Valley Air Basin	MEIW	Maximally exposed individual worker
MMBtumillion British thermal unitsMMBtu/hrmillion British thermal units per hourMWmegawattMWhmegawatts per hourN20Nitrous oxideN20Nitrous oxideNAAQSNational Ambient Air Quality StandardsNH3AmmoniaNO2Nitrogen dioxideNO3Nitrogen oxidesNSRNew source reviewO3ozoneOEHIOccidental of Elk Hills, IncorporatedPM0Particulate matterPM10particulate matter less than 10 µm in diameterPM25particulate matter less than 10 µm in diameterPM30particulate matter less than 2.5 µm in diameterPM10particulate matter less than 2.5 µm in diameterPSAPressure Swing AdsorptionPSDFreenee Exposure LevelSBSenate BillSCRSe	$\mu g/m^3$	• •
MMBtu/hrmillion British thermal units per hourMWmegawattMWhmegawatts per hourN2ONitrous oxideNAAQSNational Ambient Air Quality StandardsNHaAmmoniaNG2Nitrogen dioxideNO2Nitrogen dioxideNO3Nitrogen oxidesNSRNew source reviewO3ozoneOEHIOccidental of Elk Hills, IncorporatedPM0Particulate matterPM10particulate matter less than 10 µm in diameterPM25particulate matter less than 2.5 µm in diameterPM25particulate matter less than 2.5 µm in diameterPM0particulate matter less than 2.5 µm in diameterPM10particulate matter less than 2.5 µm in diameterPM25perseure Swing AdsorptionPSDPrevention of significant deteriorationPVMRMPlume Volume Molar Ratio MethodQ/dsun of the annualized daily emissions of PM10, NO2, SO2, and H2SO4 divided by the distance to the nearest Class I AreaRELReference Exposure LevelSBSenate BillSCRSelecti	MHI	Mitsubishi Heavy Industries
MWmegawattMWhmegawatts per hourN2ONitrous oxideN2ONitrous oxideNAAQSNational Ambient Air Quality StandardsNH3AmmoniaNO2Nitrogen dioxideNO2Nitrogen oxidesNSRNew source reviewO3ozoneOEHIOccidental of Elk Hills, IncorporatedPMParticulate matterPM10particulate matter less than 10 µm in diameterPM2.5particulate matter less than 2.5 µm in diameterPM2.5particulate matter less than 2.5 µm in diameterPSDPreseure Swing AdsorptionPSDPrevention of significant deteriorationPVMRMPlume Volume Molar Ratio MethodQ/dsum of the annualized daily emissions of PM10, NO2, SO2, and H2SO4 divided by the distance to the nearest Class I AreaRELReference Exposure LevelSBSenate BillSCRSignificant impact levelSJVABSan Joaquin Valley Air BasinSJVAPCDSan Joaquin Valley Air Pollution Control DistrictSMCSignificant Monitoring Concentrations	MMBtu	million British thermal units
MWmegawattMWhmegawatts per hourN2ONitrous oxideN2ONitrous oxideNAAQSNational Ambient Air Quality StandardsNH3AmmoniaNO2Nitrogen dioxideNO2Nitrogen oxidesNSRNew source reviewO3ozoneOEHIOccidental of Elk Hills, IncorporatedPMParticulate matterPM10particulate matter less than 10 µm in diameterPM2.5particulate matter less than 2.5 µm in diameterPM2.5particulate matter less than 2.5 µm in diameterPSDPreseure Swing AdsorptionPSDPrevention of significant deteriorationPVMRMPlume Volume Molar Ratio MethodQ/dsum of the annualized daily emissions of PM10, NO2, SO2, and H2SO4 divided by the distance to the nearest Class I AreaRELReference Exposure LevelSBSenate BillSCRSignificant impact levelSJVABSan Joaquin Valley Air BasinSJVAPCDSan Joaquin Valley Air Pollution Control DistrictSMCSignificant Monitoring Concentrations	MMBtu/hr	million British thermal units per hour
MWhmegawatts per hourN2ONitrous oxideNAAQSNational Ambient Air Quality StandardsNHaAmmoniaNO2Nitrogen dioxideNO3Nitrogen oxidesNO4Nitrogen oxidesNSRNew source reviewO3ozoneOEHIOccidental of Elk Hills, IncorporatedPetcokePetroleum and cokePMParticulate matterPM10particulate matter less than 10 μm in diameterPM2.5particulate matter less than 2.5 μm in diameterPM10partis per millionPSDPrevention of significant deteriorationPSDPrevention of significant deteriorationPVMRMPlume Volume Molar Ratio MethodQ/dsum of the annualized daily emissions of PM10, NO2, SO2, and H2SO4 divided by the distance to the nearest Class I AreaRELReference Exposure LevelSBSenate BillSCRSulficant impact levelSJVABSan Joaquin Valley Air Pollution Control DistrictSMCSignificant Monitoring Concentrations	MW	
N_2O Nirous oxideNAAQSNational Ambient Air Quality StandardsNH3AmmoniaNO2Nitrogen dioxideNOxNitrogen oxidesNSRNew source reviewO3ozoneOEHIOccidental of Elk Hills, IncorporatedPetcokePetroleum and cokePMParticulate matterPM2.5particulate matter less than 10 µm in diameterPM2.5particulate matter less than 2.5 µm in diameterPM10parts per millionppmvparts per millionPSDPrevention of significant deteriorationPVMRMPlume Volume Molar Ratio MethodQ/dsum of the annualized daily emissions of PM10, NO2, SO2, and H2SO4 divided by the distance to the nearest Class I AreaRELReference Exposure LevelSBSenate BillSCRSelective catalytic reductionSF6Sulfur hexafluorideSILSignificant impact levelSJVABSan Joaquin Valley Air BasinSJVAPCDSan Joaquin Valley Air Pollution Control DistrictSMCSignificant Monitoring Concentrations	MWh	•
NH3AmmoniaNO2Nitrogen dioxideNO2Nitrogen oxidesNSRNew source reviewO3ozoneOEHIOccidental of Elk Hills, IncorporatedpetcokePetroleum and cokePMParticulate matterPM10particulate matter less than 10 µm in diameterPM2.5particulate matter less than 2.5 µm in diameterppmparts per millionppmvparts per million by volumePSAPressure Swing AdsorptionPSDPrevention of significant deteriorationPVMRMPlume Volume Molar Ratio MethodQ/dsum of the annualized daily emissions of PM10, NO2, SO2, and H2SO4 divided by the distance to the nearest Class I AreaRELReference Exposure LevelSBSenate BillSCRSelective catalytic reductionSF6Sulfur hexafluorideSILSignificant impact levelSJVABSan Joaquin Valley Air BasinSJVAPCDSan Joaquin Valley Air Pollution Control DistrictSMCSignificant Monitoring Concentrations	N_2O	•
NO2Nitrogen dioxideNOXNitrogen oxidesNSRNew source reviewO3ozoneOEHIOccidental of Elk Hills, IncorporatedpetcokePetroleum and cokePMParticulate matterPM10particulate matter less than 10 µm in diameterPM2.5particulate matter less than 2.5 µm in diameterppmparts per millionppmVparts per million by volumePSAPressure Swing AdsorptionPVMRMPlume Volume Molar Ratio MethodQ/dsum of the annualized daily emissions of PM10, NO2, SO2, and H2SO4 divided by the distance to the nearest Class I AreaRELReference Exposure LevelSBSenate BillSCRSelective catalytic reductionSF6Sulfur hexafluorideSILSignificant impact levelSJVABSan Joaquin Valley Air BasinSJVAPCDSignificant Monitoring Concentrations		National Ambient Air Quality Standards
NOxNitrogen oxidesNSRNew source reviewO3ozoneOEHIOccidental of Elk Hills, IncorporatedpetcokePetroleum and cokePMParticulate matterPM10particulate matter less than 10 µm in diameterPM2.5particulate matter less than 2.5 µm in diameterppmparts per millionppmVparts per million by volumePSAPressure Swing AdsorptionPSDPrevention of significant deteriorationPVMRMPlume Volume Molar Ratio MethodQ/dsum of the annualized daily emissions of PM10, NO2, SO2, and H2SO4 divided by the distance to the nearest Class I AreaRELReference Exposure LevelSBSenate BillSCRSelective catalytic reductionSF6Sulfur hexafluorideSILSignificant impact levelSJVABSan Joaquin Valley Air BasinSJVAPCDSignificant Monitoring Concentrations	NH ₃	Ammonia
NSRNew source reviewO3ozoneOEHIOccidental of Elk Hills, IncorporatedpetcokePetroleum and cokePMParticulate matterPM10particulate matter less than 10 µm in diameterPM2.5particulate matter less than 2.5 µm in diameterppmparts per millionppmvparts per million by volumePSAPreseure Swing AdsorptionPSDPrevention of significant deteriorationPVMRMPlume Volume Molar Ratio MethodQ/dsum of the annualized daily emissions of PM10, NO2, SO2, and H2SO4 divided by the distance to the nearest Class I AreaRELReference Exposure LevelSBSenate BillSCRSelective catalytic reductionSF6Sulfur hexafluorideSILSignificant impact levelSJVABSan Joaquin Valley Air BasinSJVAPCDSignificant Monitoring Concentrations	NO_2	Nitrogen dioxide
O3ozoneOEHIOccidental of Elk Hills, IncorporatedpetcokePetroleum and cokePMParticulate matterPM10particulate matter less than 10 μm in diameterPM2.5particulate matter less than 2.5 μm in diameterppmparts per millionppmvparts per million by volumePSAPressure Swing AdsorptionPSDPrevention of significant deteriorationPVMRMPlume Volume Molar Ratio MethodQ/dsum of the annualized daily emissions of PM10, NO2, SO2, and H2SO4 divided by the distance to the nearest Class I AreaRELReference Exposure LevelSBSenate BillSCRSelective catalytic reductionSF6Sulfur hexafluorideSILSignificant impact levelSILSignificant impact levelSIVABSan Joaquin Valley Air BasinSIVAPCDSignificant Monitoring Concentrations	NO _X	Nitrogen oxides
OEHIOccidental of Elk Hills, IncorporatedpetcokePetroleum and cokePMParticulate matterPM10particulate matter less than 10 μm in diameterPM2.5particulate matter less than 2.5 μm in diameterppmparts per millionppmvparts per million by volumePSAPresenre Swing AdsorptionPSDPrevention of significant deteriorationPVMRMPlume Volume Molar Ratio MethodQ/dsum of the annualized daily emissions of PM10, NO2, SO2, and H2SO4 divided by the distance to the nearest Class I AreaRELReference Exposure LevelSBSenate BillSCRSelective catalytic reductionSF6Sulfur hexafluorideSILSignificant impact levelSIVABSan Joaquin Valley Air BasinSJVAPCDSignificant Monitoring Concentrations	NSR	New source review
petcokePetroleum and cokePMParticulate matterPM10particulate matter less than 10 µm in diameterPM2.5particulate matter less than 2.5 µm in diameterppmparts per millionppmvparts per million by volumePSAPressure Swing AdsorptionPSDPrevention of significant deteriorationPVMRMPlume Volume Molar Ratio MethodQ/dsum of the annualized daily emissions of PM10, NO2, SO2, and H2SO4 divided by the distance to the nearest Class I AreaRELReference Exposure LevelSBSenate BillSCRSelective catalytic reductionSF6Sulfur hexafluorideSILSignificant impact levelSJVABSan Joaquin Valley Air BasinSJVAPCDSan Joaquin Valley Air Pollution Control DistrictSMCSignificant Monitoring Concentrations	O ₃	ozone
PMParticulate matterPM10particulate matter less than 10 μm in diameterPM2.5particulate matter less than 2.5 μm in diameterppmparts per millionppmvparts per million by volumePSAPressure Swing AdsorptionPSDPrevention of significant deteriorationPVMRMPlume Volume Molar Ratio MethodQ/dsum of the annualized daily emissions of PM10, NO2, SO2, and H2SO4 divided by the distance to the nearest Class I AreaRELReference Exposure LevelSBSenate BillSCRSelective catalytic reductionSF6Sulfur hexafluorideSILSignificant impact levelSJVABSan Joaquin Valley Air Pollution Control DistrictSMCSignificant Monitoring Concentrations	OEHI	Occidental of Elk Hills, Incorporated
PM10particulate matter less than 10 μm in diameterPM2.5particulate matter less than 2.5 μm in diameterppmparts per millionppmvparts per million by volumePSAPressure Swing AdsorptionPSDPrevention of significant deteriorationPVMRMPlume Volume Molar Ratio MethodQ/dsum of the annualized daily emissions of PM10, NO2, SO2, and H2SO4 divided by the distance to the nearest Class I AreaRELReference Exposure LevelSBSenate BillSCRSelective catalytic reductionSF6Sulfur hexafluorideSILSignificant impact levelSJVABSan Joaquin Valley Air BasinSMCSignificant Monitoring Concentrations	petcoke	Petroleum and coke
PM2.5particulate matter less than 2.5 μm in diameterppmparts per millionppmvparts per million by volumePSAPressure Swing AdsorptionPSDPrevention of significant deteriorationPVMRMPlume Volume Molar Ratio MethodQ/dsum of the annualized daily emissions of PM10, NO2, SO2, and H2SO4 divided by the distance to the nearest Class I AreaRELReference Exposure LevelSBSenate BillSCRSelective catalytic reductionSF6Sulfur hexafluorideSILSignificant impact levelSJVABSan Joaquin Valley Air BasinSJVAPCDSan Joaquin Valley Air Pollution Control DistrictSMCSignificant Monitoring Concentrations	PM	Particulate matter
ppmparts per millionppmvparts per million by volumePSAPressure Swing AdsorptionPSDPrevention of significant deteriorationPVMRMPlume Volume Molar Ratio MethodQ/dsum of the annualized daily emissions of PM10, NO2, SO2, and H2SO4 divided by the distance to the nearest Class I AreaRELReference Exposure LevelSBSenate BillSCRSelective catalytic reductionSF6Sulfur hexafluorideSILSignificant impact levelSJVABSan Joaquin Valley Air BasinSJVAPCDSignificant Monitoring Concentrations	PM_{10}	particulate matter less than 10 μ m in diameter
PrimeParts per million by volumeppmvparts per million by volumePSAPressure Swing AdsorptionPSDPrevention of significant deteriorationPVMRMPlume Volume Molar Ratio MethodQ/dsum of the annualized daily emissions of PM10, NO2, SO2, and H2SO4 divided by the distance to the nearest Class I AreaRELReference Exposure LevelSBSenate BillSCRSelective catalytic reductionSF6Sulfur hexafluorideSILSignificant impact levelSJVABSan Joaquin Valley Air BasinSJVAPCDSan Joaquin Valley Air Pollution Control DistrictSMCSignificant Monitoring Concentrations	PM _{2.5}	particulate matter less than 2.5 µm in diameter
PSAPressure Swing AdsorptionPSDPrevention of significant deteriorationPVMRMPlume Volume Molar Ratio MethodQ/dsum of the annualized daily emissions of PM10, NO2, SO2, and H2SO4 divided by the distance to the nearest Class I AreaRELReference Exposure LevelSBSenate BillSCRSelective catalytic reductionSF6Sulfur hexafluorideSILSignificant impact levelSJVABSan Joaquin Valley Air BasinSJVAPCDSan Joaquin Valley Air Pollution Control DistrictSMCSignificant Monitoring Concentrations	ppm	parts per million
PSDPrevention of significant deteriorationPVMRMPlume Volume Molar Ratio MethodQ/dsum of the annualized daily emissions of PM10, NO2, SO2, and H2SO4 divided by the distance to the nearest Class I AreaRELReference Exposure LevelSBSenate BillSCRSelective catalytic reductionSF6Sulfur hexafluorideSILSignificant impact levelSJVABSan Joaquin Valley Air BasinSJVAPCDSan Joaquin Valley Air Pollution Control DistrictSMCSignificant Monitoring Concentrations	ppmv	parts per million by volume
PVMRMPlume Volume Molar Ratio MethodQ/dsum of the annualized daily emissions of PM10, NO2, SO2, and H2SO4 divided by the distance to the nearest Class I AreaRELReference Exposure LevelSBSenate BillSCRSelective catalytic reductionSF6Sulfur hexafluorideSILSignificant impact levelSJVABSan Joaquin Valley Air BasinSJVAPCDSignificant Monitoring Concentrations	PSA	Pressure Swing Adsorption
Q/dsum of the annualized daily emissions of PM10, NO2, SO2, and H2SO4 divided by the distance to the nearest Class I AreaRELReference Exposure LevelSBSenate BillSCRSelective catalytic reductionSF6Sulfur hexafluorideSILSignificant impact levelSJVABSan Joaquin Valley Air BasinSJVAPCDSignificant Monitoring Concentrations	PSD	Prevention of significant deterioration
by the distance to the nearest Class I AreaRELReference Exposure LevelSBSenate BillSCRSelective catalytic reductionSF6Sulfur hexafluorideSILSignificant impact levelSJVABSan Joaquin Valley Air BasinSJVAPCDSan Joaquin Valley Air Pollution Control DistrictSMCSignificant Monitoring Concentrations	PVMRM	Plume Volume Molar Ratio Method
RELReference Exposure LevelSBSenate BillSCRSelective catalytic reductionSF6Sulfur hexafluorideSILSignificant impact levelSJVABSan Joaquin Valley Air BasinSJVAPCDSan Joaquin Valley Air Pollution Control DistrictSMCSignificant Monitoring Concentrations	Q/d	sum of the annualized daily emissions of PM ₁₀ , NO ₂ , SO ₂ , and H ₂ SO ₄ divided
SBSenate BillSCRSelective catalytic reductionSF6Sulfur hexafluorideSILSignificant impact levelSJVABSan Joaquin Valley Air BasinSJVAPCDSan Joaquin Valley Air Pollution Control DistrictSMCSignificant Monitoring Concentrations		by the distance to the nearest Class I Area
SCRSelective catalytic reductionSF6Sulfur hexafluorideSILSignificant impact levelSJVABSan Joaquin Valley Air BasinSJVAPCDSan Joaquin Valley Air Pollution Control DistrictSMCSignificant Monitoring Concentrations	REL	Reference Exposure Level
SF6Sulfur hexafluorideSILSignificant impact levelSJVABSan Joaquin Valley Air BasinSJVAPCDSan Joaquin Valley Air Pollution Control DistrictSMCSignificant Monitoring Concentrations	SB	Senate Bill
SILSignificant impact levelSJVABSan Joaquin Valley Air BasinSJVAPCDSan Joaquin Valley Air Pollution Control DistrictSMCSignificant Monitoring Concentrations	SCR	Selective catalytic reduction
SJVABSan Joaquin Valley Air BasinSJVAPCDSan Joaquin Valley Air Pollution Control DistrictSMCSignificant Monitoring Concentrations	SF_6	Sulfur hexafluoride
SJVAPCDSan Joaquin Valley Air Pollution Control DistrictSMCSignificant Monitoring Concentrations	SIL	Significant impact level
SMC Significant Monitoring Concentrations	SJVAB	San Joaquin Valley Air Basin
	SJVAPCD	San Joaquin Valley Air Pollution Control District
	SMC	Significant Monitoring Concentrations
SO ₂ Sulfur dioxide	SO_2	Sulfur dioxide
SO _X sulfur oxide	SO_X	sulfur oxide

SRU	sulfur recovery unit
STG	steam turbine generator
syngas	Synthesis gas
TAC	toxic air contaminants
TGTO	Tail Gas Thermal Oxidizer
TGU	tail gas unit
THI	total hazard index
tonnes	metric tons
tonnes/yr	metric tons per year
tpy	tons per year
UAN	urea ammonium nitrate
USEPA	United States Environmental Protection Agency
UTM	Universal Transverse Mercator
VOCs	volatile organic compounds


During the process of developing the San Joaquin Valley Air Pollution Control District (SJVAPCD) air permit, and in response to Data Requests from the California Energy Commission (CEC), emissions from some sources have been updated as a result of Project engineering performed subsequent to the submittal of the permit application. This report outlines these Project updates since the submittal of the Authority to Construct (ATC) Permit Application and Supplemental Information for the Prevention of Significant Deterioration (PSD) Permit Application (ATC/PSD Application) in May 2012; and the Amended Application for Certification (Amended AFC) submitted to CEC in May 2012.


These refinements modify some emissions rates, stack parameters, and stack and building locations, but do not fundamentally alter the nature of the Project. This report describes the Project refinements, and analyzes potential air quality impacts. The emissions of criteria pollutants, toxic air contaminants (TAC), and greenhouse gases (GHG) changed as a result of Project refinements; all of these changes are shown in the updated emission spreadsheets included as appendices to this report. However, the American Meteorological Society/ Environmental Protection Agency Regulatory Model (AERMOD) and California Air Resources Board Hotspots Analysis and Reporting Program (HARP) modeling results demonstrate that the Project impacts remain less than significant, and these refinements do not change the conclusions of the criteria pollutant or GHG Best Available Control Technology (BACT) determinations.

This report outlines Project refinements and associated updated analyses. It supplements the information provided in the ATC/PSD Application, and compiles, in one place, all changes since the ATC/PSD Application, for ease of use and inclusion in the Final Determination of Compliance. This document follows generally the same outline as the ATC/PSD Application, without repeating information that has not changed. Many of the tables, figures, and appendices presented in the ATC/PSD Application have been updated; they are called out as "Revised" in this document, and replace those presented in the ATC/PSD Application. All source descriptions, emission calculation techniques, and modeling techniques described in the ATC/PSD Application remain valid, and thus are not repeated in this report. Where needed for clarification, descriptions of Project refinements and emission calculations are included.

General project refinements are discussed in Section 2. Changes that have affected emissions estimates or modeling parameters are summarized in Section 3. Updated dispersion modeling is detailed in Section 4, and the Health Risk Assessment is discussed in Section 5. The revised Additional Impacts Analysis is summarized in Section 6. Section 7 summarizes the extensive Project mitigation.

1-1

Source Fluor; HECA-SCS, 2012 AFC Update; Preliminary Emissions Sources Plot Plan; Drawing No: A4UV-000-50-SK-0002, Rev. G (4/16/13)

2312983.507 LONGITUDE: 119°22'36.22853" LONGITUDE: 119.376730147

EASTING 6151071.788

PLANT COORDINATE AND DATUM NOTES 1. PLANT COORDINATES IN FEET EQUATE TO E. 61XXXXX AND N. 23YYYYY OF CALIFORNIA STATE PLANE COORDINATE SYSTEM (NAD B3 ZONE V.)

- 2. PLANT ELEVATION 100.00' EQUATES TO 288.50' ABOVE MSL (NAVD88.)
- ACCURACY/TOLERANCE OF EMISSION POINT(S) COORDINATES ARE WITHIN A 50 FOOT RADIUS OF SOURCE POINT NOTED.
- LOCATION OF EMISSION POINTS IS SUBJECT TO COMPLETION OF DETAILED DESIGN BY LICENSORS AND EQUIPMENT SUPPLIERS.
- EMISSION POINT IS SHOWN FOR INFORMATION ONLY, ZERO EMISSIONS ARE EXPECTED DURING STEADY STATE OPERATION

SOURCE	STATE PLANE C	OOR. (ROUNDED) NORTH	APPX. ELEVATIONS FROM GRADE (FT)
COOLING TOWER	46253'-0"	9672'-0"	55'
ER BLOCK COOLING TOWER	47684'-7"	8830'-0"	65'
CESS COOLING TOWER	48185'-6"	8830'-0"	65'
RGENCY ENGINES (GENERATORS)	47023'-6"	9828'-4"	20'
G STACK	46882'-6"	10036'-0"	213'
RGENCY ENGINE (FIRE WATER PUMP)	46789'-0"	9348'-0"	20'
LIARY BOILER (NOTE 5)	46924'-0"	9730'-0"	80'
GAS THERMAL OXIDIZER	47746'-4"	10697'-0"	165'
VENT (NOTE 5)	47521'-6"	10187'-4"	355'
FLARE	47599'-8"	11153'-2"	250'
FICATION FLARE	47284'-8"	11153'-2"	250'
ISOL FLARE	47919'-9"	11153'-2"	250'
STOCK DRYER	47134'-10"	10021'-2"	305'
A PLANT ABSORBER	47893'-0"	9580'-0"	170'
A PASTILLATION VENT	47998'-6"	9498'-2"	50'
STOCK RAIL UNLOADING VENT	49035'-0"	9804'-0"	30'
STOCK CRUSHER VENT	49726'-0"	10805'-0"	100'
STOCK TRANSFER TOWER 2	47206'-0"	10805'-0"	100'
STOCK TRUCK UNLOADING VENT	50631'-0"	9810'-0"	60'
FIER FEED BUILDING VENT	47186'-0"	10122-0"	230'
STOCK TRANSFER TOWER 1	49833'-0"	9806'-0"	100'
A LOADING VENT	48902'-0"	9667'-0"	110'
FICATION SOLIDS PAD	47330'-6"	10306'-4"	N/A
IC ACID ABSORBER VENT	47797'-0"	9373'-0"	120'
ONIUM NITRATE SCRUBBER VENT	47767"0"	9392'-0"	55'
FICATION SOLIDS BUCKET ELEVATOR	47355'-6"	10169'-2"	30'
FICATION SOLIDS LOADING VENT	48936'-10"	9954'-9"	110'
A BUCKET ELEVATOR	48068'-5"	9458'-8"	50'
A TRANSFER TOWER 1	48370'-0"	9574'-0"	100'
A TRANSFER TOWER 2	48580'-0"	9574'-0"	100'
A TRANSFER TOWER 3	48370'-0"	9364'-0"	100'
A TRANSFER TOWER 4	48580'-0"	9364'-0"	100'
A TRANSFER TOWER 5	48846'-3"	9469'-0"	100'
ONIA UNIT STARTUP HEATER	47697'-0"	9527'-7"	80'
FICATION SOLIDS TRANSFER TOWER	47490'-0"	9957'-0"	75'
ANT SILO VENT	49661'-8"	10561'-4"	90'

MAJOR STRUCTURES / EQUIPMENT AND TANKS

DESCRIPTION	APPX. ELEVATIONS FROM GRADE (FT)	
MAIN AIR COMPRESSOR ENCLOSURE	40	1
OXYGEN STORAGE (LOX) TANK	90	1
EPARATION COLUMN CAN	200	1
TOCK BARN	160	1
CATION STRUCTURE	260	
USTION TURBINE GENERATOR STRUCTURE	50	1
RECOVERY STEAM GENERATOR STRUCTURE	90	1
K.O. DRUMS (QTY 3)	40	1
R DISTRIBUTION CENTERS	25	1
METHANOL WASH COLUMN	330	
OFFGAS COMPRESSOR	35	1
NATER TANK	95'DIA X 70'H	
ED WATER TANK	105'DIA X 65'H	
ED WATER TANK	75'DIA X 55'H	1
WATER ZLD FEED TANK	80'DIA X 50'H	₽S
Y WATER TANK	50'DIA X 55'H	ELEVATIO
ERALIZED WATER STORAGE TANK	80'DIA X 65'H	S H
ATER STORAGE TANK	74'DIA X 50'H	žч
STORAGE (4 DOMES)	170'DIA X 85'H	GRADE
NOL STORAGE TANK	46'DIA X 55'H	1
NIA STORAGE (2 TANKS)	90'DIA X 70'H	
STORAGE (3 TANKS)	130'DIA X 65'H	1
RECLAIM LOADOUT BUILDING	30	
IR STORAGE TANK	30'DIA X 28'H	1
WATER STORAGE TANK	45'DIA X 50'H	1
NT SILO	30'DIA X 80'H	1

400' 600' 800' 1000

HECA PLOT PLAN WITH EMISSION SOURCE LOCATIONS

May 2013 28068052

Hydrogen Energy California (HECA) Kern County, California

REVISED FIGURE 1-2

This section provides a description of the more significant changes to the proposed Hydrogen Energy California (HECA) Project. Data on the pollutant emissions resulting from the operation of the units are presented in Section 3.

2.1 HECA PROJECT REFINEMENTS

The project refinements described below do not fundamentally alter the nature of the Project; they are the result of further detailed project design.

The gross power output of the Combined Cycle Power Block is now expected to be up to 431 megawatts (MW) of gross power generation. The additional gross output is the result of optimization and improvement in heat recovery, and there is no additional fuel input or emissions. The gross power output may range from 405 to 431 MW, with the net power output ranging from 267 to 300 MW. Engineers are designing to optimize to the higher end of these ranges, but for some emission factor calculations it is more conservative to use the low-end value (e.g., for the Mercury and Air Toxics Standards).

The coordinates of the fence around the Controlled Area were moved slightly in toward the center of the Project Site to ensure adequate roadway easement. The fences along Station, Adohr, and Dairy roads were affected. Boundaries of the Project Site and Controlled Area are shown on Revised Figure 1-1, Project Site Plan and Vicinity.

The locations of some sources have been adjusted, including the heat recovery steam generator (HRSG), feedstock dryer, cooling towers, flares, carbon dioxide (CO₂) vent, Manufacturing Complex sources, material handling sources, emergency engines, and fugitive sources. Revised Figure 1-2, HECA Plot Plan with Emission Source Locations, shows the layout of Project process areas, equipment, and emission sources within the proposed site.

Many of the sources have different source identifications (IDs) (but the same or similar names) on the plot plan. These source IDs are for the purposes of the Project Emission Sources Plot Plan, and are not intended to match the permit unit numbers in the Preliminary Determination of Compliance. Several buildings and tanks were moved or have revised dimensions. A few sources have different stack heights and stack parameters.

Emissions of criteria pollutants, TAC and GHG were updated. Total stationary source project emissions of nitrogen oxides (NO_X) and carbon monoxide (CO) decreased, sulfur dioxide (SO_2) increased, and volatile organic compounds (VOCs), particulate matter 10 microns in diameter or less (PM_{10}) and particulate matter 2.5 microns in diameter or less $(PM_{2.5})$ remained approximately the same.

Mitsubishi Heavy Industries (MHI) completed pilot plant testing on the Project-specific feedstock (coal and petroleum coke [petcoke]), and determined that a fluxant should be added to the feedstock blend in order to increase the calcium content. Calcium lowers the ash fusion temperature and promotes a more stable and reliable flow of molten gasification solids along the walls of the gasifier, and down through the water bath and lock hopper valves into the gasification solids removal system. This helps the process achieve the vitreous, "glass like," gasification solids that HECA expects to be able to recycle as a substitute for other raw

materials. The fluxant is limestone (calcium carbonate), the same basic material that is used to soften water in the water treatment plant. HECA may be able to recycle the spent water treatment lime for use as a fluxant, which would reduce fluxant deliveries by truck. The fluxant addition is expected to be about 1 percent of total feed rate, but could be up to 3 percent. Thus, it was conservatively assumed that the amount of fluxant required will be 3 percent of total feed without the benefit of recycling water softening solids. Additional trucks will be needed to deliver the fluxant and remove the additional gasification solids.

The applicant has decided not to sell ammonia; thus, there will not be an ammonia loading area or offsite transportation of ammonia. In response to the modifications, total Project-related daily and annual transportation estimates of trucks and trains have been updated, and the emissions from the travel of these associated vehicles have decreased from the information presented in the Amended AFC.

The following explanation and clarification of the Sulfur Recovery Unit's (SRU) innovative and environmentally beneficial process design is provided to avoid potential confusion with the more commonly used industrial SRU process flow schemes. The HECA SRU uses the same Claus conversion technology found in most refineries. HECA's tail gas hydrogenation section is also included in those refineries using a SCOT-type Tail Gas Unit (TGU). However, HECA's TGU process has important differences. Unlike a refinery, which uses an amine solvent to absorb and recycle the hydrogen sulfide (H₂S) in the hydrogenated tail gas, the remaining tail gas and residual trace H₂S is oxidized and released to the atmosphere as SO₂. HECA is able to compress and recycle the hydrogenated tail gas (H₂S) back to the synthesis gas (syngas) treatment section for further sulfur removal and CO₂ capture. This eliminates atmospheric sulfur emissions from the SRU-TGU during normal operations. Many of the emission points and sulfur plant conditions typically found in a refinery application do not apply in HECA's design. This section discusses specific changes to sources in the proposed Project. These changes include revisions to emissions or modeling parameters, and this information has been compiled to provide, in one place, all project refinements since the ATC/PSD Application. All emission calculation techniques and stack parameters remained the same as presented in the ATC/PSD Application, unless specifically noted. Operational criteria pollutant emission calculations for all sources are presented in Appendix A, Revised Operational Criteria Pollutant Emissions, of this document. The Project refinements do not affect the commissioning emissions; thus, these emissions are not discussed in this document.

Emissions of criteria pollutants, TACs, and GHGs were estimated for each affected source. These emissions will be used to show that the Project will not cause an exceedance of PSD Significant Impact Level (SIL), increments, California or Federal Ambient Air Quality Standards (AAQS), or significant health risk measures.

3.1 PERMIT UNITS AND DESCRIPTIONS

This section summarizes the specifications of all equipment that will emit air pollutants at HECA, and the controls applied to limit emissions. The permit numbers match those presented in the Preliminary Determination of Compliance, and the descriptions were updated to match the Project revisions.

Permit Unit #	Permit Unit Description
S-7616-17-0	RAIL UNLOADING AND TRANSFER SYSTEM FOR THE HANDLING OF COAL, INCLUDING: ENCLOSED RAIL UNLOADING BUILDING SERVED BY BAGHOUSE DUST COLLECTOR AND DUST SUPPRESSION SPRAY SYSTEM, WITH RAILCAR UNLOADING STATION, RAIL UNLOADING BIN(S), BELT FEEDER(S), RAIL UNLOADING CONVEYOR(S) ENCLOSED IN UNLOADING TUNNEL (SERVED BY A DUST COLLECTOR) THAT TRANSFERS MATERIAL TO TOWER #1 SERVING FEEDSTOCK STORAGE (S-7616-19)
S-7616-18-0	TRUCK UNLOADING AND TRANSFER SYSTEM FOR THE HANDLING OF PETROLEUM COKE (PETCOKE) AND/OR COAL, INCLUDING: ENCLOSED TRUCK UNLOADING BUILDING SERVED BY BAGHOUSE DUST COLLECTOR AND DUST SUPPRESSION SPRAY SYSTEM, WITH TRUCK UNLOADING STATION(S), TRUCK UNLOADING BIN(S), BELT FEEDER(S), TRUCK UNLOADING CONVEYOR(S) ENCLOSED IN AN UNLOADING TUNNEL (SERVED BY A DUST COLLECTOR) THAT TRANSFERS MATERIAL TO TOWER #1 SERVING FEEDSTOCK STORAGE (S-7616-19)
S-7616-19-0	FEEDSTOCK STORAGE, BLENDING, AND RECLAIM SYSTEM INCLUDING: TRANSFER TOWER #1 (THAT TRANSFERS FEEDSTOCK FROM RAIL AND TRUCK UNLOADING AND TRANSFER SYSTEMS, S-7616-17 AND -18) SERVED BY A DUST COLLECTOR WITH COAL CRUSHER, REJECTS CONVEYOR(S); FEEDSTOCK STORAGE BUILDING (BARN) WITH A SEPARATE COAL AND PETCOKE STORAGE AREAS, STORAGE CONVEYOR(S), DISCHARGE CHUTE(S), AND RECLAIM CONVEYOR(S); AND TRANSFER TOWER #2 (THAT TRANSFERS MATERIAL TO THE FEEDSTOCK DRYING AND GRINDING/ CRUSHING OPERATION, S-7616-20) SERVED BY TWO DUST COLLECTORS (ONE OPERATING AND ONE SPARE), TWO ENCLOSED TRANSFER CONVEYORS, FLUXANT SILO AND UNLOADING VENT SERVED BY A DUST COLLECTOR
S-7616-20-0	FEEDSTOCK DRYING AND GRINDING/CRUSHING OPERATION INCLUDING: CRUSHER BUILDING SERVED BY BAGHOUSE DUST COLLECTOR, WITH SURGE BIN(S), BELT FEEDER(S), BYPASS SCREEN(S), TWO FEEDSTOCK CRUSHERS; TWO ENCLOSED PLANT FEED CONVEYORS SERVED BY BAGHOUSE DUST COLLECTOR; MILLING AND DRYING BUILDING WITH FEEDSTOCK DRYER [WITH DRYING GAS FROM TREATED EXHAUST GAS FROM HEAT RECOVERY STEAM GENERATOR LISTED ON S-7616-26] SERVED BY BAGHOUSE DUST COLLECTOR, WITH REVERSING CONVEYOR(S), DIVERTER GATE(S), AND TWO MILLING AND DRYING SILOS

Permit Unit #	Permit Unit Description
S-7616-21-0	GASIFICATION SYSTEM INCLUDING: ONE MHI OXYGEN-BLOWN GASIFIER; SYNGAS SCRUBBING SYSTEM; SOUR SHIFT/LOW TEMPERATURE GAS COOLING (LTGC) SYSTEM; SOUR WATER TREATMENT SYSTEM, MERCURY REMOVAL SYSTEM, RECTISOL [®] ACID GAS REMOVAL (AGR) UNIT, AND METHANOL STORAGE TANK
S-7616-22-0	GASIFICATION SOLIDS MATERIAL HANDLING AND STORAGE SYSTEM INCLUDING: GASIFICATION SOLIDS UNLOADING BUNKER (STORAGE COVER WITH ROOFING AND PARTIAL SIDING) WITH DEWATERING TANK(S), STORAGE PILE(S), RECLAIM HOPPER AND GRIZZLY, BUCKET ELEVATOR FEED CONVEYOR SERVED BY DUST COLLECTOR, ENCLOSED TRANSFER CONVEYOR (TO GASIFICATION SOLIDS TRANSFER TOWER), GASIFICATION SOLIDS TRANSFER TOWER SERVED BY DUST COLLECTOR, WITH ENCLOSED LOAD-OUT FEED CONVEYOR (TO GASIFICATION SOLIDS LOAD-OUT BUILDING); AND ENCLOSED GASIFICATION SOLIDS LOAD-OUT BUILDING SERVED BY BAGHOUSE DUST COLLECTOR, WITH GASIFICATION SOLIDS LOAD-OUT SYSTEM WITH ONE TRUCK AND ONE RAIL LOAD-OUT STATION
S-7616-23-0	SULFUR RECOVERY AND TAIL GAS COMPRESSION SYSTEM CONSISTING OF SULFUR RECOVERY UNIT (SRU), A TAIL GAS UNIT (TGU) WITH A NATURAL GAS-FIRED TAIL GAS THERMAL OXIDIZER RATED UP TO 96 MMBTU/HR (OR EQUIVALENT), AND MISCELLANEOUS TANKS, COMPRESSORS, PUMPS, CONDENSERS, HEAT EXCHANGERS, PIPING
S-7616-24-0	$\rm CO_2$ RECOVERY (CAPTURE, COMPRESSION, AND TRANSPORTATION) AND VENT SYSTEM FOR EMERGENCY RELEASES OF A STREAM OF PRIMARILY $\rm CO_2$ FROM THE ACID GAS REMOVAL UNIT
S-7616-25-0	230 MMBTU/HR NATURAL GAS-FIRED AUXILIARY BOILER EQUIPPED WITH LOW-NO _X BURNER WITH FLUE GAS RECIRCULATION AND SELECTIVE CATALYTIC REDUCTION (SCR) SYSTEM (OR EQUIVALENT)
S-7616-26-0	431 MW NOMINAL (GROSS) COMBINED-CYCLE POWER GENERATING SYSTEM CONSISTING OF HYDROGEN-RICH SYNGAS FUEL AND/OR BACK UP NATURAL GAS-FIRED MHI M501 GAC G-CLASS, AIR-COOLED ADVANCED COMBUSTION TURBINE GENERATOR (CTG), WITH A HEAT RECOVERY STEAM GENERATOR (HRSG), AND A CONDENSING STEAM TURBINE-GENERATOR (STG) OPERATING IN COMBINED CYCLE MODE, AND FEEDSTOCK DRYER (WITH DRYING GAS FROM TREATED EXHAUST GAS FROM HEAT RECOVERY STEAM GENERATOR)
S-7616-27-0	MULTI-CELL MECHANICAL-DRAFT COOLING TOWER WITH HIGH-EFFICIENCY DRIFT ELIMINATORS, SERVING GASIFICATION BLOCK AND PROCESS UNITS
S-7616-28-0	MULTI-CELL MECHANICAL-DRAFT COOLING TOWER WITH HIGH-EFFICIENCY DRIFT ELIMINATORS, SERVING AIR SEPARATION UNIT
S-7616-29-0	MULTI-CELL MECHANICAL-DRAFT COOLING TOWER WITH HIGH-EFFICIENCY DRIFT ELIMINATORS, SERVING POWER BLOCK
S-7616-30-0	4,000 MMBTU/HR ELEVATED FLARE WITH 0.5 MMBTU/HR NATURAL GAS-FIRED PILOT, PRIMARILY SERVING GASIFICATION BLOCK (OR EQUIVALENT)
S-7616-31-0	2,100 MMBTU/HR ELEVATED FLARE WITH 0.3 MMBTU/HR NATURAL GAS FIRED PILOT, PRIMARILY SERVING SULFUR RECOVERY UNIT (OR EQUIVALENT)
S-7616-32-0	5,500 MMBTU/HR ELEVATED FLARE WITH 0.3 MMBTU/HR NATURAL GAS-FIRED PILOT, PRIMARILY SERVING RECTISOL [®] UNIT (OR EQUIVALENT)
S-7616-33-0	AMMONIA SYNTHESIS UNIT CONSISTING OF: ONE 56.0 MMBTU/HR NATURAL GAS-FIRED AMMONIA STARTUP HEATER EQUIPPED WITH FOUR LOW-NOX BURNERS, EACH RATED AT 14.0 MMBTU/HR (OR EQUIVALENT); AMMONIA SYNTHESIS CONVERTER; SEPARATORS; ELECTRIC SYNGAS COMPRESSOR; ELECTRIC AMMONIA REFRIGERATION COMPRESSOR; AMMONIA ACCUMULATOR; AMMONIA REFRIGERATION SYSTEM; COLD LIQUID AMMONIA STORAGE SYSTEM; AMMONIA RECOVERY UNIT
S-7616-34-0	UREA UNIT WITH UREA PASTILLATION SYSTEM: UREA UNIT WITH HIGH-PRESSURE AND LOW-PRESSURE ABSORBERS VENTED TO THE UREA ABSORBER VENT; PASTILLATION UNIT WITH A DROP FORMER, MOVING BELT, OSCILLATING SCRAPER, AND BUCKET ELEVATOR SERVED BY A DUST COLLECTOR

Permit Unit #	Permit Unit Description
S-7616-35-0	NITRIC ACID UNIT FOR THE PRODUCTION OF NITRIC ACID FROM AMMONIA OXIDATION, NITRIC OXIDE OXIDATION, AND ABSORPTION SERVED BY: SELECTIVE CATALYTIC REDUCTION (SCR) TO CONTROL NO_X , AND TERTIARY CATALYTIC DECOMPOSITION TO CONTROL N_2O
S-7616-36-0	AMMONIUM NITRATE UNIT THAT PRODUCES AMMONIUM NITRATE, CONSISTING OF: NEUTRALIZER WITH INTEGRAL SCRUBBER TO CONTROL AMMONIA; PROCESS CONDENSATE TANK WITH VENT SCRUBBER TO CONTROL PARTICULATE MATTER EMISSIONS; AMMONIUM NITRATE COOLER, AND PROCESS PUMP(S)
S-7616-37-0	UREA STORAGE AND HANDLING OPERATION CONSISTING OF FOUR 20,000-TON STORAGE CAPACITY ENCLOSED UREA STORAGE DOMES EACH WITH ONE UREA TRANSFER TOWER, WITH EACH TRANSFER TOWER SERVED BY ONE DUST COLLECTOR; ENCLOSED UREA RECLAIM BUILDING WITH RECLAIM HOPPERS AND GRIZZLIES; ENCLOSED, TUBULAR RECLAIM CONVEYOR (THAT TRANSFERS MATERIAL TO UREA TRANSFER TOWER #5); UREA TRANSFER TOWER #5 SERVED BY DUST COLLECTOR; ENCLOSED, TUBULAR LOAD-OUT FEED CONVEYOR (THAT TRANSFERS MATERIAL TO LOAD-OUT BUILDING); UREA LOADOUT BUILDING SERVED BY BAGHOUSE DUST COLLECTOR, RAIL/TRUCK LOAD-OUT CONVEYOR, ONE TRUCK AND ONE TRAIN LOAD-OUT WEIGH SYSTEM, AND ONE TRUCK AND ONE TRAIN LOADING SPOUT AND VENT SYSTEM
S-7616-38-0	2,922 BHP CUMMINS MODEL QSK60-G6 INTERIM TIER 4 (OR THE HIGHEST TIER RATING APPLICABLE AT THE TIME OF PURCHASE, WHICHEVER TIER IS HIGHER) CERTIFIED DIESEL-FIRED EMERGENCY STANDBY IC ENGINE POWERING A 2,000 KW CUMMINS MODEL DQKC ELECTRIC GENERATOR, #1 (OR EQUIVALENT)
S-7616-39-0	2,922 BHP CUMMINS MODEL QSK60-G6 INTERIM TIER 4 (OR THE HIGHEST TIER RATING APPLICABLE AT THE TIME OF PURCHASE, WHICHEVER TIER IS HIGHER) CERTIFIED DIESEL-FIRED EMERGENCY STANDBY IC ENGINE POWERING A 2,000 KW CUMMINS MODEL DQKC ELECTRIC GENERATOR, #2 (OR EQUIVALENT)
S-7616-40-0	556 BHP CUMMINS MODEL CFP-15E-F40 INTERIM TIER 4 (OR THE HIGHEST TIER RATING APPLICABLE AT THE TIME OF PURCHASE, WHICHEVER TIER IS HIGHER) CERTIFIED DIESEL-FIRED EMERGENCY STANDBY IC ENGINE POWERING A FIREWATER PUMP (OR EQUIVALENT)

3.2 STATIONARY SOURCES

3.2.1 CTG/HRSG and Feedstock Dryer (S-7616-26-0)

The only updates to these sources were the decrease in start-up duration, thus decreasing emissions (described in the next section); the decrease in mercury emissions due to more detailed emission control specifications (see Section 5.1.1); and the increase in HRSG stack diameter to 24 feet. The HRSG flow rate did not change; therefore, the exit velocity decreased for all scenarios analyzed.

The maximum short-term operational emissions, excluding start-up and shut-down emissions, from the CTG/HRSG and feedstock dryer when combusting syngas, and from the CTG/HRSG when operating on natural gas, are presented in Table 3-3. These emissions have not changed from those presented in the ATC/PSD Application. The annual emissions of criteria pollutants for the CTG/HRSG and feedstock dryer are presented in Revised Table 3-4, and have been calculated based on the expected operating schedule of 8,000 hours of operations, two start-ups and shut-downs per year, and 2 weeks of natural-gas operations in addition to the start-up and shut-down events. Emissions and calculation details for all operating cases are presented in Appendix A, Revised Operational Criteria Pollutant Emissions.

	CTG/ HRSG Emissions lb/hr	Feedstock Dryer Emissions lb/hr	Basis	CTG/HRSG Emissions Basis (ppmv)	CTG/ HRSG Emissions lb/hr	CTG/HRSG Emissions Basis (ppmv)
Pollutant		Н	ydrogen-Rich Fuel		Natu	ral Gas
NO _X	25.0	4.4	Case 1 (ON Peak, 97°F Ambient)	2.5	34.1	4
СО	18.3	3.2	Case 1 (ON Peak, 97°F Ambient)	3	26.0	5
VOC	3.5	0.6	Case 1 (ON Peak, 97°F Ambient)	1	5.9	2
PM ₁₀ /PM _{2.5}	12.9	1.4	Case 3 (ON Peak, 39°F Ambient)	15 lb/hr	15.0	15 lb/hr
SO ₂	4.1	0.9	Case 2 (OFF Peak, 97°F Ambient)	2 ppmv total sulfur in syngas, 10 ppmv sulfur in PSA Off-gas	4.7	12.65 ppm sulfur in natural gas
NH ₃	18.5	3.2	Case 1 (ON Peak, 97°F Ambient)	5 ppmv ammonia slip	15.8	5 ppmv ammonia slip

Table 3-3 Maximum Short-Term Emissions From CTG/HRSG And Feedstock Dryer Stack During On-Peak Operations

Source: HECA, 2012.

Notes:

Emissions include duct burner operations with syngas and PSA off-gas. Feedstock dryer PM emissions controlled to 0.001 gr/dscf by baghouse

CO = carbon monoxide

 $\label{eq:CTG/HRSG} CTG/HRSG = Combustion turbine generator/heat recovery steam generator {}^\circ F = degrees Fahrenheit$

gr/dscf = grain per dry standard cubic feet

lb/hr = pound per hour

 $NH_3 = ammonia$

 $NO_X = nitrogen oxides$

 PM_{10} = particulate matter less than 10 microns $PM_{2.5}$ = particulate matter less than 2.5 microns ppmv = parts per million by volume PSA = Pressure Swing Adsorption SO_2 = sulfur dioxide VOCs = volatile organic compounds

Revised Table 3-4
CTG/HRSG and Feedstock Dryer Maximum Annual Operation Emissions

	CTG/HRSG, tons/year					Feedstock Dryer, tons/year			
Pollutant	Start-Up/ Shut- Down	Operations	Natural Gas Operations	Total	Start-Up/ Shut-Down	Operations	Total		
NO _X	1.15	99.6	5.73	106.5	0.09	16.9	17.0		
СО	11.8	72.8	4.36	89.0	0.36	12.4	12.7		
VOC	0.26	13.9	1.00	15.1	0.01	2.4	2.4		
PM ₁₀ /PM _{2.5}	0.19	51.3	2.52	54.0	0.01	5.6	5.6		
SO ₂	0.032	16.3	0.80	17.1	0.00	2.8	2.8		
NH ₃	0.07	73.6	2.65	76.4	0.01	12.5	12.5		

Source: HECA, 2013.

Notes:

CO = carbon monoxide

CTG/HRSG = Combustion turbine generator/heat recovery steam generator

 $NH_3 = ammonia$

 $NO_X = nitrogen oxides$

 PM_{10} = particulate matter less than 10 microns $PM_{2.5}$ = particulate matter less than 2.5 microns SO_2 = sulfur dioxide VOC = volatile organic compounds

 $R:\label{eq:rescaled} R:\label{eq:rescaled} R:\label{eq:rescaled} ATC\ATC_update.docx$

3.2.1.1 CTG/HRSG and Feedstock Dryer Start-Up and Shut-Down Emissions

Because start-up and shut-down events typically have higher emission rates than normal operating conditions, they are incorporated into the short- and long-term emissions estimates for the CTG/ HRSG for modeling purposes. The CTG will initially be started up using natural-gas fuel, and then shifted to syngas as the syngas becomes available. Conversely, during a shut-down, the CTG will be operated on syngas until production decreases, and then operated on natural gas.

Start-up hours were reduced from 50 hours to 2 hours for the CTG/HRSG and feedstock dryer during operation at 40 percent load on syngas, which is Step 3 of the start-up process. After further design development by MHI—the combustion turbine manufacturer—the total start-up time for the HRSG will be less than 5 hours. MHI has confirmed that the turbine does not need to hold at 40 percent load burning syngas for 50 hours, and this duration can be shortened to 2 hours. The shut-down time will remain at 9 hours or less. HECA will operate the catalytic emission controls in the HRSG during these start-up/shut-down periods within the constraint of the minimum catalyst temperature for ammonia injection to avoid selective catalytic reduction (SCR) fouling.

The oxidation catalyst will start functioning automatically as soon as it reaches its operating temperature range. The only action to be taken in order to begin catalytic operation is to start the ammonia injection for the SCR. The ammonia injection must wait until the SCR reactor exceeds the maximum temperature for ammonium sulfate precipitation to avoid fouling the catalyst. The time it takes for the catalysts to reach their respective temperatures will be determined when the HRSG supplier has been selected; and the emissions calculations will be adjusted if appropriate. The estimates used are conservative based on current information.

This substantial reduction in start-up duration translates into a reduction in emissions of criteria pollutants, TACs, and GHGs. The expected emissions and durations of start-up and shut-down events summarized in Revised Table 3-5 reflect the emissions from both natural gas and syngas combustion.

3.2.2 Process, Air Separation Unit (ASU), and Power Block Cooling Towers (S-7616-27, 28, and 29)

The emission rates for each cooling tower did not change, although the locations of all three cooling towers moved slightly. The ASU cooling tower (Unit 28) is now oriented north-south, and all stack parameters remained the same. The fan height increased to 65 feet for the Power Block and Process cooling towers. The number of cells for the Power Block cooling tower (Unit 29) decreased to 10, and the diameter of the cells decreased to 25 feet. The number of cells for the Process cooling tower (Unit 27) decreased to 11, and the diameter of the cells decreased to 29 feet. The stack exhaust flow rate changed for the Power Block and Process cooling towers.

3.2.3 Auxiliary Boiler (S-7616-25)

The burner capacity proposed by the supplier is 230 million British thermal units per hour (MMBtu/hr) higher heating value (HHV); however, HECA intends to keep the maximum allowable heat release at 213 MMBtu/hr HHV, and will accept a permit condition to this effect. Thus, emissions do not increase. Compliance will be monitored with a natural-gas fuel flow meter.

CTG/HRSG and Feedstock Dryer St	ack Emiss	sions D	uring Sta	rt-Up and	Shut-Dov	wn	
СТС	G/HRSG Sta	rt-Up					
Step	Duration (hours)	Units	SO ₂	NO _X	со	PM ₁₀ / PM _{2.5}	VOC
1. CTG ignition and synchronization, 20 percent load on natural gas	0.5	lb/hr	2.1	67.1	2270	15.0	65
		lb	1.0	33.6	1135	7.5	32.4
2. HRSG/STG warm-up, ramp CTG to 40 percent load on natural	2	lb/hr	2.4	107.2	1044	13.1	13
gas		lb	4.8	214	2088	26.3	26.8
3. CTG fuel change-over, 40 percent load on syngas, start-up PSA/	2	lb/hr	2.4	66.6	81.0	13.1	4.6
ammonia/urea units		lb	4.8	133.2	162.1	26.3	9.3
	Tons/St	art-Up	0.01	0.19	1.69	0.03	0.03
Feeds	tock Dryer S	start-Up				•	
Step	Duration (hours)	Units	SO_2	NO _X	СО	PM ₁₀ / PM _{2.5}	VOC
2. HRSG/STG warm-up, ramp CTG to 40 percent load on natural	2	lb/hr	0.3	15.1	147.4	0.9	1.9
gas		lb	0.7	30.3	294.7	1.9	3.8
3. CTG fuel change-over, 40 percent load on syngas	2	lb/hr	0.3	9.4	11.5	0.9	0.7
		lb	0.7	18.8	22.9	1.9	1.3
	Tons/St	art-Up	0.00	0.02	0.16	0.00	0.00
СТС	HRSG Shu	t-Down					
Step	Duration (hours)	Units	SO ₂	NO _X	со	PM ₁₀ / PM _{2.5}	VOC
1. PSA, ammonia, and urea unit shut-down; gasifier to 60 percent;	4	lb/hr	2.4	66.6	81.0	13	4.6
CTG to 40 percent load on syngas		lb	9.6	266	324	52.6	18.5
2. CTG fuel change-over, 40 percent load on natural gas, gasifier	3	lb/hr	2.7	122	1191	15.0	15.3
depressurization		lb	8.2	367	3574	45.0	45.9
3. Minimum plant load, 20 percent load on natural gas	2	lb/hr	2.1	67.1	2270	15.0	64.8
		lb	4.2	134	4539	30.0	129.7
	Tons/Shut	-Down	0.01	0.38	4.22	0.06	0.10

Revised Table 3-5 CTG/HRSG and Feedstock Dryer Stack Emissions During Start-Up and Shut-Down

Revised Table 3-5 CTG/HRSG and Feedstock Dryer Stack Emissions During Start-Up and Shut-Down (Continued)

Feedstock Dryer Shut-Down							
Step	Duration (hours)	Units	SO ₂	NO _X	СО	PM ₁₀ / PM _{2.5}	VOC
1. PSA, ammonia, and urea plant shut-down; gasifier to 60 percent;	4	lb/hr	0.3	9.4	11.5	0.9	0.7
CTG to 40 percent load on syngas		lb	1.4	37.6	45.8	3.8	2.6
	Tons/Shut	-Down	0.00	0.02	0.02	0.00	0.00

Source: HECA, 2013.

Notes:

Basis: Start-up/shut-down procedures provided by MHI.

Feedstock drying starts at Step 2, above.

PM₁₀/PM_{2.5} emission rate based on 0.001 gr/dscf

gr/dscf = dry standard cubic foot

CTG/HRSG = Combustion turbine generator/heat recovery steam generator

 $NH_3 = ammonia$

PSA = Pressure Swing Adsorption

 $NO_X = nitrogen oxides$

CO = carbon monoxide

VOC = volatile organic compounds

 $PM_{10} = particulate matter less than 10 microns$

 $PM_{2.5} =$ particulate matter less than 2.5 microns

 $SO_2 = sulfur dioxide$

3.2.4 Gasification, SRU, and Rectisol® Flares (S-7616-30, 31, 32)

SJVAPCD determined that BACT for emissions of NO_X from the natural gas pilot for all three flares is 0.068 lb/MMBtu. This resulted in a very minor reduction of NO_X emissions.

For the Gasification Flare (Unit 30), PM_{10} , SO_2 , and VOC emission factors during start-up were changed from negligible to the syngas emission factors from the turbine. This was done to account for the very small (negligible), but not zero, emissions of PM_{10} , SO_2 , and VOCs.

The maximum rating of each flare is higher than the capacity needed for flaring during planned events such as start-up and shut-down. Although this additional capacity is not planned to be intentionally used, it may be needed in the event of an upset or emergency. The maximum rating of the gasification flare is 4,000 MMBtu/hr, the sulfur recovery unit flare is 2,100 MMBtu/hr, and the Rectisol[®] flare is 5,500 MMBtu/hr. Although these capacities are greater than the capacity needed for planned flaring, HECA intends to keep the maximum allowable heat release of each flare as described in the ATC/PSD application for planned flaring, and will accept permit conditions to this effect.

A summary of emissions from each flare is presented in Revised Table 3-6. Detailed emission calculations are included in Appendix A, Revised Operational Criteria Pollutant Emissions.

3.2.5 Sulfur Recovery Unit and Tail Gas Thermal Oxidizer (TGTO) (S-7616-23-0)

Two maintenance activities associated with the TGTO have been identified. In the first activity, the TGTO will be used to dispose of sulfur-bearing gases during intermittent post-shut-down SRU passivation. In this operation, natural gas is fired in the SRU burners with a small amount of excess air to oxidize and remove residual sulfur from the SRU equipment. This step is necessary for safety reasons prior to opening the process equipment for major maintenance such as catalyst change-out. This operation is expected to occur about once every 3 years for 24 hours. Emissions during this time will be 75 pounds per hour of SO₂, plus 80 MMBtu/hr of natural gas combustion in the SRU, on top of the normal 13 MMBtu/hr TGTO assist natural gas combustion rate.

In the second activity, the TGTO will be used to safely oxidize and dispose of H₂S, SO₂, and sulfur vapor from the "presulfiding" of tail gas hydrogenation catalyst. Presulfiding, which activates new catalyst oxide loaded in the reactor prior to normal operation, consists of adding and recirculating steam-heated hydrogen and nitrogen through the hydrogenation catalyst. The hydrogen reacts with a layer of elemental sulfur on the fresh catalyst material to form sulfides, which converts the catalyst from its shipped oxide to its active, sulfide state. A purge is withdrawn from the recirculating stream to remove the added mass. The purge stream contains H₂S, SO₂, and other sulfur products and is directed to the TGTO for safe disposal. This operation is expected to occur less than once per year, for 24 hours per event. SO₂ emissions will be 125 pounds per hour, and the process does not need any additional natural gas combustion rate.

Pollutant	NO _X	СО	VOC	SO ₂	PM ₁₀	PM _{2.5}		
Equipment	tons/yr							
CTG/HRSG	106.5	89.0	15.1	17.1	54.0	54.0		
Feedstock Dryer	17.0	12.7	2.4	2.8	5.6	5.6		
Auxiliary Boiler	1.4	8.6	0.9	0.5	1.2	1.2		
Tail Gas Thermal Oxidizer	13.7	11.4	0.3	10.7	0.5	0.5		
CO ₂ Vent	N/A	125.1	3.8	N/A	N/A	N/A		
Gasification Flare	2.5	18.5	0.05	0.08	0.24	0.24		
Rectisol [®] Flare	0.7	0.8	0.01	0.3	0.03	0.03		
SRU Flare	0.1	0.2	0.003	0.4	0.006	0.006		
Cooling Towers ²	N/A	N/A	N/A	N/A	25.5	15.3		
Emergency Generators ³	0.2	0.8	0.1	0.001	0.02	0.02		
Fire Water Pump	0.09	0.2	0.01	0.0003	0.001	0.001		
Nitric Acid Unit	16.8	N/A	N/A	N/A	N/A	N/A		
Urea Pastillation Unit	N/A	N/A	N/A	N/A	0.2	0.2		
Ammonium Nitrate Unit	N/A	N/A	N/A	N/A	0.8	0.8		
Ammonia Start-Up Heater	0.04	0.15	0.02	0.01	0.02	0.02		
Material Handling ⁴	N/A	N/A	N/A	N/A	2.4	2.3		
Fugitives	0.005	4.8	12.2	0.1	0.1	0.03		
Total Annual	159.0	272.1	35.0	31.9	90.4	80.1		

Revised Table 3-6 Total Combined Annual Criteria Pollutant Emissions¹

Source: HECA 2013

Notes:

¹ Total annual emissions represent the maximum annual emissions during operations plus start-up and shut-down emissions.

² Includes contributions from all three cooling towers.

³ Includes contributions from both emergency generators.

⁴ Material handling emissions are shown as the contribution of all dust collection points.

HRSG = Heat Recovery Steam Generator

CTG = combustion turbine generator

CO = carbon monoxide

N/A = not applicable

 $NO_X = nitrogen oxides$

 PM_{10} = particulate matter less than 10 microns in diameter

 $PM_{2.5}$ = particulate matter less than 2.5 microns in diameter

 $SO_2 = sulfur dioxide$

VOC = volatile organic compound

The thermal oxidizer will be equipped with a natural-gas-fired burner rated up to 16 MMBtu/hr HHV. The SRU reactor furnace, which burns natural gas for system warm-up and post-shutdown plant maintenance, has an 80 MMBtu/hr waste gas burner. The thermal oxidizer natural gas assist burner rating increased from 13 to 16 MMBtu/hr due to new information provided by the supplier; however, HECA intends to keep the maximum allowable heat release at 13 MMBtu/hr and will accept a permit condition to this effect; thus, normal operational emissions do not increase. Compliance will be monitored with a natural gas fuel flow meter.

A summary of the TGTO emissions is presented in Revised Table 3-6. Detailed emission calculations are included in Appendix A, Revised Operational Criteria Pollutant Emissions.

3.2.6 Carbon Dioxide Vent (S-7616-24-0)

Emissions of methanol from the CO₂ vent were updated in response to Sierra Club Data Request 109, submitted to the CEC on December 21, 2012. Methanol, a VOC and TAC, is used by the Rectisol[®] process to capture and remove CO₂ from syngas to produce clean, hydrogen-rich gas. Captured CO₂ is compressed and transported offsite for enhanced oil recovery and sequestration, and provisions are included for venting CO₂ for short periods of time in the event of unplanned equipment outages. A small amount of methanol remains in the CO₂ vent gas, and a wash system is in place to further reduce the potential for methanol emissions when venting occurs. The Rectisol[®] process licensor, Linde, anticipates that the typical methanol content in the vented CO₂ stream will be 18 to 20 parts per million (ppm). The annual emission estimate is based on the typical methanol content of 20 ppm and the expected annual quantity of CO₂ that would be vented, which will range from 70 to 100 percent of vent flow capacity. Emissions of methanol in the vented CO₂ gas are presented in Appendix A, Revised Operational Criteria Pollutant Emissions.

HECA proposes a methanol emission limit from the CO_2 vent gas of 2.4 tons/year. HECA will manage annual CO_2 venting to meet the proposed emission limits for this source. HECA will measure the actual methanol concentration in the vent stream for each venting occurrence, along with flow rate. Based on the actual average annual methanol concentration and annual emission quantity to date, HECA will reduce the venting rate and/or duration as necessary to comply with annual emission limits. The CO_2 vent will be a highly instrumented and closely monitored system because venting affects the low GHG basis associated with all products produced.

Front End Engineering Design phase work identified that some benzene, a VOC, and TAC could be produced in the gasification reduction reaction. A benzene removal section has been included in the Rectisol[®] unit to remove and return the benzene back into the gasification oxidation zone for destruction. A small amount of residual benzene may partition into the CO_2 stream, where it would be sequestered. HECA has updated the emissions from the CO_2 vent to include the residual benzene. Due to the addition of the benzene removal section to the Rectisol[®] unit, the height of the methanol wash column has increased to 330 feet, and the CO_2 vent height has been increased to 355 feet.

With the introduction of fluxant, the CO_2 flow for enhanced oil recovery (EOR), which is occasionally vented, goes up incrementally. The fluxant and feedstock enter the gasifier together, where the limestone (calcium carbonate [CaCO₃]) splits into two components: calcium

oxide and CO_2 . The calcium oxide becomes part of the gasification solids. The CO_2 becomes part of the syngas stream and is captured in the Rectisol[®] Unit. The operating characteristics of the Rectisol[®] unit are such that the CO_2 concentration in the clean syngas remains constant even with the incremental increase in CO_2 flow rate in the incoming syngas. All of the additional CO_2 (an increase of less than 1 percent) is separated from the clean syngas in the Rectisol[®] unit and flows with the main CO_2 streams used for urea manufacture, EOR, or is occasionally vented. Due to the constant concentration of CO_2 in the outlet of the Rectisol[®] unit, the flow of carbon in the syngas to the Power Block and Manufacturing Complex remains constant.

The fluxant addition is expected to be about 1 percent of total feed rate, but could be up to 3 percent. To estimate the maximum increase in the CO₂ flow rate available for EOR or infrequent venting, the maximum fluxant addition to feedstock would be 14,448 pounds per hour, based on 3 percent. The fluxant is 95 percent CaCO₃ and 5 percent ash/moisture. This equates to an increase in CO₂ in the EOR stream of 6,035 pounds per hour (= 14,448 lb/hr * 44 lb/lb-mole/100 lb/lb-mole * 0.95).

Although the addition of fluxant should not change the TAC and criteria pollutant emissions, emissions of these pollutants are calculated based on a small percentage of the vented stream, and with the increase in vented CO_2 , conservatively, these emissions were estimated to increase.

GHG, TAC, CO, and VOC emissions increase due to these changes. A summary of the CO_2 vent criteria pollutant emissions is presented in Revised Table 3-6. Detailed emission calculations are included in Appendix A, Revised Operational Criteria Pollutant Emissions.

3.2.7 Gasification System (S-7616-21-0)

There is no direct stack or vent associated with this permit unit. Fugitive emissions of VOC, CO, ammonia (NH₃), H₂S, and trace hazardous air pollutants (HAPs) and GHGs due to leaks in the piping and components from the Gasification Block are associated with this unit. Fugitive emissions for the Gasification Block were updated to reflect the refined Project design. Fugitive streams 22 - Lower Benzene Concentration, and 23 - Higher Benzene Concentration, resulting from benzene in the syngas cleanup (discussed further in Section 3.2.6), were added to this permit unit. These modifications resulted in minor changes in emissions of criteria pollutants, TACs, and GHGs.

The methanol storage tank for the Rectisol[®] Unit solvent has been added to this permit unit. This tank has always been part of the Project, but it was unintentionally not addressed in the ATC/ PSD Application. This tank will be used to supply makeup solvent to the Rectisol[®] Unit, and to provide adequate storage capacity for the entire solvent inventory when unit maintenance is required. The size is based on the capacity needed to hold the entire solvent inventory from the unit. The tank has a 600,000-gallon capacity and a fixed roof, is 55 feet tall above grade (with 48-foot-high sides), and is 46 feet in diameter. Uncontrolled emissions were calculated using the U.S. Environmental Protection Agency (USEPA) TANKS model. The tank vent will have a scrubber with 99.98 percent control efficiency. Resulting annual VOC emissions from the tank are 3.9 pounds per year.

For the purpose of calculating building downwash, the height of the gasification structure was revised to 260 feet. The structure remains 305 feet tall, but the top portion has an open structure that wind can pass through; therefore, downwash was estimated from the lower more solid portion of the structure.

3.2.8 Ammonia Synthesis Unit (S-7616-33-0)

The ammonia synthesis start-up heater will be equipped with four low-NO_X burners, each rated at 14 MMBtu/hr, for a total rating of 56 MMBtu/hr; this is a change from 55 MMBtu/hr due to new information provided by the vendor. This causes a very minor increase in emissions. Emissions and calculations are included in Appendix A, Revised Operational Criteria Pollutant Emissions. This heater is for start-up only, and will not be used more than a few days per year.

Two new CO_2 streams associated with the Manufacturing Complex (streams $18a - CO_2$ Product and Purification Compressors, and $18b - Urea CO_2$ Compressor) were added to this permit unit. These streams more appropriately account for the composition of the streams passing through the compressors previously associated with stream $18 - High CO_2$ concentration stream.

Fugitive emissions for the Manufacturing Complex were updated to reflect the refined Project design. The emissions presented in Appendix B, Revised Toxic Air Contaminant Emissions, reflect the most recent Project design. This resulted in minor changes in emissions of criteria pollutants, TACs, and GHGs. Criteria pollutant fugitive emissions and ammonia synthesis start-up heater emissions are summarized in Revised Table 3-6.

3.2.9 Urea Unit (S-7616-34-0)

The high pressure (HP) and low pressure (LP) absorbers now vent to the same stack, referred to as the urea absorber stack. All stack parameters were modified to represent the single source vent. There is no change in emissions; the emissions represent the sum of the previous HP and LP emissions. Only ammonia is emitted from this source.

There were no changes to the Urea Pastillation vent.

3.2.10 Nitric Acid Unit (S-7616-35-0)

 NH_3 and nitrous oxide (N₂O) emissions increased due to new information provided by the vendor, as described in Sections 5.1.1 and 3.4, respectively. These emissions were described in the response to the Notice of Incomplete Application provided to SJVAPCD on August 1, 2012, and below. NO_X emissions did not change.

Stack parameters were modified, including a reduction in stack height to 120 feet, an increased temperature, decreased flow, and decreased exit velocity.

3.2.11 Ammonium Nitrate Unit (S-7616-36-0)

The annual operating hours were increased slightly to 8,052 hours per year to match the operating hours of all other sources in the Manufacturing Complex. The stack height was raised to 55 feet.

3.2.12 Material Handling (S-7616-17, 18, 19, 20, 22, 37)

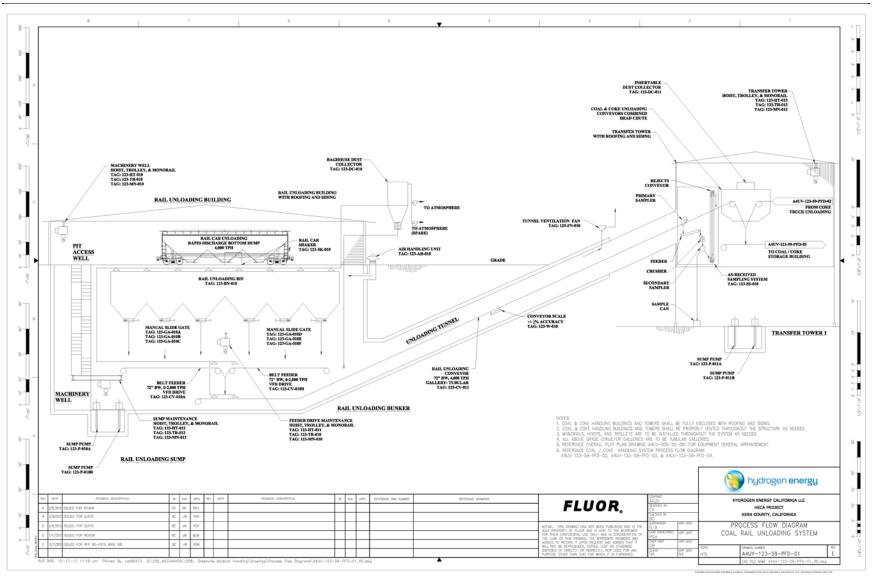
One tank vent filter has been added to control emissions from the new fluxant unloading and storage silo associated with Unit 19, the feedstock storage, blending, and reclaim system. PM emissions from this source will be minor at 0.01 ton per year.

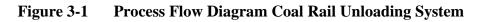
Particulate matter emissions are associated with the material handling of the feedstock, fluxant, urea, and gasification solids. The design of these material handling systems has been modified, and the associated emissions have been calculated as presented in Appendix A, Revised Operational Criteria Pollutant Emissions. All PM emissions from these sources are assumed to be PM_{2.5} or smaller.

Updated process flow diagrams show the material handling system. Only the feedstock crusher vent and feedstock transfer tower 2 switched locations; now the crusher station is closer to the feedstock barn (Figures 3-1 through 3-4). Although these do not show the fluxant handling system, there will be a baghouse that services the fluxant unloading and storage silo. The fluxant will be blended with the feedstock when it leaves the northern side of the feedstock barn.

The fugitive dust calculation for material handling on the gasification solids pad has been divided into two parts to account for the difference in material moisture content for placement (stacking) versus removal (reclaim), and the corresponding emission factors for both PM_{10} and $PM_{2.5}$ have been applied to estimate emissions.

A summary of the material handling emissions is presented in Revised Table 3-6. Detailed emission calculations are included in Appendix A, Revised Operational Criteria Pollutant Emissions.


3.2.13 Emergency Generator Engines and Firewater Pump Engine (S-7616-38, 39, 40)


There were no changes to the emergency engines.

3.2.14 HECA Facility-Wide Criteria Pollutant Emissions

The total annual emissions of criteria pollutants from all stationary emission sources of the Project addressed in the previous subsections are shown in Revised Table 3-6.

Emissions Calculations

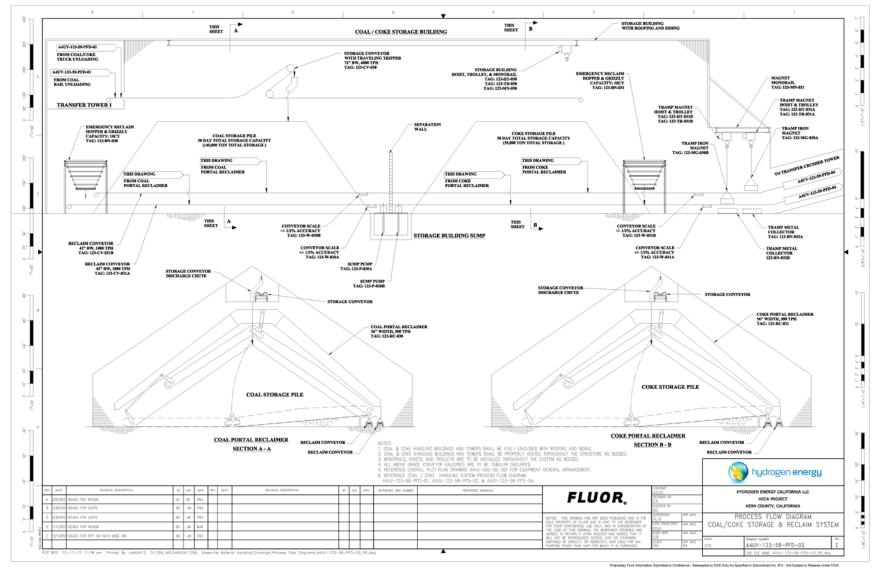


 Figure 3-2
 Process Flow Diagram Coal/Coke Storage and Reclaim System

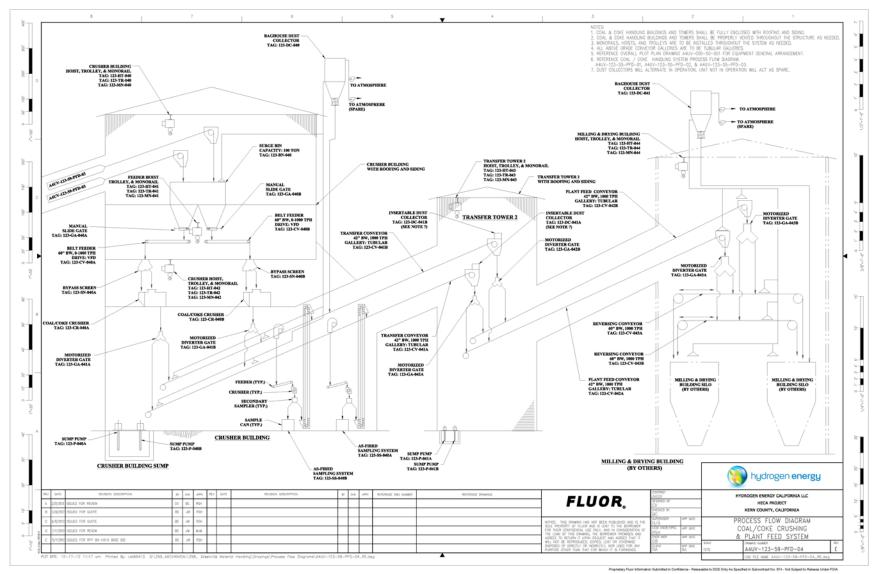


Figure 3-3 Process Flow Diagram Coal/Coke Crushing and Plant Feed System

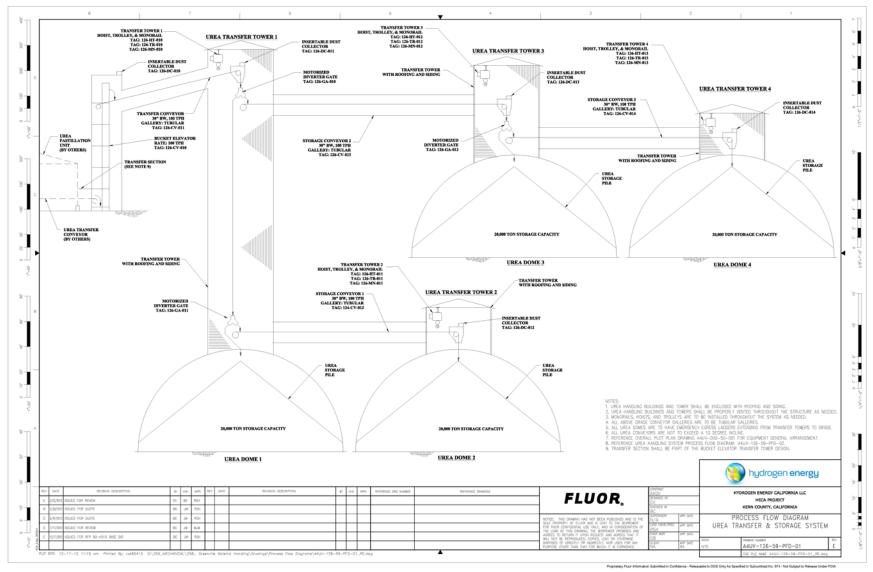


Figure 3-4 Process Flow Diagram Urea Transfer and Storage System

3.3 MOBILE SOURCES

As in the ATC/PSD application, onsite truck and train trip emissions were incorporated in the dispersion modeling for California Environmental Quality Act (CEQA) purposes. Mobile sources were not included in the PSD SIL or National Ambient Air Quality Standards (NAAQS) analyses. Transportation emissions are considered indirect project emissions and are included in the federal conformity analysis.

Changes to the transportation emissions for both Alternative 1 (Rail Transportation) and Alternative 2 (Truck Transportation) were presented in the September 2012 and April 2013 General Conformity Evaluation reports, and also in response to data requests. These changes affected the criteria pollutant, GHG, and diesel particulate matter emissions for Alternatives 1 and 2.

In addition to the normal operational transportation emissions, Appendices C and D for Alternatives 1 and 2, respectively, present the overlap of construction emissions and operational transportation emissions, which is expected to occur in 2017.

The maximum expected numbers of truck and train trips for the averaging period corresponding to the AAQS are summarized in Revised Table 3-11. These are the basis for the modeling analysis that was conducted for Alternative 1.

Period	Petcoke Trucks	Fluxant and Product Trucks	Miscellaneous Trucks	Coal Trains	Product Trains
1 hour	7	9	7	1	1
3 hours	20	27	7	1	1
8 hours	54	71	7	2	1
24 hours	68	89	7	2	1
Annual	15,200	21,620	2,330	119	165

Revised Table 3-11 Onsite Maximum Trucks and Trains by Averaging Period

Source: HECA, 2013.

Notes:

- This represents the transportation needs for Alternative 1.
- The facility will also maintain 20 vehicles (10 gasoline and 10 diesel trucks) for onsite operations and maintenance.
- The maximum daily number of trains will be two, consisting of either two coal trains or two coal train and one product train.
- The maximum daily number of trucks includes the normal expected daily trucks plus 45 additional trucks to account for fluctuations in feedstock or product trucks, thus these additional trucks were spread evenly in the truck categories for modeling purposes.

3.3.1 Trains

The number of trains needed to move feedstock and product was updated to match Project refinements. There will be a slight increase in the number of trains coming to the site annually; there will not be any ammonia trains, because the applicant has decided not to sell ammonia. For

Alternative 1, the daily number of trains will be at most two trains: either one product and one coal train, or two coal trains. For onsite modeling, this is a decrease from three trains per day. Each unit coal train consists of 111 rail cars; and each product train consists of 60 rail cars. The travel routes and distances for trucks and trains in each affected air basin were refined and revised.

At the recommendation of the CEC, emission factors used in the train calculations came from the USEPA's Technical Highlights: Emission Factors for Locomotives, April 2009(a) (http://www.epa.gov/nonroad/locomotv/420f09025.pdf). The train emissions were calculated using USEPA Tier 3 emission factors, locomotive conversion factors, and locomotive load factors. Emissions calculation techniques were based on the techniques used in "The Port of Long Beach – 2007 Air Emissions Inventory." These incorporated the average train travel speed of 40 miles per hour, the average line haul locomotive load factor of 28 percent, and the ratio of required horsepower (empty train/full train) of 0.76. These changes were presented in response to CEC Data Request A18 on August 22, 2012. The result is a decrease in criteria pollutants and diesel particulate matter for both short-term and annual emissions, even though the number of trains increased per year. GHG emissions associated with trains increased, due to increase in number of trains per year.

Fugitive coal dust emissions from coal trains were calculated and presented in response to CEC Workshop Data Request A34 on December 20, 2012. It was determined that the rail cars would not be covered, but a surfactant with a control efficiency of at least 85 percent will be applied to all cars to limit fugitive coal dust.

The approach for quantifying coal dust fugitives used AP-42, Compilation of Air Pollutant Emission Factors, Section 13.2.5, Industrial Wind Erosion (USEPA, 2012). Each uncovered coal car can be visualized as a coal pile, and the wind speed equal to the speed of the train. The method presented in Section 13.2.5 estimates fugitive emissions based on the fastest wind speed in each period of disturbance (adding to or removing from the pile), assuming that all available fines will be emitted during that time. In this case, there is only one period of disturbance, the loading of the coal in the cars, and the coal is not disturbed again until it is removed at the Project Site. The emissions will primarily occur in the beginning of the trip, when the train starts up and achieves maximum speed. The AP-42 Industrial Wind Erosion equation is applied to each individual car.

Emissions were calculated based on a train speed of 40 miles per hour, the average exposed area of coal in each car, the expected number of coal cars travelling to the Project Site per year, and roughness parameters (roughness height, z_0 , and threshold friction velocity, ut*) appropriate for coal (from AP-42). After applying the 85 percent control efficiency for application of chemical surfactants, the total fugitive coal dust from all rail cars along the entire route is 3.85 tons per year of emissions of PM₁₀, and 0.58 ton per year of emissions of PM_{2.5}. It has been assumed that all emitted PM will be lost during the first 100 miles of the trip; therefore, all PM emissions have been assigned to transportation emissions in New Mexico.

3.3.2 Trucks

The number of trucks needed to move feedstock and product was updated to match Project refinements. There will be an increase in the number of trucks coming to the site daily and annually for both alternatives. Some notable changes on the number of trucks are as follows:

- Fluxant delivery trucks were added.
- There is an increase in gasification solids trucks to accommodate the additional solids associated with the addition of fluxant.
- The number of urea trucks was increased to correct a previous under estimation.
- Small increase in liquid sulfur, urea ammonium nitrate (UAN), equipment, and miscellaneous trucks.
- The Project owner has decided not to sell ammonia; thus, there will not be any ammonia trucks. In the modeling, the idling ammonia truck point source was removed.

A more realistic maximum daily truck scenario was developed for both alternatives and used in the modeling. The maximum number of trucks per day in Alternative 1 is 164; and in Alternative 2 the maximum is 536 trucks per day—this breakdown is described further in Appendix A, Revised Operational Criteria Pollutant Emissions. Criteria pollutant emissions from onsite trucks decreased in the modeling for short term (due to a lower number of maximum trucks per day, although on average there will be more trucks per day), and increased for the annual time period.

The onsite Project-related mobile emissions for Alternatives 1 and 2 are summarized in Revised Table 3-12. A summary of the fugitive dust emissions from the onsite delivery trucks, and vehicles is presented in Revised Table 3-6. Onsite transportation emissions and calculations are included in Appendix A, Revised Operational Criteria Pollutant Emissions. Offsite transportation emissions and calculations are presented in Appendix C, Revised Operational Transportation Emissions for Alternative 1; and Appendix D, Revised Operational Transportation Emissions for Alternative 2.

3.4 GREENHOUSE GAS EMISSIONS

The GHG emissions presented in this section reflect the design refinements outlined in the previous sections. Total project GHG emissions increased nominally as a result of these refinements. As noted in Section 3.2.6, with the introduction of fluxant, the CO_2 flow for EOR goes up incrementally; thus, the flow from the CO_2 vent also increases. Also noted in Section 3.2.6, the flow of carbon in the syngas to the Power Block and Manufacturing Complex remains constant; thus, GHG emissions from the CTG/HRSG and Feedstock Dryer did not change due to the addition of fluxant.

^	CO	NOx	PM ₁₀	PM _{2.5}	SO ₂	VOCs			
Emission Source	Annual Emission Rates (tons/year)								
	Alternative 1								
Onsite train	0.87	2.45	0.04	0.04	0.06	0.12			
Onsite truck	0.63	0.98	0.15	0.05	0.01	0.16			
Total Emission (ton/ year)	1.51	3.43	0.19	0.09	0.07	0.28			
		Alternat	ive 2						
Onsite train									
Onsite truck	1.52	2.98	0.30	0.10	0.01	0.45			
Total Emission (ton/ year)	1.52	2.98	0.30	0.10	0.01	0.45			

Revised Table 3-12 Operational Transportation Emissions Related to the Project

Source: HECA, 2013.

Notes:

Onsite worker travel and associated emissions are negligible.

CO = carbon monoxide

 $NO_X = nitrogen oxides$

 $PM_{10} = particulate matter less than 10 microns$

 $PM_{2.5} = particulate matter less than 2.5 microns$

 $SO_2 =$ sulfur dioxide VOCs = volatile organic compounds

The nitric acid unit licensor has stated that the emissions of N₂O vary with the age of the oxidation catalyst. The N₂O emission rate reflects the variation of N₂O inlet concentration to the N₂O abator catalyst (or tertiary decomposition catalyst). This variation is caused by the gradual degradation of the oxidation catalyst in the nitric acid unit used to convert the ammonia to NO₂, which is then reacted with water to produce nitric acid. With a new oxidation catalyst, the controlled N₂O emissions will be 6.6 pounds per hour (lb/hr); the N₂O emissions can increase to 15.9 lb/hr by the end of the oxidation catalyst life. The emission rate presented in the permit application was the lower end of the emission profile corresponding to fresh, start-of-run catalyst conditions, and therefore would not fully account for the total N₂O emissions from the nitric acid unit. The average N₂O emission rate from the nitric acid unit is 11.25 lb/hr, or 41 tonnes per year (tonnes/yr), which equates to 12,659 tonnes/yr of CO₂ equivalent (CO₂e). Based on the average emission rate for N₂O, the emission factor would be 0.54 lb N₂O per ton of nitric acid produced.

Total annual Project GHG emissions were estimated for the three operating scenarios, as described below:

• Early Operations are expected to last approximately 2 years, during which time hydrogen-rich fuel availability will be approximately 65 to 75 percent. During this period, all sources are expected to be operated at maximum operating conditions, including two plant start-ups and shut-downs. The CO₂ vent is included, with maximum permitted venting emissions of up to 504 hours at full capacity.

- Mature Operations are expected to occur after the first 2 years of commercial operation, when the hydrogen-rich fuel availability will be approximately 85 percent. At this stage, significantly less venting is expected to occur; therefore, CO₂ vent emissions are estimated based on approximately 10 days of venting at 50 percent capacity (or 120 hours of venting at 100 percent capacity). All other sources are operated at maximum operating conditions, including two plant start-ups and shut-downs.
- Steady State Operations occur in the same time frame as mature operations; that is, after the 2 years of early operation. In this scenario, emissions are estimated based on maximum operating conditions, excluding start-ups, shut-downs, and CO₂ venting. Emissions from operation of the CTG/HRSG on syngas are included; no natural gas use is included.

Revised Table 3-14 presents the annual CO₂e emissions from all stationary sources at HECA in metric tons (tonnes) during the early operations phase. This operational phase represents the maximum total Project annual CO₂e emissions. Detailed emission calculations can be found in Appendix E, Revised Operational Greenhouse Gas Emissions.

Source	Permitted CO ₂ e Emissions (tonne/yr)
CTG/HRSG H ₂ .rich fuel and PSA off-gas	267,117
CTG/HRSG natural gas	44,772
CO ₂ Vent	175,493
SF ₆ circuit breakers	86
Flares	8,257
Thermal oxidizer	6,048
Emergency generators and fire pump	181
Auxiliary boiler	24,782
Ammonia synthesis plant start-up heater	417
Urea absorber vents	116
Nitric acid unit	12,659
Fugitives	42
Total CO ₂ e Annual Emissions	539,971

Revised Table 3-14 Maximum Annual CO₂e Emissions - Early Operations

Source: HECA, 2013.

Notes:

Maximum permitted emissions include periods of start-up and shut-down.

 $CO_2e = carbon dioxide equivalent$ $CO_2 = carbon dioxide$

CTG/HRSG = combustion turbine generator/heat recovery steam generator

 $H_2 = hydrogen$

 $SF_6 =$ sulfur hexafluoride

For comparison to the California Senate Bill (SB) 1368 Greenhouse Gases Emission Performance Standard (EPS) for CO_2 of 1,100 lb per megawatt hour (lb/MWh), CO_2 emissions and electricity production were calculated following CEC's "Regulations Establishing and Implementing a Greenhouse Gases Emission Performance Standard for Local Publicly Owned Electric Utilities" (CEC, 2012). SB 1368 is a standard that regulates the emissions of CO_2 on a lb/MWh basis of power produced and sold to publicly owned electric utilities. This standard does not regulate the power or CO_2 emissions from the Manufacturing Complex.

More detailed information regarding how the CO_2 emissions and power use is portioned between power production, syngas production, and the Manufacturing Complex was used to revise the SB 1368 EPS calculations. The methodology and assumptions for allocating CO_2 emissions between the production of power and the Manufacturing Complex are outlined below.

This allocation is required because the common portion of the plant produces syngas, and only a portion of the syngas is used to produce power; the remainder is used in the production of fertilizer. CO_2 emissions and power attributable to the production of fertilizer are excluded from the calculation of the EPS. The power output calculations are approximated for On-Peak and Off-Peak operation, from which the daily average is estimated based on 16 hours and 8 hours of operation per day, respectively.

The plant is divided into three sections. The common section produces clean syngas. The clean syngas flows to the remaining sections: the Manufacturing Complex section and the power section. The CO_2 emissions from the production of the syngas are allocated between the fertilizer production and power production according to the respective portion of clean syngas used. The allocation is performed on a lower heating value basis.

Gross power generation has been attributed to the power block, except for the portion of power generated that is attributable to the steam used by or produced by the Manufacturing Complex. Steam integration with the Manufacturing Complex increases the output of the steam turbine above that which would be achieved without steam integration. The power attributable to steam integration with the Manufacturing Complex is noted and subtracted from the gross generator output to give the portion attributable to the power block.

The auxiliary loads are also segregated into the three sections noted above. The common auxiliary loads are further allocated to power or manufacturing according to the portion of clean syngas used by the power block or fertilizer units.

Net power output is the gross generation allocation to power, less the auxiliary loads attributable to power. The Manufacturing Complex power consumption is the gross generation allocation to fertilizer, less the auxiliary loads attributable to fertilizer. The daily average net output of syngas-fired power production was multiplied by 8,000 hours of operation per year to obtain the megawatt-hours of power produced per year. Natural-gas—fired power generation was calculated at 336 hours per year (2 weeks) times 300 MW net output. The total net power output is the sum of power generated from operation on syngas, plus power generated from operation on natural gas. Conservatively, the net output does not include the power output during start-up or shutdown operations.

The CO_2 emissions are split according to the respective portion of clean syngas used. The CO_2 emitted when burning natural gas in the turbine to produce power is allocated only to the power block. The CO_2 emitted from the urea unit vent or when burning natural gas in the ammonia start-up heater is allocated only to the Manufacturing Complex. The remaining CO_2 emissions are considered common, and split between the power section and Manufacturing Complex.

Emissions and power output were estimated for the three scenarios: early operations, mature operations, and steady-state operations. Revised Table 3-15 compares the CO₂ emissions of the Project with the SB 1368 emission standard for the three scenarios. CO₂ emissions from the electricity production at HECA are approximately 150 lb/MWh during steady-state operations on hydrogen-rich fuel. The maximum CO₂ emissions during early operations, including emissions from natural-gas operation, start-up, shut-down, and CO₂ venting, would be approximately 300 lb/MWh. Detailed emission calculations can be found in Appendix E, Revised Operational Greenhouse Gas Emissions.

Operating Parameter	Early Operations (Maximum Permitted) ¹	Mature Operations ²	Steady-State Syngas Operations ³
Total CO ₂ Annual Emissions Attributable to Power Production (ton/year)	386,494	290,865	188,228
Net Power Output (MWh)	2,565,374	2,565,374	2,464,574
CO ₂ EPS (lb/MWh)	301	227	153

Revised Table 3-15 Annual CO₂ Emissions for SB 1368 Emission Performance Standard

Source: HECA, 2013.

Notes:

¹ Early operations emissions include two periods of start-up and shut-down, natural gas use in the CTG, and 504 hours of CO₂ venting.

² Mature operations emissions include two periods of start-up and shut-down, natural gas use in the CTG and 120 hours of CO_2 venting.

³ During steady-state operation, the CTG and duct burners will fire only hydrogen-rich fuel and PSA off-gas; no start-ups and shut-downs, no natural gas backup use, and no CO₂ venting.

 $CO_2 = carbon \ dioxide$

EPS = Emission Performance Standard

MWh = megawatt hours

lb/MWh = pounds per megawatt hours

SB = Senate Bill

HECA will capture 90 percent of the carbon in the raw syngas. This captured CO_2 will be sequestered or occasionally vented during periods when the compression and transportation system is unavailable. The removal of carbon, and its subsequent sequestration in EOR and use in urea production, ensures that the generation of electric power and fertilizer starts from a very low carbon syngas, ultimately lowering the GHGs associated with the generation of these products.

The extent to which carbon capture reduces CO_2e emissions from the facility is illustrated in Figure 3-5. This figure represents the early operations or maximum permitted emissions. As shown, a substantial majority of CO_2 generated from the gasification process during normal plant operations will be captured

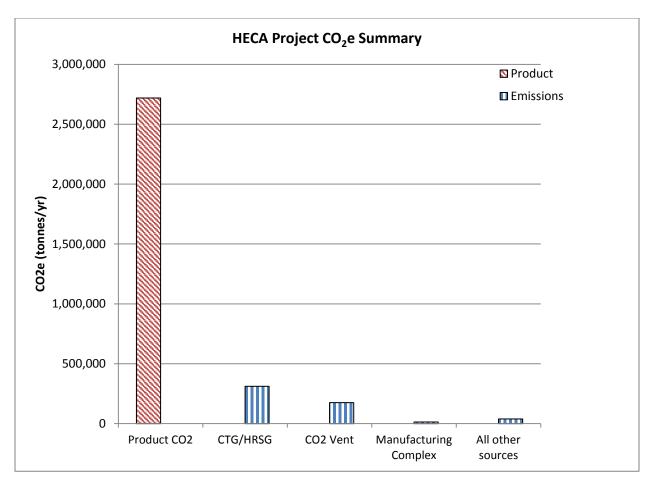


Figure 3-5HECA CO2e Emissions and Product Summary

and sequestered. This product will be transported to Occidental of Elk Hills, Incorporated (OEHI), and used for EOR, resulting in sequestration of the CO_2 ; used in urea production, and thus not emitted; or periodically vented during periods when the compression and transportation system is unavailable, or during a gasification block start-up or shut-down. The amount of CO_2 sequestered is calculated based on the maximum CO_2 production rate of 767,435 lb/hr times the amount of time CO_2 is sent to OEHI. During the early operations scenario, there will be up to 8,314 hours of syngas production, minus 504 hours of venting; therefore, approximately 2.7 million tonnes per year of CO_2 will be sequestered.

Transportation-related GHG emissions are presented in Revised Table 3-16, and calculation details are included in Appendix E, Revised Operational Greenhouse Gas Emissions.

During Project Operations								
Source	Annual CO ₂ e Emissions (tonne/yr)							
Onsite trucks	422							
Onsite trains	297							
Offsite Workers Commuting	824							
Offsite Trucks	12,372							
Offsite Trains	50,075							
Total CO ₂ e Annual Emissions	63,990							

Revised Table 3-16 Greenhouse Gas Emissions Associated with Mobile Sources During Project Operations

Source: HECA, 2013.

Notes:

Onsite worker travel and associated emissions are negligible.

Emissions represent Alternative 1 transportation requirements.

 $CO_2e = carbon dioxide equivalent$

To assess the potential impact of the Project on ambient air quality, updated dispersion modeling was performed based on the Project's revised emissions of criteria pollutants. The methodology, model input, and receptors presented in the ATC/PSD Application remain the same. Some emission rates, stack parameters, and source locations have changed, and those are discussed below. The purpose of the dispersion modeling is to evaluate Project compliance with state and federal AAQS.

4.1 DISPERSION MODELING METHODOLOGY

4.1.1 Model and Model Option Selections

Updated impacts from Project operations were evaluated using the most recent version of AERMOD: Version 12345. All model option selections used the same methodology as outlined in Section 4 of the May 2012 ATC/PSD Application. All other input data, such as the meteorological, ozone, and nitrogen dioxide (NO₂) data sets, remained the same.

4.1.2 Building Wake and Good Engineering Practice

All stacks in the HECA Project are still less than or equal to the Good Engineering Practices (GEP) default height of 65 meters, with the exception of the feedstock dryer, three flares, and the CO_2 vent. The height of the CO_2 vent has increased to 355 feet, because it needs to be taller than the methanol wash. The flare and feedstock dryer stack heights remain the same as presented in the ATC/PSD Application. Therefore, the heights of these stacks are as follows:

- Feedstock Dryer: 92.9 meters
- SRU Flare, Gasification Flare, Rectisol[®] Flare: 76.2 meters
- CO₂ Vent: 108.2 meters.

Building Parameter Input Program (BPIP)-Prime was run to determine the GEP height for each stack. The output of this model shows that the GEP for the three flares is 65 meters, for the feedstock dryer is 198 meters, and for the CO_2 vent, 198 meters. BPIP files will be provided with this report.

GEP is calculated based on the following equation:

$$Hg = H + 1.5 * L$$

where: Hg = GEP stack height (in meters) H = height of the nearby structure (in meters) L = lesser dimension of the height or projected width of the nearby structure (in meters)

The largest downwash structure near the feedstock dryer and the CO_2 vent remains the gasifier building, which has an updated height for downwash purposes of 79.2 meters high, and measures 28 meters in length by 84.4 meters in width. Therefore, L = 79.2 meters, H = 79.2 meters, and Hg = 198 meters.

The gasifier building is located at a distance within five times L (396 meters) from the CO_2 vent and the feedstock dryer; therefore, GEP for these stacks is calculated based on the gasifier

building dimensions. The heights of the feedstock dryer and CO_2 vent are thus well below the GEP height of 198 meters.

The flares are upwind of the gasification building along its shorter axis; thus, L = 28 meters and Hg = 121 meters. The flares are not within five times L (140 meters) of the gasification structure or any other structure that is large enough to create downwash for the flares in BPIP-Prime. It is important to note that the flares will be built at 76.2 meters in height for safety from a Project engineering perspective. However, a 65-meter stack height, or GEP, was used to calculate specific effective stack heights for each flare modeling scenario based on the flare's heat release rate during that modeling scenario. The effective stack height is the height of the stack plus the height above the stack where the flare flame ends and a plume can begin. The effective stack parameters were calculated using the SCREEN3 technique, and were input into the AERMOD model (USEPA, 1995b). Therefore, the lower, 65-meter stack height was used in the calculation of the effective stack heights for the flares, rather than the actual stack height. Appendix A, Revised Operational Criteria Pollutant Emissions, presents the effective stack parameters for the flares.

4.1.3 Receptor Locations

The Project Controlled Area boundary was moved slightly to ensure adequate roadway easements; thus, the boundary along Station, Adohr, and Dairy roads was affected. Receptors were placed along the new property line using the same methodology as given in the ATC/PSD Application. The property line extends around the perimeter of the Project Site and Controlled Area (see Revised Figure 1-1).

4.1.4 Sensitivity Modeling

Because the start-up time for the CTG/HRSG is now shorter and some sources have updated emission rates, a few maximum impact scenarios for the short-term averaging time pollutants are different from the scenarios described in the ATC/PSD Application. Sensitivity modeling was completed for the CO 8-hour standard, and it was determined that the maximum CO 8-hour impact would occur during a CTG/HRSG shut-down. Maximum PM 24-hour impacts also now occur during a CTG/HRSG and feedstock dryer shut-down.

Lastly, SO_2 maximum short-term impacts now occur during a tail-gas thermal oxidizer hydrogenation catalyst presulfiding event. All other emissions scenarios for modeling remained the same.

Further details on worst-case modeling scenarios for these pollutants, and averaging times, are described in Section 4.1.5.

4.1.5 Modeling Scenarios

4.1.5.1 Operations Emission Scenarios for Modeling

A few modeling scenarios that give maximum estimated impacts have changed since the CTG/ HRSG start-up time was shortened, and emission rates for some sources have changed. The following describes the changes made for pollutants and averaging times that differ from the ATC/PSD Application.

CO 8-hour

The maximum CO 8-hour impact scenario occurs during a plant shut-down when the CTG/ HRSG and feedstock dryer are shutting down, and a number of other sources are operating during this shut-down period. For 3 hours, the CTG/HRSG and feedstock dryer shut down, and operate at 40 percent load on syngas; then the CTG runs for 3 hours at 40 percent load on natural gas; lastly, the CTG runs for 2 hours at 20 percent load on natural gas. The TGTO operates in normal mode for the entire 8-hour duration. The Rectisol[®] and SRU flares are in pilot mode, and shifted syngas is flared in the gasification flare for 4 hours, then goes to pilot mode. The CO₂ vent has maximum process venting for the entire period. The auxiliary boiler, ammonia start-up heater, and emergency equipment are not operating during a CTG/HRSG shut-down period. CO fugitives from the gasification, shift, AGR, SRU, sour water, CO₂ compression, and Pressure Swing Adsorption unit areas are also included. Mobile sources are not included in model runs to predict impacts for comparison to the NAAQS, but are included in the simulations to evaluate compliance with the California Ambient Air Quality Standards (CAAQS).

PM₁₀ and PM_{2.5} 24-hour

This modeling scenario was selected to conservatively assess high emissions and impacts, and could not occur in actual plant operation. The maximum PM₁₀ and PM_{2.5} 24-hour impacts occur when the CTG/HRSG and feedstock dryer are operating in shut-down mode. Stack parameters for these sources used flow rates based on normal off-peak mode. All other sources were modeled in the same manner as in the ATC/PSD Application. The TGTO and all flares were included with maximum emissions during start-up. All three cooling towers (ASU, Power Block, and Process) were included with maximum 24-hour PM₁₀ and PM_{2.5} emission rates. The auxiliary boiler was not operating during this time, because it is not expected to operate while the CTG is operating. Both emergency generators are tested for 1 hour of the 24-hour period, and the emergency diesel firewater pump is tested for 2 hours during the 24-hour period. The emergency equipment maximum daily emissions were spread evenly across all hours in the day. The ammonia start-up heater was operating in startup mode. All sources associated with the manufacturing plant with PM emissions were assumed to be operating, including the ammonium nitrate unit, and the urea pastillation stack; all materialhandling sources were operating as well, which include all feedstock, urea, and gasification solids storage and handling systems. Emission source release points for material handling may be found in Appendix A, Revised Operational Criteria Pollutant Emissions. Mobile sources are not included for comparison to the NAAQS, although the maximum daily number of onsite mobile sources is included for comparison to the CAAQS.

SO₂ 1-hour, 3-hour, 24-hour

All sources were modeled in the same manner as presented in the ATC/PSD Application, with the exception of the TGTO. The TGTO has the highest SO_2 impacts during a 24-hour hydrogenation catalyst presulfiding event. For the CAAQS, the TGTO modeling used the highest SO_2 emissions occurring during this event for short-term SO_2 averaging times. For the SO_2 1-hour NAAQS, annualized emissions for the tail gas thermal oxidizer, which includes all

emission events for this source that occur over the year, are higher than this source's normal process vent disposal SO_2 emission rate. Therefore, the TGTO annualized emission rate was used in the SO_2 1-hour NAAQS analysis.

As presented in the ATC/PSD Application, the maximum SO₂ short-term impacts occur when the CTG/HRSG is operating at 80 percent load on natural gas, which is the highest SO₂ emission rate for the CTG/HRSG, conservatively mixed with the lowest exhaust flow rate (Case 2 - offpeak ambient temperature 97 degrees Fahrenheit [°F]) that occurs during CTG/HRSG operations in off-peak power mode. The feedstock dryer has the highest short-term SO₂ emissions during off-peak power, combined with the lowest exhaust flow rate. Although these two sources will not operate in their worst-case mode at the same time, SO₂ short-term modeling was completed as described above to minimize the need for several sensitivity runs. The ammonia start-up heater and all three flares are operating with maximum short-term start-up emission rates. Both emergency generators and the emergency diesel firewater pump are conservatively testing for all averaging times. The two emergency generators are both testing for 1 hour of the 24-hour period, while the emergency diesel firewater pump is testing for 2 hours during the 24-hour period. The maximum daily emissions of the emergency equipment were spread evenly across all hours in the day. Mobile sources are not included for comparison to the NAAQS, while the maximum number of mobile sources is included for comparison to the CAAQS.

4.2 COMPLIANCE WITH AMBIENT AIR QUALITY STANDARDS

4.2.1 Operational Impacts

4.2.1.1 SIL Modeling

HECA is a major PSD source for CO, NO_2 , and PM_{10} . These pollutants are in attainment in the Project area, and annual HECA Project emissions are greater than the PSD Significant Emission Rates for these pollutants. SIL modeling was performed using the same methodology as in the ATC/PSD Application. Revised Table 4-2 summarizes updated maximum impacts due to HECA emissions compared with the applicable SILs.

 PM_{10} 24-hour, PM_{10} annual, CO 1-hour, CO 8-hour, and NO_2 annual modeled impacts due to Project operations are less than the SILs.

 NO_2 1-hour impacts were predicted to be greater than the SIL; therefore, a cumulative NO_2 1-hour NAAQS modeling analysis was conducted using the same methodology as in the ATC/ PSD Application. The updated NO_2 modeling uses updated HECA emissions, stack parameters, and plant layout.

Significant Monitoring Concentrations (SMCs) are applicable to PSD pollutants only, and are compared to the same modeled pollutant concentrations from the Project as were compared to the SILs. SMCs are higher than SILs. HECA estimated impacts are lower than all applicable SMCs, therefore, monitoring is not required. No SMC exists for NO₂ 1-hour.

Revised Table 4-2
Project Operations Modeling Impacts Compared with Significant
Impact Levels and Monitoring Concentrations

Pollutant	Averaging Period	Modeled Impact (µg/m ³)	Class II Significant Impact Level (SIL) (µg/m ³)	Significant Monitoring Concentration (SMC) (µg/m ³)		
Operationa	l Impacts					
СО	1 hour	1,850	2,000	N/A		
	8 hour	387	500	575		
NO_2	1 hour^2	22	7.55	NA		
	Annual	0.6	1	14		
PM ₁₀	PM_{10} 24 hour		5	10		
	Annual	0.6	1	N/A		

Source: HECA, 2013.

Notes:

¹ Model predicted concentrations are the maximum impact from HECA stationary sources. ² The NO 1 have concentration is the gravitant first high concentration are formed as a first high concentration of the statement of the

The NO_2 1-hour concentration is the maximum first high concentration averaged over 5 years. The NO_2 1-hour SIL is interim, and was established in June 29, 2010.

CO = carbon monoxide

 $\mu g/m^3 = micrograms$ per cubic meter

N/A = not applicable

 $NO_2 = nitrogen dioxide$

 $PM_{10} = particulate matter 10 microns in diameter or less$

 $SIL = Significant \ Impact \ Level$

SMC = Significant Monitoring Concentration

4.2.1.2 PSD Increment Consumption

Federal PSD regulations require that proposed major sources such as HECA, as well as other sources constructed since a specified "baseline date," not contribute to air pollution in excess of PSD increments in criteria pollutant attainment areas. There are no PSD increments for CO 1-hour and 8-hour, and NO₂ 1-hour.

The Project's maximum modeled air impacts for PM_{10} 24-hour and annual, and NO_2 annual are below the applicable SILs. Because the HECA NO_X and PM_{10} impacts will be less than the SILs, increment consumption will be insignificant, and no preconstruction monitoring or additional impact analyses are required.

4.2.1.3 PSD Regional NO₂ Analysis

Because NO₂ impacts from HECA exceeded the 1-hour SIL, a cumulative impact assessment was completed to determine whether the Project would cause or contribute to any modeled violations of the NAAQS. HECA sources were combined with nearby sources and modeled in AERMOD with Plume Volume Molar Ratio Method (PVMRM), and hourly NO₂ ambient background concentrations were added to the hourly model predictions. Revised Table 4-3 presents the highest of the modeled 5-year average of the 98th percentile of the maximum 1-hour daily concentrations (design value) at any receptor, which complies with the 1-hour NO₂

Pollutant	Averaging Period	Modeled Impact (µg/m ³)	Background ¹ (µg/m ³)	Monitoring Station Description ^{1, 2}	Total Predicted Concentration (µg/m ³)	CAAQS (µg/m ³)	NAAQS (µg/m ³)
Operation	al Impacts			· · · · · · · · · · · · · · · · · · ·			
CO	1 hour ³	1,854	4,581	а	6,435	23,000	40,000
	8 hour ³	392	2,485	а	2,877	10,000	10,000
NO ₂ ⁸	1 hour CAAQS ³	187	140	b	327	339	_
	1 hour NAAQS ⁴	119	5	5	119	—	188
	Annual CAAQS ⁶	1.6	26	b	28	57	—
	Annual NAAQS ⁷	0.6	26	b	27		100
PM ₁₀	24 hour^3	4.0	264	с	_	50	150
	Annual ⁶	0.6	54	с		20	_
PM _{2.5}	24 hour ⁹	2.3	196	с			35
	Annual ⁶	0.5	22	с	_	12	15
SO ₂	1 hour CAAQS ³	532	42	d	574	655	—
	1 hour NAAQS ¹⁰	32	42	d	74		196
	3 hour ³	260	26	d	286		1,300
	24 hour^3	43	13	d	56	105	revoked
H_2S	1 hour ¹¹	29.3	N/A	N/A	29.3	42	_

Revised Table 4-3 AERMOD Modeling Results for Project Operations

Source: HECA, 2013.

Notes:

¹ Background concentrations are maximum concentrations from the last 3 years of available USEPA AirData and/or California Air Resources Board data. See note 2.

Monitoring station/background concentration as described below:

^a Bakersfield—Golden State Highway Monitoring Station, Maximum Concentration, 2007–2009

^b Shafter–Walker Street Monitoring Station, Maximum Concentration, 2009–2011

Bakersfield—California Avenue Monitoring Station, Maximum Concentration, 2009–2011

^d Fresno—First Street Monitoring Station, Maximum Concentrations, 2007–2009 for 3-hour SO₂; 2009–2011 for 1-hour and 24-hour SO₂ Maximum modeled short term concentration, includes HECA mobile sources and stationary sources

⁴ Regional NO₂ analysis modeling results. Modeled impact is the maximum 5-year average of 98th percentile of 1-hour daily maximum concentration. Modeled impact includes contributions from HECA, nearby sources and background concentrations. Excludes HECA mobile sources. Includes HECA stationary sources modeled at maximum normal operating emissions or annualized maximum intermittent operating emissions, whichever resulted in higher 1-hour emission rates. For further modeling details see ATC/PSD Application Section 4.1.9.1 and ATC/PSD Application Appendix I, NO₂ 1-Hour Regional Analysis, plus USEPA Additional Clarification Regarding Application of Appendix W Modeling Guidance for the 1-hour NO₂ NAAQS, March 2011.

⁵ Hourly NO₂ background monitoring concentrations from the Shafter–Walker Street station were included in AERMOD analysis for the same years of meteorological data applied (2006–2010), data provided by SJVAPCD.

⁶ Maximum annual modeled concentration from any of the 5 years modeled, 2006–2010. Includes HECA mobile sources and stationary sources.
 ⁷ Maximum annual modeled concentration from any of the 5 years modeled: 2006–2010. Excludes mobile sources, includes HECA stationary sources.

⁸ NO₂ modeling applied the PVMRM ozone limiting method with hourly ozone data from the Shafter–Walker Street monitoring station.

⁹ Maximum 5-year average first high daily concentration at any receptor. Excludes HECA mobile sources, includes HECA stationary sources.
 ¹⁰ Modeled impact is the maximum 5-year average of 99th percentile 1-hour daily concentrations. Modeled impact includes HECA stationary sources, excludes mobile sources. Includes HECA stationary sources modeled at maximum normal operating emissions or annualized

maximum intermittent operating emissions, whichever resulted in higher 1-hour emission rates.

¹¹ Maximum modeled 1-hour concentration. Includes all HECA H_2S sources.

CO = carbon monoxide

 $NO_2 = nitrogen dioxide$

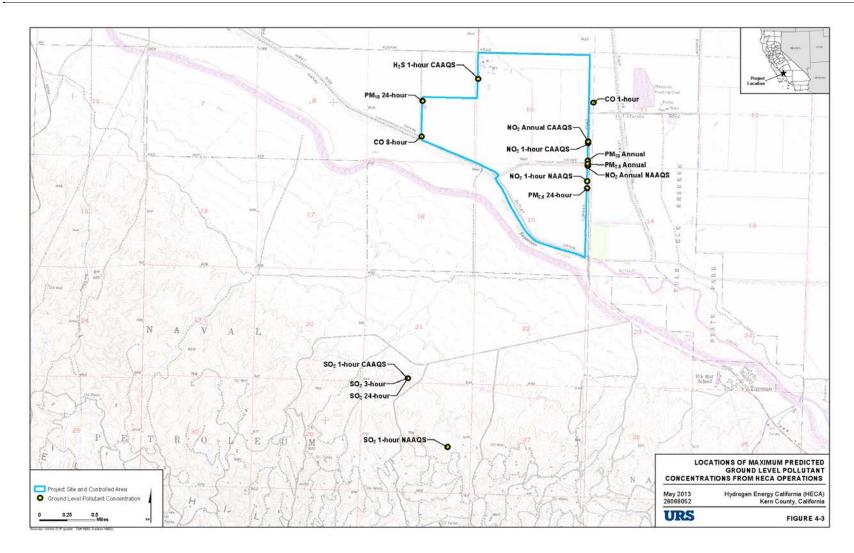
 $PM_{10} = particulate matter less than 10 microns in diameter$

 $PM_{2,5} = particulate matter less than 10 microns in diameter$ $<math>PM_{2,5} = particulate matter less than 2.5 microns in diameter$ $<math>SO_2 = sulfur dioxide$ NAAQS = National Ambient Air Quality Standards CAAQS = California Ambient Air Quality Standards $\mu g/m^3$ = micrograms per cubic meter N/A = not available

H₂S = hydrogen sulfide

NAAQS. This analysis demonstrates that HECA would not cause or contribute to any modeled violations, because the total design value predicted from the HECA sources, the nearby regional sources, and background measured concentrations of NO_2 are less than the NAAQS.

4.2.1.4 NAAQS/CAAQS Modeling


Revised Table 4-3 summarizes the updated maximum predicted criteria pollutant concentrations due to Project emissions. This table continues to show that the modeled impacts due to the Project emissions, in combination with conservative background concentrations, will not cause a violation of any CAAQS or NAAQS, and will not significantly contribute to the existing violations of the federal and state PM_{10} and $PM_{2.5}$ standards. In addition, as described in Section 7, all of the Project's operational emissions of PM_{10} , NO_X, VOCs, and sulfur oxides (SO_X) will be offset to ensure a net air quality benefit. $PM_{2.5}$ emissions will be mitigated by the PM_{10} emissions reduction credits (ERCs), because $PM_{2.5}$ is a subset of PM_{10} . All of the ERCs used to offset PM_{10} and $PM_{2.5}$. Therefore, because all of the PM emissions will be offset, impacts of PM_{10} and $PM_{2.5}$ would be less than significant.

Revised Figure 4-3, Locations of Maximum Predicted Ground Level Pollutant Concentrations from HECA Operations, shows updated locations of the maximum predicted operational impacts for all pollutants and averaging times. All peak annual impacts occur on the eastern boundary of the property line, along with the peak CO 1-hour impact, the NO₂ 1-hour CAAQS and NAAQS impacts, and the PM_{2.5} 24-hour impact. The peak PM₁₀ 24-hour, CO 8-hour, and H₂S 1-hour impacts all occur on the western boundary of the property line. All maximum SO₂ short term impacts occur in the hills to the southwest of the Project Site, approximately 3.5 kilometers from the southern boundary of the property line.

4.2.1.5 SJVAPCD PM_{2.5} Analysis

The updated $PM_{2.5}$ modeling continued to follow the methodology outlined in the draft modeling guidance from SJVAPCD. For the $PM_{2.5}$ SIL modeling, only permitted stationary sources were included in the modeling analyses. Revised Table 4-4 shows that the primary $PM_{2.5}$ modeled concentrations exceed both the 24-hour and annual SILs; therefore, per SJVAPCD draft guidance, primary and secondary $PM_{2.5}$ emissions should be offset. HECA will fully offset all primary $PM_{2.5}$ and secondary $PM_{2.5}$ (oxides of nitrogen, and oxides of sulfur) emissions. HECA will use SO_X ERCs to offset PM_{10} emissions on an interpollutant basis at a ratio of 1:1, and incorporating a distance ratio of 1.5:1, as previously approved by SJVAPCD. Because the SO_X ERCs are from combustion sources, and the majority of combustion emissions contain particles smaller than 2.5 microns, they will also effectively offset the Project's $PM_{2.5}$ emissions. We believe that this satisfies the offsetting provisions in the draft modeling guidance. Therefore, HECA demonstrates it will not cause or contribute significantly to a $PM_{2.5}$ violation.

SECTIONFOUR

Revised Figure 4-3 Locations of Maximum Predicted Ground Level Pollutant Concentrations

AERMOD M	AERMOD Modeling Results for PM_{2.5} from HECA Operations										
Pollutant	Averaging Period	Modeled Impact (µg/m ³)	Class II Significant Impact Level (SIL) (µg/m ³)								
PM _{2.5}	24 hour ¹	2.3	1.2								
	Annual ²	0.5	0.3								

Revised Table 4-4 AERMOD Modeling Results for PM_{2.5} from HECA Operations

Source: HECA, 2013.

Notes:

 Maximum 5-year average first high daily concentration at any receptor. Excludes HECA mobile sources, includes HECA stationary sources.
 Maximum annual medialed concentration from any of the 5 years medialed 2006.2

Maximum annual modeled concentration from any of the 5 years modeled, 2006–2010. Excludes HECA mobile sources, includes HECA stationary sources.

 $\mu g/m^3 = micrograms$ per cubic meter

 $PM_{2.5}$ = particulate matter 2.5 microns in diameter or less

4.2.1.6 Fumigation

The updated predicted peak concentrations from inversion breakup fumigation from Project emissions, including background, are predicted to be below the applicable 1-hour CAAQS and NAAQS, and are presented in Revised Table 4-5. Therefore, fumigation modeling complies with all applicable 1-hour ambient air quality standards. See revised Appendix F, Revised Fumigation Modeling, for further details.

Revised Table 4-5 SCREEN3 Fumigation Modeling Results for Project Operations

Pollutant	Averaging Period	Maximum Modeled Impact (µg/m ³)	Background ¹ (µg/m ³)	Monitoring Station Description ^{1,2}	Total Predicted Concentration (µg/m ³)	CAAQS (µg/m ³)	NAAQS (µg/m ³)
Fumigation	Impacts						
СО	1 hour	282	4,581	а	4,863	23,000	40,000
NO ₂	1 hour	43	140	b	183	339	N/A
SO ₂	1 hour	104	42	с	146	655	N/A

Source: HECA, 2013.

Notes:

¹ Background concentrations are maximum concentrations from the last 3 years of available USEPA AirData and/or California Air Resources Board data.

Monitoring station/background concentration as described below:

^a Bakersfield—Golden State Highway Monitoring Station, Maximum Concentration, 2007–2009

^b Shafter–Walker Street Monitoring Station, Maximum Concentration 2009–2011

^c Fresno—First Street Monitoring Station, Maximum Concentration, 2009–2011 for 1 hour SO₂

CAAQS = California Ambient Air Quality Standards

CO = Carbon Monoxide

 $\mu g/m^3 = micrograms$ per cubic meter

N/A = not applicable

NAAQS = National Ambient Air Quality Standards NO₂ = nitrogen dioxide SO₂ = sulfur dioxide

4.2.2 Odor Impacts

Modeling was conducted to determine the concentration of H_2S off site. This modeling showed that the concentration predicted was less than the CAAQS (see Revised Table 4-3), which is equivalent to the odor detection threshold; thus, H_2S odors will not be detectable beyond the property line.

Ammonia emissions from stationary and fugitive sources within the proposed HECA facility were included in the Health Risk Assessment (HRA) modeling for the Project, which is presented in Section 5, Health Risk Assessment. The Office of Environmental Health Hazard Assessment acute reference exposure level for ammonia is lower than the odor detection threshold for ammonia. Therefore, since the total acute health index was predicted to be less than significant, the ammonia concentration will be below the odor detection level and ammonia odors are not expected to be detectable beyond the property line.

To assess the potential impact of the Project on public health, an updated HRA was performed based on the Project's revised emissions of HAPs and TACs. The methodology, model input, and sensitive receptors presented in the ATC/PSD Application remain the same. Some emission rates, stack parameters, and source locations have changed, and those are discussed below. The purpose of the HRA is to evaluate potential public exposure and adverse health effects due to TAC emissions associated with Project operations. For the purposes of the HRA, impacts were determined outside of both the Project Site and the Controlled Area (see Revised Figure 1-1, Project Site Plan and Vicinity). HECA will own both the Project Site and the Controlled Area, and will have control over public access and future land use.

5.1 OPERATIONAL-PHASE AIR TOXICS EMISSIONS

5.1.1 Stationary Sources

As outlined in Section 3, Project refinements affected the emissions of TACs. Those refinements are outlined below. All emission calculation techniques and stack parameters remained the same as presented in the ATC/PSD Application, unless specifically noted.

The CTG/HRSG and feedstock dryer start-up duration was decreased, thus decreasing emissions. The HRSG stack diameter was increased to 24 feet, but because the flow rate did not change, the exit velocity decreased for the scenario analyzed.

Mercury emissions decreased due to more detailed emission control specifications. Mercury emission calculations were updated to reflect a worst-case feedstock scenario of 100 percent coal, although the Project is expected to operate on a 75 percent coal and 25 percent petcoke feedstock on an annual basis. These calculations also incorporate a 75 percent mercury removal in the feedstock dryer and 99 percent control efficiency from the adsorber; these improved control efficiencies were identified by the vendors and presented in response to Sierra Club Data Requests 144 and 145 on February 15, 2013. The mercury content of the El Segundo coal may be as high as 0.13 part per million by weight (dry basis). Using this information, the updated mercury emission calculation is provided below.

Mercury Emission Calculation – 100 Percent El Segundo Coal Feed

Gasifier coal feed (dry basis) = 5023 tons/day (based on El Segundo coal) Coal mercury concentration (dry basis) = 0.13 part per million by weight Mercury in gasifier feed = 0.05442 lb/hr

Uncontrolled mercury in feedstock dryer exhaust (pro-rated MHI estimate) = 0.0028 lb/hr Feedstock dryer mercury removal = 75 percent Feedstock dryer mercury emission = 0.00069 lb/hr

Inlet mercury to syngas adsorber bed = 0.05442 - 0.00069 = 0.0537 lb/hr Adsorber removal = 99 percent Estimated HRSG flue gas mercury = 0.000537 lb/hr About 85 percent of the HRSG flue gas mercury will be emitted through the HRSG stack and the remainder through the feedstock dryer stack. It is assumed that the mercury in HRSG flue gas sent to the dryer will be reduced by the dryer mercury removal system, therefore:

Feedstock dryer mercury emission = 0.00069 lb/hr + (0.000537 lb/hr * 0.15 * 0.25)

HRSG mercury emission = 0.000537 lb/hr * 0.85

Summary

Feedstock dryer emission = 0.000710 lb/hr

HRSG emission = 0.000457

Total plant = 0.001167 lb/hr

Total mercury/gross power = 0.001167 lb/hr/405 MW × 1,000 MW/gigawatt = 0.00288 lb/ gigawatt hour

Mercury emission calculations are presented in Appendix B, Revised Toxic Air Contaminant Emissions.

Two new events associated with the SRU and thermal oxidizer have been identified: Passivation, and Presulfiding. Further details are provided in Section 3.2.5. This increased TAC emissions from the thermal oxidizer by increasing the hours of operation of the natural gas burner in the SRU during the passivation activities.

The Ammonia Synthesis Start-up Heater will be equipped with four Low-NO_X burners, each rated at 14 MMBtu/hr, for a total rating of 56 MMBtu/hr. This is a change from 55 MMBtu/hr due to new information provided by the vendor, and causes a very minor increase in emissions. This change was provided via email to Homero Ramirez, SJVAPCD on January 9, 2013.

Cooling tower (Power Block, ASU, and Process Area) TAC emissions did not change, although the locations of all three cooling towers moved slightly. The ASU cooling tower (Unit 28) is now oriented north-south, and all stack parameters remained the same. The fan height increased to 65 feet for the Power Block and Process cooling towers. The number of cells for the Power Block cooling tower (Unit 29) decreased to 10, and the diameter of the cells decreased to 25 feet. The number of cells for the Process cooling tower (Unit 27) decreased to 11, and the diameter of the cells decreased to 29 feet. The stack exhaust flow rate changed for the Power Block and Process cooling towers.

 CO_2 vent emissions were revised to include trace amounts of methanol and benzene. The total venting rate increased as a result of the fluxant addition to the feedstock; therefore, all TAC emissions increased slightly. The CO_2 vent stack height was raised to 355 feet. A detailed discussion of these changes is presented in Section 3.2.6.

There are no changes in ammonia emissions associated with the Urea Absorber; however, the HP and LP absorber vents were combined into one stack. All stack parameters were modified to

represent the combined vent, and emissions from the two vents were combined for the current single vent.

The HECA nitric acid plant ammonia (NH₃) emissions increased due to new information provided by the vendor. These emissions are described in the response to the Notice of Incomplete Application provided to SJVAPCD on August 1, 2012. To adequately control the NO₂ emissions from the nitric acid unit, sufficient ammonia must be injected into the SCR system; thus, it is expected that the ammonia emission rate may be as high as 10 ppm, or 1.0 lb/hr. This equates to annual ammonia emissions from the nitric acid unit of 4 tons per year. Additionally, the stack height was reduced to 120 feet, and all stack parameters were modified: temperature increased, flow decreased, and exit velocity decreased.

There were no TAC emissions or stack parameter changes from the auxiliary boiler, gasifier flare, SRU flare, Rectisol[®] flare and emergency generators, and fire pump.

Revised Table 5-2, HECA Total Toxic Air Contaminant Annual Emission Rates, outlines the revised estimated TAC annual emission rates for each source listed above.

5.1.2 Fugitive Emissions

Fugitive emissions of TACs may occur in some areas of the facility due to leaks in the piping and components. Fugitive emissions are associated primarily with the Gasification Block and the Manufacturing Complex. A leak detection and repair (LDAR) program will be implemented in select process areas to minimize these emissions. LDAR is the primary established method for controlling fugitive emissions from equipment, such as valves and seals. In addition, the refined design identified that all light liquid pumps and all compressors will have dual mechanical seals and barrier fluid maintained at a higher pressure than the pump fluid or compressed gas. These seals ensure no fugitive emission leakage.

Two new fugitive streams associated with the Manufacturing Complex (streams $18a - CO_2$ Product and Purification Compressors; and $18b - Urea CO_2$ Compressor) were added to permit unit S-7616-33-0, Ammonia Synthesis Unit. These streams more appropriately account for the composition of the streams passing through the compressors previously associated with stream $18 - High CO_2$ concentration stream.

Fugitive streams 22 – Lower Benzene Concentration; and 23 – Higher Benzene Concentration, resulting from benzene in the syngas cleanup (discussed further in Section 3.2.6), were added to permit unit S-7616-21-0, the Gasification System. These modifications resulted in minor changes in emissions of TACs.

A methanol storage tank has been added to permit unit S-7616-21-0, as described in Section 3.2.7, and tank emissions have been included with the fugitives from this source. Detailed emission calculations for the fugitives are presented in Appendix B, Revised Toxic Air Contaminant Emissions.

5.1.3 Mobile Sources

For CEQA purposes, onsite mobile source diesel particulate matter (DPM) emissions were incorporated in the HRA. Trucks and trains delivering feedstock and removing products would travel to and from the Project Site on a regular basis. Changes to emissions estimates from mobile sources are discussed in Section 3.3.

5.1.4 Total Project Toxic Air Contaminant Emissions

Revised Table 5-2 presents a summary of the total annual TAC emissions from all sources. Detailed hourly and annual emission calculations for each source are presented in Appendix B, Revised Toxic Air Contaminant Emissions.

SJVAPCD Rule 2520 requires adherence to federally mandated operating permits. As such, it is important to designate whether the project is a major source of HAPs or not. Under the federal Clean Air Act, §112, a major source is defined as one that emits 10 tons per year or more of any HAP, or 25 tons per year or more of any combination of HAPs. The Project is not a major source of HAPs, as determined by the list of federal HAPs and the Project's total annual HAP emissions presented in Revised Table 5-2.

5.2 ESTIMATED LIFETIME CANCER RISK AND CHRONIC AND ACUTE TOTAL HAZARD INDICES

The HRA was conducted using the hourly and annual emissions listed for each source identified in Revised Table 5-2. The same methodology as outlined in the ATC/PSD Application was used to conduct the updated HRA.

Revised Table 5-3, Estimated Cancer Risk, Acute and Chronic Non-Cancer total hazard index (THI) due to HECA Operations, presents the results of the HRA at the point of maximum impact, maximally exposed individual resident (MEIR), maximally exposed individual worker (MEIW), and nearest sensitive receptor.

MEIR for the cancer and chronic and acute non-cancer health risks are presented in Revised Table 5-3. As shown in this table, all health risks were predicted to be below the significance thresholds.

The AERMOD modeling files and risk calculation reports from HARP are included in the electronic files with this report. The files include calculated X/Q values in μ g/m³ per gram per second from each source at each receptor.

The maximum acute 8-hour THI resulting from worst-case hourly emissions of acetaldehyde, arsenic, formaldehyde, manganese, and mercury are presented in Revised Table 5-4, Acute Hazard Index for TACs with 8-Hour Reference Exposure Levels (RELs) Predicted from Peak HECA Emissions, along with the summation of the health indices by target organ to obtain the 8-hour total hazard index (THI) per organ.

Revised Table 5-2 HECA Total Toxic Air Contaminant Annual Emission Rates

		r		1		-				iune i sinnue				1	1					
Compound	CAS#	Annual Rate (TPY)	CTG/ HRSG (lb/yr)	Feedstock Dryer Stack (lb/yr)	Cooling Tower (Power Block) (lb/yr)	Cooling Tower (Process Area) (lb/yr)	Cooling Tower (ASU) (lb/yr)	Auxiliary Boiler (lb/yr)	Ammonia Plant Start-up Heater (lb/yr)	Emergency Generators (lb/yr)	Fire Water Pump (lb/yr)	Gasification Flare (lb/yr)	SRU Flare (lb/yr)	Rectisol [®] Flare (lb/yr)	TG Thermal Oxidizer (lb/yr)	CO ₂ Vent (lb/yr)	Manu- facturing Complex (lb/yr)	Onsite Truck (lb/yr)	Onsite Train (lb/yr)	Fugitives (lb/yr)
Acetaldehyde	75-07-0	2.13E-02	3.62E+01	6.38E+00																
Ammonia*	7664-41-7	1.54E+02	1.53E+05	2.50E+04				1.03E+03									1.22E+05			7.61E+03
Antimony	7440-36-0	1.30E-02	2.21E+01	3.90E+00																
Arsenic	7440-38-2	2.85E-02	4.82E+01	8.51E+00	5.33E-02	8.70E-02	2.40E-02	8.89E-02	1.49E-03			1.43E-02	7.75E-04	3.78E-03	2.17E-02					
Benzene	71-43-2	1.47E+00	4.82E+01	8.51E+00				9.33E-01	1.57E-02			1.50E-01	8.14E-03	3.97E-02	2.28E-01	2.79E+03				9.69E+01
Beryllium	7440-41-7	3.08E-03	5.22E+00	9.22E-01				5.33E-03	8.96E-05			8.56E-04	4.65E-05	2.27E-04	1.30E-03					
Cadmium	7440-43-9	1.14E-01	1.93E+02	3.40E+01				4.89E-01	8.21E-03			7.85E-02	4.26E-03	2.08E-02	1.19E-01					
Carbon Disulfide	75-15-0	5.44E-01	9.24E+02	1.63E+02																
Carbonyl Sulfide	463-58-1	2.79E+00														5.37E+03				2.09E+02
Chromium	7440-47-3	6.49E-03	1.02E+01	1.81E+00				6.22E-01	1.05E-02			9.99E-02	5.42E-03	2.64E-02	1.52E-01					
Chromium (hexavalent)	18540-29-9	1.81E-03	3.07E+00	5.43E-01																
Cobalt	7440-48-4	3.10E-03	5.22E+00	9.22E-01				3.73E-02	6.27E-04			5.99E-03	3.25E-04	1.59E-03	9.11E-03					
Copper*	7440-50-8	2.94E-04			1.03E-02	1.69E-02	4.66E-03	3.78E-01	6.35E-03			6.06E-02	3.29E-03	1.61E-02	9.22E-02					
Cyanides	57-12-5	6.91E-02	1.15E+02	2.02E+01																3.35E+00
Fluoride*	1101	1.44E-03			9.31E-01	1.52E+00	4.20E-01													
Formaldehyde	50-00-0	2.25E-01	3.42E+02	6.03E+01				3.33E+01	5.60E-01			5.35E+00	2.91E-01	1.42E+00	8.13E+00					
Hexane	110-54-3	5.89E-01						8.00E+02	1.34E+01			1.28E+02	6.97E+00	3.40E+01	1.95E+02					
Hydrochloric Acid	7647-01-0	1.62E-01	2.61E+02	4.61E+01																1.75E+01
Hydrogen Fluoride (hydrofluoric acid)	7664-39-3	5.91E-01	1.00E+03	1.77E+02																
Hydrogen Sulfide	7783-06-4	2.44E+00														3.04E+03				1.83E+03
Lead	7439-92-1	6.62E-03	1.13E+01	1.99E+00																
Manganese	7439-96-5	1.65E-02	2.09E+01	3.69E+00	2.66E+00	4.35E+00	1.20E+00	1.69E-01	2.84E-03			2.71E-02	1.47E-03	7.18E-03	4.12E-02					
Mercury	7439-97-6	4.88E-03	3.82E+00	5.77E+00				1.16E-01	1.94E-03			1.85E-02	1.01E-03	4.91E-03	2.82E-02					
Methanol	67-56-1	9.73E+00														4.87E+03				1.46E+04
Methyl Bromide (Bromomethane)	74-83-9	5.64E-01	9.59E+02	1.69E+02																
Methylene Chloride (Dichloromethane)	75-09-2	2.60E-02	4.42E+01	7.80E+00																
Naphthalene	91-20-3	2.98E-02	5.02E+01	8.87E+00				2.71E-01	4.55E-03			4.35E-02	2.36E-03	1.15E-02	6.61E-02					
Nickel	7440-02-0	5.30E-03	7.84E+00	1.38E+00				9.33E-01	1.57E-02			1.50E-01	8.14E-03	3.97E-02	2.28E-01					
Nitric Acid*	7697-37-2	3.04E-01																		6.09E+02
Phenol	108-95-2	4.35E-01	7.40E+02	1.31E+02																
Propylene*	115-07-1	4.75E+00																		9.49E+03
Selenium	7782-49-2	6.70E-03	1.13E+01	1.99E+00	4.43E-02	7.23E-02	2.00E-02	1.07E-02	1.79E-04			1.71E-03	9.30E-05	4.53E-04	2.60E-03					
Sulfuric Acid and Sulfates*	7664-93-9	1.12E+00	1.91E+03	3.37E+02																
Toluene	108-88-3	1.50E-03	6.63E-01	1.17E-01				1.51E+00	2.54E-02			2.43E-01	1.32E-02	6.42E-02	3.69E-01					

Health Risk Assessment

Revised Table 5-2 HECA Total Toxic Air Contaminant Annual Emission Rates (Continued)

Compound	CAS#	Annual Rate (TPY)	CTG/ HRSG (lb/yr)	Feedstock Dryer Stack (lb/yr)	Cooling Tower (Power Block) (lb/yr)	Cooling Tower (Process Area) (lb/yr)	Cooling Tower (ASU) (lb/yr)	Auxiliary Boiler (lb/yr)	Ammonia Plant Start-up Heater (lb/yr)	Emergency Generators (lb/yr)	Fire Water Pump (lb/yr)	Gasification Flare (lb/yr)	SRU Flare (lb/yr)	Rectisol [®] Flare (lb/yr)	TG Thermal Oxidizer (lb/yr)	CO ₂ Vent (lb/yr)	Manu- facturing Complex (lb/yr)	Onsite Truck (lb/yr)	Onsite Train (lb/yr)	Fugitives (lb/yr)
Vanadium*	7440-62-2	(111) 7.52E-04	(10/91)	(10/y1)	(10/91)	(10/y1)	(10/91)	1.02E+00	(10/y1) 1.72E-02	(10/91)	(10/91)	(Ib / yI) 1.64E-01	(ID/y1) 8.91E-03	4.34E-02	(ID/yI) 2.49E-01	(10/91)	(10/91)	(10/91)	(10/91)	(10/y1)
Diesel Particulate Matter*	DPM	7.14E-02						11022100	11/22/02	4.51E+01	1.84E+00	11012 01	0.012 00	110 12 02	21.02.01			2.01E+01	7.56E+01	
2-Methylnaphthalene	91-57-6	7.85E-06						1.07E-02	1.79E-04			1.71E-03	9.30E-05	4.53E-04	2.60E-03					+
3-Methylchloranthrene	56-49-5	5.89E-07						8.00E-04	1.34E-05			1.28E-04	6.97E-06	3.40E-05	1.95E-04					
7,12-Dimethylbenz(a)anthracene	57-97-6	5.23E-06						7.11E-03	1.19E-04			1.14E-03	6.20E-05	3.02E-04	1.73E-03					
Acenaphthene	83-32-9	5.89E-07						8.00E-04	1.34E-05			1.28E-04	6.97E-06	3.40E-05	1.95E-04					
Acenaphthylene	208-96-8	5.89E-07						8.00E-04	1.34E-05			1.28E-04	6.97E-06	3.40E-05	1.95E-04					+
Anthracene	120-12-7	7.85E-07						1.07E-03	1.79E-05			1.71E-04	9.30E-06	4.53E-05	2.60E-04					+
Benz(a)anthracene	56-55-3	2.78E-05	4.62E-02	8.16E-03				8.00E-04	1.34E-05			1.28E-04	6.97E-06	3.40E-05	1.95E-04					1
Benzo(a)pyrene	50-32-8	3.93E-07						5.33E-04	8.96E-06			8.56E-05	4.65E-06	2.27E-05	1.30E-04					1
Benzo(b)fluoranthene	205-99-2	5.89E-07						8.00E-04	1.34E-05			1.28E-04	6.97E-06	3.40E-05	1.95E-04					
Benzo(g,h,i)perylene	191-24-2	3.93E-07						5.33E-04	8.96E-06			8.56E-05	4.65E-06	2.27E-05	1.30E-04					1
Benzo(k)fluoranthene	207-08-9	5.89E-07						8.00E-04	1.34E-05			1.28E-04	6.97E-06	3.40E-05	1.95E-04					
Chrysene	218-01-9	5.89E-07						8.00E-04	1.34E-05			1.28E-04	6.97E-06	3.40E-05	1.95E-04					
Dibenzo(a,h)anthracene	53-70-3	3.93E-07						5.33E-04	8.96E-06			8.56E-05	4.65E-06	2.27E-05	1.30E-04					
Dichlorobenzene	106-46-7	3.93E-04						5.33E-01	8.96E-03			8.56E-02	4.65E-03	2.27E-02	1.30E-01					
Fluoranthene	206-44-0	9.81E-07						1.33E-03	2.24E-05			2.14E-04	1.16E-05	5.67E-05	3.25E-04					
Fluorine	86-73-7	9.16E-07						1.24E-03	2.09E-05			2.00E-04	1.08E-05	5.29E-05	3.04E-04					
Indeno(1,2,3-cd)pyrene	193-39-5	5.89E-07						8.00E-04	1.34E-05			1.28E-04	6.97E-06	3.40E-05	1.95E-04					
Phenanathrene	85-01-8	5.56E-06						7.55E-03	1.27E-04			1.21E-03	6.59E-05	3.21E-04	1.84E-03					
Pyrene	129-00-0	1.64E-06						2.22E-03	3.73E-05			3.57E-04	1.94E-05	9.44E-05	5.42E-04					
Total Combined HAPs and TACs	(tpy)	180.38	79.76	13.11	0.00	0.00	0.00	0.93	0.01	0.02	0.00	0.07	0.00	0.02	0.10	8.03	61.04	0.01	0.04	1.72E+01
Total HAPs* (tpy)		19.90	2.43	0.43	0.00	0.00	0.00	0.42	0.01	0.00	0.00	0.07	0.00	0.02	0.10	8.03	0.00	0.00	0.00	8.38E+00

Note:

* Denotes pollutants that are not listed as Federal HAPs. These pollutants are not included in the HAP total provided. As shown, combined annual HAP emissions are less than 25 tons per year. Additionally, individual HAP emissions are below 10 tons per year.

ASU = Air Separation Unit CAS = Chemical Abstracts Service Registry Number HAPs = hazardous air pollutant Ib/yr = pounds per year TACs = toxic air contaminants

Health Risk Assessment

Estimated Cancel Nisk, Acute and C			I.
Location	Cancer Risk	Chronic Non- Cancer Total Hazard Index	Acute Non- Cancer Total Hazard Index
Point of maximum impact	8.85 excess risk in 1 million	0.36	0.72
Coordinates of PMI in UTM NAD83 (m) easting northing	283,951 3,911,962	283,944 3,911,662	282,397 3,913,018
Peak risk at offsite worker MEIW (Tule Elk State Reserve Ranger Station)	1.75 excess risk in 1 million	0.11	0.21
Coordinates of MEIW in UTM NAD83 (m) easting northing	285,106 3,911,707	285,106 3,911,707	285,106 3,911,707
Peak risk at MEIR	3.56 excess risk in 1 million	0.22	0.30
Coordinates of MEIR in UTM NAD83 (m) easting northing	283,989 3,910,951 (Residence along the southeastern side of the property line on Tupman Road)	283,989 3,910,951 (Residence along the southeastern side of the property line on Tupman Road)	284,401 3,912,477 (Residence on Tule Park Road near Station Road)
Peak risk at nearest Sensitive Receptor (Elk Hills School, Tupman, California)	0.82 excess risk in 1 million	0.06	0.10
Coordinates of Sensitive Receptor in UTM NAD83 (m) easting northing	285,878 3,908,605	285,878 3,908,605	285,878 3,908,605
Significance threshold	10 in 1 million	1	1
Below significance?	Yes	Yes	Yes

Revised Table 5-3

Estimated Cancer Risk, Acute and Chronic Non-Cancer THI due to HEC	A Operations

Source: HECA, 2013.

Notes:

1 MEIW cancer risk is conservatively based on a residential risk calculation; i.e., a 70-year exposure.

1 101121.00

m = meters MEIR = maximally exposed individual resident

MEIN = maximally exposed individual resident MEIW = maximally exposed individual worker

PMI = point of maximum impact

THI = total hazard index

UTM = Universal Transverse Mercator

ТАС	8-hour Inhalation Risk Value μg/m ³	Hazard Index	Hazard Index Target Organs
Acetaldehyde	300	0.000004	Respiratory system
Arsenic	0.015	0.1173	Development; cardiovascular system; nervous system; lung; skin
Formaldehyde	9	0.0309	Respiratory system
Manganese	0.17	0.0092	Nervous system
Mercury	0.06	0.0178	Nervous system
THI – Respiratory system		0.0309	Respiratory system
THI –Nervous system		0.1444	Nervous system
THI – Other organs		0.1173	Development; cardiovascular system; lung; skin

Revised Table 5-4 Acute Hazard Index for TACs with 8-hour RELs Predicted from Peak HECA Emissions

Notes:

RELs = reference exposure levels

TACs = toxic air contaminants

THI = total hazard index

 $\mu g/m^3 = micrograms$ per cubic meter

The estimated cancer risk at all locations is below the significance criterion of 10 in 1 million; thus, the Project emissions are expected to pose a less-than-significant increase in terms of carcinogenic health risk.

The estimated chronic and acute THIs are below the significance criterion of 1.0; thus, the Project emissions of noncarcinogenic TACs would not be expected to pose a significant risk.

5.3 MITIGATION MEASURES

The criteria pollutant emissions from the Project will be mitigated by the use of BACT and through emissions offsets. Pollution control technologies employed to control criteria pollutants (for example, the oxidation catalyst in the HRSG and the high-efficiency drift eliminators on the cooling towers) will also reduce emissions of TACs associated with the Project. These measures satisfy the SJVAPCD requirements for toxics. Emissions from the cooling system will be limited by the use of high-efficiency drift control eliminators, and a biocide will be used to control bacterial growth.

The HRA presented in the foregoing subsections shows that the health effects impacts of the Project will be well below the significance thresholds. Therefore, no further mitigation of emissions from the Project is required to protect public health.

6.1 CLASS I AREA SIL ANALYSIS

Class I SIL modeling was revised using the modeling scenarios as described above in Section 4.1.5 for the NO₂ annual, $PM_{2.5}$ 24-hour and annual, and PM_{10} 24-hour and annual Class I SILs.

The Class I SILs are presented in Revised Table 6-1. Modeling for the Class I PM_{2.5} SILs was completed, because the San Rafael Wilderness Area is in Santa Barbara County, which is an unclassified/attainment area for PM_{2.5}. Class I SILs for NO₂ 1-hour, and CO 1-hour, and 8-hour do not exist. Impacts due to HECA operations without mobile sources were modeled, using the same modeling scenarios as described in Section 4.1.9.2. The AERMOD model was applied for the Class I SIL modeling analyses, which used a receptor grid extending out 50 kilometers from the Project site, the same receptor grid used in the NO₂ 1-hour NAAQS regional analysis. The AERMOD model has been evaluated for estimating impacts out to 50 kilometers, and it is believed that this is the maximum extent of the model's reliability; therefore, receptors did not extend beyond 50 kilometers, gave an understanding of whether the model predicted Class I SILs would be contained inside the 50-kilometer grid. Isopleth figures were prepared for each pollutant and averaging time to show the extent of the areas with Project Impacts above the SILs.

Pollutant	Averaging Period	Class I Significant Impact Level (SIL) ¹ (µg/m ³)
NO ₂	Annual	0.1
DM	24 hour	0.32
PM_{10}	Annual	0.2
PM _{2.5}	24 hour	0.07
	Annual	0.06

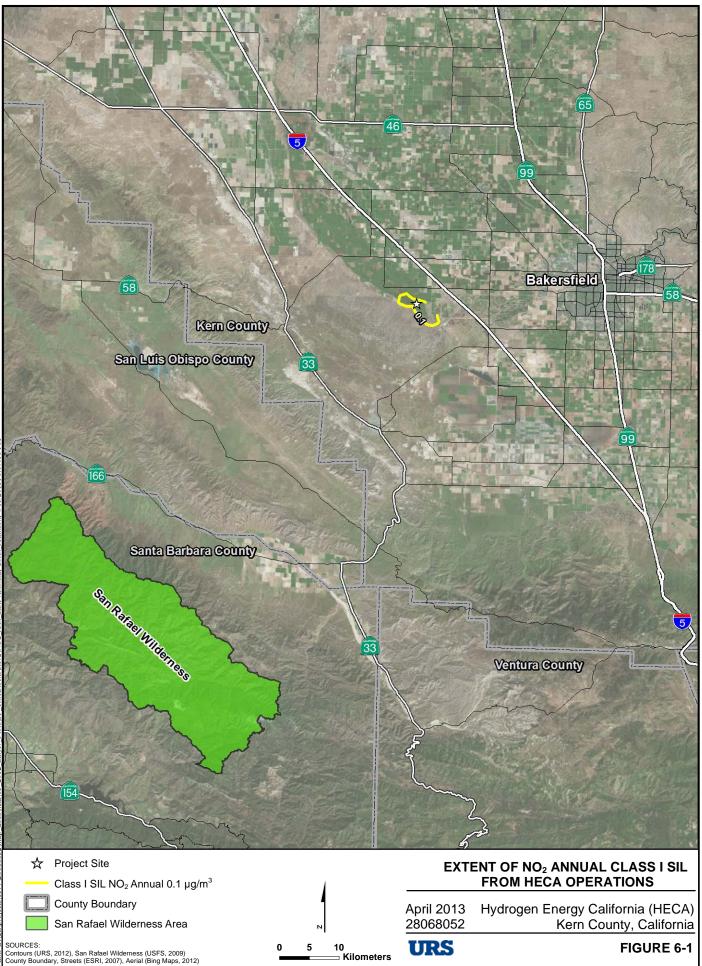
Revised Table 6-1 Class I Significant Impact Levels

Notes:

1

The SIL concentrations in this table were compared to highest modeled concentrations from HECA stationary sources for NO₂, PM_{10} and $PM_{2.5}$ annual, and PM_{10} 24-hour. For $PM_{2.5}$ 24-hour the model was run to predict the multiyear average of the highest 24-hour concentration at each receptor.

 $NO_2 = nitrogen dioxide$


 $PM_{10} = particulate matter less than 10 microns in diameter$

 $PM_{2.5}$ = particulate matter less than 2.5 microns in diameter

 $\mu g/m^3 =$ micrograms per cubic meter

SIL = Significant Impact Level

Revised Figures 6-1 through 6-5 provide a visualization of the model predicted concentration isopleths for each pollutant and averaging time. The model predicted that the NO₂, PM_{10} , and $PM_{2.5}$ annual concentrations still fall below the Class I SILs within 2 to 3 kilometers, as shown on Revised Figures 6-1 through 6-3. For the PM_{10} and $PM_{2.5}$ 24-hour averaging times, the model predicted that the concentrations still fall below the Class I SIL out 20 to 30 kilometers southwest of HECA, in the direction toward San Rafael Wilderness Area, as shown on Revised Figures 6-4 and 6-5. Therefore, updated modeled concentrations due to HECA operations in the vicinity of San Rafael Wilderness continue to stay below the Class I significance levels.

80680

FIGURE 6-1

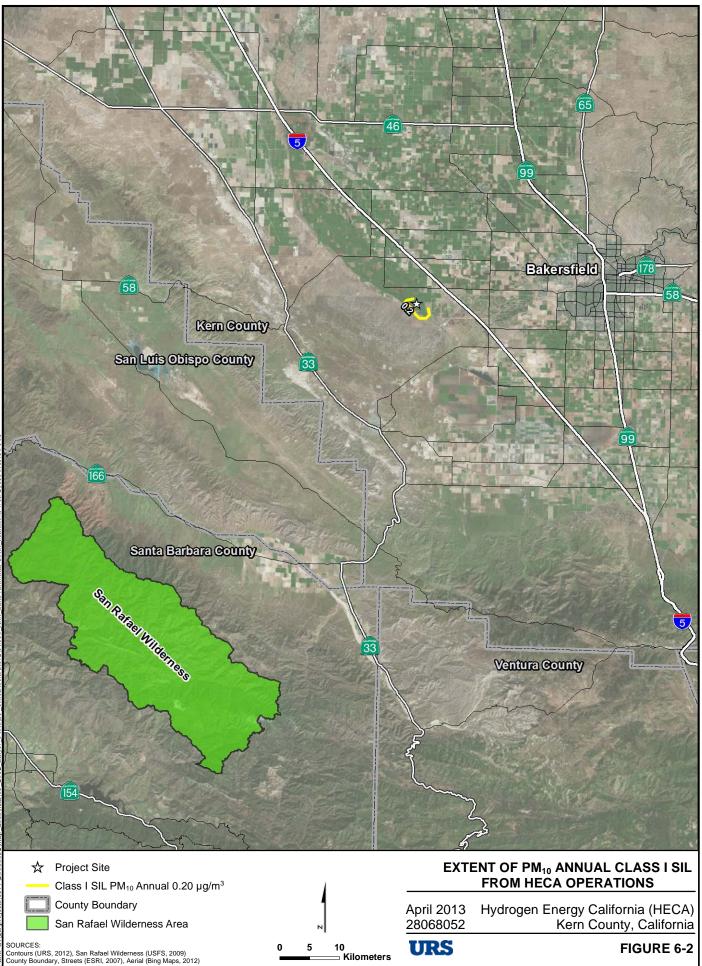
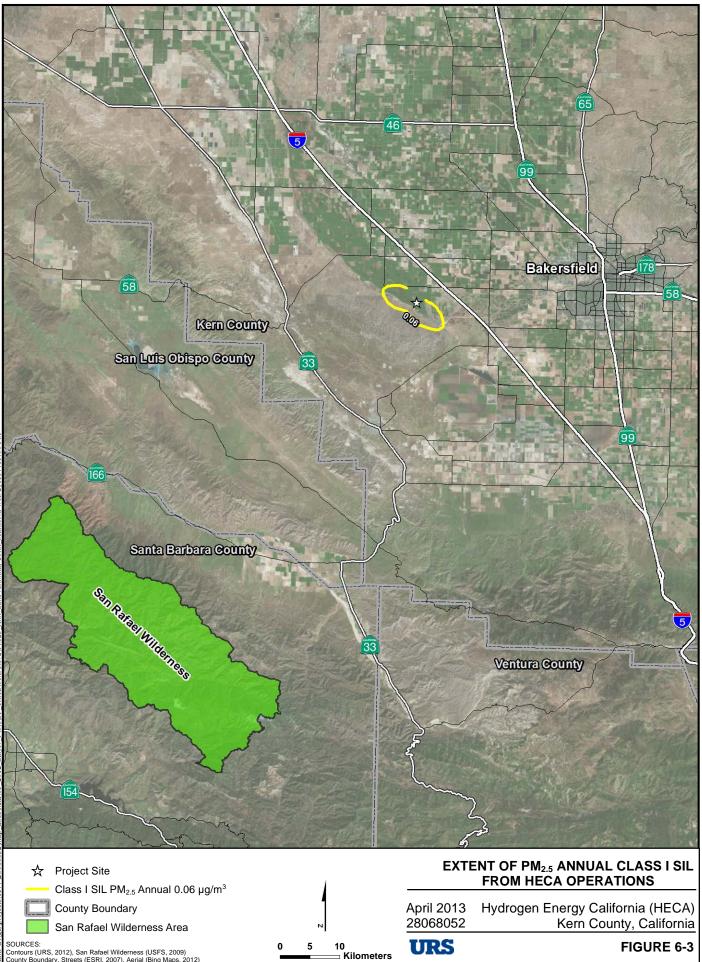
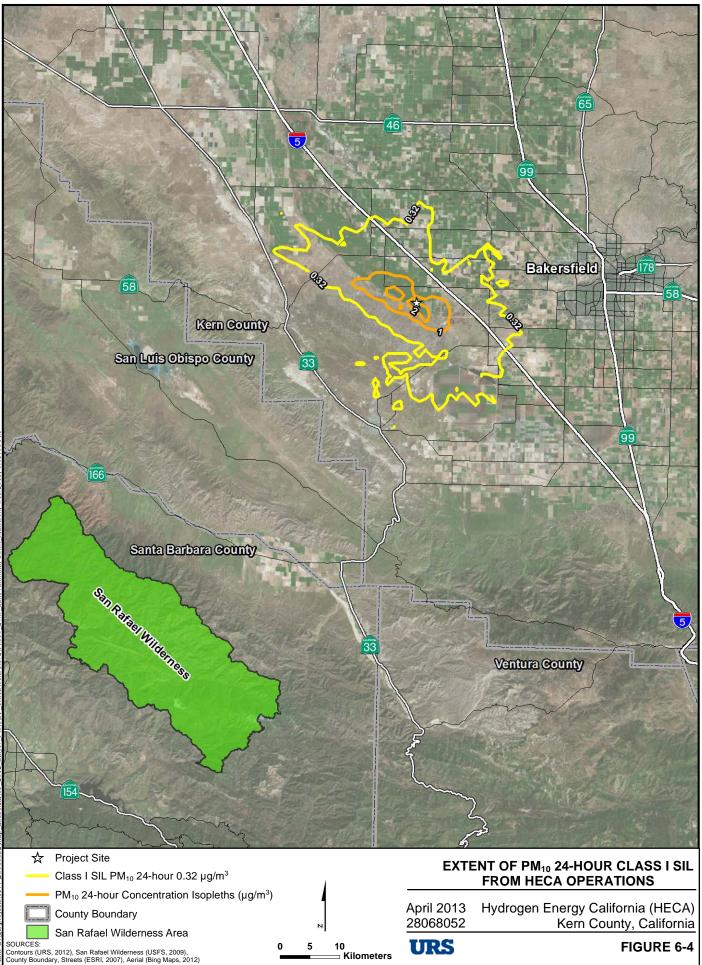
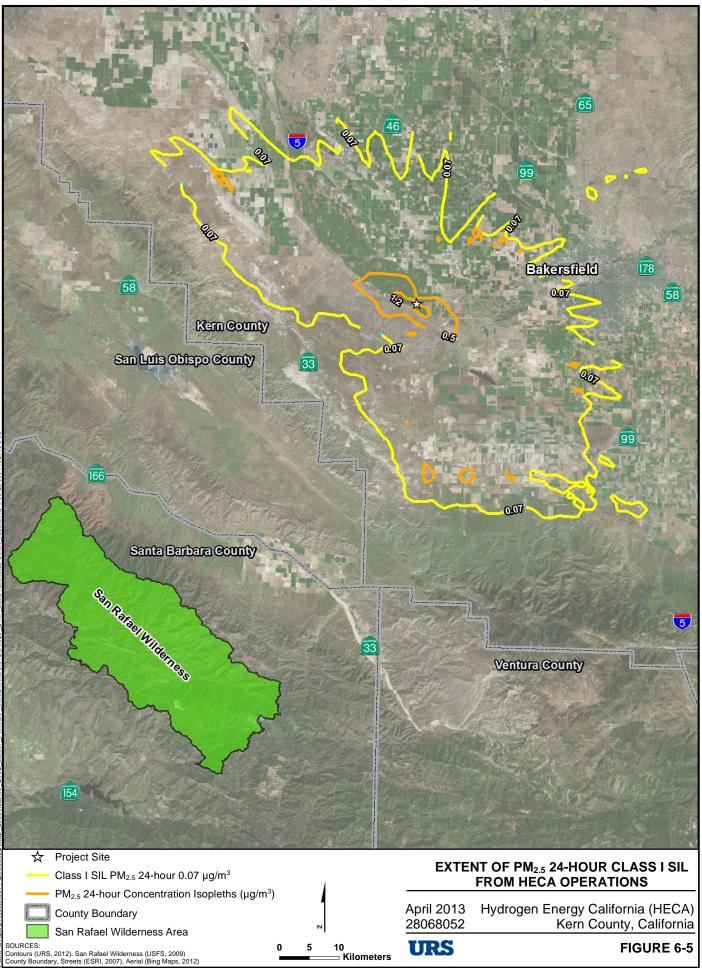





FIGURE 6-2

Contours (URS, 2012), San Rafael Wilderness (USFS, 2009) County Boundary, Streets (ESRI, 2007), Aerial (Bing Maps, 2012)

th: G:\gis\projects\157728068052\map_docs\nxd\05_2012_Surfer_Plots\5F_TitleBlocks\Rev2\PM25_24hr_SunFran.mxd, Colin_Mattison, 4/11/2013, 7:12:43 P

SECTIONSIX

6.2 AIR QUALITY RELATED VALUES

6.2.1 Class I Areas

The updated Q/d value for the HECA Project for the San Rafael Wilderness Area is still less than 5, while the updated Q/d values for the Domelands Wilderness Area and Sequoia National Park Class I Areas are still less than 3. Therefore, HECA did not prepare Class I Area Air Quality Relate Values (AQRV) analyses based on Federal Land Managers' Air Quality Related Values Work Group (FLAG) and U.S. Forest Service guidance.

6.2.2 Class II Area Visibility Analysis

Sequoia National Forest and Los Padres National Forest Class II areas are approximately 50 kilometers or farther from HECA, and the updated Q/d analysis is still less than 6. Per the FLAG guidance screening technique, impacts would continue to be less than significant. However, a Class II visibility analysis was requested by USEPA Region 9 after the ATC/PSD Application submittal.

The Class II visibility analysis was submitted in October 2012 for the Elk Hills area that lies south of the facility. Onsite normal daily emission rates for HECA stationary sources for NO_X , particulate matter, and primary NO_2 emissions for the nitric acid unit remained the same. Therefore the Level I screening visibility analysis submitted in October 2012 is still valid for the Class II area, and no significant impact to visibility was predicted.

6.3 SOILS AND VEGETATION ANALYSES

All Project modeled impacts continue to be below levels that have shown potential soil and vegetation response, as presented in the ATC/PSD Application, and these predictions also continue to be below the primary and secondary NAAQS and CAAQS.

A comparison of the maximum concentrations predicted due to the HECA Project revisions, and the screening concentrations listed in the USEPA document, are shown in Revised Table 6-2.

As demonstrated in the following table, maximum Project-related predicted NO_2 , CO, SO₂, and H_2S concentrations are still below the USEPA screening concentrations, and thus below the levels at which adverse effects to vegetation or soils are expected to occur. Therefore, pollutant emissions from the HECA Project are not expected to have adverse soils and vegetative impacts.

6.4 GROWTH-INDUCED IMPACTS

There are no changes to the land uses or zoning designations surrounding the area of the Project Site. The existing character of the immediate area surrounding the Project Site will remain unchanged by the development of the Project. None of the Project refinements will cause changes to the previously presented analysis.

Pollutant	Modeled Averaging Time	Predicted Concentration ¹ (µg/m ³)	Background Concentration (µg/m³)	Total Concentration (µg/m³)	USEPA AQRV Screening Concentration (µg/m ³)	USEPA AQRV Screening Averaging Time
SO ₂	1-Hour	532	42	574	917	1-Hour
	3-Hour	260	26	286	786	3-Hour
	Annual	0.1	13	13.1	18	Annual
NO ₂	1-Hour	187	140	327	3,760	4 and 8-Hour
					564	Weekly
	Annual	1.6	26	28	94	Annual
PM ₁₀	24-Hour	4.0	264	268	N/A	N/A
	Annual	0.6	54	54.6	N/A	N/A
СО	8-Hour	392	2,485	2,877	1,800,000	Weekly
H ₂ S	1-Hour	29.3	N/A	29.3	28,000	4-Hour

Revised Table 6-2

Comparison of Maximum HECA Concentrations and USEPA Screening Concentrations

Notes:

AQRV = air quality related value

CO = carbon monoxide

 $H_2S = hydrogen sulfide$ $<math>\mu g/m^3 = micrograms per cubic meter$ $NO_2 = nitrogen dioxide$ $NO_2 = nitrogen dioxide$ NO

 PM_{10} = particulate matter of 10 microns or smaller

 $SO_2 = sulfur dioxide$ VOC = volatile organic compound

7.1 NEW SOURCE REVIEW EMISSION REDUCTION CREDITS

Based on revised operational emissions data, and applying the appropriate ratios, the calculation of offsets is presented in Revised Table 7-1.

To demonstrate compliance with SJVAPCD rules, the Project is required to provide emission offsets in the form of ERCs equal to increases in gross emissions of NO_X , SO_X , PM_{10} , and VOCs that will result from the operation of the Project, minus the specified thresholds. The Project proposes to further mitigate emissions of these pollutants beyond applicable offset requirements by offsetting the full amount of the Project net emission increase.

SJVAPCD Rule 2201 Section 4.8 specifies distance ratios that must be applied in determining the quantity of ERCs to be provided for a new source. For all pollutants, the distance ratio applicable is 1.5 to 1.

The Project will use SO_X ERCs to offset PM_{10} emissions on an inter-pollutant basis. The SJVAPCD has developed an inter-pollutant trading ratio for SO_X to PM_{10} of 1:1, and concluded that this is protective of managing regional particulate matter impacts and progress towards attainment.

Rule 2201 Section 4.14.1 requires that emissions from new stationary sources be modeled to determine if the emissions cause or make worse a violation of an AAQS. The modeled impact of $PM_{2.5}$ emissions from the Project exceeds the SJVAPCD daily and annual significance impact levels for $PM_{2.5}$ (as shown in Section 4.2.1.5); thus, offsets for $PM_{2.5}$ will be provided. The offsets will mitigate the total $PM_{2.5}$ emissions from all stationary sources, including emissions from emergency equipment (otherwise exempt from emission offsets). Please note that the Project is not a major source of $PM_{2.5}$ emissions, as defined in Rule 2201, because its emissions of $PM_{2.5}$ are less than 100 ton/year; therefore, offsets are not explicitly required. Offsets are provided to mitigate modeled impacts from $PM_{2.5}$. Because $PM_{2.5}$ is a subset of PM_{10} , the SO_X ERCs will offset both PM_{10} and $PM_{2.5}$ emissions.

HECA has procured sufficient ERCs to satisfy these offset requirements. The ERCs that have been procured are detailed in Revised Table 7-2.

7.2 GENERAL CONFORMITY AND CEQA MITIGATION

As required by 40 Code of Federal Regulations 93, Subpart B, an evaluation of the General Conformity was performed for the HECA Project for all the affected nonattainment and maintenance areas in the states of California, Arizona, and New Mexico. Criteria pollutant emissions generated in each Project-affected area from activities associated with the Project construction and operation were calculated and compared to the General Conformity *de minimis* thresholds to assess whether a General Conformity Determination (GCD) is required.

The General Conformity evaluation was conducted for both alternatives. The estimated emissions indicate that the total direct and indirect construction and operational emissions of CO, PM_{10} , $PM_{2.5}$, and SO_2 are below the applicable General Conformity thresholds for all years of construction and operation in all nonattainment and maintenance areas for both Alternatives 1

	NO _X	SO _x ²	PM_{10}	PM _{2.5} ^{3,4}	СО	VOC
Gross Emissions, lb/yr	318,094	63,799	180,880	160,215	544,198	69,948
SJVAPCD Requirements						
Offset Threshold Levels per Section 4.5.3 of DR2201, lb/yr	20,000	54,750	29,200	200,000	200,000	20,000
Required ERCs, lb/yr ¹	297,588	9,046	151,633	160,215		49,737
Offsets Triggered?	yes	yes	yes	yes ⁶	no ⁵	yes
Offset Ratio (1:X)	1.5	1.5	1.5	1.5	NA	1.5
Required ERCs with offset ratio, lb/yr	446,382	13,569	227,450	240,323	—	74,606
ERCs in Possession, lb/yr	522,400	266,000	0	0	0	104,250
Inter-pollutant offset, lb/yr	_	-240,323	227,450	240,323	_	
ERCs Surplus (Needed), lb/yr	76,018	12,109	0	0		29,644
Additional Mitigation for CEQ	A (CEC)					
Required ERCs, lb/yr	318,094	63,799	180,880	160,215	—	69,948
ERCs in Possession, lb/yr	522,400	266,000	0	0		104,250
Inter-pollutant offset, lb/yr		-180,880	180,880	160,215		
ERCs Surplus (Needed), lb/yr	204,306	21,320	0	0		34,302

Revised Table 7-1 Emission Reduction Credits Determination

Notes:

¹ Required ERCs excludes emissions from the exempt emergency generators and fire pumps, except for PM_{2.5}.

² Ratio of 1:1 used to apply SO_X certificates to PM_{10} emissions

³ Major Source of PM_{2.5} is defined as 100 TPY as of July 15, 2008

⁴ Federal and SJVAPCD New Source Review offset trigger for PM_{2.5} emissions is 100 TPY.

⁵ per Section 4.6.1 of DR2201, "Emission Offsets shall not be required for the following: Increases in carbon monoxide in attainment areas if the applicant demonstrates to the satisfaction of the Air Pollution Control Officer, that the Ambient Air Quality Standards are not violated in the areas to be affected, and such emissions will be consistent with Reasonable Further Progress, and will not cause or contribute to a violation of Ambient Air Quality Standards."

⁶ Although ERCs are not required for minor sources of PM_{2.5}, SJVAPCD requires offsets of project emissions if modeling shows the potential to cause or make worse a violation of the PM_{2.5} AAQS.

Source	Address	Method of Reduction	ERC Certificate Number	Pollutant	lbs/yr
Big West of California, LLC	6500 Refinery Ave, Bakersfield, CA Section: NE27, Township: 29S, Range: 27E	Shut-down of Catalytic Cracker, Fluid Coker, and CO Boiler	S-3273-2	NO _X	482,000
	6451 Rosedale Hwy, Area I, Bakersfield, CA Section: NE27, Township: 29S, Range: 27E	Shut-down of Tail Gas Incinerator, 2007027A	S-3275-5	SO _X	168,000
Aer Glan	20807 Stockdale Hwy, Bakersfield, CA Section: NE06, Township: 30S, Range: 26E	Shut-down of Entire Stationary Source	S-3305-1	VOC	58,500
Energy LLC			S-3557-1	VOC	45,750
G.I.C. Financial Services, Inc.	11535 E Mountain View Ave., Kingsburg, CA	Install Selective Catalytic Reduction, SCR, and Scrubber and convert from fuel oil to natural gas	C-1058-2	NO _X	40,400
			C-1058-5	SO _X	98,000

Revised Table 7-2 ERCs Procured by HECA

and 2. Both Alternatives 1 and 2 have identical NO_X and VOC construction emissions, and exceed the conformity thresholds in 2014 and 2015 for VOC and all years for NO_X. Alternative 2 NO_X emissions are higher than those of Alternative 1 in the San Joaquin Valley Air Basin (SJVAB), although both Alternatives are greater than the GCD threshold for all years. Therefore, Alternative 2 NO_X emissions are used in the evaluation. The construction of HECA is anticipated to start in 2013 and to be completed in 2017. The anticipated Project commercial operation start date is September 2017. During calendar year 2017, both construction activities and operational activities will occur. A General Conformity evaluation for NO_X during construction and operation, and for VOC during construction in the SJVAB, was prepared and submitted to the Department of Energy and the SJVAPCD.

SJVAPCD has developed CEQA significance thresholds for non-permitted equipment and activities during construction and operations. In addition to the conformity thresholds exceedances described above, during construction the $PM_{10}/PM_{2.5}$ threshold of 15 tons/yr will be exceeded.

The Project will enter into an enforceable commitment with the SJVAPCD to participate in its Emission Reduction Incentive Program. The HECA Project's participation in the Emission Reduction Incentive Program will provide pound-for-pound offsets of emissions that exceed the General Conformity and CEQA thresholds to offset all emissions subject to General Conformity and CEQA down to zero. The offsets will cover NO_X emissions during all years of construction and operations, VOCs during all years of construction, as the Conformity and CEQA threshold is exceeded in 2014 and 2015, and PM₁₀ during all years of construction, as the CEQA threshold is exceeded in 2013, 2014, and 2015. Through this mechanism, construction and operational emissions of NO_X, and construction emissions of VOC, and PM₁₀ from the Project will be fully offset, and the federal action will conform to the SIP pursuant to Title 40, Code of Federal Regulations, Part 93, Subpart B, Section 93.158(a)(2).

- CARB (California Air Resources Board), 2003. HARP User Guide Software for Emission Inventory Database Management, Air Dispersion Modeling Analyses, and Health Risk Assessment version 1.3, Air Resources, Board, California Environmental Protection Agency. December.
- CEC (California Energy Commission), 2012. Regulations Establishing and Implementing a Greenhouse Gases Emission Performance Standard for Local Publicly Owned Electric Utilities, Chapter 11. Greenhouse Gases Emission Performance Standard, Article 1, Section 2900 et seq., http://www.energy.ca.gov/emission_standards/regulations/ Chapter11_Article1_SB 1368_Regulations.PDF. Accessed April 10, 2012.
- NPS (National Park Service), 2010. Federal Land Managers' Air Quality Related Values Work Group (FLAG), Phase I Report Revised (2010). October.
- Port of Long Beach, 2009. *Port of Long Beach Air Emissions Inventory* 2007. http://www.polb.com/civica/filebank/blobdload.asp?BlobID=6029. Accessed April 13, 2012.
- SJVAPCD (San Joaquin Valley Air Pollution Control District), 2002. Guidelines for Assessing and Mitigating Air Quality Impacts. January.
- SJVAPCD (San Joaquin Valley Air Pollution Control District), 2005. Procedures for Quantifying Fugitive VOC Emissions at Petroleum and Synthetic Organic Chemicals Manufacturing Industry (SOCMI) Facilities.
- SJVAPCD (San Joaquin Valley Air Pollution Control District), 2009a. Guidance for Valley Land-use Agencies in Addressing GHG Emission Impacts for New Projects under CEQA. December 17.
- SJVAPCD (San Joaquin Valley Air Pollution Control District), 2009b. Addressing GHG Emission Impacts for Stationary Source Projects under CEQA When Serving as the Lead Agency. December 17.
- SJVAPCD (San Joaquin Valley Air Pollution Control District), 2010. Assessment of Non-Regulatory Option in AERMOD Specifically OLM and PVMRM. September.
- SJVAPCD (San Joaquin Valley Air Pollution Control District), 2011. Procedures for Modeling PM_{2.5}. October 4.
- URS Corporation, 2009a. Air Quality Modeling Protocol for the Hydrogen Energy California (HECA) Project, Kern County. Prepared by URS for San Joaquin Valley Air Pollution Control District, California Energy Commission, U.S. Environmental Protection Agency Region IX, and National Park Service. February, 2009.
- URS Corporation, 2009b. *Reponses to CEC Data Requests Set One Nos. 1 Through 132,* Revised Application for Certification (08-AFC-8). November 2009.

$R:\label{eq:rescaled} R:\label{eq:rescaled} R:\label{eq:rescaled} ATC\ATC_update.docx$

- URS Corporation, 2010. Reponses to CEC Data Requests Set One (Nos. 1, 2, 11, 17, 31b, 32, 33, 36, 64f, 85 through 90, and 125 through 132), Revised Application for Certification (08-AFC-8). January 2010.
- URS Corporation, 2011. *Modeling Protocol for Parameter Selection Specific to the 1-hour NO*₂ *NAAQS Regional Modeling for the HECA Project.* Prepared by URS for U.S. Environmental Protection Agency, Region IX. January 20, 2011.
- URS Corporation, 2012. *Modeling Protocol Supplement for the HECA Project*. Prepared by URS for U.S. Environmental Protection Agency Region IX, California Energy Commission, and San Joaquin Valley Air Pollution Control District. February 21, 2012.
- USEPA (U.S. Environmental Protection Agency), 1980. A Screening Procedure for the Impacts of Air Pollution Sources on Plants, Soils, and Animals. USEPA Publication No. EPA 450/2 81 078. December.
- USEPA (U.S. Environmental Protection Agency), 1982. Air Quality Criteria for Oxides of Nitrogen. USEPA Publication No. EPA 600/8-82-026. September.
- USEPA (U.S. Environmental Protection Agency), 1985. Guideline for Determination of Good Engineering Stack Height (Technical Support Document for the Stack Height Regulation) (Revised), EPA-450/4-80-023R. Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina. June 1985.
- USEPA (U.S. Environmental Protection Agency), 1995a. *Protocol for Equipment Leak Emission Estimates.* EPA-453/R-95-017. November 1995.
- USEPA (U.S. Environmental Protection Agency), 1995b. SCREEN3 Model User's Guide. EPA-454/B-95-004. September 1995.
- USEPA (U.S. Environmental Protection Agency), 1995c. AP-42 Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources, Fifth Edition.
- USEPA (U.S. Environmental Protection Agency), 2003. Guidelines on Air Quality Models.
- USEPA (U.S. Environmental Protection Agency), 2004. User's Guide for the AMS/EPA Regulatory Model – AERMOD. EPA454-B-03-001. September 2004.
- USEPA (U.S. Environmental Protection Agency), 2006. Addendum to User's Guide for the AMS/ EPA Regulatory Model-AERMOD. December 2006.
- USEPA (U.S. Environmental Protection Agency), 2008. Integrated Science Assessment (ISA) for Oxides of Nitrogen and Sulfur Ecological Criteria (Final Report).
 U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-08/082F.
- USEPA (U.S. Environmental Protection Agency), 2009a. Technical Highlights: Emission Factors for Locomotives. EPA-420/F-09-025. April 2009.

SECTIONEIGHT

- USEPA (U.S. Environmental Protection Agency), 2009b. *Integrated Science Assessment for Particulate Matter (Final Report).* U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-08/139F, 2009.
- USEPA (U.S. Environmental Protection Agency), 2010. *Modeling Procedures for Demonstrating Compliance with PM*_{2.5}*NAAQS.* March 23, 2010.
- USEPA (U.S. Environmental Protection Agency), 2011. Additional Clarification Regarding Application of Appendix W Modeling Guidance for the 1-hour NO₂ National Ambient Air Quality Standard. March 1, 2011.
- USEPA (U.S. Environmental Protection Agency), 2012. AIRS Air Quality Monitoring Data Reports, http://www.epa.gov/airdata/. Accessed April 13, 2012.

APPENDIX A

REVISED OPERATIONAL CRITERIA POLLUTANT EMISSIONS

HECA Total Combined Annual Criteria Pollutant Emissions

	a combined Annual Criteria i onutant Emissions					
Pollutant	NO _X	CO	VOC	SO ₂	PM ₁₀	PM _{2.5}
Equipment			tons	/year		
HRSG/CTG ⁽¹⁾	106.5	89.0	15.1	17.1	54.0	54.0
Feedstock Dryer ⁽¹⁾	17.0	12.7	2.4	2.8	5.6	5.6
Auxiliary Boiler	1.4	8.6	0.9	0.5	1.2	1.2
Tail Gas Thermal Oxidizer	13.7	11.4	0.3	10.7	0.5	0.5
CO ₂ Vent		125.1	3.8			
Gasification Flare	2.5	18.5	0.05	0.08	0.24	0.24
Rectisol Flare	0.7	0.8	0.01	0.3	0.03	0.03
SRU Flare	0.1	0.2	0.003	0.4	0.006	0.006
Cooling Towers ⁽²⁾					25.5	15.3
Emergency Generators ⁽³⁾	0.2	0.8	0.1	0.001	0.02	0.02
Fire Water Pump	0.09	0.2	0.01	0.0003	0.001	0.001
Nitric Acid Unit	16.8					
Urea Pastillation Unit					0.2	0.2
Ammonium Nitrate Unit					0.8	0.8
Ammonia Startup Heater	0.04	0.15	0.02	0.01	0.02	0.02
Material Handling ⁽⁴⁾					2.4	2.3
Fugitives ⁽⁵⁾	0.005	4.8	12.2	0.1	0.1	0.03
Total Annual	159.0	272.1	35.0	31.9	90.4	80.1

Source: HECA Project

Notes:

(1) Total annual HRSG and Feedstock Dryer emissions represent the maximum annual emissions during normal

operations plus startup and shutdown emissions

(2) Includes contributions from all three cooling towers

(3) Includes contributions from both emergency generators

(4) Material handling emissions are shown as the contribution of all dust collection points.

(5) Fugitives include leakage from piping and fugitive dust from vehicles.

CO = carbon monoxide

HRSG=Heat Recovery Steam Generator

CTG = combustion turbine generator

 $NO_X = nitrogen oxides$

 PM_{10} = particulate matter less than 10 microns in diameter

 $PM_{2.5}$ =particulate matter less than 2.5 microns in diameter

 $SO_2 = sulfur dioxide$

VOCs = volatile organic compounds

CTG/HRSG and Feedstock Dryer

Emissions Summary

4/19/2013

Basis: MHI GT - Model: M501GAC

With PSA Off-gas and H2-rich Gas Duct Firing

Maximum Emissions based on C	ase 1 - On-peak with duct-firing at 9	7F ambient	
	CGT Max Fuel Input =	2583	x 10^6 Btu/hr (HHV) of syngas
	Duct Firing Max Fuel Input =	278	x 10^6 Btu/hr (HHV) of PSA Off-gas and H2-rich syngas
Total combined flue ga	as downstream of duct burners =	196,300	Ibmol/hr (wet)
	Water concentration =	12.9	vol %
	O2 (wet) =	10.5	vol %
	HRSG stack gas =	255,463	lbmol/hr, dry, corrected to 15% O2

Total HRSG Flu	ue Gas Emission Rates with Duct Firing or	f PSA Off-gas and H2-rich syngas
	Emission Factors	
	lb/10^6 Btu (HHV)	Basis
NOx	0.011	2.5 ppmc
CO	0.008	3 ppmc
VOC	0.0015	1 ppmc
PM ₁₀ /PM _{2.5}	0.008	filterable (front-half) + condensible (back half)
SO2**	0.002	2 ppmv total sulfur in syngas, 10 ppmv sulfur in PSA Off-gas
NH3		5 ppmc ammonia slip
Notes:	Emission Factors are based on the maxim	um emissions from all of the cases examined (On-peak and Off-peak)

Emission Factors are based on the maximum emissions from all of the cases examined (On-peak and Off-peak) ppmc denotes ppm by volume, dry, corrected to 15% O2

** Maximum SO2 emission occurs for OFF-peak, 97 deg F (Case 2)

Maximum short-term emissions from HRSG stack, normal operations on peak

HR	SG Emissions	
	lb/hr	Basis
NOx	25.0	Case 1 (ON Peak, 97 deg Ambient)
CO	18.3	Case 1 (ON Peak, 97 deg Ambient)
VOC	3.5	Case 1 (ON Peak, 97 deg Ambient)
PM ₁₀ /PM _{2.5}	12.9	Case 3 (ON Peak, 39 deg Ambient)
SO2**	4.1	Case 2 (OFF Peak, 97 deg Ambient)
NH3	18.5	Case 1 (ON Peak, 97 deg Ambient)

Annual average	e emissions from HRSG Stack
Basis:	Case 5 (ON Peak, Avg. Ambient)

Case 5 (ON Peak, Avg. P	Ambient)			
HRSG Emiss	HRSG Emissions			
	lb/hr			
NOx	24.9			
СО	18.2			
VOC	3.5			
PM ₁₀ /PM _{2.5}	12.8			
SO2*	4.1			
NH3	18.4			

Exhaust gas Exit velocity (lbmol/hr)

171,498

(m/s)

15.46

	Exhaust gas (lbmol/hr)	Exit velocity (m/s)	Exhaust flow (ft3/sec)	Exit velocity (ft/sec)	
min HRSG fluegas to HRSG stack during					HRSG fluegas to
ON peak (Case 1) =	167,092	15.06	22,356.58	49.42	HRSG stack (Case 5) =
Min HRSG fluegas to HRSG stack during					
OFF Peak (Case 2) =	126,704	11.42	16,952.70	37.47	
HRSG fluegas to HRSG stack during ON					
Peak (Case 3) =	176,804	15.94	23,655.98	52.29	

Maximum short-term emissions from feedstock dryer stack

Feedstoo	k Dryer Emissions	
	lb/hr	Basis
NOx	4.4	Case 1 (ON Peak, 97 deg Ambient)
CO	3.2	Case 1 (ON Peak, 97 deg Ambient)
VOC	0.6	Case 1 (ON Peak, 97 deg Ambient)
PM ₁₀ /PM _{2.5}	1.4	Case 3 (ON Peak, 39 deg Ambient)
SO2	0.9	Case 2 (OFF Peak, 97 deg Ambient)
NH3	3.2	Case 1 (ON Peak, 97 deg Ambient)

*Baghouse PM control to 0.001 gr/dscf

Annual average emissions from feedstock dryer stack Basis:

Case 5 (ON Peak, Avg. A	mbient)		
Feedstock Dryer E	Feedstock Dryer Emissions		
	lb/hr		
NOx	4.2		
СО	3.1		
VOC	0.6		
PM ₁₀ /PM _{2.5}	1.4		
SO2	0.7		
NH3	3.1		
*Baghouse PM control to	0.001 gr/dscf		

aghouse PM control to 0.001 gr/dscf

CTG/HRSG and Feedstock Dryer

Emissions Summary

4/19/2013

	Exhaust gas (lbmol/hr)	Exit velocity (m/s)		Exhaust gas (lbmol/hr)	Exit velocity (m/s)
Min HRSG fluegas to feedstock dryer (Case 4) =	28,788	5.84	HRSG fluegas to feedstock dryer (Case 5) =	29,102	5.90

Note: Feedstock dryer emission rates are relatively constant for both On- and OFF-peak operation.

Startup/Shutdown - HRSG Stack & Coal Drying Stack

Information provided by MHI

E.

Expected Emissions vs. CTG Load (Natural Gas)				
		CTG load		
	80%	40%	20%	units
NOx	42	25	18	ppmc
CO	130	2900	5000	ppmc
VOC	1.1	9	50	ppmc
PM ₁₀ /PM _{2.5}	15	15	15	lb/hr
SOx*	0.4	0.4	0.4	ppmc

..

Lybecter	CTG load	s. CTG Load (Syngas)
	40%	units
NOx	19	ppmc
CO	39	ppmc
VOC	2	ppmc
PM ₁₀ /PM _{2.5}	13	lb/hr
SOx	2	ppmvw

Compound	lb/lbmol
NO2	46.01
CO	28.01
VOC	16.04
SO2	64.06
NH3	17.03

* 0.4 ppmc SO2 in fluegas corresponds to about 12.6 ppmv total sulfur in natural gas fuel.

HRSG/Coal Drying Total Exhaust Flow Basis								
Load/Fuel	80% on N	IG	40%	on NG	20% on N	G	40% on \$	Syngas
O2 mol% (wet)	11.41%		14.15%		15.22%		11.74%	
H2O mol% (wet)	14.10%		10.63%		9.28%		10.50%	
MW	27.79	lb/lbmol	28.05	lb/lbmol	28.16	lb/lbmol	27.66	lb/lbmol
HRSG flue gas*	167,600	lbmol/hr	138,400	lbmol/hr	127,400	lbmol/hr	140,200	lbmol/hr
NOx Stack Conc (assumed)	4	ppmc	25	ppmc	18	ppmc	10	ppmc
CO Stack Conc (assumed)	5	ppmc	400	ppmc	1000	ppmc	20	ppmc
VOC Stack Conc (assumed)	2	ppmc	9	ppmc	50	ppmc	2	ppmc
NH3 slip	5	ppmc	0		0		5	ppmc
Turbine Fuel Flow							14,218	lbmol/hr
HRSG flue gas (wet)	4,657,604	lb/hr	3,882,120	lb/hr	3,587,584	lb/hr	3,877,932	lb/hr
HRSG flue gas (dry, corrected to 15% O2)	185,516	lbmol/hr	106,371	lbmol/hr	81,062	lbmol/hr	165,183	lbmol/hr
Duct Burner Gas HHV							85	MMBtu/hr
Coal Drying Flow (wet)			480,180	lb/hr			480,180	lb/hr
Manalu da a sua secola da Analaka da da secola								

*Includes gas routed to feedstock dryer.

						HRSG S	Startup						
Step	Duration (hrs)		SO2	NOx	со	PM ₁₀ /PM _{2.5}	VOC	NH3	Description	Flow (Ibmol/hr)	Exhaust flow (ft3/sec)	Exit velocity (ft/sec)	Exit velocity (m/s)
1. 20% on NG	0.5	lb/hr	2.1	67.1	2270	15.0	65	0	CTG ignition and synchronization	127,400	17.045.88	37.68	11.48
1. 20 % UT NG	0.5	lb	1.0	33.6	1135	7.5	32.4	0.0	CTG Ignition and synchronization		17,045.00	57.00	11.40
2. 40% on NG	2	lb/hr	2.4	107.2	1044	13.1	13	0	HRSG/STG Warm-up, Ramp CTG to 40%	121.300	16.229.71	35.88	10.93
2. 40 % UT NG	2	lb	4.8	214	2088	26.3	26.8	0.0	HK36/316 Walli-up, Kallp C16 to 40%	121,300	10,229.71	35.88	10.95
3. 40% on	2	lb/hr	2.4	66.6	81	13	4.6	12.3	CTG fuel change over, Start up	123,100	16.470.54	36.41	11.10
Syngas	2	lb	5	133	162	26	9	24.6	PSA/Ammonia/Urea Plant	123,100	10,470.54	30.41	11.10
Tons/Startup 0.01 0.19 1.69 0.03 0.03 0.01													

*Coal drying starts at step 2 above.

	Coal Drying Startup												
Step	Duration (hrs)		SO2	NOx	со	PM ₁₀ /PM _{2.5}	VOC	NH3	Description	Flow (Ibmol/hr)	Exhaust flow (ft3/sec)	Exit velocity (ft/sec)	Exit velocity (m/s)
2. 40% on NG	2	lb/hr	0.3	15.1	147.4	0.9	1.9	0.0	Gasifier fuel changeover	17,100	2.287.95	11.38	3.47
2.40% OITING	2	lb	0.7	30.3	294.7	1.9	3.8	0.0	Gasilier fuer changeover	17,100	2,207.95	11.30	3.47
3. 40% on	2	lb/hr	0.3	9.4	11.5	0.9	0.7	1.7	GTG fuel change over, Start up	17,400	2,328.09	11.58	3.53
Syngas	2	lb	0.7	19	23	2	1	3.5	PSA/Ammonia/Urea Plant	17,400	2,328.09	11.36	3.53
Tons/Startup 0.00 0.02 0.16 0.00 0.00 0.00													

*PM emission rate based on 0.001 grain/dscf

CTG/HRSG and Feedstock Dryer

Emissions Summary

4/19/2013

						HRSG SI	nutdown						
Step	Duration (hrs)		SO2	NOx	со	PM ₁₀ /PM _{2.5}	VOC	NH3	Description	Flow (Ibmol/hr)	Exhaust flow (ft3/sec)	Exit velocity (ft/sec)	Exit velocity (m/s)
1. 40% on	4	lb/hr	2.4	66.6	81.0	13	4.6	12.3	PSA, Ammonia and Urea plant shutdown,	123,100	16.470.54	36.41	11.10
Syngas	4	lb	9.6	266	324	52.6	18.5	49.2	Gasifier to 60%, CTG to 40%	123,100	10,470.54	4 30.41	11.10
2. 40% on NG	2	lb/hr	2.7	122	1191	15.0	15.3	0.0	CTG fuel change over, Gasifier	138,400	18,517.65	40.93	12.48
2. 40 % UTING	3	lb	8.2	367	3574	45.0	45.9	0.0	depressurization	136,400	16,517.05	40.93	12.46
3. 20% on NG	2	lb/hr	2.1	67.1	2270	15.0	64.8	0.0	Minimum plant load on NG	127,400	17.045.88	37.68	11.48
3. 20 % OITING	2	lb	4.2	134	4539	30.0	129.7	0.0	Minimum plant load on NG	127,400	17,045.00	37.00	11.40
Tons/Shutdown 0.01 0.38 4.22 0.06 0.10 0.02													

	Coal Drying Shutdown												
Step	Duration (hrs)		SO2	NOx	со	PM ₁₀ /PM _{2.5}	VOC	NH3	Description	Flow (Ibmol/hr)	Exhaust flow (ft3/sec)	Exit velocity (ft/sec)	Exit velocity (m/s)
1. 40% on	4	lb/hr	0.3	9.4	11.5	0.9	0.7		PSA, Ammonia and Urea plant shutdown,	17.400	2.328.09	11.58	3.53
Syngas	Tons/Star	lb	1.4 0.00	37.6 0.02	45.8 0.02	3.8 0.00	2.6 0.00	7.0	Gasifier to 60%, CTG to 40%	17,400	2,520.05	11.50	0.00

*PM emission rate based on 0.001 grain/dscf

CTG steady state operation at 80% load on natural gas for 2 weeks per year

				HRSG	Emissions - Na	tural Gas Oper	ations					
Duration (hrs)		SO2	NOx (4 ppmc)	CO (5 ppmc)	PM ₁₀ /PM _{2.5}	VOC (2 ppmc)	NH3 (5 ppmc)	Description			Exit velocity (ft/sec)	Exit velocity (m/s)
336	lb/hr	4.7	34.1	26.0	15.0	5.9	15.8	CTG operation at 80% load on NG	150 700	20 163 37	44.57	13.59
330	lb	1596	11469	8727	5040	1995	5298		130,700	20,103.37	44.57	13.35
Tons/yı	r	0.80	5.73	4.36	2.52	1.00	2.65					
2400	Emission Factors lb/MMBtu (HHV)	0.002	0.015	0.011	0.007	0.003	0.007					
	336 Tons/y	336 lb/hr lb Tons/yr Emission Factors lb/MMBtu	Buration (hrs) Ib/hr 4.7 336 Ib/hr 1596 Tons/yr 0.80 Emission Factors Ib/MMBtu	Duration (hrs) (4 ppmc) 336 lb/hr 4.7 34.1 lb 1596 11469 Tons/yr 0.80 5.73 Emission Factors lb/MMBtu Emission Factors lb/MMBtu	Duration (hrs) SO2 NOx (4 ppmc) CO (5 ppmc) 336 lb/hr 4.7 34.1 26.0 lb 1596 11469 8727 Tons/yr 0.80 5.73 4.36 Emission Factors lb/MMBtu Emission Factors lb/MMBtu Emission Factors lb/MMBtu	Duration (hrs) SO2 NOx (4 ppmc) CO (5 ppmc) PM ₁₀ /PM _{2.5} 336 lb/hr 4.7 34.1 26.0 15.0 lb 1596 11469 8727 5040 Tons/yr 0.80 5.73 4.36 2.52	Duration (hrs) SO2 NOx (4 ppmc) CO (5 ppmc) PM ₁₀ /PM _{2.5} VOC (2 ppmc) 336 Ib/hr 4.7 34.1 26.0 15.0 5.9 Ib/hr 1596 11469 8727 5040 1995 Tons/yr 0.80 5.73 4.36 2.52 1.00	Duration (hrs) Lb/hr 4.7 34.1 26.0 15.0 5.9 15.8 336 lb/hr 1596 11469 8727 5040 1995 5298 Tons/yr 0.80 5.73 4.36 2.52 1.00 2.65	Duration (hrs) SO2 NOx (4 ppmc) CO (5 ppmc) PM ₁₀ /PM _{2.5} VOC (2 ppmc) NH3 (5 ppmc) Description 336 Ib/hr 4.7 34.1 26.0 15.0 5.9 15.8 CTG operation at 80% load on NG 336 Ib/hr 1596 11469 8727 5040 1995 5298 Tonslyr 0.80 5.73 4.36 2.52 1.00 2.65	Duration (hrs) SO2 NOx (4 ppmc) CO (5 ppmc) PM ₁₀ /PM _{2.5} VOC (2 ppmc) NH3 (5 ppmc) Description Flow (thm0/hr) 336 Ib/hr 4.7 34.1 26.0 15.0 5.9 15.8 CTG operation at 80% load on NG 150,700 336 Ib/hr 1596 11469 8727 5040 1995 5298 150,700 Tonslyr 0.80 5.73 4.36 2.52 1.00 2.65	Duration (hrs) SO2 NOx (4 ppmc) CO (5 ppmc) PM ₁₀ /PM ₂₅ VOC (2 ppmc) NH3 (5 ppmc) Description Flow (lbmol/hr) Exhaust flow (lbmol/hr) 336 Ib/hr 4.7 34.1 26.0 15.0 5.9 15.8 CTG operation at 80% load on NG 150,700 20,163.37 Tons/yr 0.80 5.73 4.36 2.52 1.00 2.65	Duration (hrs) SO2 NOx (4 ppmc) CO (5 ppmc) PM ₁₀ /PM ₂₅ VOC (2 ppmc) NH3 (5 ppmc) Description Flow (lbm0/hr) Exhaust flow (ft/sec) Exhaust flow (ft/sec) 336 Ib/hr 4.7 34.1 26.0 15.0 5.9 15.8 CTG operation at 80% load on NG 150,700 20,163.37 44.57 Tons/yr 0.80 5.73 4.36 2.52 1.00 2.65 Emission Factors Ib/MMBtu Emission Factors Ib/MMBtu Filter Emission Factors Ib/MMBtu Emission Factors Ib/MBtu Image: Factor Factors Ib/MBtu Factor

Heat Input = 2167x10^6 Btu/hr, LHV (approx 2400x10^6 btu/hr, HHV)

HRSG & Feedstock Dryer Maximum Annual Operation Emissions

		HRSG,	Gasifier Feedstock Dryer, ton/yr				
	SU & SD	Normal Op	Nat Gas BU	Total	SU & SD	Normal Op	Total
NOx	1.15	99.6	5.73	106.5	0.09	16.9	17.0
CO	11.8	72.8	4.36	89.0	0.36	12.4	12.7
VOC	0.26	13.9	1.00	15.1	0.01	2.4	2.4
PM ₁₀ /PM _{2.5}	0.19	51.3	2.52	54.0	0.01	5.6	5.6
SO2*	0.032	16.3	0.80	17.1	0.00	2.8	2.8
NH3	0.07	73.6	2.65	76.4	0.01	12.5	12.5

Maximum Annual Operation: SU & SD 2 per year 8000 hr/yr 336 hr/yr Normal op

. Nat gas op

	Annualized Startup/Shut down Emission rate for NO2 1-hr NAAQS									
Source	HRSG Feedstock Dryer									
Emission	Annualized rate	Normal On-peak (Case	Annualized rate	Normal On-peak						
Scenario	for all events	1)	for all events	(Case 1)						
Emission rate										
(lb/hr)	24.32	25.01	3.88	4.4						

Normal operations are higher, therefore normal operating emissions used in NAAQS modeling

Power Block

CALCULATIONS FOR COMBINED CYCLE EMISSIONS

Basis: MHI Data for 501GAC, 1 on 1 with O2 Blown Gasifier (Lee Ranch Coal 75cal%/ Carson High Sulfur Coke 25cal%)

	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6
Ambient temp, deg F	97	97	39	39	65	65
ON Peak/OFF Peak	ON	OFF	ON	OFF	ON	OFF
HRSG Flue Gas Split to Feedstock Dryer						
Flue gas to feedstock dryer, lbmol/hr (wet)	29,208	28,996	28,996	28,788	29,102	28,996
Flue gas to HRSG stack, lbmol/hr (w)	167,092	126,704	176,804	142,412	171,498	135,904
Feedstock Dryer Stack Emissions						
NOx, lb/hr	4.4	4.3	4.1	3.8	4.2	4.0
CO, lb/hr	3.2	3.1	3.0	2.8	3.1	2.9
VOC, lb/hr	0.61	0.59	0.57	0.52	0.59	0.55
Particulate, lb/hr (3)	1.4	1.4	1.4	1.4	1.4	1.4
SO2, lb/hr	0.7	0.9	0.7	0.8	0.7	0.8
NH3, lb/hr	3.23	3.16	3.0	2.8	3.1	2.9
HRSG Stack Emissions						
NOx, lb/hr	25.01	18.7	24.96	18.7	24.9	18.6
CO, lb/hr	18.3	13.6	18.2	13.6	18.2	13.6
VOC, lb/hr	3.48	2.60	3.47	2.59	3.47	2.59
Particulate, lb/hr	12.77	12.21	12.89	12.48	12.82	12.36
SO2, lb/hr	4.06	4.09	4.09	4.03	4.07	3.98
NH3, lb/hr	18.5	13.8	18.4	13.8	18.4	13.8

Notes:

(1) "ppmc" denotes parts per million by volume, dry, corrected to 15% O2

(2) Sulfur in the PSA Off-gas is based on the total sulfur quantity in the feed to the PSA

(3) PM emission from feedstock dryer based on stack baghouse outlet dust loading of 0.001 grain/dscf.

Rev G 4/19/2013

AUXILIARY BOILER

4/19/2013

Description

Mainly used for startups, could be used for other purposes, primarily during power block outages.

Maximum steam generation	150,000 lb/hr
Maximum heat release	213 10^6 Btu/hr, HHV
Natural gas fuel, only	

		Emission factors
	lb/10^6 Btu, HHV	Basis
SO2	0.00204	12.65 ppmv total sulfur in pipeline natural gas (max short-term)
NOx	0.006	Low NOx burner and SCR, 5 ppmvd (3% O2)
СО	0.037	50 ppmvd (3% O2)
PM ₁₀ /PM _{2.5}	0.005	Similar equipment from previous project
VOC	0.004	Similar equipment from previous project
NH3	0.0022	5 ppmvd (3% O2) NH3 slip

Emissions				
	Max short-term Ib/hr (1)	Annual average ton/yr (2)		
SO2	0.4	0.48		
NOx	1.3	1.4		
CO	7.9	8.6		
PM ₁₀ /PM _{2.5}	1.07	1.17		
VOC	0.85	0.93		
NH3	0.47	0.51		

Notes:

(1) Maximum 1-hr, 3-hr, 8-hr, and 24-hr average emission rates.

(2) Maximum annual capacity factor of 25% (i.e., annual fuel consumption less than 0.25 x 8760 hr/yr x 213 million Btu/hr = 466 billion Btu/yr)

TAIL GAS THERMAL OXIDIZER

Description

The Tail Gas Thermal Oxidizer (TGTO) is primarily intended to safely dispose of SRU tail gas in the event of an emergency or upset. The TGTO will also be be used to dispose of waste gas during SRU startups and to futher dispose of miscellaneous vent streams from the gasification area. These vent streams may contain trace amounts of reduced sulfur compounds and/or ammonia that could cause nuisance odors if vented directly to the atmosphere.

The TGTO will also be used to dispose of sulfur bearing waste gas during intermittent post-shutdown SRU passivation. In this operation natural gas is fired in the SRU burners to oxidize and remove residual sulfur for safety reasons prior to opening the process equipment for major maintenance such as catalyst changeout. This operation is expected to occur no more than once per year.

Finally, the TGTO will be used to safely oxidize and dispose of H2S, SO2, and sulfur vapor from the occasional "presulfiding" of tail gas hydrogenation catalyst. Presulfiding, which activates new catalyst oxide loaded in the reactor prior to normal operation, consists of recirculating steam-heated hydrogen and nitrogen through the hydrogenation catalyst. The hydrogen reacts with a layer of elemental sulfur on the fresh catalyst material to form sulfides which activate the catalyst. A purge is withdrawn from the recirculating hydrogen stream to remove H2S, SO2, and other sulfur products and direct them to the TGTO for safe disposal. This operation is also expected to occur less than once per year.

Process Vent Disposal

Assume nominal natural gas fuel consumption = 13 million Btu/hr Assume an allowance of 2 lb/hr SO2 emission to account for sulfur in the various vent streams plus fuel.

Emission Calculations

NOx =	0.24 lb/10^6 Btu, HHV (based on previous project, 54 ppmvd @ 3% O2)
=	3.1 lb/hr
CO = =	0.2 lb/10^6 Btu, HHV (based on previous project, 74 ppmvd @ 3% O2) 2.6 lbhr
SO2 =	2 lb/hr
VOC =	0.006 lb/10^6 Btu, HHV (AP-42, Table1.4 -2)
=	0.1 lb/hr
PM ₁₀ /PM _{2.5} =	0.008 lb/10^6 Btu, HHV (AP-42, Table1.4 -2)
=	0.1 lb/hr

SRU startup natural gas combustion products disposal

Waste gas Natural gas fuel

80 x 10^6 Btu/hr, HHV

Emission Calculations

PM

(emission factors same as above)

NOx = =	0.24 lb/10^6 Btu, HHV 19.2 lbhr	
CO = =	0.2 lb/10^6 Btu, HHV 16.0 lbhr	
SO2 = =	0.00204 lb/10^6 Btu, HHV 0.16 lbhr	
VOC = =	0.006 lb/10^6 Btu, HHV 0.48 lbhr	
₁₀ /PM _{2.5} = =	0.008 lb/10^6 Btu, HHV 0.64 lbhr	

TAIL GAS THERMAL OXIDIZER

Emissions Summary

3RU "passivation" combustion products disposal 4/19/2013 Waste gas Combustion products from natural gas warming 80 x 10^6 Btu/hr, HHV Sulfur in waste gas = 75 lb/hr (as SO2) Emission Calculations 75 lb/hr (as SO2)

(emission factors same as above)

NOx =	0.24 lb/10^6 Btu, HHV
=	19.2 lbhr
CO =	0.2 lb/10^6 Btu, HHV
=	16.0 lbhr
SO2 =	75 lb/hr
VOC =	0.006 lb/10^6 Btu, HHV
=	0.48 lbhr
PM10 =	0.008 lb/10^6 Btu, HHV
=	0.64 lbhr

TGTU Hydrogenation Catalyst Presulfiding

Sulfur in purge gas =	125	lb/hr (as SO2)
This activity will require		
TGTO natural gas assist fuel =	13	x 10^6 Btu/hr, HHV
The annual hours of normal operation include this espisode nat	ural g	jas usage

Maximum Short-term Emi		Annualized Startup Emission rate for NO2 & SO2 1-hr NAAQS			
	<u>lb/hr</u>	<u>lb/hr</u>	Normal operations are higher, therefore permal operating		
			Normal operations are higher, therefore normal operating		
NOx	22.3	3.119	emissions used in NAAQS modeling		
CO	18.6				
			Annualized emissions are higher, therefore annualized		
SO2	125	2.447	emissions are used in NAAQS modeling		
VOC	0.6		-		
PM ₁₀ /PM _{2.5}	0.7				

TAIL GAS THERMAL OXIDIZER

4/19/2013

Annual Emission Calculations

Assumed annual operating scenario TGTO normal operation for disposing miscellaneous vent gas 8314 hr/yr

		8314 hr/yr
NOx =	13.0 ton/yr	
CO =	10.8 ton/yr	
SO2 =	8.3 ton/yr	
VOC =	0.32 ton/yr	
$PM_{10}/PM_{2.5} =$	0.43 ton/yr	
1 10/1 10/2.5	0.40 tony	
SRU startup hrs/yr =		48 (approx 2 events @ 80 x 10^6 Btu/hr)
NOx =	0.461 ton/yr	
CO =	0.3840 ton/yr	
SO2 =	0.0039 ton/yr	
VOC =	0.0115 ton/yr	
$PM_{10}/PM_{2.5} =$	0.0154 ton/yr	
10.1.2.5	0.0101.01.01.01	
SRU passivation hrs/yr =		24
NOx =	0.230 ton/yr	
CO =	0.192 ton/yr	
SO2 =	0.900 ton/yr	
VOC =	0.006 ton/yr	
PM10 =	0.008 ton/yr	
	-	
TGTU presulfiding hrs/yr =	=24	24 (one event per yr)
SO2 =	1.50 ton/yr	
Total annual emission		
NOx =	13.7 ton/yr	
CO =	11.4 ton/yr	
SO2 =	10.7 ton/yr	
VOC =	0.3 ton/yr	
PM ₁₀ /PM _{2.5} =	0.5 ton/yr	

CO2 Vent Maximum Operations

Short-term Emission Rates			
Total flow =	767,435	lb/hr	
=	17,724	lbmol/hr	
H2S =	10	ppmv	
=	6.0	lb/hr	
COS =	10	ppmv	
	10.6	lb/hr	
CO =	1000	ppmv (ranges	from 500 to 1000 ppmv)
=	496.3	lb/hr	11910.308
methanol (MeOH) =	40	ppmv	
=	22.7	lb/hr	
benzene (Bz) =	4	ppmv	
=	5.5	lb/hr	
VOC =	44	ppmv (MeOH + Bz)	
=	28.2	lb/hr (MeOH + Bz)	677.18606
Annual Emissions			
Annual Emissions	21	davs/vr CO2 venting	at full rate
Assume		days/yr CO2 venting	at full rate
Assume Total annual flow =	21 193,394		at full rate
Assume Total annual flow = For methanol calculations assume	193,394	ton/yr	
Assume Total annual flow = For methanol calculations assume Average flow capacity for year =	193,394 85%	ton/yr of maximum (varies l	at full rate between 70% - 100%)
Assume Total annual flow = For methanol calculations assume Average flow capacity for year = Average Annual Flow =	193,394 85% 7,592,821	ton/yr of maximum (varies l Ibmol/yr	between 70% - 100%)
Assume Total annual flow = For methanol calculations assume Average flow capacity for year =	193,394 85% 7,592,821	ton/yr of maximum (varies l Ibmol/yr	
Assume Total annual flow = For methanol calculations assume Average flow capacity for year = Average Annual Flow =	193,394 85% 7,592,821 20	ton/yr of maximum (varies l Ibmol/yr	between 70% - 100%) e annual emission rate
Assume Total annual flow = For methanol calculations assume Average flow capacity for year = Average Annual Flow = methanol (MeOH) =	193,394 85% 7,592,821 20 1.5	ton/yr of maximum (varies l lbmol/yr ppmv average	between 70% - 100%) e annual emission rate opmv)
Assume Total annual flow = For methanol calculations assume Average flow capacity for year = Average Annual Flow = methanol (MeOH) = H2S =	193,394 85% 7,592,821 20 1.5 2.7	ton/yr of maximum (varies l lbmol/yr ppmv average ton/yr (based on 10 p	between 70% - 100%) e annual emission rate opmv) ed on 10 ppmv)
Assume Total annual flow = For methanol calculations assume Average flow capacity for year = Average Annual Flow = methanol (MeOH) = H2S = COS =	193,394 85% 7,592,821 20 1.5 2.7 125.1	ton/yr of maximum (varies l lbmol/yr ppmv average ton/yr (based on 10 p ton/yr (as COS, base	between 70% - 100%) e annual emission rate opmv) ed on 10 ppmv) 0 ppmv)
Assume Total annual flow = For methanol calculations assume Average flow capacity for year = Average Annual Flow = methanol (MeOH) = H2S = COS = CO =	193,394 85% 7,592,821 20 1.5 2.7 125.1 2.4	ton/yr of maximum (varies l lbmol/yr ppmv average ton/yr (based on 10 p ton/yr (as COS, base ton/yr (based on 100	between 70% - 100%) e annual emission rate opmv) ed on 10 ppmv) 0 ppmv) sed on 20 ppmv)
Assume Total annual flow = For methanol calculations assume Average flow capacity for year = Average Annual Flow = methanol (MeOH) = H2S = COS = CO = methanol (MeOH) =	193,394 85% 7,592,821 20 1.5 2.7 125.1 2.4 1.4	ton/yr of maximum (varies l lbmol/yr ppmv average ton/yr (based on 10 p ton/yr (as COS, base ton/yr (based on 100 ton/yr (as MeOH, base	between 70% - 100%) e annual emission rate opmv) ed on 10 ppmv) 0 ppmv) sed on 20 ppmv) on 4 ppmv)

Note: These emissions represent the maximum emissions associated with Infrequent venting of product CO2. 1) Vent gas methanol concentrations are based on process licensor data. The methanol concentration is expected to be 18-20 ppm, but could be as high as 40 ppm associated short-term operational conditions such as transient impacts on the wash column.

2) Annual emission rates are based on 504 hours per year of full venting for H2S, COS, CO and Benzene and the average venting of 85% flow rate for Methanol.

Emission fac	lb/10^6 Btu, HHV	Basis			
Normal Oper	Iormal Operation (each flare) - pilots only, natural gas fuel				
SO2	0.00204	12.65 ppmv total sulfur in pipeline natural gas			
NOx	0.068	Supplier data			
CO	0.08	Supplier data			
PM ₁₀ /PM _{2.5}	0.003	Supplier data			
VOC	0.0013	99% VOC destruction for typical natural gas			
Gasifier Star	tup - waste gases or H2-r	ich gas to Gasification Flare			
SO2	0.002	Startup - no sulfur in startup feed			
NOx	0.068	Supplier data			
CO (1)	2	Supplier data (98% destruction of CO in waste gas)			
CO (2)	0.37	Supplier data			
PM ₁₀ /PM _{2.5}	0.008	Supplier data			
VOC	0.0015	no VOC in waste gas or H2-rich gas			

(1) Unshifted syngas(2) Shifted syngas

Short-term Emission Calculations

Normal Operation - include pilots only, natural gas fuel Maximum emissions include max of startup or shutdown plus pilot

Gasification Flare pilot fuel =	0.5 x 10^6 Btu/hr
SRU and Rectisol Flares pilot fuel =	0.3 x 10^6 Btu/hr, each

	Pilot Ib/hr	Max hourly emissions Ib/hr	Max daily emissions Ib/hr
Gasification	Flare		
SO2	0.00102	6.0	3.3
NOx	0.03	199.0	99.9
CO	0.04	4772.0	761.7
PM ₁₀ /PM _{2.5}	0.0015	19.3	9.9
VOC	0.0007	3.8	2.1
SRU Flare			
SO2	0.0006	18.4	18.4
NOx	0.020	2.5	2.5
CO	0.0240	2.9	2.9
PM ₁₀ /PM _{2.5}	0.0009	0.1	0.1
VOC	0.0004	0.05	0.05
Rectisol Fla	re		
SO2	0.0006	15.0	15.0
NOx	0.020	29.3	29.3
CO	0.0240	34.4	34.4
PM ₁₀ /PM _{2.5}	0.0009	1.3	1.3
VOC	0.0004	0.6	0.6

Startup/Shutdown - Gasification Flare

*Based on Startup/Shutdown Procedures provided by MHI for the PurGen One Project

	Startup							
Step	Duration (hrs)	Heat Input (mmbtu/hr)		SO2	Nox	со	PM ₁₀ /PM _{2.5}	VOC
2. Flaring		lb/hr	6.0	199.0	234.1	8.8	3.8	
NG 0 2,020	lb	17.9	597.0	702.3	26.3	11.4		
 Flaring Unshifted 	5	2,386	lb/hr	5.5	162.2	4772.0	19.1	3.6
Syngas	_,	lb	11.0	324.5	9544.0	38.2	7.2	
4. Flaring Shifted	5	2,413	lb/hr	5.5	164.1	892.8	19.3	3.6
Syngas	lb	27.7	820.4	4464.1	96.5	18.1		
	Tons/Startup 0.03 0.87 7.36 0.08 0.02							

	Shutdown									
Step	hrs	mmbtu/hr		SO2	Nox	со	PM10/PM2.5	VOC		
1. Flaring	4	2,413	lb/hr	5.5	164	893	19.3	3.6		
Shifted Syngas	4	2,415	lb	22	656	3,571	77	14		
Tons/Shutdown			0.01	0.33	1.79	0.04	0.01			

Gasification Flare

Pilot gas =

4380 x 10^6 Btu 2 startups/shutdowns per year

Gasification Flare Annual Emissions

	ton/yr							
	S/U and S/D	Pilot	Total					
SO2	0.08	0.004	0.083					
NOx	2.40	0.149	2.547					
CO	18.28	0.175	18.457					
PM ₁₀ /PM _{2.5}	0.238	0.007	0.245					
VOC	0.05	0.003	0.054					

Annualized Startup/Shut down Emission

rate for NO2 1-hr NAAQS

lb/hr	
0.55	

Startup/Shutdown Operation - SRU Flare

Acid gas vent to elevated flare prior to introducng to SRU Acid gas = 4600 lb/hr SO2 = 72 lbmol/hr H2S Assume 99.6% sulfur removal for caustic scrubber: Scrubbed acid gas = 18.4 lb/hr SO2 plus approx 25,000 to 140,000 scf/hr of mostly CO2 and other inerts Assume 36 x10^6 Btu/hr of natural gas assist fuel added to scrubbed acid gas for flaring. Approximate heating value of mixed gas to flare

= 36 x10^6 Btu /(140,000 + 36,000) scf

Btu/scf, adequate for combustion = 205

Estimated Startup SRU Flare Emissions - flaring scrubbed acid gas

	lb/hr	
SO2	18.4	99.6% effective caustic scrubber
NOx	2.4	
CO	2.9	
PM ₁₀ /PM _{2.5}	0.11	
VOC	0.05	

40 hr /yr 2628 x 10^6 Btu

(Emissions for NOX, CO, PM10, and VOC based on factors for natural gas pilots above)

SRU Flare

SRU startup vent gas to flare 1) = Pilot gas =

SRU Flare Annual Emissions

	ton/yr								
	S/U and S/D	Pilot	Total						
SO2 NOx	0.368	0.003	0.371						
NOx	0.049	0.09	0.14						
CO	0.058	0.11	0.16						
$PM_{10}/PM_{2.5}$	0.002	0.004	0.006						
VOC	0.001	0.002	0.003						

Startup Operation - Rectisol Flare

CO2 gas vent to Rectisol FI	are until within product specification
Vent gas flow =	4,542 lbmol/hr =
Sulfur in vent gas =	50 ppmv,max

Estimated Startup Rectisol Flare Emissions

	lb/hr
SO2 NOx	15
NOx	29.2
CO	34.4
PM ₁₀ /PM _{2.5}	1.3
VOC	0.6

(Emissions for NOX, CO, PM10, and VOC based on factors for natural gas pilots above)

Rectisol Flare

Rectisol startup vent gas to flare = 40 hr /yr Pilot gas = 2628 x 10^6 Btu

Rectisol Flare Annual Emissions

		ton/yr							
	S/U and S/D	Pilot	Total						
SO2	0.30	0.003	0.303						
NOx	0.58	0.1	0.674						
со	0.69	0.1	0.793						
PM ₁₀ /PM _{2.5}	0.03	0.004	0.030						
VOC	0.01	0.002	0.013						

Annualized Startup/Shut down Emission rate for NO2 1-hr NAAQS

10/11	
0.01	
	0.01

430 x 10^6 Btu/hr, HHV

Annualized Startup/Shut down Emission rate for NO2 1-hr NAAQS

lb/	/hr
0.	13

Flare Stack Parameters

4/19/2013

Parameter	Rectisol Flare (during	· •	NO2 1-hr	Gasification Flare (during startup		startup flare shifted syngas,	Gasification Flare (during normal pilot gas mode)		(during Gasifier Startup and	SRU Flare (during normal pilot gas mode)	SRU Flare Annualized for NO2 1-hr NAAQS
Heat release rate for flare+pilot, (10 ⁶											
Btu/hr HHV)	430			,	,	,					0.464
H = Total Heat release rate (cal/s)	3.01E+07	2.10E+04	1.58E+05	2.05E+08	1.67E+08	1.69E+08	3.50E+04	3.17E+05	2.52E+06	2.10E+04	3.25E+04
Fb = Buoyancy flux	5.00E+02	3.49E-01	2.63E+00	3.40E+03	2.77E+03	2.80E+03	5.81E-01	5.26E+00	4.18E+01	3.49E-01	5.40E-01
Q _H = sensible heat release rate	1.35E+07	9.45E+03	7.13E+04	9.22E+07	7.52E+07	7.60E+07	1.57E+04	1.43E+05	1.13E+06	9.45E+03	1.46E+04
Actual Stack height (m)	76.2	76.2	76.2	76.2	76.2	76.2	76.2	76.2	76.2	76.2	76.2
GEP stack height for modeling (m) AERMOD Input parameters	65	65	65	65	65	65	65	65	65	65	65
He = Effective stack height (m) as											
calculated in SCREEN3	82.13	65.53	66.39	107.84	103.85	104.06	65.68	66.94	70.23	65.53	65.65
T = Stack temperature (K)	1273	1273	1273	1273	1273	1273	1273	1273	1273	1273	1273
v = Exit velocity (m/s)	20	20	20	20	20	20	20	20	20	20	20
d = effective stack diameter (m)	3.636	0.096	0.264	9.486	8.565	8.614	0.124	0.373	1.052	0.096	0.119

Flare stack parameters are based on calculated using the SCREEN3 technique

Fb = Buoyancy flux = 1.66 x 10-5 x H

QH = sensible heat release rate = 0.45 x H

He = Effective stack height (m) = Hs + 4.56E-03 * H^0.478

BTU/hr to cal/sec 0.06999882

Cooling Towers

Emissions Summary

4/19/2013

Cooling Tower Operating Data and Emission Calculation								
Parameter	Process	Power Block	ASU	Basis				
Cooling water (CW) circulation rate, gpm	162,582	95,500	44,876	Typical plant performance				
CW circulation rate, million lb/hr	81	48	22					
CW dissolved solids, ppmw	9,000	9,000	2,000	(See note)				
Drift, fraction of circulating CW	0.0005%	0.0005%	0.0005%	Expected BACT				
PM10 emission rate, lb/hr	3.658	2.149	0.2	Calculated				
PM10 emission rate, ton/yr	15.2	9.3	0.9	Calculated				
PM2.5 emission rate, lb/hr	2.2	1.3	0.1					
				PM2.5 portion is equal to 60% of PM10				
PM2.5 emission rate, ton/yr	9.1	5.6	0.6					
				PM2.5 portion is equal to 60% of PM10				
Annual operation (hours/yr)	8314	8668	8314					
Cells per cooling tower	11	10	4					

Notes: Basis: Supplier data

Assumed maximum TDS in circulating cooling water, normally TDS will be less. Each tower assumed to operate at full capacity, when operating. Cooling water circulation rates and dissolved solids concentrations may vary, but in combination will not exceed the stated particulate emission rates. Portion of PM10 that is PM2.5 60%

Emergency Diesel Generators

Emissions Summary

4/19/2013

Emergency Generator - Expected Emergency Operation and Maintenance

Total Hours of Operation	50	hr/yr
Generator Specification	2,922	Bhp

Generator Pollutant Emission Factors (per generator)

NOx (g/Bhp/hr)	0.50
CO (g/Bhp/hr)	2.60
VOC (g/Bhp/hr)	0.30
SO ₂ (g/Bhp/hr)	N/A
$PM_{10} = PM_{2.5} (g/Bhp/hr)$	0.07

Source: CARB Tier 4 Interim Standard

Fuel flow

Generator Pollutant Emission Rates (per generator)

		Generator Emissions		
Pollutant	lb/hr	lb/day	lb/yr	ton/yr
NOx	3.22	3.22	161.04	0.08
со	16.75	16.75	837.43	0.42
VOC	1.93	1.93	96.63	0.05
SO ₂	0.03	0.03	1.40	0.00
$PM_{10} = PM_{2.5}$	0.45	0.45	22.55	0.01
Fuel sulfur content =	15	ppmw	Pounds per day assum	nes 1 hour of operati

Fuel sulfur content = 15 ppmw 0.20 lb SO₂/1000 gal SO₂ emissions =

140.00 gal/hr

Please note that there are two generators; all emissions are shown for individual generators.

Annualized lb/hr for NO2 1-hr NAAQS Modeling Worst-Case 1 hr Emissions (per generator)

NOx (g/sec)	0.4	0.0184
CO (g/sec)	2.1	
SO ₂ (g/sec)	0.004	

Only NOx, CO, and SO₂ are considered for an average 1-hour Ambient Air Quality Standard.

Modeling Worst-Case 3 hr Emissions (per generator)

SO ₂ (lb/3-hr)	0.03
SO ₂ (g/sec)	0.001
Only SO ₂ is considered for an average 3-hour Ambient Air Quality	/ Standard.

Pounds per 3-hr assumes 1 hour of operation.

Modeling Worst-Case 8 hr Emissions (per generator)

CO (lb/8-hr)	16.75
CO (g/sec)	0.26
Only CO is considered for an average 8-hour Ambient Air Quality	Standard.

Pounds per 8-hr assumes 1 hour of operation.

Modeling Worst-Case 24 Hour Emissions (per generator)

SO ₂ (lb/24-hr)	0.03
SO ₂ (g/sec)	0.0001
PM ₁₀ = PM _{2.5} (lb/24-hr)	0.45
$PM_{10} = PM_{2.5} (g/sec)$	0.002

Only SO₂ and PM are considered for an average 24-hour Ambient Air Quality Standard. Pounds per 24-hr assumes 1 hour of operation.

Modeling Annual Average Emissions (per generator)

NOx (g/sec)	0.002
CO (g/sec)	0.012
VOC (g/sec)	0.001
SO ₂ (g/sec)	0.00002
$PM_{10} = PM_{2.5} (g/sec)$	0.0003

Annual Emissions (tons/yr)

per generator	both generators
0.081	0.161
0.419	0.837
0.048	0.097
0.001	0.001
0.011	0.023

Parameters

Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

Emergency Diesel Firewater Pump

Emissions Summary

4/19/2013

Fire Water Pump - Expected Emergency Operation and Maintenance

Total Hours of Operation	100	hr/yr
Fire Water Pump Specification	556	Bhp

Fire Water Pump Pollutant Emission Factors

NOx (g/Bhp/hr)	1.50
CO (g/Bhp/hr)	2.60
VOC (g/Bhp/hr)	0.14
SO ₂ (g/Bhp/hr)	N/A
$PM_{10} = PM_{2.5} (g/Bhp/hr)$	0.015

Source: CARB Tier 4 Interim Standard

Fire Water Pump Pollutant Emission Rates

		Fire Water	Pump Emissions	ump Emissions		
Pollutant	lb/hr	lb/day	lb/yr	ton/yr		
NOx	1.84	3.68	183.86	0.1		
со	3.19	6.37	318.69	0.2		
VOC	0.17	0.34	17.16	0.01		
SO ₂	0.01	0.01	0.56	0.0003		
$PM_{10} = PM_{2.5}$	0.02	0.04	1.84	0.00		
Fuel sulfur content =	15	ppmw	Pounds per day ass	umes two (2) hou		

Fuel sulfur content = SO_2 emissions =

Fuel flow

0.20 lb SO₂/1000 gal

28.00 gal/hr

Modeling Worst-Case 1 hr Emissions

NOx (g/sec)	0.2	0.02
CO (g/sec)	0.4	
SO ₂ (g/sec)	0.0007	

Parameters

Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

Only NOx, CO, and SO₂ are considered for an average 1-hour Ambient Air Quality Standard

Modeling Worst-Case 3 hr Emissions

SO ₂ (lb/3-hr)	0.01
SO ₂ (g/sec)	0.0005

Only SO₂ is considered for an average 3-hour Ambient Air Quality Standard. Pounds per 3-hr assumes two (2) hours of operation.

Modeling Worst-Case 8 hr Emissions

 CO (lb/8-hr)
 6.37

 CO (g/sec)
 0.1

 Only CO is considered for an average 8-hour Ambient Air Quality Standard.

Pounds per 8-hr assumes two (2) hours of operation.

Modeling Worst-Case 24 Hour Emissions

SO ₂ (lb/24-hr)	0.01
SO ₂ (g/sec)	0.0001
PM ₁₀ = PM _{2.5} (lb/24-hr)	0.04
PM ₁₀ = PM _{2.5} (g/sec)	0.0002

Only SO₂ and PM are considered for an average 24-hour Ambient Air Quality Standard. Pounds per 24-hr assumes two (2) hours of operation.

Modeling Annual Average Emissions

NOx (g/sec)	0.003
CO (g/sec)	0.005
VOC (g/sec)	0.0002
SO ₂ (g/sec)	0.00001
PM ₁₀ = PM _{2.5} (g/sec)	0.00003

tons/yr	
	0.092
	0.159
	0.009
	0.000
	0.001

Annualized lb/hr for NO2 1-hr NAAQS

m heat release		monia Synthesis Plai 10^6 Btu/hr. HHV	nt Startup Heater				
um annual usag		10^6 Btu/yr, HHV					
	, ,	hours @ full capacity					
(
Emission fac	tors						
	lb/10^6 Btu, HHV	Basis					
SO2	0.00204	12.65 ppmv total sulf	ur in pipeline natural gas (max short-term)				
NOx	0.011	Low NOx burner, 9 p	omvd (3% O2)				
со	0.037	50 ppmvd (3% O2)					
PM ₁₀ /PM _{2.5}	0.005	Similar equipment fro	m previous project				
VOC	0.004	Similar equipment fro	m previous project				
μI			· · · ·				
	Max short-term	Annual average	Annualized Startup Emission rate				
	lb/hr	ton/yr for NO2 1-hr NAAQS					
SO2	0.1	0.0080	lb/hr				
NOx	0.6	0.0427					
CO	2.1	0.1450					
PM ₁₀ /PM _{2.5}	0.3	0.0196					
VOC	0.2	0.0157	0.0157				
Used only for A	mmonia Plant Startup only.						
Natural gas fue	1						
	U	rea Absorber Emissi	on Calculation				
DI		a ta al					
	nt Capacity = 1,720 sorber NH3 = 13.1	lb/hr					
		hours/year					
Annuar op	erauny nours 6052	nouis/yeal					

Emissions provided by Casale for the HECA project.

Urea Pastillation Emission Calculation								
Reference Plant		HECA						
Plant Max Capacity =	3,855 stpd	Plant Capacity = 1,72	0 stpd					
Total Air Flow =	21,000 m ³ /hr	NH3 Emission = 1.0	3 lb/hr					
Ammonia Concentration =	50 mg/m ³	Urea Dust Emission = 0.0	5 lb/hr					
Urea Dust =	0.001 gr/dscf	Annual operating hours 805	2 hours/year					
		PM Annual Emissions = 0.2	0 tons/yr					

Reference plant information provided by Sandvik Fellbach for the SCS PurGen One project. All PM emissions are PM2.5 or smaller

Nitric Acid Plant Emission Calculation						
HECA						
Nitric Acid Production =	501 STPD					
NOx Emissions Factor* =	0.20 lb/T					
NOx Emissions =	4.18 lb/hr					
NH3 Emissions =	1.0 lb/hr					
Annual operating hours	8052 hours/year					
NOx Annual Emissions =	16.8 tons/yr					
*Emission factor based on use of the L	Idha EnvillOv avatana	Approx 15 ppmy NOV in yest and and 10 ppm ommonia alig				

*Emission factor based on use of the Udhe EnviNOx system. Approx 15 ppmv NOx in vent gas and 10 ppm ammonia slip 50% NO2/NOx in-stack ratio used in NAAQS modeling

	Ammonium Nitrate Plant Emission Calculation	
HECA		
Ammonium Nitrate Production =	636 STPD	
PM Emissions =	0.20 lb/hr	
Annual operating hours	8052 hours/year	
PM Annual Emissions =	0.81 tons/yr	

Vendor provided emission rate

All PM emissions are PM2.5 or smaller

Material Handling Hydrogen Energy California LLC HECA Project

4/19/2013

Material Handling Emissions					Stack Parameters for Modeling					
Emission Pt ID	Operatin	g Capacity	Flow	Grain Loading	Emiss	ions ⁽³⁾	Stack Diameter	Stack Height	Stack velocity	Stack velocity
Coal/Coke Storage and Handling	hr/day	day/week	ACFM	gr/dscf	Total (lb/hr)	Total (tons/yr)	ft	ft	(ft/sec)	(m/s)
17 Feedstock Rail Unloading Vent	6	5	20,000	0.001	0.17	0.13	3	30	47.2	14.4
19 Feedstock Transfer Tower 2 ⁽¹⁾	12	7	1,500	0.001	0.01	0.03	0.83	100	46.2	14.1
18 Feedstock Crusher Vent	12	7	12,600	0.001	0.11	0.24	2.5	100	42.8	13.0
20 Feedstock Truck Unloading Vent	12	5	80,000	0.001	0.69	1.07	6	60	47.2	14.4
21 Feedstock Bunkers Vent	12	7	12,600	0.001	0.11	0.24	2.5	230	42.8	13.0
22 Feedstock Transfer Tower 1	12	5	1,500	0.001	0.01	0.02	0.83	100	46.2	14.1
Urea Storage and Handling										
30 Urea Bucket Elevator	24	7	1,500	0.001	0.01	0.06	0.83	50	46.2	14.1
31 Urea Transfer Tower 1	24	7	1,500	0.001	0.01	0.06	0.83	100	46.2	14.1
32 Urea Transfer Tower 2	24	1.75	1,500	0.001	0.01	0.01	0.83	100	46.2	14.1
33 Urea Transfer Tower 3	24	3.5	1,500	0.001	0.01	0.03	0.83	100	46.2	14.1
34 Urea Transfer Tower 4	24	1.75	1,500	0.001	0.01	0.01	0.83	100	46.2	14.1
35 Urea Transfer Tower 5	8	5	1,500	0.001	0.01	0.01	0.83	100	46.2	14.1
23 Urea Loading Vent	8	5	20,000	0.001	0.17	0.18	3	110	47.2	14.4
Gasification Solids Storage and Handling										
28 Gasification Solids Bucket Elevator	24	7	3,000	0.001	0.03	0.11	1.17	30	46.5	14.2
25 Gasification Solids Pad - stacking ⁽²⁾	24	7	39.3 tph	NA	0.006	0.03	NA	NA	NA	NA
25 Gasification Solids Pad - reclaim ⁽²⁾	24	7	39.3 tph	NA	0.011	0.05	NA	NA	NA	NA
37 Gasification Solids Transfer Tower	8	3	3,000	0.001	0.03	0.02	1.17	75	46.5	14.2
29 Gasification Solids Loading Vent	8	3	10,000	0.001	0.09	0.05	2	110	53.1	16.2
Fluxant Silo										
Fluxant Unloading Vent	24	1.75	1,500	0.001	0.01	0.01	0.83	90	45.9	14.0
Notes:				Total =	1.51	2.35				

(1) Two identical dust collectors are provied for Item 19; only one will operate at a given time.

(2) Fugitive particulate emissions from gasification solids handling on the drying pad are calculated using the following formula:

Emission Unit	Moisture Content (%)	Emission Factor (Ib/ton)	Emission Rate (lb/hr)	Emission Rate (tons/yr)	Emission Factor (lb/ton)	Emission Rate (Ib/hr)	Emission Rate (tons/yr)
	(%)	PM ₁₀	PM ₁₀	PM ₁₀	PM _{2.5}	PM _{2.5}	PM _{2.5}
Gassification Solids - stacking	12	1.57E-04	0.006	0.027	2.38E-05	0.001	0.004
Gassification Solids - reclaim	8	2.78E-04	0.011	0.048	4.20E-05	0.002	0.007
Notes:							

Material Handling Emission Factor AP-42 Section 13.2.4.3, Equation (1)

 $E = k(0.0032)(U/5)^{1.3}/(M/2)^{1.4}$

where:	PM ₁₀	PM _{2.5}
E = emissions in lb/tons		
k = particle size multiplier	0.35	0.053
U = mean wind speed (mph)	7	7.61
M = material moisture content (%)	see	above
material handled	39.3	ton/hr

(3) PM emissions are PM2.5 or smaller for all sources, except for the Gasification Solids Pad see Note (2)

Stack Parameters for Modeling

Emissions Summary

4/19/2013

	HRSG	i Stack ⁽²⁾	Gasification Feedstock		Urea Pastillation	Nitric Acid	Gasification		
Source	ON-Peak	OFF-Peak	Dryer Stack ⁽³⁾	Urea Absorber	Bldg Stack	Plant Stack	Flare	CO2 Vent	Aux Boiler
Stack height, ft above grade (1)	213	213	305	170	50	120	250	355	80
Stack diameter, ft	24	24	16	0.83	1.5	8	(NA)	3.5	4.5
Stack outlet temp, deg F	200	200	200	104	ambient	267	(NA)	ambient	300
Stack exit flow, act ft3/sec	22,357	16,953	3,852	14	111	840		1,765	480
Stack exit velocity (ft/sec)	49.42	37.47	19.16	25.14	62.81	16.71	varies per scenario	183.45	30.18
Stack exit velocity (m/sec)	15.06	11.42	5.84	7.66	19.15	5.09		55.92	9.20

			Power Cooling Towers	Process Cooling Towers	ASU Cooling Tower (per			Diesel Generator	Ammonia Plant SU	Ammonium
Source	SRU Flare	Rectisol Flare	(per cell) ⁽⁴⁾	(per cell) ⁽⁴⁾	cell) ⁽⁴⁾	Tail Gas Oxidizer	Fire Pump Engine	(ea.)	Heater	Nitrate Vent
Stack height, ft above grade (1)	250	250	65	65	55	165	20	20	80	55
Stack diameter, ft	(NA)	(NA)	25	29	30	2.5	0.7	1.2	3.5	0.17
Stack outlet temp, deg F	(NA)	(NA)	75	75	75	1200	850	760	300	100
Stack exit flow, act ft3/sec			14,230	18,480	18,500	250	60	250	180	0.3
Stack exit velocity (ft/sec)	varies per scenario	varies per scenario	28.99	27.98	26.17	50.93	155.91	221.05	18.71	13.75
Stack exit velocity (m/sec)			8.84	8.53	7.98	15.52	47.52	67.38	5.70	4.19

Notes:

(1) Actual stack hieght for flares. Effective stack height for modeling was calculated based on GEP height of 65 meters. See Flare Stack Parameters tab in this workbook.

(2) Stack outlet temperature shown for HRSG is the estimated stack temperature after power cycle optimization. Case 1 On-Peak Power exit flow rate, Case 2 Off-Peak Power exit flow rate

(3) Flow rate shown in table for feedstock dryer is based on full load syn gas combustion for Case 4 (relatively constant for varying power plant loads and ambient temperatures).

(4) 10 cells estimated for power block cooling tower; 11 cells estimated for process cooling tower, and 4 cells estimated for the ASU cooling tower.

(5) Flare gas heat release, 10^6 Btu/hr, HHV; first value is normal pilot gas, second value is the maximum startup heat release

FUGITIVE EMISSIONS CALCULATIONS Hydrogen Energy California, LLC Hydrogen Energy California (HECA) Project

STREAM SPECIATION

													Weight %												
		1	1	1		Gasificat	ion Block			1	r	1		1		r		tilizer Com				r	1	Gasificat	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	18a CO2	18b	19	20	21	22	23
Stream	Methanol	Syn Gas	Not Used	Shifted Syn Gas	Propylen e	Sour Water	H₂S Laden Methanol	CO₂ Laden Methanol	Acid Gas	Ammonia Laden Gas	Sulfur	SRU Tail Gas	Low NH3 Concentr ation	Moderate NH3 Concentr ation	High NH3	Low CO2 Concentr ation	Moderate CO2 Concentr ation	High CO2 Concentr ation	Product	Urea CO2 Compres sor	NO2	ниоз	PSA Off Gas	Lower Benzene Concentr ation	Higher Benzene Concentr ation
Fluid Phase	Liquid	Vapor		Vapor	Liquid & Vapor	Liquid	Liquid	Liquid	Vapor	Vapor	Liquid	Vapor	Liquid & Vapor	Liquid & Vapor	Liquid & Vapor	Liquid & Vapor	Vapor	Vapor	Vapor	Vapor	Vapor	Liquid	Vapor	Vapor	Vapor
Compound																									
Carbon dioxide (CO ₂)	0.00%	8.02%		59.90%	0.00%	1.98%	15.64%	27.34%	49.76%	60.57%	0.00%	65.26%	5.77%	37.53%	0.76%	18.90%	37.53%	97.76%	97.76%	100.00%	0.00%	0.00%	14.72%	47.80%	7.30%
Carbon monoxide (CO)	0.00%	43.27%		2.97%	0.00%	0.01%	0.01%	0.01%	2.05%	0.22%	0.00%	2.46%	0.00%	0.00%	0.00%	0.00%	0.00%	0.01%	0.01%	0.00%	0.00%	0.00%	8.58%	0.00%	0.00%
Methane (CH ₄)	0.00%	0.59%		0.60%	0.00%	0.00%	0.00%	0.01%	0.00%	0.01%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.01%	0.01%	0.00%	0.00%	0.00%	3.10%	0.00%	0.00%
Hydrogen Sulfide (H ₂ S)	0.00%	0.58%		0.62%	0.00%	0.05%	0.92%	0.00%	28.46%	1.35%	0.02%	1.99%	0.00%	0.00%	0.00%	0.00%	0.00%	1.56%	0.00%	0.00%	0.00%	0.00%	0.00%	4.20%	0.80%
Ammonia (NH ₃)	0.00%	0.14%		0.11%	0.00%	0.70%	0.00%	0.00%	0.00%	20.15%	0.00%	0.00%	15.59%	49.17%	97.98%	31.31%	49.17%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Sulfur dioxide (SO ₂)	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	3.12%	0.00%	0.00%	0.38%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Hydrogen Chloride (HCI)	0.00%	0.00%		0.00%	0.00%	0.05%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Nitric acid (HNO ₃)	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.02%	56.22%	0.00%	0.02%	0.02%
Nitrogen dioxide (NO ₂)	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	7.28%	0.00%	0.00%	0.02%	0.02%
Carbonyl Sulfide (COS)	0.00%	0.24%		0.00%	0.00%	0.08%	0.00%	0.00%	2.71%	2.09%	0.00%	0.29%	0.00%	0.00%	0.00%	0.00%	0.00%	0.01%	0.01%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Methanol (CH ₃ OH)	99.74%	0.00%		0.00%	0.00%	0.00%	79.06%	72.36%	1.51%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.40%	0.03%	0.00%	0.00%	0.00%	0.03%	46.30%	86.80%
Propylene (C ₃ H ₆)	0.00%	0.00%		0.00%	100.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Benzene (C ₆ H ₆)	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.80%	5.10%
Hydrogen Cyanide (HCN)	0.00%	0.01%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.04%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Other (Inerts)	0.26%	47.15%		35.81%	0.00%	97.14%	4.35%	0.27%	12.39%	15.58%	99.98%	29.62%	78.61%	13.30%	1.26%	49.74%	13.30%	0.26%	2.14%	0.00%	92.71%	43.78%	73.58%	0.90%	0.00%
Total	100.0%	100.0%		100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%
Percentage of VOC of the																		• • • • •							
stream * Note:	99.74%	0.25%		0.01%	100.00%	0.08%	79.07%	72.36%	4.23%	2.13%	0.00%	0.29%	0.00%	0.00%	0.00%	0.00%	0.00%	0.41%	0.04%	0.00%	0.00%	0.00%	0.03%	47.10%	91.90%

Note:

- Per District policy (SSP-2015), VOC emissions are not assessed to components handling fluid streams with a VOC content of 10% of less by weight.

- The following compounds are included as VOCs, although not all compounds are found in the gas in each process area: CH3OH, C3H6, COS, C6H6, and HCN.

EMISSION FACTORS

		Emission	Emission	
		Factor*	Factor	Control
		(kg/hr/so	(lb/hr/sou	Efficiency
Equipment Type	Service	urce)	rce)	*
Valves	Gas	0.00597	0.0132	92%
Valves	Light liquid	0.00403	0.0089	88%
Valves	Heavy liqui	0.00023	0.0005	0%
Pump seals	Light liquid	0.0199	0.0439	100%
Pump seals	Heavy liqui	0.00862	0.0190	0%
Compressor seals	Gas	0.228	0.5027	100%
Pressure relief valves	Gas	0.104	0.2293	0%
Connectors	All	0.00183	0.0040	93%
Open-ended lines	All	0.0017	0.0037	0%
Sampling connectors	All	0.015	0.0331	0%

Notes:

Emission factors and control efficiencies are from EPA's 1995 "Protocol for Equipment Leak Emission Estimates".
Emission factors are from Table 2-1 (SOCMI Average Emission Factors).

- Control efficiencies are from Table 5-2 (Control Effectiveness for an LDAR Program at a SOCMI Process Unit).
 - The plant will implement an LDAR program for the process streams identified as #1, 5, 7-10, and 12-23. Therefore, the control efficiencies for valves and connectors will apply to those streams.

- All light liquid pump seals and compressor seals will have dual mechanical seals and barrier fluid maintained at a higher pressure than the pump fluid or compressed gas, thus these control efficiency are from Table 5-1.

- Emission are conservative since many of these streams are not as volatile as the streams that the SOCMI factors were developed for.

STREAM COMPONENT COUNTS

													Count													
						Gasificat	tion Block										Fer	tilizer Com	plex					Gasificat	ion Block	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	18a	18b	19	20	21	22	23	
Stream	Methanol	Syn Gas	Not Used	Shifted Syn Gas	Propylen e	Sour Water	H₂S Laden Methanol	CO₂ Laden Methanol	Acid Gas	Ammonia Laden Gas	Sulfur	SRU Tail Gas		NH3	Hign NH3 Concentr	Low CO2 Concentr ation	1.02	High CO2		sor	NO2	HNO3	PSA Off Gas		Higher Benzene Concentr ation	Streams
Fluid Phase	Liquid	Vapor		Vapor	Liquid & Vapor	Liquid	Liquid	Liquid	Vapor	Vapor	Liquid	Vapor	Liquid & Vapor	Liquid & Vapor	Liquid & Vapor	Liquid & Vapor	Vapor	Vapor	Vapor	Vapor	Vapor	Liquid	Vapor	Vapor	Vapor	
Component							•											•								
Valves - Gas	0	69		342	36	0	0	0	122	98	0	66	197	6	147	20	6	506	0	0	5	0	164	18	0	1799
Valves - Light Liquid	257	0		0	546	0	290	285	0	0	0	0	105	2	206	107	0	0	0	0	0	66	0	134	87	2082
Valves - Heavy Liquid	0	0		0	0	366	0	0	0	0	17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	383
Pumps - Light Liquid	4	0		0	0	0	6	6	0	0	0	0	6	0	4	6	0	0	0	0	0	2	0	4	2	40
Pumps - Heavy Liquid	0	0		0	0	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8
Compressors	0	0		0	2	0	0	0	0	0	0	5	0	0	0	0	0	0	10	2	0	0	5	0	0	24
Connectors	824	208		1024	1642	958	962	932	388	252	118	276	826	44	886	400	34	1446	0	0	34	188	540	474	276	12732
Total	1085	277		1366	2226	1332	1258	1223	510	350	135	347	1134	52	1243	532	40	1952	10	2	39	256	709	630	365	17067

Note: - Values shown for number of sources were multiplied by the following factors to account for unknown emission sources: Valves: 1.5; Connectors: 2. - Each compressor stage considered as a separate compressor.

CALCULATED CONTROLLED EMISSIONS BY COMPONENT (LB/HR)

												En	nissions (Ib	/hr)												ر
						Gasificat	ion Block										Fer	tilizer Com	plex					Gasificat	ion Block	1 '
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	18a	18b	19	20	21	22	23	1
Stream	Methanol	Syn Gas	Not Used	Shifted Syn Gas	Propylen e	Sour Water	H₂S Laden Methanol	CO ₂ Laden Methanol	Acid Gas	Ammonia Laden Gas	Sulfur	SRU Tail Gas		Moderate NH3 Concentr ation		Low CO2 Concentr ation	CO2	High CO2		Urea CO2 Compres sor		HNO3	PSA Off Gas	Lower Benzene Concentr ation	Higher Benzene Concentr ation	Total All Streams
Fluid Phase	Liquid	Vapor		Vapor	Liquid & Vapor	Liquid	Liquid	Liquid	Vapor	Vapor	Liquid	Vapor	Liquid & Vapor	Liquid & Vapor	Liquid & Vapor	Liquid & Vapor	Vapor	Vapor	Vapor	Vapor	Vapor	Liquid	Vapor	Vapor	Vapor	
Component																										
Valves - Gas	0.00E+00	9.08E-01		4.50E+00	3.79E-02	0.00E+00	0.00E+00	0.00E+00	1.28E-01	1.03E-01	0.00E+00	8.69E-01	2.07E-01	6.32E-03	1.55E-01	2.05E-02	6.32E-03	5.32E-01	0.00E+00	0.00E+00	4.74E-03	0.00E+00	1.72E-01	1.90E-02	0.00E+00	7.67
Valves - Light Liquid	2.73E-01	0.00E+00		0.00E+00	5.82E-01	0.00E+00	3.09E-01	3.04E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.12E-01	1.60E-03	2.19E-01	1.14E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	7.04E-02	0.00E+00	1.42E-01	9.28E-02	2.22
Valves - Heavy Liquid	0.00E+00	0.00E+00		0.00E+00	0.00E+00	1.86E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	8.37E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.19
Pumps - Light Liquid	0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00
Pumps - Heavy Liquid	0.00E+00	0.00E+00		0.00E+00	0.00E+00	1.52E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.15
Compressors	0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00
Connectors	2.33E-01	8.39E-01		4.13E+00	4.64E-01	3.87E+00	2.72E-01	2.63E-01	1.10E-01	7.12E-02	4.76E-01	1.11E+00	2.33E-01	1.24E-02	2.50E-01	1.13E-01	9.60E-03	4.08E-01	0.00E+00	0.00E+00	9.60E-03	5.31E-02	1.53E-01	1.34E-01	7.79E-02	13.29
Total	0.51	1.75		8.63	1.08	4.20	0.58	0.57	0.24	0.17	0.48	1.98	0.55	0.02	0.62	0.25	0.02	0.94	0.00	0.00	0.01	0.12	0.32	0.30	0.17	23.53

- The plant will implement an LDAR program for the process streams identified as #1, 5, 7-10, and 13-23. Therefore, the control efficiencies will apply to those streams.

CALCULATED CONTROLLED EMISSIONS BY COMPOUND (LB/HR)

												Em	issions (Ib	/hr)												
				-		Gasificat	ion Block					-				-	Fer	ilizer Com	plex					Gasificat	ion Block	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	18a	18b	19	20	21	22	23	_
Stream	Methanol	Syn Gas	Not Used	Shifted Syn Gas	Propylen e	Sour Water	H₂S Laden Methanol		Acid Gas	Ammonia Laden Gas	Sulfur	SRU Tail Gas	Low NH3 Concentr ation	NHA	-	Low CO2 Concentr ation	1.1.12	High CO2 Concentr ation		Urea CO2 Compres sor	NO2	HNO3	PSA Off Gas	Lower Benzene Concentr ation	Higher Benzene Concentr ation	Total A Stream
Fluid Phase	Liquid	Vapor		Vapor	Liquid & Vapor	Liquid	Liquid	Liquid	Vapor	Vapor	Liquid	Vapor	Liquid & Vapor	Liquid & Vapor	Liquid & Vapor	Liquid & Vapor	Vapor	Vapor	Vapor	Vapor	Vapor	Liquid	Vapor	Vapor	Vapor	
Compound																										
CO ₂	0.00E+00	1.40E-01		5.17E+00	0.00E+00	8.33E-02	9.08E-02	1.55E-01	1.18E-01	1.05E-01	0.00E+00	1.29E+00	3.19E-02	7.64E-03	4.73E-03	4.67E-02	5.98E-03	9.20E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.78E-02	1.41E-01	1.25E-02	8.37
CO	0.00E+00	7.56E-01		2.56E-01	0.00E+00	3.07E-04	3.25E-05	7.20E-05	4.86E-03	3.77E-04	0.00E+00	4.87E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.40E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.79E-02	0.00E+00	0.00E+00	1.09
CH ₄	0.00E+00	1.03E-02		5.17E-02	0.00E+00	1.26E-05	2.61E-05	7.32E-05	4.75E-06	1.51E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	8.65E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.01E-02	0.00E+00	0.00E+00	0.07
H ₂ S	5.42E-07	1.01E-02		5.33E-02	0.00E+00	2.09E-03	5.37E-03	5.67E-07	6.76E-02	2.34E-03	8.82E-05	3.94E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.46E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.24E-02	1.37E-03	0.21
NH ₃	0.00E+00	2.48E-03		9.18E-03	0.00E+00	2.93E-02	0.00E+00	0.00E+00	0.00E+00	3.50E-02	0.00E+00	0.00E+00	8.61E-02	1.00E-02	6.11E-01	7.74E-02	7.83E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.87
SO ₂	0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	7.40E-03	0.00E+00	0.00E+00	7.62E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.02
HCI	0.00E+00	1.22E-05		0.00E+00	0.00E+00	1.98E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
HNO ₃	0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.44E-06	6.94E-02	0.00E+00	5.03E-05	2.91E-05	0.07
NO ₂	0.00E+00			0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.04E-03	0.00E+00	0.00E+00	5.03E-05	2.91E-05	0.00
COS	0.00E+00	4.27E-03		3.28E-04	0.00E+00	3.24E-03	2.38E-05	5.08E-08	6.45E-03	3.62E-03	0.00E+00	5.84E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	9.69E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.02
CH₃OH	5.05E-01	0.00E+00		8.63E-05	0.00E+00	0.00E+00	4.59E-01	4.10E-01	3.59E-03	3.82E-06	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.77E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	8.67E-05	1.37E-01	1.48E-01	1.67
C ₃ H ₆	0.00E+00			0.00E+00	1.08E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.08
C ₆ H ₆	0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.36E-03	8.71E-03	0.01
HCN	1.42E-05	1.29E-04		1.73E-05	0.00E+00	1.18E-04	1.74E-05	1.02E-05	5.46E-06	7.02E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	7.30E-07	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Total VOC	5.05E-01					3.35E-03																				

Notes: - Per District policy (SSP-2015), VOC emissions are not assessed to components handling fluid streams with a VOC content of 10% of less by weight. - The following compounds are included as VOCs, although not all compounds are found in the gas in each process area: CH3OH, C3H6, COS, C6H6, and HCN.

CALCULATED CONTROLLED EMISSIONS BY COMPOUND (TONS/YEAR)

												Emis	sions (tons	/year)												
						Gasificat	tion Block				-					-	Fer	tilizer Com	plex					Gasificat	ion Block	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	18a	18b	19	20	21	22	23	
Stream	Methanol Syn	ı Gas	Not Used	Shifted Syn Gas	Propylen e	Sour Water	H₂S Laden Methanol	CO ₂ Laden Methanol	Acid Gas	Ammonia Laden Gas	Sulfur	SRU Tail Gas	Low NH3 Concentr ation	NH3	High NH3 Concentr ation	Concentr	Moderate CO2 Concentr ation	Concentr	CO2 Product and Purificati on	Urea CO2 Compres sor	NO2	HNO3	PSA Off Gas	Lower Benzene Concentr ation	Higher Benzene Concentr ation	Stream
Fluid Phase	Liquid Va	apor		Vapor	Liquid & Vapor	Liquid	Liquid	Liquid	Vapor	Vapor	Liquid	Vapor	Liquid & Vapor	Liquid & Vapor	Liquid & Vapor	Liquid & Vapor	Vapor	Vapor	Vapor	Vapor	Vapor	Liquid	Vapor	Vapor	Vapor	
Compound																										
CO ₂	0.00E+00 6.14	4E-01		2.26E+01	0.00E+00	3.65E-01	3.98E-01	6.79E-01	5.18E-01	4.61E-01	0.00E+00	5.67E+00	1.40E-01	3.34E-02	2.07E-02	2.05E-01	2.62E-02	4.03E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.09E-01	6.18E-01	5.46E-02	36.68
CO	0.00E+00 3.31	E+00		1.12E+00	0.00E+00	1.34E-03	1.42E-04	3.15E-04	2.13E-02	1.65E-03	0.00E+00	2.13E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.80E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.22E-01	0.00E+00	0.00E+00	4.79
CH ₄	0.00E+00 4.51	1E-02		2.26E-01	0.00E+00	5.52E-05	1.14E-04	3.20E-04	2.08E-05	6.62E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.79E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.41E-02	0.00E+00	0.00E+00	0.32
H ₂ S	2.37E-06 4.41	1E-02		2.34E-01	0.00E+00	9.15E-03	2.35E-02	2.48E-06	2.96E-01	1.03E-02	3.86E-04	1.72E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.41E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.43E-02	5.98E-03	0.91
NH ₃	0.00E+00 1.09	9E-02		4.02E-02	0.00E+00	1.28E-01	0.00E+00	0.00E+00	0.00E+00	1.53E-01	0.00E+00	0.00E+00	3.77E-01	4.38E-02	2.68E+00	3.39E-01	3.43E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.81
SO ₂	0.00E+00 0.00)E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.24E-02	0.00E+00	0.00E+00	3.34E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.07
HCI	0.00E+00 5.36	3E-05		0.00E+00	0.00E+00	8.69E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.01
HNO ₃	0.00E+00 0.00)E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.07E-05	3.04E-01	0.00E+00	2.20E-04	1.27E-04	0.30
NO ₂	0.00E+00 0.00)E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.57E-03	0.00E+00	0.00E+00	2.20E-04	1.27E-04	0.00
COS	0.00E+00 1.87	7E-02		1.44E-03	0.00E+00	1.42E-02	1.04E-04	2.22E-07	2.82E-02	1.59E-02	0.00E+00	2.56E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.24E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.10
CH₃OH	2.21E+00 0.00)E+00		3.78E-04	0.00E+00	0.00E+00	2.01E+00	1.80E+00	1.57E-02	1.68E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.65E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.80E-04	5.99E-01	6.49E-01	7.30
C ₃ H ₆	0.00E+00 0.00)E+00		0.00E+00	4.75E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.75
C ₆ H ₆	0.00E+00 0.00)E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.03E-02	3.81E-02	0.05
HCN	6.24E-05 5.66																			0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Total VOC	2.21E+00 1.93	3E-02		1.89E-03	4.75E+00	1.47E-02	2.01E+00	1.80E+00	4.40E-02	1.62E-02	0.00E+00	2.56E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.69E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.80E-04	6.09E-01	6.87E-01	12.20

Note: - The following compounds are included as VOCs, although not all compounds are found in the gas in each process area: CH3OH, C3H6, COS, C6H6, and HCN.

VOLUME SOURCES EMISSION RATES FOR MODELING

						Emission	Rate (lb/hr)					
			Gasifica	tion Unit					Fertilizer	Complex		
Compound	GASIFIC ATION (Stream #2)	SHIFT (Stream #4 and #6)	AGR (Stream #1, #5, #7, #8, and #9)	Sour Water Stripper (Stream #10)	SRU (Stream #11 and #12)	Benzene (Stream #22 and #23)	UAN Unit (Stream #19 and #20)	Urea Unit (Stream #14, #16, and #17)	Ammonia Unit (Stream #13 and #15)	CO2 Compres sion (Stream #18 and	Urea CO2 Compres sor (Stream #18b)	
CO ₂	4.67E-02	2.63E+00	3.64E-01	1.05E-01	6.47E-01	1.54E-01	0.00E+00	3.02E-02	1.83E-02	9.20E-01	0.00E+00	4.78E-0
CO	2.52E-01	1.28E-01	4.96E-03	3.77E-04	2.44E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.40E-05	0.00E+00	2.79E-02
CH ₄	3.43E-03	2.59E-02	1.04E-04	1.51E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	8.65E-05	0.00E+00	1.01E-02
H ₂ S	3.35E-03	2.77E-02	7.30E-02	2.34E-03	1.97E-02	1.38E-02	0.00E+00	0.00E+00	0.00E+00	1.46E-02	0.00E+00	0.00E+0
NH ₃	8.28E-04	1.92E-02	0.00E+00	3.50E-02	0.00E+00	0.00E+00	0.00E+00	4.76E-02	3.49E-01	0.00E+00	0.00E+00	0.00E+0
SO ₂	0.00E+00	0.00E+00	7.40E-03	0.00E+00	3.81E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+0
HCI	4.08E-06	9.92E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+0
HNO ₃	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	7.94E-05	6.94E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+0
NO ₂	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	7.94E-05	1.04E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+0
COS	1.42E-03	1.78E-03	6.47E-03	3.62E-03	2.92E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	9.69E-05	0.00E+00	0.00E+0
CH₃OH	0.00E+00	4.32E-05	1.38E+00	3.82E-06	0.00E+00	2.85E-01	0.00E+00	0.00E+00	0.00E+00	3.77E-03	0.00E+00	8.67E-0
C ₃ H ₆	0.00E+00	0.00E+00	1.08E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+0
C ₆ H ₆	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.11E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+0
HCN	4.31E-05	6.75E-05	4.73E-05	7.02E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	7.30E-07	0.00E+00	0.00E+0

						Emission	Rate (Ib/yr)					
			Gasifica	tion Unit					Fertilizer	Complex		
Compound	GASIFIC ATION (Stream #2)	SHIFT (Stream #4 and #6)	AGR (Stream #1, #5, #7, #8, and #9)	Sour Water Stripper (Stream #10)	SRU (Stream #11 and #12)	Benzene (Stream #22 and #23)	UAN Unit (Stream #19 and #20)	Urea Unit (Stream #14, #16, and #17)	Ammonia Unit (Stream #13 and #15)	CO2 Compres sion (Stream #18 and #18a)	Urea CO2 Compres sor (Stream #18b)	PSA Unit (Stream #21)
CO ₂	4.09E+02	2.30E+04	3.19E+03	9.22E+02	5.67E+03	1.35E+03	0.00E+00	2.64E+02	1.60E+02	8.06E+03	0.00E+00	4.19E+02
CO	2.21E+03	1.12E+03	4.35E+01	3.30E+00	2.13E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.60E-01	0.00E+00	2.44E+02
CH ₄	3.00E+01	2.27E+02	9.11E-01	1.32E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	7.58E-01	0.00E+00	8.82E+01
H ₂ S	2.94E+01	2.43E+02	6.39E+02	2.05E+01	1.73E+02	1.21E+02	0.00E+00	0.00E+00	0.00E+00	1.28E+02	0.00E+00	0.00E+00
NH ₃	7.26E+00	1.68E+02	0.00E+00	3.07E+02	0.00E+00	0.00E+00	0.00E+00	4.17E+02	3.06E+03	0.00E+00	0.00E+00	0.00E+00
SO ₂	0.00E+00	0.00E+00	6.48E+01	0.00E+00	3.34E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
HCI	3.57E-02	8.69E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
HNO ₃	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.95E-01	6.08E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NO ₂	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.95E-01	9.14E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
COS	1.25E+01	1.56E+01	5.67E+01	3.17E+01	2.56E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	8.49E-01	0.00E+00	0.00E+00
CH₃OH	0.00E+00	3.78E-01	1.21E+04	3.35E-02	0.00E+00	2.50E+03	0.00E+00	0.00E+00	0.00E+00	3.30E+01	0.00E+00	7.59E-01
C ₃ H ₆	0.00E+00	0.00E+00	9.49E+03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
C ₆ H ₆	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	9.69E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
HCN	3.78E-01	5.91E-01	4.15E-01	6.15E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.40E-03	0.00E+00	0.00E+00

Volume Source Parameters

Number of Volume Sources	3	2	1	1	2	1	1	2	2	1	1	1
Horizontal dimension (m)	28.00	35.00	48.00	16.00	16.00	24.00	24.00	12.00	24.00	20.00	24.00	24.00
Release height (m)	39.62	6.10	6.10	6.10	6.10	6.10	6.10	6.10	6.10	6.10	6.10	6.10
Horizontal dimension (m)	13.02	16.28	22.33	7.44	7.44	11.16	11.16	5.58	11.16	9.30	11.16	11.16
Vertical dimension (m)	36.86	5.67	5.67	5.67	5.67	5.67	5.67	5.67	5.67	5.67	5.67	5.67
Vertical dimension used for calcs (ft)	260.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00

Note:

- Emissions are divided by the number of volume sources.

Methanol and Diesel Tanks

Hydrogen Energy California, LLC Hydrogen Energy California (HECA) Project

Methanol storage tank parameters and fugitive emissions

Tank ID		Uncontrolled VOC Emissions	Peak Month VOC Emissions	Daily VOC Emissions	Annual VOC emissions
	Description	lb/month	lb/month	lb/day	lb/year
	Working Loss (33,000 gal pumped in)	82.24	0.0185	-	-
Methanol	Breathing Loss	1353.84	0.3049	0.0102	
	Total Breathing and Working Loss		-	0.0287	3.93
	Loss		-	0.0287	3.95

Methanol Vent Scrubber Efficie		
Pre-scrubber	17.76%	methanol
Post-scrubber	40	ppm methanol
Control Efficiency	99.977%	

Methanol concentration information provided by Fluor Uncontrolled emissions calculated using TANKS model Peak daily emissions include losses during filling the entire tank plus breathing losses

			Turnovers per	Annual VOC
		Capacity	year	emissions
Tank ID	Description	gal	#	lb/year
Diesel 1	800 gal Diesel generator #1	800	0.75	0.56
Diesel 2	800 gal Diesel generator #2	800	0.75	0.56
Diesel FWP	400 gal Diesel fire pump	400	0.3	0.34

VOC emissions calculated using TANKS model

			Tank							
			Shell Length /		Max liquid	Average liquid	Working	Turnovers per		
			Height	Shell Diameter	height	height	volume	year	Net throughput	
Tank ID	Description	Туре	ft	ft	ft	ft	gal	#	gal/yr	Is tank heated
Diesel 1	800 gal Diesel generator #1	Horizontal Fixed Roof	5.5	5	N/A	N/A	800	0.75	600	N
Diesel 2	800 gal Diesel generator #1	Horizontal Fixed Roof	5.5	5	N/A	N/A	800	0.75	600	N
Diesel FWP	400 gal Diesel fire pump	Horizontal Fixed Roof	5.3	4	N/A	N/A	400	0.3	120	N
Methanol	600,000 gallon tank	Vertical Fixed Roof	48	46.25	46	4	540,000	0.66	396000	N

		R	Shell			
		Roof height				
Tank ID	Description	ft	Color	Condition	Color	Condition
Diesel 1	800 gal Diesel generator #1	N/A	Grey - med	Good	Grey - med	Good
Diesel 2	800 gal Diesel generator #1	N/A	Grey - med	Good	Grey - med	Good
Diesel FWP	400 gal Diesel fire pump	N/A	Grey - med	Good	Grey - med	Good
Methanol	600,000 gallon tank	5	Grey - med	Good	Grey - med	Good

ASSUMPTIONS

Estimates of tank length and diameter based on capacity and example tanks from this website: http://www.tank-depot.com/product.aspx?id=258&c=400 Assumed color of roof and shell is grey medium Methanol tank dimensions from Figure 2-47 of the AFC, "Preliminary Emissions Sources Plot Plan." Methanol - assumed minimum liquid height is 10% of max, took average of max and this assumed minimum

					Net	Turnovers per
		Capacity	Usage	Duration	throughput ¹	year
Tank ID	Description	gal	gal/hr	hrs/year	gal/yr	#
Diesel 1	800 gal Diesel generator #1	800	100	6	600	0.75
Diesel 2	800 gal Diesel generator #1	800	100	6	600	0.75
Diesel FWP	400 gal Diesel fire pump	400	20	6	120	0.3
Methanol	600,000 gallon tank	600000	45	8760	396000	0.66

Notes

1 throughput based on 33,000 gal/month for 12 months

Summary of Transportation Vehicles and Routes - Alternative 1

									4/19/201
Commodity Handled	Flux Additive	Petcoke	Coal	Liquid Sulfur	Gasification	Urea	UAN	Equipment	Miscellaneous
Expected plant operation									
The plant will operate 24 hours / day	24 hours / day	24 hours / day	24 hours / day	24 hours / day	24 hours / day	24 hours / day	24 hours / day	24 hours / day	24 hours / day
The plant will operate 333 days / year	333 days / yr	333 days / yr	333 days / yr	333 days / yr	333 days / yr	333 days / yr	333 days / yr	333 days / yr	333 days / yr
Shipment by trucks	100 %	100 %	0 %	75 %	25 %	25 %	50 %	100 %	100 %
Shipment by train	0 %	0 %	100 %	25 %	75 %	75 %	50 %	0 %	0 %
Production rate Estimated Normal Flow / day	175 tons / day	1,140 tons / day	4,580 tons / day	100 tons / day	950 tons / day	1,720 tons / day	1,400 tons / day		
Annualized transfer rate	59,000 tons / yr	380,000 tons / yr	1,526,000 tons / yr	34,000 tons / yr	317,000 tons / yr	573,000 tons / yr	467,000 tons / yr		
Estimated Maximum Flow day	240 tons / day	2,000 tons / day(3)	6,500 tons / day(4)	200 tons / day (5)	1,900 tons / day (6)	3,440 tons / day(6)	2,800 tons / day (6)		
Truck Shipments									
Truck Capacity	25 tons / truck	25 tons / truck		25 tons / truck	25 tons / truck	25 tons / truck	25 tons / truck	25 tons / truck	25 tons / truck
Estimated trucks loads for normal operation / day	7 trucks / day	46 trucks / day		3 trucks / day	10 trucks / day	18 trucks / day	28 trucks / day	3 trucks / day	11 trucks / day
Estimated trucks loads for normal operation / yr	2,360 truck / yr	15,200 truck / yr		1,020 truck / yr	3,170 truck / yr	5,730 truck / yr	9,340 truck / yr	1,000 truck/yr	1,330 truck/yr
Estimated trucks loads for maximum transfer/day	10 trucks / day	80 trucks / day		6 trucks / day	19 trucks / day	35 trucks / day	56 trucks / day	5 trucks / day	7 trucks / day
Train Shipments									-
Railcar Capacity			117 tons / car	100 tons / car	100 tons / car	100 tons / car	100 tons/day		
Railcars per Train			111 cars/train	60 cars/train	60 cars/train	60 cars/train	60 cars/train		
Estimated railcars for normal operation / day			40 cars / day	0.25 cars / day	8 cars / day	13 cars / day	7 cars / day		
Estimated railcar loads for normal operation / yr			13,100 cars / yr	85 cars / yr	3,170 cars / yr	4,298 cars / yr	2,335 cars / yr		
				-					
Estimated railcars for maximum transfer / day			200 cars / day	1 cars / day	19 cars / day	26 cars / day	14 cars / day		
Basis	- 91% availability Flux is assumed to be 3% of combined feed - 7 days/week receiving normal transfer - Max Transfer Laby Rate: 6 days/week receiving fluxant required for normal feed for 7-day supply -25 tonstruck	- 91% availability - 25% petokok (heat - 25 koh/truck - 7 days/week receiving normal transfer - 25% excess truck - 4Max fransfer Daily Rate: 5 days/week receiving petokoke required for max feed for 7 day supply - uniloading station is sized with 25% excess capacity - uniloading rate in tons/hr	- 91% availability - 75% coal (heat iput) per year - 117 (hora/car Max Transfer Cally Rate: 5 days/week receiving coal required for normal feed for 7-day supply - Unioading station to be able to empty 2 trains/day with 100 railcars in each train - unioading rate in tons / hr - 4,000	- 91% availability - High suffur case - 100 tons/day - 25 ton/truck - Station can move up to 25% of production by rail	- 91% availability - 75% coal max annual average - 100% capable by rail - 25% capable by ruck - 7rain loading station is to be able to load 100 % of production	- 91% availability - 75% by rail	- 91% availability - 50% by rail		
Traffic route	Truck Route	Truck Route	Truck Route	Truck Route	Truck Route	Truck Route	Truck Route	Truck Route	Truck Route
Destination/Origin Address		Carson Refinery 1801 E Sepulveda, Carson	None	California Sulfur 2509 E Grant Street, Wilmington	Various	Various	Various	Various	Various
Distance Route	Riverside, CA 180 miles	140 Miles Alameda		142 Miles Grant	80 Mile radius 40 mile radius	40 mile radius Station Road	40 mile radius Station Road	40 mile radius 5 fwy	40 mile radius 5 fwy
		405 Fwy 5 Fwy		Henry Ford Alameda	Station Road Morris Road	Morris Road Stockdale Hywy	Morris Road Stockdale Hywy	Stockdale Hwy Dairy Road	Stockdale Hwy Dairy Road
	I-5, Stockdale Hwy, Morris Road,	Stockdale hwy		405 Fwy	Stockdale Hywy	5 Fwy	5 Fwy	Dally Road	Daily Road
	Station Road	Morris Road Station Road		5 Fwy Stockdale hwy	5 Fwy				
				Morris Road Station Road					
	Rail Route	Station Road Bail Route	Bail Route	Bail Boute	Rail Route	Rail Route	Rail Route	Bail Boute	Rail Route
Destination/Origin	Rail Route None	Rail Route None	Rail Route Elk Ranch New Mexico	Rail Route In SJVAPCD	Rail Route CEMEX, Victorville	Rail Route Oregon/Washington	Calamco	Rail Route None	Rail Route None
Address Distance Route			794 miles Kern County: 132.2 miles (County Line ner Mine to Boron, CA: 662 miles Total Distance: 794.2 miles	ar Boron, CA to north property line of plant)	198 miles SJVR/BNSF	628 Miles SJVR/UPRR	Port Rd G15, Stockton, CA 264 miles		
			i otal Distance: 794.2 miles						

 Notes

 1) Equipment Maintenance Trucks are considered to be 2% of the total trucks per day for the feed and product operation.

 2) Miscellaneous trucks are considered to be 3% of the total trucks per day for the feed and product operation.

 3) The maximum daily transfer rate of petcoke is based on supplying 7-days of maximum petcoke required feed (factored from the normal flow rate at 25% to a max flow at 30% of feed on a heat input basis) in 5 days, and rounded upward to 2 significant figures.

 4) The maximum daily transfer rate of coal is based on supplying 7-days of maximum petcoke required feed (75% of feedstock on a heat input basis) in 5 days and rounded upward to 2 significant figures.

 5) The maximum flow rate of supplying 7-days of mormal coal required feed (75% of feedstock on a heat input basis) in 5 days and rounded upward to 2 significant figures.

 6) The number of raicars for transfer of coal is based on supplying two unit trains a day.

 7) The net capacity of liquid sufficience is 100 short toos per car.

 8) The flux addition is assumed to be up to 3% of the feedstock on a mass basis.

 9) Maximum daily transfer at le based on supplying 7-days of normal Flux required feed (15 days.

 10) On the maximum train day, there may be one coal train and one product train, or two coal trains onsite. Maximum of 2 trains per day.

 11) The maximum number of trucks that would service the site in a given day would be 164. This is less than the total of the maximum transfer/day as not all material would be delivered or removed from the site at maximum capacity on the same day.

Maximum Daily Distribution of Vehicle for Feedstock and Product Delivery

ALTERNATIVE 1 (Rail)							
Truck Source	Maximum Trucks/Day						
Flux Additive	7						
Petcoke	46						
Coal							
Liquid Sulfur	3						
Gasification Solids	10						
Ammonia							
Urea	18						
UAN-32	28						
Equipment Maintenance	3						
Miscellaneous Activities	4						
additional trucks to account for max day	45						
Total Truck Trips	164						
Truck Distribution Modeled (Trucks/Day)							

i wodeled (Trucks/Day)

Total	164
misc trucks =	7
fluxant & product trucks =	89
petcoke trucks =	68

This table represents the maximum number of trucks that would visit the site on a given day. Although more material could be transferred on a given day (as presented in the previous table), all material will not be tranferred at the maximum rate on the same day.

The 45 additional trucks could be a combination of petcoke, fluxant or product trucks.

Thus for modeling puposes the additional trucks were distributed evenly to the 2 unloading areas, the petcoke unloading area and the fluxant and product unloading area.

Only Alternative 1 was modeled as the emissions were higher for this alternative.

ALTERNATIVE 2 (Truck)

Truck Source	Maximum Trucks/Day				
Flux Additive	7				
Petcoke	46				
Coal	184				
Liquid Sulfur	4				
Gasification Solids	38				
Ammonia	0				
Urea	69				
UAN-32	56				
Equipment Maintenance	3				
Miscellaneous Activities	4				
additional trucks to account for max day	125				
Total Truck Trips	536				

This table represents the maximum number of trucks that would visit the site on a given day. Although more material could be transferred on a given day (as presented in the previous table), all material will not be tranferred at the maximum rate on the same day.

The 125 additional trucks could be a combination of petcoke, fluxant or product trucks.

Calculations	for	Trucks	Oneration	Modeling

Data Supplied By Client					
Parameter	Petcoke	Trucks	Fluxant & Pr	oduct Trucks	Miscellaneous Trucks
	Running Emissions	Idling Emissions	Running Emissions	Idling Emissions	Running Emissions
Distance Traveled (mi)*	0.96		2.49		2.20
Per Truck Idle Time (hr)		0.083		0.083	
Maximum number of trucks or loads:					
1-hr	7	7	9	9	7
3-hr	20	20	27	27	7
8-hr	54	54	71	71	7
24-hr	68	68	89	89	7
Annual average trucks or loads	15,200	15,200	21,620	21,620	2,330

EMFAC2007 Emission Factors + Fugitive Dust (g/mi or g/idle-hour) For Truck Model year 2010

	Petcoke	Trucks	Fluxant & Pro	oduct Trucks	Miscellaneous Trucks
Pollutant	Running Emissions (g/mile/trk)	Idling Emissions (g/idle- hour/trk)	Running Emissions (g/mile/trk)	Idling Emissions (g/idle- hour/trk)	Running Emissions (g/mile/trk)
CO	3.03	43.69	3.03	43.69	3.03
NOx	5.43	122.65	5.43	122.65	5.43
ROG		7.74	1.39	7.74	1.39
SOx	0.03	0.06	0.03	0.06	0.03
PM10 *	0.92	0.11	0.92	0.11	0.92
PM2.5 *	0.29	0.10	0.29	0.10	0.29

 PM2.5
 0.29
 0.10
 0.29

 EMFAC2007 is the approved federal model for vehicle combustion emissions
 *
 0.10
 0.29

 * PM10 and PM2.5 includes fugitive dust factor for paved roads obtained from AP-42 Ch. 13 plus PM factors from EMFAC 2007
 PM factors from EMFAC = combustion exhaust + tire wear + break wear

 EMFAC emissions are for fleet year 2010 travelling at 10 mph.

1-hr Emission Rates for AERMOD (g/s) all trucks

	Petcoke	Trucks	Fluxant & Pro	oduct Trucks	Miscellaneous Trucks
Pollutant	Running Emissions	Idling Emissions (at each Idle Point)	Running Emissions	Idling Emissions (at each Idle Point)	Running Emissions
CO	5.470E-03	6.877E-03	1.861E-02	9.001E-03	1.295E-02
NOx	9.803E-03	1.931E-02	3.335E-02	2.527E-02	2.321E-02
ROG	2.507E-03	1.219E-03	8.529E-03	1.595E-03	5.937E-03
SOx	5.419E-05	9.759E-06	1.843E-04	1.277E-05	1.283E-04
PM10	1.656E-03	1.794E-05	5.634E-03	2.349E-05	3.922E-03
PM2.5	5.283E-04	1.637E-05	1.797E-03	2.143E-05	1.251E-03

3-hr Emission Rates for AERMOD (g/s) all trucks

	Petcoke	Trucks	Fluxant & Pro	oduct Trucks	Miscellaneous Trucks
Pollutant	Running Emissions	Idling Emissions (at each Idle Point)	Running Emissions	Idling Emissions (at each Idle Point)	Running Emissions
CO	5.470E-03	6.877E-03	1.861E-02	9.001E-03	1.295E-02
NOx	9.803E-03	1.931E-02	3.335E-02	2.527E-02	2.321E-02
ROG	2.507E-03	1.219E-03	8.529E-03	1.595E-03	5.937E-03
SOx	5.419E-05	9.759E-06	1.843E-04	1.277E-05	1.283E-04
PM10	1.656E-03	1.794E-05	5.634E-03	2.349E-05	3.922E-03
PM2.5	5.283E-04	1.637E-05	1.797E-03	2.143E-05	1.251E-03

8-hour Emission Rates for AERMOD (g/s) all trucks

	Coke and Coal T	rucks (@ 10 mph)	Fluxant & Pro	oduct Trucks	Miscellaneous Trucks @ 10 mph
Pollutant	Running Emissions	Idling Emissions (at each Idle Point)	Running Emissions	Idling Emissions (at each Idle Point)	Running Emissions
CO	5.470E-03	6.877E-03	1.861E-02	9.001E-03	1.295E-02
NOx	9.803E-03	1.931E-02	3.335E-02	2.527E-02	2.321E-02
ROG	2.507E-03	1.219E-03	8.529E-03	1.595E-03	5.937E-03
SOx	5.419E-05	9.759E-06	1.843E-04	1.277E-05	1.283E-04
PM10	1.656E-03	1.794E-05	5.634E-03	2.349E-05	3.922E-03
PM2.5	5.283E-04	1.637E-05	1.797E-03	2.143E-05	1.251E-03

24-hour Emission Rates for AERMOD (g/s) all trucks

	Petcoke	Trucks	Fluxant & Pro	oduct Trucks	Miscellaneous Trucks
Pollutant	Running Emissions	Idling Emissions (at each Idle Point)	Running Emissions	Idling Emissions (at each Idle Point)	Running Emissions
CO	2.279E-03	2.865E-03	7.753E-03	3.750E-03	1.295E-02
NOx	4.085E-03	8.044E-03	1.389E-02	1.053E-02	2.321E-02
ROG	1.045E-03	5.079E-04	3.554E-03	0.000E+00	5.937E-03
SOx	2.258E-05	4.066E-06	7.681E-05	5.322E-06	1.283E-04
PM10	6.901E-04	7.477E-06	2.348E-03	9.786E-06	3.922E-03
PM2.5	2.201E-04	6.821E-06	7.488E-04	8.927E-06	1.251E-03

Annual Emission Rates for AERMOD (g/s) all trucks

	Petcoke	Trucks	Fluxant & Pro	oduct Trucks	Miscellaneous Trucks
Pollutant	Running Emissions	Idling Emissions (at each Idle Point)	Running Emissions	Idling Emissions (at each Idle Point)	Running Emissions
CO		1.755E-03	5.160E-03	2.496E-03	4.921E-04
NOx	2.501E-03	4.926E-03	9.247E-03	7.007E-03	8.820E-04
ROG	6.398E-04	3.110E-04	2.365E-03	4.424E-04	2.256E-04
SOx	1.383E-05	2.490E-06	5.112E-05	3.542E-06	4.876E-06
PM10	4.2264E-04	4.5789E-06	1.5624E-03	6.5129E-06	1.4902E-04
PM2.5	1.3481E-04	4.1772E-06	4.9838E-04	5.9416E-06	4.7534E-05

Volume, Line Sources Guidance for Air Dispersion Modeling, SJVAPCD, 2007 and Section 1.2.2 of Volume II of ISC User's Guide

2.3.2 Oyo=12W/2.15			
Truck Traveling vol src		Truck Idling pt src	
6	ft Release height	12.6	ft Release height
12	ft Width	0.1	m diam
66.97674419	ft init horz dim Syo	51.71	m/s vel
5.58	ft init vert dim Szo	366	K Temp
		199.134	F Temp

Volume, Stand Alone Guidance for Air Dispersion Modeling, SJVAPCD, 2007

2.3.2 + modelers judgement + ISC guidance		
Truck Traveling vol src		
6	ft Release height	
12	ft Width	
2.790697674	ft init horz dim Syo	
5.58	ft init vert dim Szo	

Fugitive Dust on Paved Road

AP 42 13.2.1 Paved Roads, updated January 2011

For a daily basis,

E = [k (sL)^0.91 x (W)^1.02](1-P/4N)

(2)

 ${\sf P}$ = number of "wet" days with at least 0.254 mm (0.01 in) of precipitation during the averaging period W = average weight (tons) of vehicles traveling the road

k = particle size multiplier for particle size range and units of interest

sL = road surface silt loading (g/m^2)

	k
	g/VMT
PM2.5	0.25
PM10	1.00

Table 13.2.1-1 PARTICLE SIZE MULTIPLIERS FOR PAVED ROAD EQUATION

Large Trucks

		Empty truck	full truck	Load Capacity
W=	17.5 tons, average	ł	5 30) 25 tons
sL=	0.031 g/m2 Defa	ult value from URBEMIS 9.2 for	Kern County	/
P=	36 days/year Buttonwill	w Station 1940-2011, WRCC		

E=

0.19149 g/VMT PM2.5 large delivery trucks 0.76594 g/VMT PM10 large delivery trucks

Operation and Maintenance Vehicles

W=	3 tons
sL=	0.031 g/m2 Default value from URBEMIS 9.2 for Kern County
P=	36 days/year Buttonwillow Station 1940-2011, WRCC

E=

0.03169 g/VMT PM2.5 large delivery trucks 0.12675 g/VMT PM10 large delivery trucks #vol sources= 10

4/19/2013

Fugitive Dust on Paved Road

			4/19/2013
		is Solids trucks + Fluxant Additive trucks ation solids, urea, UAN, fluxant additive	24 hrs/day
4000 meters, app 2.49 miles	roximate length of roa	ad for product trucks: eastern fenceline to southern fenceline t	to middle loop and back out the opposite way
0.47593 grams PM2. 1.90373 grams PM10		42.358 g PM2.5/day for all product trucks 169.432 g PM10/day for all product trucks	1.7649 g PM2.5/hr 7.0597 g PM10/hr
# volume source in model 73		2.5/hr/volume source 10/hr/volume source	
Coke feedstock trucks (no 68 max feedsto			
1539 meters, app 0.96 miles	roximate length of roa	ad loop to truck feedstock unloading facility on east side	
0.18312 grams PM2. 0.73246 grams PM10	,	12.452 g PM2.5/day for all product trucks 49.807 g PM10/day for all product trucks	0.5188 g PM2.5/hr 2.0753 g PM10/hr
# volume source in model 34	0	2.5/hr/volume source 10/hr/volume source	
Miscellaneous Delivery Tru 7 max trucks/c		ntenance	
3540 meters, app 2.20 miles	roximate length of roa	ad from end of product truck south road, along southern fence	line, north toward main site, to parking lot and back
0.421 grams PM2. 1.685 grams PM10		2.948 g PM2.5/day for all product trucks 11.794 g PM10/day for all product trucks	0.1229 g PM2.5/hr 0.4914 g PM10/hr
# volume source in model			

volume source in model 5

2.4570E-02 g PM2.5/hr/volume source 9.8280E-02 g PM10/hr/volume source

Summary of On-Site Operations Truck Emissions

Emissions Summary

4/19/2013

Transportation Information - Onsite Vehicle = - Vehicle year= - Maximum annual mileage =

Notes
- Information Provided By Applicant
- Information Provided By Applicant
- Information Provided By Applicant
- All routine vehicular traffic is anticipated to travel exclusively on paved roads
- Assumed 15 mph average speed within HECA facility

Calculations for Trucks Operation Modeling per Truck

	Onsite O&M Trucks
Mileage	
1-hr	1
3-hr	3
8-hr	9
24-hr	27
Annual average trucks or loads	10000

EMFAC2007 Emission Factors (g/mi) For Truck Model year 2010

	AERMOD		
Pollutant	Gas LHDT1	Diesel LHDT2	
CO	0.229	0.920	
NOx	0.064	0.672	
ROG	0.014	0.085	
SOx	0.011	0.005	
PM10 *	0.167	0.176	
PM2.5 *	0.054	0.062	

EMFAC2007 is the approved federal model for vehicle combustion emissions * PM10 and PM2.5 includes fugitive dust factor for paved roads obtained from AP-42 Ch. 13 plus PM factors from EMFAC 2007 PM factors from EMFAC = combustion exhaust + tire wear + break wear EMFAC emissions are for fleet year 2010 travelling at 15 mph.

20 trucks 2010 2010 10,000 miles/truck-year

7

1-hr Emission Rates for AERMOD (g/s) all trucks

	AERMOD		
Dellutert	0		
Pollutant	Gas LHDT1	Diesel LHDT2	
CO	1.45E-03	5.83E-03	
NOx	4.06E-04	4.26E-03	
ROG	8.88E-05	5.39E-04	
SOx	6.98E-05	3.17E-05	
PM10	1.06E-03	1.11E-03	
PM2.5	3.40E-04	3.91E-04	

3-hr Emission Rates for AERMOD (g/s) all trucks

	AERMOD		
Pollutant	Gas LHDT1	Diesel LHDT2	
CO	1.45E-03	5.83E-03	
NOx	4.06E-04	4.26E-03	
ROG	8.88E-05	5.39E-04	
SOx	6.98E-05	3.17E-05	
PM10	1.06E-03	1.11E-03	
PM2.5	3.40E-04	3.91E-04	

8-hour Emission Rates for AERMOD (g/s) all trucks

	AERMOD		
Pollutant	Gas LHDT1	Diesel LHDT2	
CO	1.45E-03	5.83E-03	
NOx	4.06E-04	4.26E-03	
ROG	8.88E-05	5.39E-04	
SOx	6.98E-05	3.17E-05	
PM10	1.06E-03	1.11E-03	
PM2.5	3.40E-04	3.91E-04	

24-hour Emission Rates for AERMOD (g/s) all trucks

	AERMOD		
Pollutant	Gas LHDT1	Diesel LHDT2	
CO	1.45E-03	5.83E-03	
NOx	4.06E-04	4.26E-03	
ROG	8.88E-05	5.39E-04	
SOx	6.98E-05	3.17E-05	
PM10	1.06E-03	1.11E-03	
PM2.5	3.40E-04	3.91E-04	

Annual Emission Rates for AERMOD (g/s) all trucks

	AERMOD		
Pollutant	Gas LHDT1	Diesel LHDT2	
CO	1.45E-03	5.83E-03	
NOx	4.06E-04	4.26E-03	
ROG	8.88E-05	5.39E-04	
SOx	6.98E-05	3.17E-05	
PM10	1.06E-03	1.11E-03	
PM2.5	3.40E-04	3.91E-04	

Summary of On-Site Operations Train Emissions

Emissions Summary

4/19/2013

Averaging Period	Coal Unit Trains (incoming)	Unit Trains of Product (outgoing)	Maximum Total Trains per period
1-hr	1	1	1
3-hr	1	1	2
8-hr	2	1	2
24-hr	2	1	2
Annual average unit trains	119	165	284
# Cars Per train	111	60	
On maximum train day, may have one coal train ar	ad one product train or two		
	Switching Engine/ Rail car movers	Line-Haul Engine for Coal Train	trains per day. Line-Haul Engine for Product Trains
	Switching Engine/ Rail	Line-Haul Engine for	Line-Haul Engine for
Engine Power Rating (hp)	Switching Engine/ Rail	Line-Haul Engine for Coal Train	Line-Haul Engine for Product Trains
Engine Power Rating (hp) Notch Operation	Switching Engine/ Rail	Line-Haul Engine for Coal Train	Line-Haul Engine for Product Trains
Engine Power Rating (hp) Notch Operation Notch percentage of hp	Switching Engine/ Rail	Line-Haul Engine for Coal Train 4400 1 5.0%	Line-Haul Engine for Product Trains 3000 1 5.0%
	Switching Engine/ Rail car movers	Line-Haul Engine for Coal Train 4400 1 5.0%	Line-Haul Engine for Product Trains 3000

max operating hours (hrs/day)

max operating hours (hrs/year)

The majority of the time the line-haul engine will operate in Notch 1 or idling, therefore emissions were conservatively estimated for Notch 1 horsepower.

Notch percentage presented in PORT OF LONG BEACH AIR EMISSIONS INVENTORY for 2007 (POLB, Jan 2009) derived from EPA data.

8

1248

For each coal train it takes 2 hours to complete the onsite loop to unload

For each product train it takes 1 hour to load

Switching Engine Emission Factors	CO	NOx	PM10	PM2.5	SO2	VOC
Tier 3 Emission Factor (g/bhp-hr)	1.83	4.50	0.08	0.08	0.12	0.27
Emissions (lbs/hr /engine)	1.05	2.58	0.05	0.04	0.07	0.16
Line-Haul Emission Factors						
Tier 3 Emission Factor (g/bhp-hr)	1.28	4.95	0.08	0.08	0.09	0.14
Coal Train Emissions (lbs/hr /engine)	0.62	2.40	0.04	0.04	0.04	0.07
Product Train Emissions (lbs/hr /engine)	0.42	1.64	0.03	0.03	0.03	0.05

Summary of On-Site Operations Train Emissions

Emissions Summary

4/19/2013

1-hr Emission Rates

	CO	NOx	PM10	PM2.5	SO2	VOC	
		1-hr Emission Rates (Ib/hr) all trains					
Switching engines	1.05	2.58	0.05	0.04	0.07	0.16	
Line-haul coal engines	1.24	4.80	0.08	0.08	0.09	0.13	
	1-hr Emission Rates for AERMOD (lb/hr) all trains divided by number of volume sources						
All On-site Trains	2.2E-02	7.1E-02	1.2E-03	1.2E-03	1.5E-03	2.8E-03	
Devile a stress bases attraction that have been		1 11 1 1 1		1 11 1			

During a given hour either the line-haul engines for the coal train or product train operate, not both, thus emissions from the larger coal trains are only included in the peak hour emissions.

3-hr Emission Rates

со	NOx	PM10	PM2.5	SO2	VOC		
	3-hr Emission Rates (Ib/period) all trains						
3.14	7.73	0.14	0.13	0.21	0.47		
2.48	9.59	0.16	0.15	0.18	0.27		
0.85	3.27	0.05	0.05	0.06	0.09		
	3-hr Emission Rates	s for AERMOD (lb/hr) all	trains divided by numbe	r of volume sources			
2.1E-02	6.6E-02	1.1E-03	1.1E-03	1.4E-03	2.6E-03		
	3.14 2.48 0.85	3.14 7.73 2.48 9.59 0.85 3.27 3-hr Emission Rates	3-hr Emission Rates 3.14 7.73 0.14 2.48 9.59 0.16 0.85 3.27 0.05 3-hr Emission Rates for AERMOD (lb/hr) all 0.05	3-hr Emission Rates (Ib/period) all trains 3.14 7.73 0.14 0.13 2.48 9.59 0.16 0.15 0.85 3.27 0.05 0.05 3-hr Emission Rates for AERMOD (Ib/hr) all trains divided by number	3-hr Emission Rates (Ib/period) all trains 3.14 7.73 0.14 0.13 0.21 2.48 9.59 0.16 0.15 0.18 0.85 3.27 0.05 0.05 0.06 3-hr Emission Rates for AERMOD (Ib/hr) all trains divided by number of volume sources		

In the maximum operations 3 hour period, the switching engine operates up to 3 hours, 1 coal train unloads in 2 hours and 1 product train loads in 1 hour.

8-hour Emission Rates

	со	NOx	PM10	PM2.5	SO2	VOC
	8-hr Emission Rates (lb/period) all trains					
Switching engines	8.38	20.62	0.37	0.36	0.57	1.25
Line-haul coal engines	4.96	19.19	0.31	0.30	0.35	0.53
Line-haul product engines	0.00	0.00	0.00	0.00	0.00	0.00
	8-hr Emission Rates for AERMOD (lb/hr) all trains divided by number of volume sources					
All On-site Trains	1.6E-02	4.8E-02	8.1E-04	7.9E-04	1.1E-03	2.1E-03

In the maximum operations 8 hour period, the switching engine operates up to 8 hours, and either 2 coal trains or 1 coal train and 1 product train

since there are higher emissions from coal trains, emissions were estimated based on 2 coal trains.

24-hour Emission Rates

	CO	NOx	PM10	PM2.5	SO2	VOC
		24-hr Emission Rates (Ib/period) all trains				
Switching engines	8.38	20.62	0.37	0.36	0.57	1.25
Line-haul coal engines	4.96	19.19	0.31	0.30	0.35	0.53
Line-haul product engines	0.00	0.00	0.00	0.00	0.00	0.00
		24-hr Emission Rates for AERMOD (Ib/hr) all trains divided by number of volume sources				
All On-site Trains	5.3E-03	1.6E-02	2.7E-04	2.6E-04	3.7E-04	7.2E-04

In the maximum operations 24 hour period, the switching engine operates up to 24 hours, and either 2 coal trains or 1 coal train and 1 product train

since there are higher emissions from coal trains, emissions were estimated based on 2 coal trains.

Annual Emission Rates

	СО	NOx	PM10	PM2.5	SO2	VOC
	Annual Emission Rates (tons/period) all trains					
Switching engines	0.65	1.61	0.03	0.03	0.04	0.10
Line-haul coal engines	0.15	0.57	0.01	0.01	0.01	0.02
Line-haul product engines	0.07	0.27	0.00	0.00	0.00	0.01
	Annual Emission Rates for AERMOD (tons/yr) all trains divided by number of volume sources					
All On-site Trains	8.4E-03	2.4E-02	4.1E-04	3.9E-04	5.7E-04	1.2E-03

Emissions Summary

4/19/2013

AERMOD source parameters	
Volume sources spaces every 20 widths	
Width	10 ft
Release Height	15 ft
Sigma Y	93 ft
Sigma Z	14 ft
# of volumes	104
Guidance for Air Dispersion Modeling, SJVAPCD, 200	7 and Section 1.2.2 of Volume II of ISC User's Guide

Emission Factors For all Locomotives	
SOx	
g/gal	
1.88	
Locomotive Application	Conversion Factor (bhp-hr/gal)
Large Line-haul & Passenger	20.8
Small Line-haul	18.2
Switching	15.2

Notes:

New line-haul engines will be AC locomotives such as the GE Evolution Series, that meet Tier 3 emissions

New switching engines will meet Tier 3 emissions, they may be the Titan Trackmobile railcar movers or similar

EPA's Technical Highlights: Emission Factors for Locomotives, 2009 (http://www.epa.gov/nonroad/locomotv/420f09025.pdf).

Based on 300 ppm sulfur diesel fuel.

VOC emissions can be assumed to be equal to 1.053 times the HC emissions

PM_{2.5} Fraction of PM₁₀, = 0.97

Line-haul engine emissions of CO, NOx, PM, and HC are based on EPA Tier 2+ and Tier 3 emission factors.

APPENDIX B

REVISED TOXIC AIR CONTAMINANT EMISSIONS

Hydrogen Energy California (HECA) Project April 19, 2013 Emissions Summary

Rate (TPY) 2.13E-02 1.54E+02 1.54E+02 1.30E-02 2.85E-02 1.47E+00 3.08E-03 1.14E-01 5.44E-01 5.44E-01 5.44E-01 2.94E-04 6.91E-02 1.48E-03 2.94E-04 6.91E-01 5.89E-01 1.62E-01 5.91E-01	Stack (lb/yr) 3.62E+01 1.53E+05 2.21E+01 4.82E+01 4.82E+01 5.22E+00 9.24E+02 9.24E+02 1.02E+01 3.07E+00 5.22E+00 1.15E+02	Dryer Stack (Ib/yr) 6.38E+00 2.50E+04 3.90E+00 8.51E+00 9.22E-01 3.40E+01 1.63E+02 1.81E+00 5.43E-01 9.22E-01	Block) (lb/yr) 5.33E-02	Area) (lb/yr) 8.70E-02	(ASU) (lb/yr) 2.40E-02	Boiler (lb/yr) 1.03E+03 8.89E-02 9.33E-01 5.33E-03	Heater (lb/yr)	Generators (lb/yr)	Pump (lb/yr)	Flare (lb/yr)	Flare (lb/yr)	Flare (lb/yr)	Oxidizer (lb/yr)	CO ₂ Vent (lb/yr)	Complex (lb/yr)	Truck (lb/yr)	Train (lb/yr)	Fugitives
2.13E-02 1.54E+02 1.54E+02 1.30E-02 2.85E-02 1.47E+00 3.08E-03 1.14E-01 5.44E-01 2.79E+00 6.49E-03 3.10E-03 3.10E-03 2.25E-01 5.89E-01 1.62E-01 5.91E-01	3.62E+01 1.53E+05 2.21E+01 4.82E+01 4.82E+01 5.22E+00 1.93E+02 9.24E+02 1.02E+01 3.07E+00 5.22E+00	6.38E+00 2.50E+04 3.90E+00 8.51E+00 9.22E-01 3.40E+01 1.63E+02 1.81E+00 5.43E-01				1.03E+03 8.89E-02 9.33E-01	1.49E-03	(ib/yr)	(ID/yr)	(ID/yr)	(ID/yr)	(ib/yr)	(ID/yr)	(ID/yr)	(ID/yr)	(ID/yr)		
1.54E+02 1.30E-02 2.85E-02 2.85E-02 1.47E+00 3.08E-03 1.14E-01 5.44E-01 2.79E+00 6.49E-03 3.10E-03 3.10E-03 2.94E-04 6.91E-02 2.94E-01 5.89E-01 1.62E-01 5.91E-01	1.53E+05 2.21E+01 4.82E+01 5.22E+00 1.93E+02 9.24E+02 1.02E+01 3.07E+00 5.22E+00	2.50E+04 3.90E+00 8.51E+00 9.22E-01 3.40E+01 1.63E+02 1.81E+00 5.43E-01	5.33E-02	8.70E-02	2.40E-02	8.89E-02 9.33E-01											((lb/yr)
1.30E-02 2.85E-02 1.47E+00 3.08E-03 1.47E+00 3.08E-03 1.44E-01 2.79E+00 6.49E-03 1.81E-03 3.10E-03 2.94E-04 6.91E-02 1.44E-03 2.25E-01 5.89E-01 5.89E-01 5.91E-01	2.21E+01 4.82E+01 4.82E+01 5.22E+00 1.93E+02 9.24E+02 1.02E+01 3.07E+00 5.22E+00	3.90E+00 8.51E+00 9.22E-01 3.40E+01 1.63E+02 1.81E+00 5.43E-01	5.33E-02	8.70E-02	2.40E-02	8.89E-02 9.33E-01									1.22E+05			7.61E+03
2.85E-02 1.47E+00 3.08E-03 1.14E-01 5.44E-01 2.79E+00 6.49E-03 1.81E-03 3.10E-03 2.94E-04 6.91E-02 1.44E-03 2.245E-01 5.89E-01 1.62E-01 5.91E-01	4.82E+01 4.82E+01 5.22E+00 1.93E+02 9.24E+02 1.02E+01 3.07E+00 5.22E+00	8.51E+00 8.51E+00 9.22E-01 3.40E+01 1.63E+02 1.81E+00 5.43E-01	5.33E-02	8.70E-02	2.40E-02	9.33E-01									1.22E+05			7.01E+03
1.47E+00 3.08E-03 3.08E-03 3.14E-01 5.44E-01 2.79E+00 6.49E-03 3.10E-03 3.10E-03 2.94E-04 6.91E-02 1.44E-03 2.25E-01 5.89E-01 5.91E-01	4.82E+01 5.22E+00 1.93E+02 9.24E+02 1.02E+01 3.07E+00 5.22E+00	8.51E+00 9.22E-01 3.40E+01 1.63E+02 1.81E+00 5.43E-01		6.70E-02	2.40E-02	9.33E-01				1 42E 02	7 755 04	2 70E 02	2 17E 02					l
3.08E-03 1.14E-01 5.44E-01 2.79E+00 6.49E-03 1.81E-03 3.10E-03 2.94E-04 6.91E-02 1.44E-03 2.25E-01 5.89E-01 1.62E-01 5.91E-01	5.22E+00 1.93E+02 9.24E+02 1.02E+01 3.07E+00 5.22E+00	9.22E-01 3.40E+01 1.63E+02 1.81E+00 5.43E-01								1.43E-02 1.50E-01	7.75E-04 8.14E-03	3.78E-03 3.97E-02	2.17E-02 2.28E-01	2.79E+03				9.69E+01
1.14E-01 5.44E-01 2.79E+00 6.49E-03 1.81E-03 3.10E-03 2.94E-04 6.91E-02 6.91E-02 2.25E-01 5.89E-01 1.62E-01 5.91E-01	1.93E+02 9.24E+02 1.02E+01 3.07E+00 5.22E+00	3.40E+01 1.63E+02 1.81E+00 5.43E-01					1.57E-02 8.96E-05			8.56E-04	4.65E-05	2.27E-02	2.26E-01 1.30E-03	2.79E+03				9.69E+01
5.44E-01 2.79E+00 6.49E-03 1.81E-03 3.10E-03 3.10E-03 2.94E-04 6.91E-02 1.44E-03 2.25E-01 5.89E-01 1.62E-01 5.91E-01	9.24E+02 1.02E+01 3.07E+00 5.22E+00	1.63E+02 1.81E+00 5.43E-01				4.89E-01				7.85E-04	4.05E-05 4.26E-03	2.27E-04 2.08E-02	1.19E-01					
2.79E+00 6.49E-03 1.81E-03 3.10E-03 3.10E-03 2.94E-04 6.91E-02 1.44E-03 2.25E-01 5.89E-01 1.62E-01 5.91E-01	1.02E+01 3.07E+00 5.22E+00	1.81E+00 5.43E-01				4.69E-01	8.21E-03			7.65E-02	4.20E-03	2.06E-02	1.19E-01					<u> </u>
6.49E-03 1.81E-03 3.10E-03 2.94E-04 6.91E-02 1.44E-03 2.25E-01 5.89E-01 1.62E-01 5.91E-01	3.07E+00 5.22E+00	5.43E-01												5.37E+03				2.09E+02
1.81E-03 3.10E-03 2.94E-04 6.91E-02 1.44E-03 2.25E-01 5.89E-01 1.62E-01 5.91E-01	3.07E+00 5.22E+00	5.43E-01				6.22E-01	1.055.00			9.99E-02	5 405 00	2.645.02	4 505 04	5.37E+03				2.09E+02
3.10E-03 2.94E-04 6.91E-02 1.44E-03 2.25E-01 5.89E-01 1.62E-01 5.91E-01	5.22E+00					6.22E-01	1.05E-02			9.99E-02	5.42E-03	2.64E-02	1.52E-01					⊢
2.94E-04 6.91E-02 1.44E-03 2.25E-01 5.89E-01 1.62E-01 5.91E-01		9.22E-01				0 705 00	0.075.04			5 00F 00	0.055.04	1 505 00	0.445.00					
6.91E-02 1.44E-03 2.25E-01 5.89E-01 1.62E-01 5.91E-01	1.15E+02	1	1 005 00	1.005.00	4.005.00	3.73E-02	6.27E-04			5.99E-03	3.25E-04	1.59E-03	9.11E-03					L
1.44E-03 2.25E-01 5.89E-01 1.62E-01 5.91E-01	1.15E+02	0.005.04	1.03E-02	1.69E-02	4.66E-03	3.78E-01	6.35E-03			6.06E-02	3.29E-03	1.61E-02	9.22E-02					0.055.00
2.25E-01 5.89E-01 1.62E-01 5.91E-01		2.02E+01	0.015.01	1.505.00	1.005.01													3.35E+00
5.89E-01 1.62E-01 5.91E-01	0.405.00	0.005.04	9.31E-01	1.52E+00	4.20E-01	0.005.01	E 605 04			E 055 . 00	2.045.01	4.405.000	0.405.00					
1.62E-01 5.91E-01	3.42E+02	6.03E+01		l	l	3.33E+01				5.35E+00	2.91E-01	1.42E+00	8.13E+00					
5.91E-01	0.045.00	1.045-01	ļ	L	L	8.00E+02	1.34E+01		L	1.28E+02	6.97E+00	3.40E+01	1.95E+02					4.755.04
	2.61E+02	4.61E+01		l	l	ļ												1.75E+01
	1.00E+03	1.77E+02	l			I												1 005
2.44E+00														3.04E+03				1.83E+03
6.62E-03	1.13E+01	1.99E+00																L
1.65E-02	2.09E+01	3.69E+00	2.66E+00	4.35E+00	1.20E+00	1.69E-01	2.84E-03			2.71E-02	1.47E-03	7.18E-03	4.12E-02					L
4.88E-03	3.82E+00	5.77E+00				1.16E-01	1.94E-03			1.85E-02	1.01E-03	4.91E-03	2.82E-02					L
9.73E+00														4.87E+03				1.46E+04
5.64E-01	9.59E+02	1.69E+02																L
2.60E-02	4.42E+01	7.80E+00																L
2.98E-02	5.02E+01	8.87E+00				2.71E-01	4.55E-03			4.35E-02	2.36E-03	1.15E-02	6.61E-02					L
5.30E-03	7.84E+00	1.38E+00				9.33E-01	1.57E-02			1.50E-01	8.14E-03	3.97E-02	2.28E-01					<u> </u>
3.04E-01																		6.09E+02
4.35E-01	7.40E+02	1.31E+02																<u> </u>
1.75E+00																		9.49E+03
6.70E-03	1.13E+01	1.99E+00	4.43E-02	7.23E-02	2.00E-02	1.07E-02	1.79E-04			1.71E-03	9.30E-05	4.53E-04	2.60E-03					<u> </u>
1.12E+00	1.91E+03	3.37E+02																L
1.50E-03	6.63E-01	1.17E-01				1.51E+00				2.43E-01	1.32E-02	6.42E-02	3.69E-01					<u> </u>
7.52E-04						1.02E+00	1.72E-02			1.64E-01	8.91E-03	4.34E-02	2.49E-01					L
7.14E-02								4.51E+01	1.84E+00							2.01E+01	7.56E+01	I
7.85E-06						1.07E-02	1.79E-04			1.71E-03	9.30E-05	4.53E-04	2.60E-03					L
5.89E-07						8.00E-04	1.34E-05			1.28E-04	6.97E-06	3.40E-05	1.95E-04					I
5.23E-06						7.11E-03	1.19E-04			1.14E-03	6.20E-05	3.02E-04	1.73E-03					L
5.89E-07						8.00E-04	1.34E-05			1.28E-04	6.97E-06	3.40E-05	1.95E-04					
5.89E-07						8.00E-04	1.34E-05			1.28E-04	6.97E-06	3.40E-05	1.95E-04					L
7.85E-07						1.07E-03	1.79E-05			1.71E-04	9.30E-06	4.53E-05	2.60E-04					
2.78E-05	4.62E-02	8.16E-03				8.00E-04	1.34E-05			1.28E-04	6.97E-06	3.40E-05						
3.93E-07						5.33E-04	8.96E-06			8.56E-05	4.65E-06	2.27E-05	1.30E-04					1
5.89E-07						8.00E-04	1.34E-05			1.28E-04	6.97E-06	3.40E-05	1.95E-04					
3.93E-07						5.33E-04	8.96E-06			8.56E-05	4.65E-06	2.27E-05	1.30E-04					
5.89E-07						8.00E-04	1.34E-05			1.28E-04	6.97E-06	3.40E-05	1.95E-04					
5.89E-07						8.00E-04	1.34E-05			1.28E-04	6.97E-06	3.40E-05	1.95E-04					
3.93E-07						5.33E-04	8.96E-06			8.56E-05	4.65E-06	2.27E-05	1.30E-04					L
3.93E-04						5.33E-01	8.96E-03			8.56E-02	4.65E-03	2.27E-02	1.30E-01					
9.81E-07										2.14E-04	1.16E-05	5.67E-05						
						1.24E-03	2.09E-05			2.00E-04	1.08E-05	5.29E-05	3.04E-04					
9.16E-07						8.00E-04	1.34E-05			1.28E-04	6.97E-06	3.40E-05	1.95E-04					
						7.55E-03	1.27E-04			1.21E-03	6.59E-05	3.21E-04	1.84E-03					
9.16E-07						2.22E-03	3.73E-05			3.57E-04	1.94E-05	9.44E-05	5.42E-04					
9.16E-07 5.89E-07	79.76	13.11	0.00	0.00	0.00	0.93	0.01	0.02	0.00	0.07	0.00	0.02	0.10	8.03	61.04	0.01	0.04	1.72E+01
9.16E-07 5.89E-07 5.56E-06	2.43	0.43	0.00	0.00	0.00	0.42	0.01	0.00	0.00	0.07	0.00	0.02	0.10	8.03	0.00	0.00	0.00	8.38E+00
2.7 3.9 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8	8E-05 33E-07 39E-07 39E-06 34E-06	'8E-05 4.62E-02 \veessionarrowset \veessionarrowset \veessionarrowset \veessionarrowset	78E-05 4.62E-02 8.16E-03 13E-07	78E-05 4.62E-02 8.16E-03 13E-07	6E-05 4.62E-02 8.16E-03 33E-07	6E-05 4.62E-02 8.16E-03 33E-07	8E-05 4.62E-02 8.16E-03 8.00E-04 13E-07 5.33E-04 8.00E-04 98E-07 8.00E-04 8.00E-04 98E-07 1.33E-03 8.00E-04 98E-07 1.33E-03 8.00E-04 98E-07 1.33E-03 8.00E-04 99E-07 8.00E-04 5.33E-03 98E-07 8.00E-04 8.00E-04 98E-06 7.55E-03 2.22E-03 98.08 9.97.6 13.11 0.00 0.00 </td <td>8E:05 4.62E:02 8.16E:03 8.00E:04 1.34E:05 33E:07 5.33E:04 8.96E:06 96E:07 38E:07 5.33E:04 8.96E:06 98E:07 5.33E:04 8.96E:06 98E:07 5.33E:04 8.96E:06 98E:07 8.00E:04 1.34E:05 98E:07 8.00E:04 1.34E:05 98E:07 8.00E:04 1.34E:05 38E:04 5.33E:04 8.96E:06 38E:04 5.33E:04 8.96E:06 38E:04 5.33E:04 8.96E:06 38E:04 5.33E:04 8.96E:06 38E:04 1.33E:03 2.24E:05 6E:07 1.34E:03 2.04E:05 96E:06 7.55E:03 1.27E:04 04:06 2.22E:03 3.78:05 06:38 79.76 13.11 0.00 0.00 0.33 0.01</td> <td>8E-05 4.62E-02 8.16E-03 8.00E-04 1.34E-05 33E-07 5.33E-04 8.96E-06 99E-07 3BE-07 8.00E-04 1.34E-05 33E-07 8.00E-04 1.34E-05 98E-07 1.33E-03 2.24E-05 66E-07 1.33E-03 2.24E-05 98E-07 8.00E-04 1.34E-05 98E-06 7.55E-03 1.27E-04 98.08 79.76 13</td> <td>8E-05 4.62E-02 8.16E-03 8.00E-04 1.34E-05 3BE-07 5.33E-04 8.96E-06 </td> <td>8E-05 4.62E-02 8.16E-03 8.00E-04 1.34E-05 1.28E-04 33E-07 5.33E-04 8.96E-06 8.56E-05 98-07 1.28E-04 33E-07 6.00E-04 1.34E-05 1.28E-04 98-06 8.56E-05 98E-07 6.00E-04 1.34E-05 1.28E-04 98-06 8.56E-05 98E-07 8.00E-04 1.34E-05 1.28E-04 98-06 8.56E-05 98E-07 8.00E-04 1.34E-05 1.28E-04 98-07 1.28E-04 38E-04 8.00E-04 1.34E-05 1.28E-04 98-07 1.28E-04 38E-04 5.33E-04 8.00E-04 1.34E-05 1.28E-04 38E-07 5.33E-04 8.00E-04 1.34E-05 1.28E-04 38E-07 1.33E-03 2.24E-05 2.14E-04 6E-05 98-07 1.34E-06 1.28E-04 2.00E-04 98-05 2.00E-04 98-07 0.00E-04 1.34E-05 1.28E-04 1.28E-04 1.28E-04 98-07 0.00E-04 1.3</td> <td>8E:05 4.62E:02 8.16E:03 8.00E:04 1.34E:05 1.28E:04 6.97E:06 03E:07 5.33E:04 8.96E:06 8.56E:05 4.65E:06 98:06E:06 8.56E:05 4.65E:06 03E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 8.56E:05 4.65E:06 03E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 8.56E:05 4.65E:06 09E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 8.56E:06 4.65E:06 09E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.56E:02 4.65E:03 09E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.56E:02 4.65E:03 38:04 96E:03 8.00E:04 1.34E:05 1.28E:04 6.97E:06 03E:04 1.33E:03 2.24E:05 2.14E:04 1.16E:05 4.65E:03 09E:07 1.33E:03 2.24E:05 2.00E:04 1.08E:05 9.00E:04 1.08E:04 09E:07 8.00E:04 1.34E:05<td>8E:06 4.62E:02 8.16E:03 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 33E:07 5.33E:04 8.96E:06 8.56E:05 4.65E:06 2.27E:05 33E:07 6.07E:04 1.34E:06 1.28E:04 6.97E:06 3.40E:05 33E:07 6.07E:06 8.00E:04 1.34E:06 1.28E:04 6.97E:06 3.40E:05 33E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 98E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 98E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 38E:04 5.33E:04 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 38E:04 5.33E:04 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 38E:04 1.34E:05 1.38E:03 2.24E:05 2.14E:04 1.68E:05 5.67E:05 98E:07 1.33E:03 2.24E:05 2.14E:04 1.08E:05 5.67E:05<!--</td--><td>8E:06 8.06E-04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 33E:07 5.33E:04 8.06E:04 1.34E:05 8.56E:05 4.65E:06 2.27E:05 1.30E:04 33E:07 6.33E:04 8.06E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.55E:04 33E:07 6.30E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.30E:04 33E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.30E:04 98E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 98E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 38E:04 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 38E:04 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 38E:04 1.34E:05 1.34E:05 1.28E:04 6.97E:06 3.27E:02 1.30E:04</td><td>8E:05 8.16E-03 8.00E:04 1.38E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 33E:07 5.33E:04 8.96E:06 8.56E:05 4.65E:06 2.27E:05 1.30E:04 33E:07 5.33E:04 8.96E:06 8.56E:05 4.65E:06 2.27E:05 1.30E:04 33E:07 5.33E:04 8.96E:06 8.56E:05 4.65E:06 2.27E:05 1.30E:04 33E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 98E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 98E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 98E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 38E:04 1.33E:04 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.27E:02 1.30E:04 38E:04 1.32E:04 1.16E:05 5.67E:05 3.27E:02 3.27E:04 1.12E:04 1</td><td>8E-05 8.16E-03 8.00E-04 1.34E-05 1.28E-04 6.97E-06 3.40E-05 1.95E-04 33E-07 5.33E-04 8.96E-06 8.56E-05 4.65E-06 2.27E-05 1.30E-04 33E-07 6.97E-06 3.40E-05 1.32E-04 6.97E-06 3.40E-05 1.39E-04 33E-07 6.97E-06 3.40E-05 1.32E-04 6.97E-06 3.40E-05 1.39E-04 33E-07 6.97E-06 3.40E-05 1.32E-04 6.97E-06 3.40E-05 1.95E-04 98E-07 8.00E-04 1.34E-05 1.28E-04 6.97E-06 3.40E-05 1.95E-04 98E-07 8.00E-04 1.34E-05 1.28E-04 6.97E-06 3.40E-05 1.95E-04 38E-07 8.00E-04 1.34E-05 1.28E-04 6.97E-06 3.40E-05 1.95E-04 38E-07 1.33E-03 2.24E-05 2.27E-02 1.30E-04 3.25E-04</td><td>8E:06 4.62E:02 8.16E:03 8.00E:04 1.34E:06 1.28E:04 6.97E:06 3.40E:05 1.95E:04 1.95E:04 3BE:07 5.33E:04 8.00E:04 1.34E:05 8.56E:05 4.65E:06 2.27E:05 1.30E:04 1.28E:04 0.97E:06 3.00E:05 4.55E:04 1.28E:04 0.97E:06 3.00E:05 4.55E:04 1.28E:04 0.97E:06 3.00E:05 1.55E:04 1.28E:04 0.97E:06 3.00E:05 1.55E:04 1.28E:04 0.97E:06 3.00E:05 1.55E:04 1.28E:04 0.97E:06 3.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 1.28E:04 0.97E:06 3.40E:05 1.38E:0</td><td>9E-06 8.16E-03 8.00E-04 1.34E-05 1.28E-04 6.37E-06 3.40E-05 1.95E-04 33E-07 5.33E-04 8.00E-04 1.34E-05 1.28E-04 6.97E-06 3.40E-05 1.95E-04</td></td></td>	8E:05 4.62E:02 8.16E:03 8.00E:04 1.34E:05 33E:07 5.33E:04 8.96E:06 96E:07 38E:07 5.33E:04 8.96E:06 98E:07 5.33E:04 8.96E:06 98E:07 5.33E:04 8.96E:06 98E:07 8.00E:04 1.34E:05 98E:07 8.00E:04 1.34E:05 98E:07 8.00E:04 1.34E:05 38E:04 5.33E:04 8.96E:06 38E:04 5.33E:04 8.96E:06 38E:04 5.33E:04 8.96E:06 38E:04 5.33E:04 8.96E:06 38E:04 1.33E:03 2.24E:05 6E:07 1.34E:03 2.04E:05 96E:06 7.55E:03 1.27E:04 04:06 2.22E:03 3.78:05 06:38 79.76 13.11 0.00 0.00 0.33 0.01	8E-05 4.62E-02 8.16E-03 8.00E-04 1.34E-05 33E-07 5.33E-04 8.96E-06 99E-07 3BE-07 8.00E-04 1.34E-05 33E-07 8.00E-04 1.34E-05 98E-07 1.33E-03 2.24E-05 66E-07 1.33E-03 2.24E-05 98E-07 8.00E-04 1.34E-05 98E-06 7.55E-03 1.27E-04 98.08 79.76 13	8E-05 4.62E-02 8.16E-03 8.00E-04 1.34E-05 3BE-07 5.33E-04 8.96E-06	8E-05 4.62E-02 8.16E-03 8.00E-04 1.34E-05 1.28E-04 33E-07 5.33E-04 8.96E-06 8.56E-05 98-07 1.28E-04 33E-07 6.00E-04 1.34E-05 1.28E-04 98-06 8.56E-05 98E-07 6.00E-04 1.34E-05 1.28E-04 98-06 8.56E-05 98E-07 8.00E-04 1.34E-05 1.28E-04 98-06 8.56E-05 98E-07 8.00E-04 1.34E-05 1.28E-04 98-07 1.28E-04 38E-04 8.00E-04 1.34E-05 1.28E-04 98-07 1.28E-04 38E-04 5.33E-04 8.00E-04 1.34E-05 1.28E-04 38E-07 5.33E-04 8.00E-04 1.34E-05 1.28E-04 38E-07 1.33E-03 2.24E-05 2.14E-04 6E-05 98-07 1.34E-06 1.28E-04 2.00E-04 98-05 2.00E-04 98-07 0.00E-04 1.34E-05 1.28E-04 1.28E-04 1.28E-04 98-07 0.00E-04 1.3	8E:05 4.62E:02 8.16E:03 8.00E:04 1.34E:05 1.28E:04 6.97E:06 03E:07 5.33E:04 8.96E:06 8.56E:05 4.65E:06 98:06E:06 8.56E:05 4.65E:06 03E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 8.56E:05 4.65E:06 03E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 8.56E:05 4.65E:06 09E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 8.56E:06 4.65E:06 09E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.56E:02 4.65E:03 09E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.56E:02 4.65E:03 38:04 96E:03 8.00E:04 1.34E:05 1.28E:04 6.97E:06 03E:04 1.33E:03 2.24E:05 2.14E:04 1.16E:05 4.65E:03 09E:07 1.33E:03 2.24E:05 2.00E:04 1.08E:05 9.00E:04 1.08E:04 09E:07 8.00E:04 1.34E:05 <td>8E:06 4.62E:02 8.16E:03 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 33E:07 5.33E:04 8.96E:06 8.56E:05 4.65E:06 2.27E:05 33E:07 6.07E:04 1.34E:06 1.28E:04 6.97E:06 3.40E:05 33E:07 6.07E:06 8.00E:04 1.34E:06 1.28E:04 6.97E:06 3.40E:05 33E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 98E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 98E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 38E:04 5.33E:04 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 38E:04 5.33E:04 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 38E:04 1.34E:05 1.38E:03 2.24E:05 2.14E:04 1.68E:05 5.67E:05 98E:07 1.33E:03 2.24E:05 2.14E:04 1.08E:05 5.67E:05<!--</td--><td>8E:06 8.06E-04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 33E:07 5.33E:04 8.06E:04 1.34E:05 8.56E:05 4.65E:06 2.27E:05 1.30E:04 33E:07 6.33E:04 8.06E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.55E:04 33E:07 6.30E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.30E:04 33E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.30E:04 98E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 98E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 38E:04 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 38E:04 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 38E:04 1.34E:05 1.34E:05 1.28E:04 6.97E:06 3.27E:02 1.30E:04</td><td>8E:05 8.16E-03 8.00E:04 1.38E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 33E:07 5.33E:04 8.96E:06 8.56E:05 4.65E:06 2.27E:05 1.30E:04 33E:07 5.33E:04 8.96E:06 8.56E:05 4.65E:06 2.27E:05 1.30E:04 33E:07 5.33E:04 8.96E:06 8.56E:05 4.65E:06 2.27E:05 1.30E:04 33E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 98E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 98E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 98E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 38E:04 1.33E:04 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.27E:02 1.30E:04 38E:04 1.32E:04 1.16E:05 5.67E:05 3.27E:02 3.27E:04 1.12E:04 1</td><td>8E-05 8.16E-03 8.00E-04 1.34E-05 1.28E-04 6.97E-06 3.40E-05 1.95E-04 33E-07 5.33E-04 8.96E-06 8.56E-05 4.65E-06 2.27E-05 1.30E-04 33E-07 6.97E-06 3.40E-05 1.32E-04 6.97E-06 3.40E-05 1.39E-04 33E-07 6.97E-06 3.40E-05 1.32E-04 6.97E-06 3.40E-05 1.39E-04 33E-07 6.97E-06 3.40E-05 1.32E-04 6.97E-06 3.40E-05 1.95E-04 98E-07 8.00E-04 1.34E-05 1.28E-04 6.97E-06 3.40E-05 1.95E-04 98E-07 8.00E-04 1.34E-05 1.28E-04 6.97E-06 3.40E-05 1.95E-04 38E-07 8.00E-04 1.34E-05 1.28E-04 6.97E-06 3.40E-05 1.95E-04 38E-07 1.33E-03 2.24E-05 2.27E-02 1.30E-04 3.25E-04</td><td>8E:06 4.62E:02 8.16E:03 8.00E:04 1.34E:06 1.28E:04 6.97E:06 3.40E:05 1.95E:04 1.95E:04 3BE:07 5.33E:04 8.00E:04 1.34E:05 8.56E:05 4.65E:06 2.27E:05 1.30E:04 1.28E:04 0.97E:06 3.00E:05 4.55E:04 1.28E:04 0.97E:06 3.00E:05 4.55E:04 1.28E:04 0.97E:06 3.00E:05 1.55E:04 1.28E:04 0.97E:06 3.00E:05 1.55E:04 1.28E:04 0.97E:06 3.00E:05 1.55E:04 1.28E:04 0.97E:06 3.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 1.28E:04 0.97E:06 3.40E:05 1.38E:0</td><td>9E-06 8.16E-03 8.00E-04 1.34E-05 1.28E-04 6.37E-06 3.40E-05 1.95E-04 33E-07 5.33E-04 8.00E-04 1.34E-05 1.28E-04 6.97E-06 3.40E-05 1.95E-04</td></td>	8E:06 4.62E:02 8.16E:03 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 33E:07 5.33E:04 8.96E:06 8.56E:05 4.65E:06 2.27E:05 33E:07 6.07E:04 1.34E:06 1.28E:04 6.97E:06 3.40E:05 33E:07 6.07E:06 8.00E:04 1.34E:06 1.28E:04 6.97E:06 3.40E:05 33E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 98E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 98E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 38E:04 5.33E:04 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 38E:04 5.33E:04 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 38E:04 1.34E:05 1.38E:03 2.24E:05 2.14E:04 1.68E:05 5.67E:05 98E:07 1.33E:03 2.24E:05 2.14E:04 1.08E:05 5.67E:05 </td <td>8E:06 8.06E-04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 33E:07 5.33E:04 8.06E:04 1.34E:05 8.56E:05 4.65E:06 2.27E:05 1.30E:04 33E:07 6.33E:04 8.06E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.55E:04 33E:07 6.30E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.30E:04 33E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.30E:04 98E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 98E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 38E:04 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 38E:04 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 38E:04 1.34E:05 1.34E:05 1.28E:04 6.97E:06 3.27E:02 1.30E:04</td> <td>8E:05 8.16E-03 8.00E:04 1.38E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 33E:07 5.33E:04 8.96E:06 8.56E:05 4.65E:06 2.27E:05 1.30E:04 33E:07 5.33E:04 8.96E:06 8.56E:05 4.65E:06 2.27E:05 1.30E:04 33E:07 5.33E:04 8.96E:06 8.56E:05 4.65E:06 2.27E:05 1.30E:04 33E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 98E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 98E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 98E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 38E:04 1.33E:04 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.27E:02 1.30E:04 38E:04 1.32E:04 1.16E:05 5.67E:05 3.27E:02 3.27E:04 1.12E:04 1</td> <td>8E-05 8.16E-03 8.00E-04 1.34E-05 1.28E-04 6.97E-06 3.40E-05 1.95E-04 33E-07 5.33E-04 8.96E-06 8.56E-05 4.65E-06 2.27E-05 1.30E-04 33E-07 6.97E-06 3.40E-05 1.32E-04 6.97E-06 3.40E-05 1.39E-04 33E-07 6.97E-06 3.40E-05 1.32E-04 6.97E-06 3.40E-05 1.39E-04 33E-07 6.97E-06 3.40E-05 1.32E-04 6.97E-06 3.40E-05 1.95E-04 98E-07 8.00E-04 1.34E-05 1.28E-04 6.97E-06 3.40E-05 1.95E-04 98E-07 8.00E-04 1.34E-05 1.28E-04 6.97E-06 3.40E-05 1.95E-04 38E-07 8.00E-04 1.34E-05 1.28E-04 6.97E-06 3.40E-05 1.95E-04 38E-07 1.33E-03 2.24E-05 2.27E-02 1.30E-04 3.25E-04</td> <td>8E:06 4.62E:02 8.16E:03 8.00E:04 1.34E:06 1.28E:04 6.97E:06 3.40E:05 1.95E:04 1.95E:04 3BE:07 5.33E:04 8.00E:04 1.34E:05 8.56E:05 4.65E:06 2.27E:05 1.30E:04 1.28E:04 0.97E:06 3.00E:05 4.55E:04 1.28E:04 0.97E:06 3.00E:05 4.55E:04 1.28E:04 0.97E:06 3.00E:05 1.55E:04 1.28E:04 0.97E:06 3.00E:05 1.55E:04 1.28E:04 0.97E:06 3.00E:05 1.55E:04 1.28E:04 0.97E:06 3.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 1.28E:04 0.97E:06 3.40E:05 1.38E:0</td> <td>9E-06 8.16E-03 8.00E-04 1.34E-05 1.28E-04 6.37E-06 3.40E-05 1.95E-04 33E-07 5.33E-04 8.00E-04 1.34E-05 1.28E-04 6.97E-06 3.40E-05 1.95E-04</td>	8E:06 8.06E-04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 33E:07 5.33E:04 8.06E:04 1.34E:05 8.56E:05 4.65E:06 2.27E:05 1.30E:04 33E:07 6.33E:04 8.06E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.55E:04 33E:07 6.30E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.30E:04 33E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.30E:04 98E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 98E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 38E:04 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 38E:04 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 38E:04 1.34E:05 1.34E:05 1.28E:04 6.97E:06 3.27E:02 1.30E:04	8E:05 8.16E-03 8.00E:04 1.38E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 33E:07 5.33E:04 8.96E:06 8.56E:05 4.65E:06 2.27E:05 1.30E:04 33E:07 5.33E:04 8.96E:06 8.56E:05 4.65E:06 2.27E:05 1.30E:04 33E:07 5.33E:04 8.96E:06 8.56E:05 4.65E:06 2.27E:05 1.30E:04 33E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 98E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 98E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 98E:07 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 38E:04 1.33E:04 8.00E:04 1.34E:05 1.28E:04 6.97E:06 3.27E:02 1.30E:04 38E:04 1.32E:04 1.16E:05 5.67E:05 3.27E:02 3.27E:04 1.12E:04 1	8E-05 8.16E-03 8.00E-04 1.34E-05 1.28E-04 6.97E-06 3.40E-05 1.95E-04 33E-07 5.33E-04 8.96E-06 8.56E-05 4.65E-06 2.27E-05 1.30E-04 33E-07 6.97E-06 3.40E-05 1.32E-04 6.97E-06 3.40E-05 1.39E-04 33E-07 6.97E-06 3.40E-05 1.32E-04 6.97E-06 3.40E-05 1.39E-04 33E-07 6.97E-06 3.40E-05 1.32E-04 6.97E-06 3.40E-05 1.95E-04 98E-07 8.00E-04 1.34E-05 1.28E-04 6.97E-06 3.40E-05 1.95E-04 98E-07 8.00E-04 1.34E-05 1.28E-04 6.97E-06 3.40E-05 1.95E-04 38E-07 8.00E-04 1.34E-05 1.28E-04 6.97E-06 3.40E-05 1.95E-04 38E-07 1.33E-03 2.24E-05 2.27E-02 1.30E-04 3.25E-04	8E:06 4.62E:02 8.16E:03 8.00E:04 1.34E:06 1.28E:04 6.97E:06 3.40E:05 1.95E:04 1.95E:04 3BE:07 5.33E:04 8.00E:04 1.34E:05 8.56E:05 4.65E:06 2.27E:05 1.30E:04 1.28E:04 0.97E:06 3.00E:05 4.55E:04 1.28E:04 0.97E:06 3.00E:05 4.55E:04 1.28E:04 0.97E:06 3.00E:05 1.55E:04 1.28E:04 0.97E:06 3.00E:05 1.55E:04 1.28E:04 0.97E:06 3.00E:05 1.55E:04 1.28E:04 0.97E:06 3.00E:04 1.34E:05 1.28E:04 6.97E:06 3.40E:05 1.95E:04 1.28E:04 0.97E:06 3.40E:05 1.38E:0	9E-06 8.16E-03 8.00E-04 1.34E-05 1.28E-04 6.37E-06 3.40E-05 1.95E-04 33E-07 5.33E-04 8.00E-04 1.34E-05 1.28E-04 6.97E-06 3.40E-05 1.95E-04

HAP Emissions Summary

19-Apr-2013

CTG/HRSG and Feedstock Dryer Stack
Hudrogon Enorms Colifornia 11C

Hydrogen Energy California, LLC Hydrogen Energy California (HECA) Project

CT Fuel Input (Yearly Average - 65°F) =	2,537	10 ⁶ Btu/hr (higher heating value
Duct Burner Heat Input (Yearly Average - 65°F) =	290	10 ⁶ Btu/hr (higher heating value
Total HRSG Heat Input (Yearly Average - 65°F) =	2,827	10 ⁶ Btu/hr (higher heating value
lourly emissions based on 100 percent load at average high ambient te	mperature (9	7°F)
CT Fuel Input (Avg. High Ambient - 97°F) =	2,583	10 ⁶ Btu/hr (higher heating value
Duct Burner Heat Input (97°F) =	278	10 ⁶ Btu/hr (higher heating value
Total HRSG Heat Input (97°F) =	2,861	10 ⁶ Btu/hr (higher heating value
HRSG		
HRSG (Firing Syngas) Normal Operating Hours =	8000	hr/yr
HRSG (Firing Natural Gas) Normal Operating Hours =	336	hr/yr
HRSG Startup Hours =	9	hr/yr
HRSG Shutdown Hours =	18	hr/yr
Total HRSG Operating Hours	8,363	hr/yr
Feedstock Dryer		
Feedstock Dryer Normal Operating Hours =	8000	hr/yr
Feedstock Dryer Startup Hours =	8	hr/yr
Feedstock Dryer Shutdown Hours =	8	hr/yr
Total Feedstock Drver Operating Hours	8.016	hr/yr

Exhaust from HRSG normal operation would be splitted into 85% 15%

to HRSG stack to Feedstock dryer stack

		1	HRSG + Feedstock Dryer					
			Toal Hourly Combined Emission	Total Annual Combined Emissions	CTG/HR	SG Stack	Feedstock	Dryer Stack
		Emission Factor	Hourly	Annual	Hourly	Annual	Hourly	Annual
Compound	CAS #	(lb/10 ¹² Btu coal)	(lb/hr)	(lb/yr)	(lb/hr)	(lb/yr)	(lb/hr)	(lb/yr)
Acetaldehyde	75-07-0	1.8	5.15E-03	4.26E+01	4.38E-03	3.62E+01	7.72E-04	6.38E+00
Ammonia	7664-41-7	5 ppm	2.17E+01	1.78E+05	1.85E+01	1.53E+05	3.20E+00	2.50E+04
Antimony	7440-36-0	1.1	3.15E-03	2.60E+01	2.68E-03	2.21E+01	4.72E-04	3.90E+00
Arsenic	7440-38-2	2.4	6.87E-03	5.67E+01	5.84E-03	4.82E+01	1.03E-03	8.51E+00
Benz(a)anthracene	56-55-3	0.0023	6.58E-06	5.44E-02	5.59E-06	4.62E-02	9.87E-07	8.16E-03
Benzene	71-43-2	2.4	6.87E-03	5.67E+01	5.84E-03	4.82E+01	1.03E-03	8.51E+00
Beryllium	7440-41-7	0.26	7.44E-04	6.15E+00	6.32E-04	5.22E+00	1.12E-04	9.22E-01
Cadmium	7440-43-9	9.6	2.75E-02	2.27E+02	2.33E-02	1.93E+02	4.12E-03	3.40E+01
Carbon disulfide	75-15-0	46	1.32E-01	1.09E+03	1.12E-01	9.24E+02	1.97E-02	1.63E+02
Chromium (hexavalent)	18540-29-9	0.15	4.38E-04	3.62E+00	3.72E-04	3.07E+00	6.57E-05	5.43E-01
Chromium	7440-47-3	0.51	1.46E-03	1.21E+01	1.24E-03	1.02E+01	2.19E-04	1.81E+00
Cobalt	7440-48-4	0.26	7.44E-04	6.15E+00	6.32E-04	5.22E+00	1.12E-04	9.22E-01
Cyanides	57-12-5	5.7	1.63E-02	1.35E+02	1.39E-02	1.15E+02	2.45E-03	2.02E+01
Formaldehyde	50-00-0	17	4.86E-02	4.02E+02	4.13E-02	3.42E+02	7.30E-03	6.03E+01
Hydrochloric acid	7647-01-0	13	3.72E-02	3.07E+02	3.16E-02	2.61E+02	5.58E-03	4.61E+01
Hydrogen fluoride (Hydrofluoric acid)	7664-39-3	50	1.43E-01	1.18E+03	1.22E-01	1.00E+03	2.15E-02	1.77E+02
Lead	7439-92-1	0.56	1.60E-03	1.32E+01	1.36E-03	1.13E+01	2.40E-04	1.99E+00
Manganese	7439-96-5	1.0	2.98E-03	2.46E+01	2.53E-03	2.09E+01	4.46E-04	3.69E+00
Mercury	7439-97-6	see notes	1.18E-03	9.59E+00	4.57E-04	3.82E+00	7.20E-04	5.77E+00
Methyl bromide (Bromomethane)	74-83-9	47.7	1.36E-01	1.13E+03	1.16E-01	9.59E+02	2.05E-02	1.69E+02
Methylene chloride (Dichloromethane)	75-09-2	2.2	6.29E-03	5.20E+01	5.35E-03	4.42E+01	9.44E-04	7.80E+00
Naphthalene	91-20-3	2.5	7.15E-03	5.91E+01	6.08E-03	5.02E+01	1.07E-03	8.87E+00
Nickel	7440-02-0	0.39	1.12E-03	9.22E+00	9.48E-04	7.84E+00	1.67E-04	1.38E+00
Phenol	108-95-2	36.8	1.05E-01	8.70E+02	8.95E-02	7.40E+02	1.58E-02	1.31E+02
Selenium	7782-49-2	0.56	1.60E-03	1.32E+01	1.36E-03	1.13E+01	2.40E-04	1.99E+00
Sulfuric acid and sulfates	7664-93-9	95	2.72E-01	2.25E+03	2.31E-01	1.91E+03	4.08E-02	3.37E+02
Toluene	108-88-3	0.033	9.44E-05	7.80E-01	8.03E-05	6.63E-01	1.42E-05	1.17E-01

 Netes:
 International presentation is not will primarily fire syngas with natural gas as a backup fuel.

 1) For the normal operating scenario, he will primarily fire syngas with natural gas as a backup fuel.
 International presentation of the syngas with natural gas as a backup fuel.

 2) Emission factors are taken how the taket data and he teletonal Energy Technology Laboratory, U.S. Dept of Energy. Major Environmental Aspects of Gasilication-backet preserved ensembles for thorogets, Final Report, December 2002.
 3) Ammonia sign from the SCR (5 parts per million volume dry @ 15 percent Q₂) - provided by Fluor - see Criteria Pollutant emission spreadsheet for details.

 Btu = British thermal units. 				
5) Mercury (Hg) emission estimates are based on the following assumptions for the worst-case	100% coal scenario:			
Total gasifier coal feed rate	5023 stpd			
Hg concentration in coal feed	0.13 ppmw			
Total Hg in coal feed	1.306 lb/day	0.0544	lb/hr	
Uncontrolled Feedstock dryer Hg emission from volatilization (MHI est)	0.067 lb/day	0.0028	lb/hr	
Feedstock dryer Hg emissions control efficiency	75%			
Controlled Feedstock dryer Hg emission from volatilization	0.0168 lb/day	0.00070	lb/hr	
Total Controlled Feedstock dryer Hg emission from volatilization + HRSG flue gas	0.0173 lb/day	0.000720	lb/hr	
Hg in syngas from gasifier	1.289 lb/day	0.0537	lb/hr	
Control efficiency of the mercury cleanup in the syngas	99%			
Controlled HG emissions in HRSG flue gas	0.013 lb/day	0.000537	lb/hr	
Controlled HG emissions from the HRSG stack	0.011 lb/day	0.000457	lb/hr	
Total Hg emissions from HRSG + Feedstock dryer	0.028 lb/day	0.001177	lb/hr	
Total Hg emissions from HRSG + Feedstock dryer		0.0029	lb/GWh	
Gross power output		405	MW	A low gross power rate is used to ensure the emission performance standard is conser
6) The emission rates of natural gas firing (startup, shutdown, and 336 hours of steady state of	peration) were calculated based on the emiss	on factors used for the synga	is firing.	
	s over pulverized Feedstock to dry it before it i	s injected into the gasifier. T	herefore, it was as:	sumed that HRSG/Feedstock dryer exhaust is split based on 85%/15%. No exhaust will be directed to the
Feedstock dryer during natural gas operations or portions of startup and shutdown.				
 Annual emissions for both HRSG and Feedstock dryer based on the higher hours of operation 	on of the HRSG			

Cooling Towers

HAP Emissions Summary

19-Apr-2013

Hydrogen Energy California, LLC Hydrogen Energy California (HECA) Project Cooling Tower Operating Parameters

	Power Block	Process Area	ASU
Cooling water (CW) circulation rate, gpm =	95,500	162,582	44,876
CW circulation rate (million lb/hr) =	48	81	22
CW dissolved solids (ppmw) =	9,000	9,000	2,000
Drift, fraction of circulating CW =	0.0005%	0.0005%	0.0005%
Cooling Tower Operating Hours	8,668	8,314	8,314
Number of cells in tower	10	11	4

Assumed maximum TDS in circulating cooling water, normally TDS will be less.

Power Block Cooling Tower

	CAS # /	Emission			Hourly per	Annual per
	OEHHA	Factor	Hourly	Annual	Cell	Cell
Compound	reference #	(ppm)	(lb/hr)	(lb/yr)	(lb/hr)	(lb/yr)
Arsenic	7440-38-2	0.026	6.15E-06	5.33E-02	6.15E-07	5.33E-03
Copper	7440-50-8	0.005	1.19E-06	1.03E-02	1.19E-07	1.03E-03
Fluoride	1101	0.45	1.07E-04	9.31E-01	1.07E-05	9.31E-02
Manganese	7439-96-5	1.29	3.07E-04	2.66E+00	3.07E-05	2.66E-01
Selenium	7784-49-2	0.02	5.11E-06	4.43E-02	5.11E-07	4.43E-03

Notes:

1) The emissions are based on the concentrations of each constituent found in the raw cooling water analysis, cycles of

concentration, and drift rate.

2) Arsenic ppm value shown taken as average of analytical test results (Fruit Growers Laboratory). 3) Copper ppm value shown is one-half of stated detection limit.

4) Fluoride ppm value shown taken as average of analytical test results (Fruit Growers Laboratory).

5) Manganese ppm value shown taken as average of analytical test results (Fruit Growers Laboratory).

6) Selenium ppm value shown taken as average of analytical test results (DWR).

Process Area Cooling Tower

	CAS # /	Emission			Hourly per	Annual per
	OEHHA	Factor	Hourly	Annual	Cell	Cell
Compound	reference #	(ppm)	(lb/hr)	(lb/yr)	(lb/hr)	(lb/yr)
Arsenic	7440-38-2	0.026	1.05E-05	8.70E-02	9.51E-07	7.91E-03
Copper	7440-50-8	0.005	2.03E-06	1.69E-02	1.85E-07	1.54E-03
Fluoride	1101	0.45	1.83E-04	1.52E+00	1.66E-05	1.38E-01
Manganese	7439-96-5	1.29	5.23E-04	4.35E+00	4.75E-05	3.95E-01
Selenium	7784-49-2	0.02	8.70E-06	7.23E-02	7.91E-07	6.57E-03

Notes:

1) The emissions are based on the concentrations of each constituent found in the raw cooling water analysis, cycles of concentration, and drift rate.

2) Arsenic ppm value shown taken as average of analytical test results (Fruit Growers Laboratory).

3) Copper ppm value shown is one-half of stated detection limit.

4) Fluoride ppm value shown taken as average of analytical test results (Fruit Growers Laboratory).

5) Manganese ppm value shown taken as average of analytical test results (Fruit Growers Laboratory).

6) Selenium ppm value shown taken as average of analytical test results (DWR).

ASU Cooling Tower

	CAS # /	Emission			Hourly per	Annual per
	OEHHA	Factor	Hourly	Annual	Cell	Cell
Compound	reference #	(ppm)	(lb/hr)	(lb/yr)	(lb/hr)	(lb/yr)
Arsenic	7440-38-2	0.026	2.89E-06	2.40E-02	7.22E-07	6.00E-03
Copper	7440-50-8	0.005	5.61E-07	4.66E-03	1.40E-07	1.17E-03
Fluoride	1101	0.45	5.05E-05	4.20E-01	1.26E-05	1.05E-01
Manganese	7439-96-5	1.29	1.44E-04	1.20E+00	3.61E-05	3.00E-01
Selenium	7784-49-2	0.02	2.40E-06	2.00E-02	6.00E-07	4.99E-03

Notes:

1) The emissions are based on the concentrations of each constituent found in the raw cooling water analysis, cycles of

concentration, and drift rate. 2) Arsenic ppm value shown taken as average of analytical test results (Fruit Growers Laboratory).

3) Copper ppm value shown is one-half of stated detection limit.

Fluoride ppm value shown taken as average of analytical test results (Fruit Growers Laboratory).

5) Manganese ppm value shown taken as average of analytical test results (Fruit Growers Laboratory).

6) Selenium ppm value shown taken as average of analytical test results (DWR).

Auxiliary Boiler

HAP Emissions Summary

Hydrogen Energy California, LLC Hydrogen Energy California (HECA) Project

Operating Parameters

213	10 ⁶ Btu/hr (HHV)
1,050	Btu/scf
0.203	10 ⁶ scf/hr
2,190	hours per year
	1,050 0.203

		Emission Factor	Hourly	Annual
Compound	CAS #	(lb/10 ⁶ scf)	(lb/hr)	(lb/yr)
Ammonia	7664-41-7	5 ppm	4.69E-01	1.03E+03
Arsenic	7440-38-2	2.00E-04	4.06E-05	8.89E-02
Benzene	71-43-2	2.10E-03	4.26E-04	9.33E-01
Beryllium	7440-41-7	1.20E-05	2.43E-06	5.33E-03
Cadmium	7440-43-9	1.10E-03	2.23E-04	4.89E-01
Chromium	7440-47-3	1.40E-03	2.84E-04	6.22E-01
Cobalt	7440-48-4	8.40E-05	1.70E-05	3.73E-02
Copper	7440-50-8	8.50E-04	1.72E-04	3.78E-01
Formaldehyde	50-00-0	7.50E-02	1.52E-02	3.33E+01
Hexane	110-54-3	1.80E+00	3.65E-01	8.00E+02
Manganese	7439-96-5	3.80E-04	7.71E-05	1.69E-01
Mercury	7439-97-6	2.60E-04	5.27E-05	1.16E-01
Naphthalene	91-20-3	6.10E-04	1.24E-04	2.71E-01
Nickel	7440-02-0	2.10E-03	4.26E-04	9.33E-01
Selenium	7782-49-2	2.40E-05	4.87E-06	1.07E-02
Toluene	108-88-3	3.40E-03	6.90E-04	1.51E+00
Vanadium	7440-62-2	2.30E-03	4.67E-04	1.02E+00
Benzo(a)pyrene	50-32-8	1.20E-06	2.43E-07	5.33E-04
Benz(a)anthracene	56-55-3	1.80E-06	3.65E-07	8.00E-04
Benzo(b)fluoranthene	205-99-2	1.80E-06	3.65E-07	8.00E-04
Chrysene	218-01-9	1.80E-06	3.65E-07	8.00E-04
Dibenzo(a,h)anthracene	53-70-3	1.20E-06	2.43E-07	5.33E-04
Dichlorobenzene	106-46-7	1.20E-03	2.43E-04	5.33E-01
Indeno(1,2,3-cd)pyrene	193-39-5	1.80E-06	3.65E-07	8.00E-04
2-Methylnaphthalene	91-57-6	2.40E-05	4.87E-06	1.07E-02
3-Methylchloranthrene	56-49-5	1.80E-06	3.65E-07	8.00E-04
7,12-Dimethylbenz(a)anthracene	57-97-6	1.60E-05	3.25E-06	7.11E-03
Acenaphthene	83-32-9	1.80E-06	3.65E-07	8.00E-04
Acenaphthylene	208-96-8	1.80E-06	3.65E-07	8.00E-04
Anthracene	120-12-7	2.40E-06	4.87E-07	1.07E-03
Benzo(g,h,i)perylene	191-24-2	1.20E-06	2.43E-07	5.33E-04
Benzo(k)fluoranthene	207-08-9	1.80E-06	3.65E-07	8.00E-04
Fluoranthene	206-44-0	3.00E-06	6.09E-07	1.33E-03
Fluorene	86-73-7	2.80E-06	5.68E-07	1.24E-03
Phenanathrene	85-01-8	1.70E-05	3.45E-06	7.55E-03
Pyrene	129-00-0	5.00E-06	1.01E-06	2.22E-03

Notes:

1) Emission factors (lb/106 scf) are from EPA AP-42, Chapter 1.4, Table 1.4-3 and 1.4-4.

2) Ammonia slip from the SCR (5 parts per million volume dry @ 15 percent Q) - provided by Fluor - see Criteria Pollutant emission spreadsheet for details.

Ammonia Plant Startup Heater

HAP Emissions Summary

Hydrogen Energy California, LLC Hydrogen Energy California (HECA) Project

Operating Parameters

10⁶ Btu/hr (HHV) 1,050 Btu/scf 10⁶ scf/hr 0.053 hours per year

56

140

		Emission Factor	Hourly	Annual
Compound	CAS #	(lb/10 ⁶ scf)	(lb/hr)	(lb/yr)
Arsenic	7440-38-2	2.00E-04	1.07E-05	1.49E-03
Benzene	71-43-2	2.10E-03	1.12E-04	1.57E-02
Beryllium	7440-41-7	1.20E-05	6.40E-07	8.96E-05
Cadmium	7440-43-9	1.10E-03	5.87E-05	8.21E-03
Chromium	7440-47-3	1.40E-03	7.47E-05	1.05E-02
Cobalt	7440-48-4	8.40E-05	4.48E-06	6.27E-04
Copper	7440-50-8	8.50E-04	4.53E-05	6.35E-03
Formaldehyde	50-00-0	7.50E-02	4.00E-03	5.60E-01
Hexane	110-54-3	1.80E+00	9.60E-02	1.34E+01
Manganese	7439-96-5	3.80E-04	2.03E-05	2.84E-03
Mercury	7439-97-6	2.60E-04	1.39E-05	1.94E-03
Naphthalene	91-20-3	6.10E-04	3.25E-05	4.55E-03
Nickel	7440-02-0	2.10E-03	1.12E-04	1.57E-02
Selenium	7782-49-2	2.40E-05	1.28E-06	1.79E-04
Toluene	108-88-3	3.40E-03	1.81E-04	2.54E-02
Vanadium	7440-62-2	2.30E-03	1.23E-04	1.72E-02
Benzo(a)pyrene	50-32-8	1.20E-06	6.40E-08	8.96E-06
Benz(a)anthracene	56-55-3	1.80E-06	9.60E-08	1.34E-05
Benzo(b)fluoranthene	205-99-2	1.80E-06	9.60E-08	1.34E-05
Chrysene	218-01-9	1.80E-06	9.60E-08	1.34E-05
Dibenzo(a,h)anthracene	53-70-3	1.20E-06	6.40E-08	8.96E-06
Dichlorobenzene	106-46-7	1.20E-03	6.40E-05	8.96E-03
Indeno(1,2,3-cd)pyrene	193-39-5	1.80E-06	9.60E-08	1.34E-05
2-Methylnaphthalene	91-57-6	2.40E-05	1.28E-06	1.79E-04
3-Methylchloranthrene	56-49-5	1.80E-06	9.60E-08	1.34E-05
7,12-Dimethylbenz(a)anthracene	57-97-6	1.60E-05	8.53E-07	1.19E-04
Acenaphthene	83-32-9	1.80E-06	9.60E-08	1.34E-05
Acenaphthylene	208-96-8	1.80E-06	9.60E-08	1.34E-05
Anthracene	120-12-7	2.40E-06	1.28E-07	1.79E-05
Benzo(g,h,i)perylene	191-24-2	1.20E-06	6.40E-08	8.96E-06
Benzo(k)fluoranthene	207-08-9	1.80E-06	9.60E-08	1.34E-05
Fluoranthene	206-44-0	3.00E-06	1.60E-07	2.24E-05
Fluorene	86-73-7	2.80E-06	1.49E-07	2.09E-05
Phenanathrene	85-01-8	1.70E-05	9.07E-07	1.27E-04
Pyrene	129-00-0	5.00E-06	2.67E-07	3.73E-05

Notes:

1) Emission factors (lb/106 scf) are from EPA AP-42, Chapter 1.4, Table 1.4-3 and 1.4-4.

19-Apr-2013

HAP Emissions Summary

19-Apr-2013

Hydrogen Energy California, LLC Hydrogen Energy California (HECA) Project

Operating Parameters

Gasification Flare

Reference HHV = 1,050 btu/scf

Gasification Flare - Normal Operating Emissions From Pilot

Total Hours of Pilot Operation =	8,760	hr/yr
Flare Pilot Fuel Use =	0.5	10 ⁶ Btu/hr

Gasification Flare - Operating Emissions During Gasifier Startup and Shutdown

	10 ⁶ Btu/yr	Hours per year	
Total Flare SU/SD Operation =	70,528	28	
Flaring NG-Firing Rate =	2,926	6	
Wet Unshifted Gas-Firing Rate =	2,386	4	
Dry Shifted Gas-Firing Rate =	2,413	18	

		Emission Factor	Emission Factor	Hourly	Annual
Compound	CAS #	(lb/10 ⁶ scf)	(lb/10 ⁶ Btu)	(lb/hr)	(lb/yr)
Arsenic	7440-38-2	2.00E-04	1.90E-07	5.57E-04	1.43E-02
Benzene	71-43-2	2.10E-03	2.00E-06	5.85E-03	1.50E-01
Beryllium	7440-41-7	1.20E-05	1.14E-08	3.34E-05	8.56E-04
Cadmium	7440-43-9	1.10E-03	1.05E-06	3.07E-03	7.85E-02
Chromium	7440-47-3	1.40E-03	1.33E-06	3.90E-03	9.99E-02
Cobalt	7440-48-4	8.40E-05	8.00E-08	2.34E-04	5.99E-03
Copper	7440-50-8	8.50E-04	8.10E-07	2.37E-03	6.06E-02
Formaldehyde	50-00-0	7.50E-02	7.14E-05	2.09E-01	5.35E+00
Hexane	110-54-3	1.80E+00	1.71E-03	5.02E+00	1.28E+02
Manganese	7439-96-5	3.80E-04	3.62E-07	1.06E-03	2.71E-02
Mercury	7439-97-6	2.60E-04	2.48E-07	7.25E-04	1.85E-02
Naphthalene	91-20-3	6.10E-04	5.81E-07	1.70E-03	4.35E-02
Nickel	7440-02-0	2.10E-03	2.00E-06	5.85E-03	1.50E-01
Selenium	7782-49-2	2.40E-05	2.29E-08	6.69E-05	1.71E-03
Toluene	108-88-3	3.40E-03	3.24E-06	9.48E-03	2.43E-01
Vanadium	7440-62-2	2.30E-03	2.19E-06	6.41E-03	1.64E-01
Benzo(a)pyrene	50-32-8	1.20E-06	1.14E-09	3.34E-06	8.56E-05
Benz(a)anthracene	56-55-3	1.80E-06	1.71E-09	5.02E-06	1.28E-04
Benzo(b)fluoranthene	205-99-2	1.80E-06	1.71E-09	5.02E-06	1.28E-04
Chrysene	218-01-9	1.80E-06	1.71E-09	5.02E-06	1.28E-04
Dibenzo(a,h)anthracene	53-70-3	1.20E-06	1.14E-09	3.34E-06	8.56E-05
Dichlorobenzene	106-46-7	1.20E-03	1.14E-06	3.34E-03	8.56E-02
Indeno(1,2,3-cd)pyrene	193-39-5	1.80E-06	1.71E-09	5.02E-06	1.28E-04
2-Methylnaphthalene	91-57-6	2.40E-05	2.29E-08	6.69E-05	1.71E-03
3-Methylchloranthrene	56-49-5	1.80E-06	1.71E-09	5.02E-06	1.28E-04
7,12-Dimethylbenz(a)anthracene	57-97-6	1.60E-05	1.52E-08	4.46E-05	1.14E-03
Acenaphthene	83-32-9	1.80E-06	1.71E-09	5.02E-06	1.28E-04
Acenaphthylene	208-96-8	1.80E-06	1.71E-09	5.02E-06	1.28E-04
Anthracene	120-12-7	2.40E-06	2.29E-09	6.69E-06	1.71E-04
Benzo(g,h,i)perylene	191-24-2	1.20E-06	1.14E-09	3.34E-06	8.56E-05
Benzo(k)fluoranthene	207-08-9	1.80E-06	1.71E-09	5.02E-06	1.28E-04
Fluoranthene	206-44-0	3.00E-06	2.86E-09	8.36E-06	2.14E-04
Fluorene	86-73-7	2.80E-06	2.67E-09	7.80E-06	2.00E-04
Phenanathrene	85-01-8	1.70E-05	1.62E-08	4.74E-05	1.21E-03
Pyrene	129-00-0	5.00E-06	4.76E-09	1.39E-05	3.57E-04

Notes:

1) Annual operation assumes total pilot operation of 8,760 hr/yr and plus gasifier startup and shutdown.

2) Emission factors (lb/10⁶ scf) are from EPA AP-42, Chapter 1.4, Table 1.4-3 and 1.4-4.

HAP Emission	s Summary

19-Apr-2013

Hydrogen Energy California, LLC Hydrogen Energy California (HECA) Project

Operating Parameters

SRU Flare

Reference HHV = 1,050 btu/scf

SRU Flare - Normal Operating Emissions From Pilot

Total Hours of Pilot Operation =	8,760	hr/yr
Elevated Flare Pilot Fuel Use =	0.3	10 ⁶ Btu/hr

SRU Flare - Operating Emissions During Gasifier Startup and Shutdown

Total Flare Operation During SU/SD =	40.0	hr/yr
Natural Gas Heat Rate (assist gas) =	36.0	10 ⁶ Btu/hr

		Emission Factor	Emission Factor	Hourly	Annual
Compound	CAS #	(lb/10 ⁶ scf)	(Ib/10 ⁶ Btu)	(lb/hr)	(lb/yr)
Arsenic	7440-38-2	2.00E-04	1.90E-07	6.91E-06	7.75E-04
Benzene	71-43-2	2.10E-03	2.00E-06	7.26E-05	8.14E-03
Beryllium	7440-41-7	1.20E-05	1.14E-08	4.15E-07	4.65E-05
Cadmium	7440-43-9	1.10E-03	1.05E-06	3.80E-05	4.26E-03
Chromium	7440-47-3	1.40E-03	1.33E-06	4.84E-05	5.42E-03
Cobalt	7440-48-4	8.40E-05	8.00E-08	2.90E-06	3.25E-04
Copper	7440-50-8	8.50E-04	8.10E-07	2.94E-05	3.29E-03
Formaldehyde	50-00-0	7.50E-02	7.14E-05	2.59E-03	2.91E-01
Hexane	110-54-3	1.80E+00	1.71E-03	6.22E-02	6.97E+00
Manganese	7439-96-5	3.80E-04	3.62E-07	1.31E-05	1.47E-03
Mercury	7439-97-6	2.60E-04	2.48E-07	8.99E-06	1.01E-03
Naphthalene	91-20-3	6.10E-04	5.81E-07	2.11E-05	2.36E-03
Nickel	7440-02-0	2.10E-03	2.00E-06	7.26E-05	8.14E-03
Selenium	7782-49-2	2.40E-05	2.29E-08	8.30E-07	9.30E-05
Toluene	108-88-3	3.40E-03	3.24E-06	1.18E-04	1.32E-02
Vanadium	7440-62-2	2.30E-03	2.19E-06	7.95E-05	8.91E-03
Benzo(a)pyrene	50-32-8	1.20E-06	1.14E-09	4.15E-08	4.65E-06
Benz(a)anthracene	56-55-3	1.80E-06	1.71E-09	6.22E-08	6.97E-06
Benzo(b)fluoranthene	205-99-2	1.80E-06	1.71E-09	6.22E-08	6.97E-06
Chrysene	218-01-9	1.80E-06	1.71E-09	6.22E-08	6.97E-06
Dibenzo(a,h)anthracene	53-70-3	1.20E-06	1.14E-09	4.15E-08	4.65E-06
Dichlorobenzene	106-46-7	1.20E-03	1.14E-06	4.15E-05	4.65E-03
Indeno(1,2,3-cd)pyrene	193-39-5	1.80E-06	1.71E-09	6.22E-08	6.97E-06
2-Methylnaphthalene	91-57-6	2.40E-05	2.29E-08	8.30E-07	9.30E-05
3-Methylchloranthrene	56-49-5	1.80E-06	1.71E-09	6.22E-08	6.97E-06
7,12-Dimethylbenz(a)anthracene	57-97-6	1.60E-05	1.52E-08	5.53E-07	6.20E-05
Acenaphthene	83-32-9	1.80E-06	1.71E-09	6.22E-08	6.97E-06
Acenaphthylene	208-96-8	1.80E-06	1.71E-09	6.22E-08	6.97E-06
Anthracene	120-12-7	2.40E-06	2.29E-09	8.30E-08	9.30E-06
Benzo(g,h,i)perylene	191-24-2	1.20E-06	1.14E-09	4.15E-08	4.65E-06
Benzo(k)fluoranthene	207-08-9	1.80E-06	1.71E-09	6.22E-08	6.97E-06
Fluoranthene	206-44-0	3.00E-06	2.86E-09	1.04E-07	1.16E-05
Fluorene	86-73-7	2.80E-06	2.67E-09	9.68E-08	1.08E-05
Phenanathrene	85-01-8	1.70E-05	1.62E-08	5.88E-07	6.59E-05
Pyrene	129-00-0	5.00E-06	4.76E-09	1.73E-07	1.94E-05

Notes:

Annual operation assumes total pilot operation of 8,760 hr/yr plus gasifier startup and shutdown with assist gas.
 Emission factors (lb/10⁶ scf) are from EPA AP-42, Chapter 1.4, Table 1.4-3 and 1.4-4.

Hydrogen Energy California, LLC Hydrogen Energy California (HECA) Project

Operating Parameters

1,050 btu/scf

hr/yr

Operating Parameters - Normal Operating Emissions From Pilot MMBtu/hr

Reference HHV =

· · · · · · · · · · · · · · · · · · ·	
Rectisol Flare Pilot Firing Rate =	0.3
Annual Operating Hours =	8,760

Rectisol Flare - Operating Emissions During Rectisol Startup and Shutdown

Total Flare Operation During SU/SD = hr/yr 10⁶ Btu/hr 40 Heat Rate of Vent Gas, HHV = 430

		Emission Factor	Emission Factor	Hourly	Annual
Compound	CAS Number	(lb/10 ⁶ scf)	(lb/MMBtu)	(lb/hr)	(lb/yr)
Arsenic	7440-38-2	2.00E-04	1.90E-07	8.20E-05	3.78E-03
Benzene	71-43-2	2.10E-03	2.00E-06	8.61E-04	3.97E-02
Beryllium	7440-41-7	1.20E-05	1.14E-08	4.92E-06	2.27E-04
Cadmium	7440-43-9	1.10E-03	1.05E-06	4.51E-04	2.08E-02
Chromium	7440-47-3	1.40E-03	1.33E-06	5.74E-04	2.64E-02
Cobalt	7440-48-4	8.40E-05	8.00E-08	3.44E-05	1.59E-03
Copper	7440-50-8	8.50E-04	8.10E-07	3.48E-04	1.61E-02
Formaldehyde	50-00-0	7.50E-02	7.14E-05	3.07E-02	1.42E+00
Hexane	110-54-3	1.80E+00	1.71E-03	7.38E-01	3.40E+01
Manganese	7439-96-5	3.80E-04	3.62E-07	1.56E-04	7.18E-03
Mercury	7439-97-6	2.60E-04	2.48E-07	1.07E-04	4.91E-03
Naphthalene	91-20-3	6.10E-04	5.81E-07	2.50E-04	1.15E-02
Nickel	7440-02-0	2.10E-03	2.00E-06	8.61E-04	3.97E-02
Selenium	7782-49-2	2.40E-05	2.29E-08	9.84E-06	4.53E-04
Toluene	108-88-3	3.40E-03	3.24E-06	1.39E-03	6.42E-02
Vanadium	7440-62-2	2.30E-03	2.19E-06	9.43E-04	4.34E-02
Benzo(a)pyrene	50-32-8	1.20E-06	1.14E-09	4.92E-07	2.27E-05
Benz(a)anthracene	56-55-3	1.80E-06	1.71E-09	7.38E-07	3.40E-05
Benzo(b)fluoranthene	205-99-2	1.80E-06	1.71E-09	7.38E-07	3.40E-05
Chrysene	218-01-9	1.80E-06	1.71E-09	7.38E-07	3.40E-05
Dibenzo(a,h)anthracene	53-70-3	1.20E-06	1.14E-09	4.92E-07	2.27E-05
Dichlorobenzene	106-46-7	1.20E-03	1.14E-06	4.92E-04	2.27E-02
Indeno(1,2,3-cd)pyrene	193-39-5	1.80E-06	1.71E-09	7.38E-07	3.40E-05
2-Methylnaphthalene	91-57-6	2.40E-05	2.29E-08	9.84E-06	4.53E-04
3-Methylchloranthrene	56-49-5	1.80E-06	1.71E-09	7.38E-07	3.40E-05
7,12-Dimethylbenz(a)anthracene	57-97-6	1.60E-05	1.52E-08	6.56E-06	3.02E-04
Acenaphthene	83-32-9	1.80E-06	1.71E-09	7.38E-07	3.40E-05
Acenaphthylene	208-96-8	1.80E-06	1.71E-09	7.38E-07	3.40E-05
Anthracene	120-12-7	2.40E-06	2.29E-09	9.84E-07	4.53E-05
Benzo(g,h,i)perylene	191-24-2	1.20E-06	1.14E-09	4.92E-07	2.27E-05
Benzo(k)fluoranthene	207-08-9	1.80E-06	1.71E-09	7.38E-07	3.40E-05
Fluoranthene	206-44-0	3.00E-06	2.86E-09	1.23E-06	5.67E-05
Fluorene	86-73-7	2.80E-06	2.67E-09	1.15E-06	5.29E-05
Phenanathrene	85-01-8	1.70E-05	1.62E-08	6.97E-06	3.21E-04
Pyrene	129-00-0	5.00E-06	4.76E-09	2.05E-06	9.44E-05

Notes:

1) Annual operation assumes total pilot operation of 8,760 hr/yr plus rectisol startup and shutdown.

2) Emission factors (lb/10⁶ scf) are from EPA AP-42, Chapter 1.4, Table 1.4-3 and 1.4-4.

19-Apr-2013

Tail Gas Thermal Oxidizer

Hydrogen Energy California, LLC Hydrogen Energy California (HECA) Project

Operating Parameters

perating ratameters		
Normal Operations		
Tail Gas Thermal Oxidizer Heat Input =	13	10 ⁶ Btu/hr (HHV)
Natural gas heating value =	1,050	Btu/scf
Fuel usage =	0.012	10 ⁶ scf/hr
Tail Gas Thermal Oxidizer Operating Hours =	8,314	hr/yr
Startup & Shutdown Operations		
Heat Input =	80	10 ⁶ Btu/hr (HHV)
Fuel usage =	0.076	10 ⁶ scf/hr
Startup & Shutdown Hours per year =	72	hr/yr

		Emission Factor	Hourly	Annual
Compound	CAS #	(lb/10 ⁶ scf)	(lb/hr)	(lb/yr)
Arsenic	7440-38-2	2.00E-04	1.77E-05	2.17E-02
Benzene	71-43-2	2.10E-03	1.86E-04	2.28E-01
Beryllium	7440-41-7	1.20E-05	1.06E-06	1.30E-03
Cadmium	7440-43-9	1.10E-03	9.74E-05	1.19E-01
Chromium	7440-47-3	1.40E-03	1.24E-04	1.52E-01
Cobalt	7440-48-4	8.40E-05	7.44E-06	9.11E-03
Copper	7440-50-8	8.50E-04	7.53E-05	9.22E-02
Formaldehyde	50-00-0	7.50E-02	6.64E-03	8.13E+00
Hexane	110-54-3	1.80E+00	1.59E-01	1.95E+02
Manganese	7439-96-5	3.80E-04	3.37E-05	4.12E-02
Mercury	7439-97-6	2.60E-04	2.30E-05	2.82E-02
Naphthalene	91-20-3	6.10E-04	5.40E-05	6.61E-02
Nickel	7440-02-0	2.10E-03	1.86E-04	2.28E-01
Selenium	7782-49-2	2.40E-05	2.13E-06	2.60E-03
Toluene	108-88-3	3.40E-03	3.01E-04	3.69E-01
Vanadium	7440-62-2	2.30E-03	2.04E-04	2.49E-01
Benzo(a)pyrene	50-32-8	1.20E-06	1.06E-07	1.30E-04
Benz(a)anthracene	56-55-3	1.80E-06	1.59E-07	1.95E-04
Benzo(b)fluoranthene	205-99-2	1.80E-06	1.59E-07	1.95E-04
Chrysene	218-01-9	1.80E-06	1.59E-07	1.95E-04
Dibenzo(a,h)anthracene	53-70-3	1.20E-06	1.06E-07	1.30E-04
Dichlorobenzene	106-46-7	1.20E-03	1.06E-04	1.30E-01
Indeno(1,2,3-cd)pyrene	193-39-5	1.80E-06	1.59E-07	1.95E-04
2-Methylnaphthalene	91-57-6	2.40E-05	2.13E-06	2.60E-03
3-Methylchloranthrene	56-49-5	1.80E-06	1.59E-07	1.95E-04
7,12-Dimethylbenz(a)anthracene	57-97-6	1.60E-05	1.42E-06	1.73E-03
Acenaphthene	83-32-9	1.80E-06	1.59E-07	1.95E-04
Acenaphthylene	208-96-8	1.80E-06	1.59E-07	1.95E-04
Anthracene	120-12-7	2.40E-06	2.13E-07	2.60E-04
Benzo(g,h,i)perylene	191-24-2	1.20E-06	1.06E-07	1.30E-04
Benzo(k)fluoranthene	207-08-9	1.80E-06	1.59E-07	1.95E-04
Fluoranthene	206-44-0	3.00E-06	2.66E-07	3.25E-04
Fluorene	86-73-7	2.80E-06	2.48E-07	3.04E-04
Phenanathrene	85-01-8	1.70E-05	1.51E-06	1.84E-03
Pyrene	129-00-0	5.00E-06	4.43E-07	5.42E-04

Notes: 1) Emission factors (lb/10⁹ scf) are from EPA AP-42, Chapter 1.4, Table 1.4-3 and 1.4-4.

HAP Emissions Summary

19-Apr-2013

Intermittent CO₂ Vent

Hydrogen Energy California, LLC Hydrogen Energy California (HECA) Project 19-Apr-2013

Operating Parameters

Annual operating parameters Maximum Hours of Operation = 504 hr/yr For methanol calculations Average flow capacity for year = 85% of maximum (varies between 70% - 100%)

Short-term Long-term Maximum Molecular Emission Emission Hourly Annual Weight Factor Factor Flow Flow Hourly Annual Annual Compound CAS# lb/lb-mol lb/hr ton/yr (ppm) (ppm) (lb/hr) (lb/yr) (ton/yr) Carbonyl Sulfide 463-58-1 60 767,435 193,394 2.68 10 10 10.65 5367 Hydrogen Sulfide 34 767,435 193,394 7783-06-4 10 10 6.04 3044 1.52 78 71-43-2 4 4 767,435 5.54 2791 Benzene 193,394 1.40 Methanol 67-56-1 32 40 20 767,435 164,385 22.71 4865 2.43

Notes:

1) Vent gas methanol concentrations are based on process licensor data. The methanol concentration is expected to be 18-20 ppm, but could be as high as 40 ppm associated short-term operational conditions such as transient impacts on the wash column.

2) Annual emission rates are based on 504 hours per year of full venting for COS, H2S and benzene and the average venting of 85% flow rate for methanol.

3) VOC emissions calculated from benzene and methanol emissions, reported on a methane basis.

Emergency Diesel Generator

HAP Emissions Summary

19-Apr-2013

Hydrogen Energy California, LLC Hydrogen Energy California (HECA) Project

Operating Parameters

Emergency Generator Specification =	2,922	Bhp
Emergency Generator Operating Hours =	50	hr/yr

PLEASE NOTE THAT THERE ARE TWO GENERATORS; EMISSION SHOWN IS FOR INDIVIDUAL GENERATORS.

	CAS # /OEHHA	Emission Factor	Hourly	Annual
Compound	reference #	(g/Bhp/hr)	(lb/hr)	(lb/yr)
Diesel Particulate Matter	9901	0.07	4.51E-01	2.25E+01

Note:

1) Emission factor shown is based on U.S. EPA Tier 4 non-road diesel engine emissions standards.

2) Emission rate shown is for individual generator. There are two generators associated with the Project.

Emergency	Diesel Fire	water Pump
-----------	--------------------	------------

HAP Emissions Summary

19-Apr-2013

Hydrogen Energy California, LLC Hydrogen Energy California (HECA) Project

Operating Parameters

Fire Water Pump Specification =	556	Bhp
Fire Water Pump Operating Hours =	100	hr/yr

	CAS # /OEHHA	Emission Factor	Hourly	Annual
Compound	reference #	(g/Bhp/hr)	(lb/hr)	(lb/yr)
Diesel Particulate Matter	9901	0.015	1.84E-02	1.84E+00

Note:

1) Emission factor shown is based on U.S. EPA Tier 4 non-road diesel engine emissions standards.

Manufacturing Complex

Hydrogen Energy California, LLC Hydrogen Energy California (HECA) Project 19-Apr-2013

Urea Absorber

Urea Absorber Operating Hours = 8,052

		Hourly	Annual
Compound	CAS #	(lb/hr)	(lb/yr)
Ammonia (NH3)	8013-59-0	13.10	105,481

hr/yr

Note:

1) Emission rate was estimated based on reference plant information. See criteria pollutant emission calculations. Annual operation includes hours for plant startup.

Urea Pastillation

Urea Pastillation Operating Hours =	8,052	hr/yr	

		Hourly	Annual
Compound	CAS #	(lb/hr)	(lb/yr)
Ammonia (NH3)	8013-59-0	1.03	8,316

Note:

1) Emission rate was estimated based on reference plant information. See criteria pollutant emission calculations. Annual operation includes hours for plant startup.

Nitric Acid Unit

Nitric Acid U	nit Operating Hours =	8,052	hr/yr

		Hourly	Annual
Compound	CAS #	(lb/hr)	(lb/yr)
Ammonia (NH3)	8013-59-0	1.03	8,282

Note:

1) Emission rate was estimated based on reference plant information. See criteria pollutant emission calculations. Annual operation includes hours for plant startup.

Trucks Operation

Hydrogen Energy California, LLC Hydrogen Energy California (HECA) Project

Alternative 1

Onsite Petcoke and Coal Trucks(@ 10 mph)		Fluxant & Product Truck (@ 10 mph)		Miscellaneous Truck (@ 10 mph)	Onsite O&M Trucks (@ 15 mph)
Running Emissions	Idling Emissions (at each Idle Point)	Running Emissions	Idling Emissions (at each Idle Point)	Running Emissions	Running Emissions Diesel LHDT2
0.96		2.49		2.20	1.00
	0.083		0.083		
34	2	73	6	5	10
7	7	9	9	7	10
15,200	15,200	21,620	21,620	2,330	100000
our/trk)			•	•	•
0.087	0.114	0.087	0.114	0.087	0.024
0	Running Emissions 0.96 34 7 15,200 pur/trk) 0.087	mph) Running Emissions Idling Emissions (at each Idle Point) 0.96 0.083 34 2 7 7 15,200 15,200 pur/trk) 0.087 0.087 0.114	mph)Fluxant & ProdRunning Emissions (at each Idle Point)Running Emissions0.962.490.962.493427737915,20015,20021,620pur/trk)0.0870.1140.087	mph)Fluxant & Product Truck (@ 10 mph)Running EmissionsIdling Emissions (at each Idle Point)Idling Emissions (at each Idle Point)0.962.490.962.490.0830.0833427736779915,20015,20021,62021,620	mph) Fluxant & Product Truck (@ 10 mph) (@ 10 mph) Running Emissions Idling Emissions (at each Idle Point) Running Emissions Idling Emissions (at each Idle Point) Running Emissions 0.96 2.49 220 220 0.96 0.083 2 34 2 73 6 5 34 2 73 6 5 5 7 7 9 9 7 7 15,200 15,200 21,620 21,620 2,330 pur/trk) 0.087 0.114 0.087 0.114 0.087

EMFAC emissions are for fleet year 2010. PM10 emission factor does not include tire wear or break wear contributions. Feedstock and Product truck emissions are for HHD diesel trucks. O&M trucks are light heavy-duty 2 trucks.

PM10 Emission Rates

					Miscellaneous Truck	Onsite O&M Trucks (@
	Petcoke and C	Coal Trucks (@ 10 mph)	Fluxant & Produ	uct Trucks (@ 10 mph)	(@ 10 mph)	15 mph)
	Running	Idling Emissions	Running	Idling Emissions		Running Emissions
Emission Rates for HARP	Emissions	(at each Idle Point)	Emissions	(at each Idle Point)	Running Emissions	Diesel LHDT2
1-hr PM ₁₀ (pounds per hour)	1.2E-03	1.4E-04	4.2E-03	1.9E-04	3.0E-03	5.3E-04
Annual PM ₁₀ (pounds per year)	2.8E+00	3.2E-01	1.0E+01	4.5E-01	9.8E-01	5.3E+00

HARP Inputs - Annual and Hourly Emission Rates per Volume Source

	Onsite Petcoke	e and Coal Trucks (@ 10			Miscellaneous Truck	Onsite O&M Trucks (@
		mph)	Fluxant & Produ	uct Trucks (@ 10 mph)	(@ 10 mph)	15 mph)
	Running	Idling Emissions	Running	Idling Emissions		
	Emissions	(at each Idle Point)	Emissions	(at each Idle Point)	Running Emissions	Running Emissions
Max PM_{10} pounds per hour per volume source	3.7E-05	7.1E-05	5.8E-05	3.1E-05	5.9E-04	5.3E-05
PM ₁₀ pounds per year per volume source	8.2E-02	1.6E-01	1.4E-01	7.5E-02	2.0E-01	5.3E-01

HAP Emissions Summary

Train Operation - Alternative 1

HAP Emissions Summary

Hydrogen Energy California, LLC Hydrogen Energy California (HECA) Project 19-Apr-2013

	Coal Unit Train		Maximum Total Trains
Maximum Number of Unit Trains	(incoming)	Product Unit Train (outgoing)	per period
1-hour	1	1	1
Annual average	119	165	284

	Switching Engine	Line-haul Engine for Coal Train	Line-haul Engine for Product Train
PM10 Emission Factor (g/bhp-hr)	0.08	0.08	0.08
Conversion Factor (bhp-hr/gal)	15.2	20.8	20.8
PM10 Emissions (lbs/hr /engine)	0.046	0.039	0.026
Engine Power Rating (hp)		4400	3000
Notch Operation		1	1
Notch percentage of hp		5.0%	5.0%
Avg Notch horsepower	260	220	150
# of engines per train	1	2	2
hours to unload/load each train		2	1
max operating hours (hrs/year)	1248		
Number of Volume Sources in AERMOD/HARP	104		

Notes:

Emission factors from EPA's Technical Highlights: Emission Factors for Locomotives, 2009 (http://www.epa.gov/nonroad/locomotv/420f09025.pdf). The majority of the time the line-haul engine will operate in Notch 1 or idling, therefore emissions were conservatively estimated for Notch 1 horsepower. Notch percentage presented in PORT OF LONG BEACH AIR EMISSIONS INVENTORY for 2007 (POLB, Jan 2009) derived from EPA data. New line-haul engines will be AC locomotives such as the GE Evolution Series, that meet Tier 3 emissions New switching engines will meet Tier 3 emissions, they may be the Titan Trackmobile railcar movers or similar

PM10 Emission Rates

	Switching Engine Emissions	Coal Line-haul Engine Emissions	Product Line-haul Engine Emissions
1-hr PM ₁₀ (pounds per hour)	0.05	0.08	0.00
Annual PM ₁₀ (pounds per year)	57.18	18.45	8.72

During a given hour either the line-haul engines for the coal train or product train operate, not both, thus emissions from the larger coal trains are only included in the peak hour emissions.

HARP Inputs - Annual and Hourly Emission Rates per Volume Source

Diesel Particulate Matter	Onsite Train Emissions
Max PM ₁₀ pounds per hour per volume source	1.2E-03
PM ₁₀ pounds per year per volume source	8.1E-01

FUGITIVE EMISSIONS CALCULATIONS Hydrogen Energy California, LLC Hydrogen Energy California (HECA) Project

STREAM SPECIATION

												Weight %													
						Gasification	Block											Fertilizer Co	nplex						tion Block
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	18a	18b	19	20	21	22	23
Stream	Methanol	Syn Gas	Not Used	Shifted Syn Gas	Propylene	Sour Water	H₂S Laden Methanol	CO ₂ Laden Methanol	Acid Gas	Ammonia Laden Gas	Sulfur	SRU Tail Gas	Low NH3 Concentrat ion	Moderate NH3 Concentrati on	Concentrat	Low CO2 t Concentrat ion	Moderate CO2 Concentrat ion	High CO2 Concentrat ion	CO2 Product and Purification Compressors	Urea CO2 Compressor	NO2	HNO3	PSA Off Gas	Lower Benzene Concentr ation	
Fluid Phase	Liquid	Vapor		Vapor	Liquid & Vapor	Liquid	Liquid	Liquid	Vapor	Vapor	Liquid	Vapor	Liquid & Vapor	Liquid & Vapor	Liquid & Vapor	Liquid & Vapor	Vapor	Vapor	Vapor	Vapor	Vapor	Liquid	Vapor	Vapor	Vapor
Compound						•																			
Carbon dioxide (CQ ₂)	0.00%	8.02%		59.90%	0.00%	1.98%	15.64%	27.34%	49.76%	60.57%	0.00%	65.26%	5.77%	37.53%	0.76%	18.90%	37.53%	97.76%	97.76%	100.00%	0.00%	0.00%	14.72%	47.80%	7.30%
Carbon monoxide (CO)	0.00%	43.27%		2.97%	0.00%	0.01%	0.01%	0.01%	2.05%	0.22%	0.00%	2.46%	0.00%	0.00%	0.00%	0.00%	0.00%	0.01%	0.01%	0.00%	0.00%	0.00%	8.58%	0.00%	0.00%
Methane (CH _t)	0.00%	0.59%		0.60%	0.00%	0.00%	0.00%	0.01%	0.00%	0.01%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.01%	0.01%	0.00%	0.00%	0.00%	3.10%	0.00%	0.00%
Hydrogen Sulfide (H,S)	0.00%	0.58%		0.62%	0.00%	0.05%	0.92%	0.00%	28.46%	1.35%	0.02%	1.99%	0.00%	0.00%	0.00%	0.00%	0.00%	1.56%	0.00%	0.00%	0.00%	0.00%	0.00%	4.20%	0.80%
Ammonia (NH ₃)	0.00%	0.14%		0.11%	0.00%	0.70%	0.00%	0.00%	0.00%	20.15%	0.00%	0.00%	15.59%	49,17%	97.98%	31.31%	49 17%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Sulfur dioxide (SO ₂)	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	3.12%	0.00%	0.00%	0.38%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Hydrogen Chloride (HCI)	0.00%	0.00%		0.00%	0.00%	0.05%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Nitric acid (HNO ₃)	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.02%	56.22%	0.00%	0.02%	0.02%
Nitrogen dioxide (NQ)	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	7.28%	0.00%	0.00%	0.02%	0.02%
Carbonyl Sulfide (COS)	0.00%	0.24%		0.00%	0.00%	0.08%	0.00%	0.00%	2.71%	2.09%	0.00%	0.29%	0.00%	0.00%	0.00%	0.00%	0.00%	0.01%	0.01%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Methanol (CH ₂ OH)	99.74%	0.00%		0.00%	0.00%	0.00%	79.06%	72.36%	1.51%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.40%	0.03%	0.00%	0.00%	0.00%	0.03%	46.30%	86.80%
Propylene (C ₃ H ₆)	0.00%	0.00%		0.00%	100.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Benzene (C ₆ H ₆)	0.00%	0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.80%	5.10%
Hydrogen Cyanide (HCN)	0.00%	0.01%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.04%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Other (Inerts)	0.26%	47.15%		35.81%	0.00%	97.14%	4.35%	0.27%	12.39%	15.58%	99.98%	29.62%	78.61%	13.30%	1.26%	49.74%	13.30%	0.26%	2.14%	0.00%	92.71%	43.78%	73.58%	0.90%	0.00%
Total	100.0%	100.0%		100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%
Percentage of VOC of the stream *	99.74%	0.25%		0.01%	100.00%	0.08%	79.07%	72.36%	4.23%	2.13%	0.00%	0.29%	0.00%	0.00%	0.00%	0.00%	0.00%	0.41%	0.04%	0.00%	0.00%	0.00%	0.03%	47.10%	91.90%

Stream
 Stream

EMISSION FACTORS

Equipment Type	Service	Emission Factor* (kg/hr/source)	Emission Factor (Ib/hr/source)	Control Efficiency*
Valves	Gas	0.00597	0.0132	92%
Valves	Light liquid	0.00403	0.0089	88%
Valves	Heavy liquid	0.00023	0.0005	0%
Pump seals	Light liquid	0.0199	0.0439	100%
Pump seals	Heavy liquid	0.00862	0.0190	0%
Compressor seals	Gas	0.228	0.5027	100%
Pressure relief valves	Gas	0.104	0.2293	0%
Connectors	All	0.00183	0.0040	93%
Open-ended lines	All	0.0017	0.0037	0%
Sampling connectors	All	0.015	0.0331	0%

 Sampling connectors
 Nut
 Nutes:

 - Emission factors and control efficiencies are from EPA's 1995 "Protocol for Equipment Leak Emission Estimates".

 - Emission factors and control efficiencies are from Table 2-1 (SOCMI Average Emission Factors).

 - Control efficiencies are from Table 2-1 (SOCMI Average Emission Factors).

 - Ontrol efficiencies are from Table 2-1 (SOCMI Average Emission is dentified as 1, 5, 7-10, and 12-23. Therefore, the control efficiencies for valves and connectors will apply to those streams.

 - The plant will implement an LDAR program for the process streams identified as 1, 5, 7-10, and 12-23. Therefore, the control efficiencies for valves and connectors will apply to those streams.

 - All light liquid pump seals and compressor seals will have dual mechanical seals and barrier fluid maintained at a higher pressure than the pump fluid or compressed gas, thus these control efficiency are from Table 5-1.

 - Emission are conservative since many of these streams are not as volatile as the streams that the SOCMI factors were developed for.

												Count														
						Gasification	n Block										F	ertilizer Co	mplex					Gasificat	tion Block	T I
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	18a	18b	19	20	21	22	23	T I
Stream	Methanol	Syn Gas	Not Used	Shifted Syn Gas	Propylene	Sour Water	H ₂ S Laden Methanol	CO ₂ Laden Methanol	Acid Gas	Ammonia Laden Gas	Sulfur	SRU Tail Gas	Low NH3 Concentrat ion	on	Concentra ion	Low CO2 t Concentrat ion	Moderate CO2 Concentrat ion		and	Urea CO2 Compressor	NO2	HNO3	PSA Off Gas			Total All Streams
Fluid Phase	Liquid	Vapor		Vapor	Liquid & Vapor	Liquid	Liquid	Liquid	Vapor	Vapor	Liquid	Vapor	Liquid & Vapor	Liquid & Vapor	Liquid & Vapor	Liquid & Vapor	Vapor	Vapor	Vapor	Vapor	Vapor	Liquid	Vapor	Vapor	Vapor	
Component																									-	
Valves - Gas	0	69		342	36	0	0	0	122	98	0	66	197	6	147	20	6	506	0	0	5	0	164	18	0	1799
Valves - Light Liquid	257	0		0	546	0	290	285	0	0	0	0	105	2	206	107	0	0	0	0	0	66	0	134	87	2082
Valves - Heavy Liquid	0	0		0	0	366	0	0	0	0	17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	383
Pumps - Light Liquid	4	0		0	0	0	6	6	0	0	0	0	6	0	4	6	0	0	0	0	0	2	0	4	2	40
Pumps - Heavy Liquid	0	0		0	0	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8
Compressors	0	0		0	2	0	0	0	0	0	0	5	0	0	0	0	0	0	10	2	0	0	5	0	0	24
Connectors	824	208		1024	1642	958	962	932	388	252	118	276	826	44	886	400	34	1446	0	0	34	188	540	474	276	12732
Total	1085	277	1	1366	2226	1332	1258	1223	510	350	135	347	1134	52	1243	532	40	1952	10	2	39	256	709	630	365	17067

Note: - Values shown for number of sources were multiplied by the following factors to account for unknown emission sources: Valves: 1.5; Connectors: 2.

- Each compressor stage considered as a separate compressor.

CALCULATED CONTROLLED EMISSIONS BY COMPONENT (LB/HR)

											Em	issions (lb/h	r)													
						Gasification	n Block										F	ertilizer Cor	nplex					Gasificat	on Block	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	18a	18b	19	20	21	22	23	
Stream	Methanol	Syn Gas	Not Used	Shifted Syn Gas	Propylene	Sour Water	H₂S Laden Methanol	CO ₂ Laden Methanol	Acid Gas	Ammonia Laden Gas	Sulfur	SRU Tail Gas	Low NH3 Concentrat ion	Moderate NH3 Concentrati on	High NH3 Concentrat ion	Low CO2 Concentrat ion	Moderate CO2 Concentrat ion		CO2 Product and Purification Compressors	Urea CO2 Compressor	NO2	HNO3	PSA Off Gas	Lower Benzene Concentr ation	Higher Benzene Concentr ation	Total All Streams
Fluid Phase	Liquid	Vapor		Vapor	Liquid & Vapor	Liquid	Liquid	Liquid	Vapor	Vapor	Liquid	Vapor	Liquid & Vapor	Liquid & Vapor	Liquid & Vapor	Liquid & Vapor	Vapor	Vapor	Vapor	Vapor	Vapor	Liquid	Vapor	Vapor	Vapor	
Component																									-	
Valves - Gas	0.00E+00	9.08E-01		4.50E+00	3.79E-02	0.00E+00	0.00E+00	0.00E+00	1.28E-01	1.03E-01	0.00E+00	8.69E-01	2.07E-01	6.32E-03	1.55E-01	2.05E-02	6.32E-03	5.32E-01	0.00E+00	0.00E+00	4.74E-03	0.00E+00	1.72E-01	1.90E-02	0.00E+00	7.67
Valves - Light Liquid	2.73E-01	0.00E+00		0.00E+00	5.82E-01	0.00E+00	3.09E-01	3.04E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.12E-01	1.60E-03	2.19E-01	1.14E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	7.04E-02	0.00E+00	1.42E-01	9.28E-02	2.22
Valves - Heavy Liquid	0.00E+00	0.00E+00		0.00E+00	0.00E+00	1.86E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	8.37E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.19
Pumps - Light Liquid	0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00
Pumps - Heavy Liquid	0.00E+00	0.00E+00		0.00E+00	0.00E+00	1.52E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.15
Compressors	0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00
Connectors	2.33E-01	8.39E-01		4.13E+00	4.64E-01	3.87E+00	2.72E-01	2.63E-01	1.10E-01	7.12E-02	4.76E-01	1.11E+00	2.33E-01	1.24E-02	2.50E-01	1.13E-01	9.60E-03	4.08E-01	0.00E+00	0.00E+00	9.60E-03	5.31E-02	1.53E-01	1.34E-01	7.79E-02	13.29
Total	0.51	1.75		8.63	1.08	4.20	0.58	0.57	0.24	0.17	0.48	1.98	0.55	0.02	0.62	0.25	0.02	0.94	0.00	0.00	0.01	0.12	0.32	0.30	0.17	23.53
- The plant will implement an			treams identifie							0.17	0.46	1.90	0.35	0.02	0.62	0.25	0.02	0.34	0.00	0.00	0.01	0.12	0.32	0.30	0.17	23.33

CALCULATED CONTROLLED EMISSIONS BY COMPOUND (LB/HR)

											Err	issions (lb/l	nr)													
						Gasification	1 Block										F	ertilizer Co	nplex					Gasificat	tion Block	1
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	18a	18b	19	20	21	22	23	÷
Stream	Methanol	Syn Gas	Not Used	Shifted Syn Gas	Propylene	Sour Water	H ₂ S Laden Methanol	CO₂ Laden Methanol	Acid Gas	Ammonia Laden Gas	Sulfur	SRU Tail Gas	Low NH3 Concentrat ion	Moderate NH3 Concentrati on	High NH3 Concentrat ion	Low CO2 Concentrat ion	Moderate CO2 Concentrat ion	High CO2 Concentrat ion	CO2 Product and Purification Compressors	Urea CO2 Compressor	NO2	HNO3	PSA Off Gas		Bonzono	Total All Streams
Fluid Phase	Liquid	Vapor		Vapor	Liquid & Vapor	Liquid	Liquid	Liquid	Vapor	Vapor	Liquid	Vapor	Liquid & Vapor	Liquid & Vapor	Liquid & Vapor	Liquid & Vapor	Vapor	Vapor	Vapor	Vapor	Vapor	Liquid	Vapor	Vapor	Vapor	I
Compound																										
CO2	0.00E+00	1.40E-01		5.17E+00	0.00E+00	8.33E-02	9.08E-02	1.55E-01	1.18E-01	1.05E-01	0.00E+00	1.29E+00	3.19E-02	7.64E-03	4.73E-03	4.67E-02	5.98E-03	9.20E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.78E-02	1.41E-01	1.25E-02	8.37
CO	0.00E+00	7.56E-01		2.56E-01	0.00E+00	3.07E-04	3.25E-05	7.20E-05	4.86E-03	3.77E-04	0.00E+00	4.87E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.40E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.79E-02	0.00E+00	0.00E+00	1.09
CH ₄	0.00E+00	1.03E-02		5.17E-02	0.00E+00	1.26E-05	2.61E-05	7.32E-05	4.75E-06	1.51E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	8.65E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.01E-02	0.00E+00	0.00E+00	0.07
H ₂ S	5.42E-07	1.01E-02		5.33E-02	0.00E+00	2.09E-03	5.37E-03	5.67E-07	6.76E-02	2.34E-03	8.82E-05	3.94E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.46E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.24E-02	1.37E-03	0.21
NH ₃	0.00E+00	2.48E-03		9.18E-03	0.00E+00	2.93E-02	0.00E+00	0.00E+00	0.00E+00	3.50E-02	0.00E+00	0.00E+00	8.61E-02	1.00E-02	6.11E-01	7.74E-02	7.83E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.87
SO ₂	0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	7.40E-03	0.00E+00	0.00E+00	7.62E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		0.00E+00			
HCI	0.00E+00	1.22E-05		0.00E+00	0.00E+00	1.98E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		0.00E+00	
HNO ₂	0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2 44E-06		0.00E+00			
NO ₂	0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.04E-03		0.00E+00			
COS	0.00E+00	4.27E-03		3.28E-04	0.00E+00	3.24E-03	2.38E-05	5.08E-08	6.45E-03	3.62E-03	0.00E+00		0.00E+00	0.00E+00		0.00E+00	0.00E+00	9.69E-05	0.00E+00	0.00E+00	0.00E+00				0.00E+00	
CH ₂ OH	5.05E-01	0.00E+00		8.63E-05	0.00E+00	0.00E+00	4.59E-01	4.10E-01	3.59E-03	3.82E-06	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.77E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00			1.48E-01	
C ₃ H ₆	0.00E+00	0.00E+00		0.00E+00	1.08E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		0.00E+00	
C ₆ H ₆	0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.36E-03	8.71E-03	
HCN	1.42E-05	1.29E-04		1.73E-05	0.00E+00	1.18E-04	1 74E-05	1.02E-05	5.46E-06	7.02E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	7.30E-07	0.00E+00	0.00E+00	0.00E+00	0.00E+00			0.00E+00	
Total VOC	5.05E-01	4.40E-03		4.32E-04	1.08E+00	3.35E-03	4.59E-01	4.10E-01	1.00E-02	3.70E-03	0.00E+00	5.84E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.86E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	8.67E-05		1.57E-01	2.79

Notes: - Per District policy (SSP-2015), VOC emissions are not assessed to components handling fluid streams with a VOC content of 10% of less by weight. - The following compounds are included as VOCs, although not all compounds are found in the gas in each process area: CH3OH, C3H6, COS, C6H6, and HCN.

CALCULATED CONTROLLED EMISSIONS BY COMPOUND (TONS/YEAR)

											Emis	sions (tons/	(ear)													
						Gasification	1 Block											Fertilizer Co	mplex					Gasificat	tion Block	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	18a	18b	19	20	21	22	23	1
Stream	Methanol	Syn Gas	Not Used	Shifted Syn Gas	Propylene	Sour Water	H₂S Laden Methanol	CO₂ Laden Methanol	Acid Gas	Ammonia Laden Gas	Sulfur	SRU Tail Gas	Low NH3 Concentrat ion	Moderate NH3 Concentrati on	High NH3 Concentrat ion	Low CO2 Concentrat ion	Moderate CO2 Concentrat ion	High CO2 Concentrat ion	CO2 Product and Purification Compressors	Urea CO2 Compressor	NO2	HNO3	PSA Off Gas		Higher Benzene Concentr ation	
Fluid Phase	Liquid	Vapor		Vapor	Liquid & Vapor	Liquid	Liquid	Liquid	Vapor	Vapor	Liquid	Vapor	Liquid & Vapor	Liquid & Vapor	Liquid & Vapor	Liquid & Vapor	Vapor	Vapor	Vapor	Vapor	Vapor	Liquid	Vapor	Vapor	Vapor	
Compound																										•
CO ₂	0.00E+00	6.14E-01		2.26E+01	0.00E+00	3.65E-01	3.98E-01	6.79E-01	5.18E-01	4.61E-01	0.00E+00	5.67E+00	1.40E-01	3.34E-02	2.07E-02	2.05E-01	2.62E-02	4.03E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.09E-01	6.18E-01	5.46E-02	36.68
CO	0.00E+00	3.31E+00		1.12E+00	0.00E+00	1.34E-03	1.42E-04	3.15E-04	2.13E-02	1.65E-03	0.00E+00	2.13E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.80E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.22E-01	0.00E+00	0.00E+00	4.79
CH ₄	0.00E+00	4.51E-02		2.26E-01	0.00E+00	5.52E-05	1.14E-04	3.20E-04	2.08E-05	6.62E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.79E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.41E-02	0.00E+00	0.00E+00	0.32
H ₂ S	2.37E-06	4.41E-02		2.34E-01	0.00E+00	9.15E-03	2.35E-02	2.48E-06	2.96E-01	1.03E-02	3.86E-04	1.72E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.41E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.43E-02	5.98E-03	0.91
NH ₃	0.00E+00	1.09E-02		4.02E-02	0.00E+00	1.28E-01	0.00E+00	0.00E+00	0.00E+00	1.53E-01	0.00E+00	0.00E+00	3.77E-01	4.38E-02	2.68E+00	3.39E-01	3.43E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.81
SO ₂	0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.24E-02	0.00E+00	0.00E+00	3.34E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.07
HCI	0.00E+00	5.36E-05		0.00E+00	0.00E+00	8.69E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.01
HNO ₃	0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.07E-05	3.04E-01	0.00E+00	2.20E-04	1.27E-04	0.30
NO ₂	0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.57E-03	0.00E+00	0.00E+00	2.20E-04	1.27E-04	0.00
COS	0.00E+00	1.87E-02		1.44E-03	0.00E+00	1.42E-02	1.04E-04	2.22E-07	2.82E-02	1.59E-02	0.00E+00	2.56E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.24E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
CH₃OH	2.21E+00	0.00E+00		3.78E-04	0.00E+00	0.00E+00	2.01E+00	1.80E+00	1.57E-02	1.68E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.65E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.80E-04	5.99E-01	6.49E-01	7.30
C ₃ H ₆	0.00E+00	0.00E+00		0.00E+00	4.75E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.75
C ₆ H ₆	0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.03E-02	3.81E-02	0.05
HCN	6.24E-05	5.66E-04		7.56E-05	0.00E+00	5.15E-04	7.63E-05	4.47E-05	2.39E-05	3.08E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.20E-06	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00
Total VOC	2.21E+00	1.93E-02		1.89E-03	4.75E+00	1.47E-02	2.01E+00	1.80E+00	4.40E-02	1.62E-02	0.00E+00	2.56E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.69E-02	0.00E+00	0.00E+00	0.00E+00			6.09E-01		

Note: - The following compounds are included as VOCs, although not all compounds are found in the gas in each process area: CH3OH, C3H6, COS, C6H6, and HCN.

VOLUME SOURCES EMISSION RATES FOR MODELING

						Emission Rat	te (lb/hr)						
			Gasificat	tion Unit			Fertilizer Complex						
Compound	GASIFICATIO N (Stream #2)	SHIFT (Stream #4 and #6)	AGR (Stream #1, #5, #7, #8, and #9)	Sour Water Stripper (Stream #10)	SRU (Stream #11 and #12)	Benzene (Stream #22 and #23)	UAN Unit (Stream #19 and #20)	Urea Unit (Stream #14, #16, and #17)	(Stream #13	CO2 Compression (Stream #18 and #18a)	Urea CO2 Compresso r (Stream #18b)	PSA Unit (Stream #21)	
CO ₂	4.67E-02	2.63E+00	3.64E-01	1.05E-01	6.47E-01	1.54E-01	0.00E+00	3.02E-02	1.83E-02	9.20E-01	0.00E+00	4.78E-02	
CO	2.52E-01	1.28E-01	4.96E-03	3.77E-04	2.44E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.40E-05	0.00E+00	2.79E-02	
CH ₄	3.43E-03	2.59E-02	1.04E-04	1.51E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	8.65E-05	0.00E+00	1.01E-02	
H ₂ S	3.35E-03	2.77E-02	7.30E-02	2.34E-03	1.97E-02	1.38E-02	0.00E+00	0.00E+00	0.00E+00	1.46E-02	0.00E+00	0.00E+00	
NH ₃	8.28E-04	1.92E-02	0.00E+00	3.50E-02	0.00E+00	0.00E+00	0.00E+00	4.76E-02	3.49E-01	0.00E+00	0.00E+00	0.00E+00	
SO ₂	0.00E+00	0.00E+00	7.40E-03	0.00E+00	3.81E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
HCI	4.08E-06	9.92E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
HNO ₃	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	7.94E-05	6.94E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
NO ₂	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	7.94E-05	1.04E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
COS	1.42E-03	1.78E-03	6.47E-03	3.62E-03	2.92E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	9.69E-05	0.00E+00	0.00E+00	
CH ₃ OH	0.00E+00	4.32E-05	1.38E+00	3.82E-06	0.00E+00	2.85E-01	0.00E+00	0.00E+00	0.00E+00	3.77E-03	0.00E+00	8.67E-05	
C ₃ H ₆	0.00E+00	0.00E+00	1.08E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+0	
C ₆ H ₆	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.11E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+0	
HCN	4.31E-05	6.75E-05	4.73E-05	7.02E-05	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	7.30E-07	0.00E+00	0.00E+0	

						Emission Ra	te (lb/yr)					
			Gasifica	tion Unit					Fertilizer Co	mplex		
Compound	GASIFICATIO N (Stream #2)	SHIFT (Stream #4 and #6)	AGR (Stream #1, #5, #7, #8, and #9)		SRU (Stream #11 and #12)	Benzene (Stream #22 and #23)	UAN Unit (Stream #19 and #20)	Urea Unit (Stream #14, #16, and #17)	Ammonia Unit (Stream #13 and #15)	CO2 Compression (Stream #18 and #18a)	Urea CO2 Compresso r (Stream #18b)	PSA Unit (Stream #21)
CO ₂	4.09E+02	2.30E+04	3.19E+03	9.22E+02	5.67E+03	1.35E+03	0.00E+00	2.64E+02	1.60E+02	8.06E+03	0.00E+00	4.19E+02
CO	2.21E+03	1.12E+03	4.35E+01	3.30E+00	2.13E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.60E-01	0.00E+00	2.44E+02
CH ₄	3.00E+01	2.27E+02	9.11E-01	1.32E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	7.58E-01	0.00E+00	8.82E+01
H ₂ S	2.94E+01	2.43E+02	6.39E+02	2.05E+01	1.73E+02	1.21E+02	0.00E+00	0.00E+00	0.00E+00	1.28E+02	0.00E+00	0.00E+00
NH ₃	7.26E+00	1.68E+02	0.00E+00	3.07E+02	0.00E+00	0.00E+00	0.00E+00	4.17E+02	3.06E+03	0.00E+00	0.00E+00	0.00E+00
SO ₂	0.00E+00	0.00E+00	6.48E+01	0.00E+00	3.34E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
HCI	3.57E-02	8.69E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
HNO ₃	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.95E-01	6.08E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NO ₂	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.95E-01	9.14E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
COS	1.25E+01	1.56E+01	5.67E+01	3.17E+01	2.56E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	8.49E-01	0.00E+00	0.00E+00
CH ₃ OH	0.00E+00	3.78E-01	1.21E+04	3.35E-02	0.00E+00	2.50E+03	0.00E+00	0.00E+00	0.00E+00	3.30E+01	0.00E+00	7.59E-01
C ₃ H ₆	0.00E+00	0.00E+00	9.49E+03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
C ₆ H ₆	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	9.69E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
HCN	3.78E-01	5.91E-01	4.15E-01	6.15E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.40E-03	0.00E+00	0.00E+00

Volume Source Parameters

Number of Volume Sources	3	2	1	1	2	1	1	2	2	1	1	1
Horizontal dimension (m)	28.00	35.00	48.00	16.00	16.00	24.00	24.00	12.00	24.00	20.00	24.00	24.00
Release height (m)	39.62	6.10	6.10	6.10	6.10	6.10	6.10	6.10	6.10	6.10	6.10	6.10
Horizontal dimension (m)	13.02	16.28	22.33	7.44	7.44	11.16	11.16	5.58	11.16	9.30	11.16	11.16
Vertical dimension (m)	36.86	5.67	5.67	5.67	5.67	5.67	5.67	5.67	5.67	5.67	5.67	5.67
Vertical dimension used for calcs (ft)	260.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00	40.00

Note: - Emissions are divided by the number of volume sources. Control Efficiency

Hydrogen Energy California, LLC Hydrogen Energy California (HECA) Project 19-Apr-2013

Methanol storage tank parameters and fugitive emissions

Tank ID	ethanol Breathing and Working Loss (33,000 gal pumped in) Breathing Loss	Uncontrolled VOC Emissions	Peak Month VOC Emissions	Daily VOC Emissions	Annual VOC emissions
		lb/month	lb/month	lb/day	lb/year
	Working Loss (33,000 gal pumped in)	82.24	0.0185	-	-
Methanol	Breathing Loss	1353.84	0.3049	0.0102	
	Total Breathing and Working Loss		-	0.0287	3.93

 Methanol Vent Scrubber Efficiency

 Pre-scrubber
 17.76% methanol

 Post-scrubber
 40 ppm methanol

Methanol concentration information provided by Fluor

Uncontrolled emissions calculated using TANKS model

Peak daily emissions include losses during filling the entire tank plus breathing losses

99.977%

HECA Project Major Source Emission Calculations with Significance Thresholds for PSD

Total Reduced Sulfur

Pollutant	Annual Rate (tons per year)	TRS as H2S (tons/yr)	Molecular Wt	Source of emissions		
Hydrogen Sulfide	2.44	2.44	34	CO ₂ vent and fugitives		
				CO_2 vent and	Significance Threshold	
Carbonyl Sulfide	2.79	1.58	60	fugitives	(tons/yr)	Significant?
	Total	4.02			10.00	no

TRS definition: the total reduced sulfur contained in hydrogen sulfide, mercaptans, dimethyl sulfide, dimethyl disulfide or other organic sulfide compounds, all expressed as hydrogen sulfide. Sulfur dioxide, sulfur trioxide, or sulfuric acid are not to be included in the determination of TRS.

Reduced Sulfur Compounds

	Annual Rate	RSC as H2S	Molecular	Source of	1	
Pollutant	(tons per year)	(tons/yr)	Wt	emissions		
Liveles see Oulfiele	0.44	0.44	24	CO ₂ vent and		
Hydrogen Sulfide	2.44	2.44	34	fugitives		
				CTG/HRSG and		
Carbon Disulfide	0.54	0.24	76	coal dryer		
					Significance	
				CO ₂ vent and	Threshold	
Carbonyl Sulfide	2.79	1.58	60	fugitives	(tons/yr)	Significant?
	Total	4.26			10.00	no

Reduced sulfur compounds means H2S, carbonyl sulfide (COS), and carbon disulfide (CS2).

Sulfuric Acid Mist

Pollutant	Annual Rate (tons per year)	Significance Threshold (tons/yr)	Significant ?	Source of emissions
				CTG/HRSG and
Sulfuric Acid Mist	1.12	7.00	no	coal dryer

Hydrogen Sulfide

Pollutant	Annual Rate (tons per year)	Significance Threshold (tons/yr)	Significant ?	Source of emissions
				CO ₂ vent and
Hydrogen Sulfide	2.44	10.00	no	fugitives

Fluorides

		Significance		
	Annual Rate	Threshold	Significant	Source of
Pollutant	(tons per year)	(tons/yr)	?	emissions
Fluoride	0.001	3.00	no	Cooling towers

Lead

Pollutant	Annual Rate (tons per year)	Significance Threshold (tons/yr)	Significant ?	Source of emissions
				CTG/HRSG and
Lead	0.007	0.60	no	coal dryer

Pollutants listed above are in 40 CFR 52.21 (as of Apr 6, 2012)

APPENDIX C

REVISED OPERATIONAL TRANSPORTATION EMISSIONS FOR ALTERNATIVE 1

Summary of Applicable Operational Emissions for General Conformity (Alternative 1) - 2017 Overlapping with Construction

Hydrogen Energy California LLC HECA Project

Federal NAAQS Nonattainment or Maintenance Area	Detailed Status in Nonattainment or	Authority	Basis to Estimate the Offsite	Emission Sources / Applicable General	Project C	Project Operational Annual Emission Rates - fo Conformity (tpy)				
General Name and State	Maintenance Area	Agency	Transportation Distance	Conformity Thresholds / Comparisons	со	NOx	PM10	PM2.5	SO2	voc
				Onsite Construction Equipment	2.65	3.84	0.48	0.27	0.00	0.83
	0 Linux Onnes (2000) Negetteinment		Construction -	Onsite Trucks	0.15	0.34	0.09	0.03	0.00	0.09
	8-Hour Ozone (2008) Nonattainment - Extreme		Entire SJVAPCD jurisdiction area	Onsite Vehicles Onsite Total	0.08	0.01 4.18	0.22	0.02	0.00	0.01
	PM2.5 Nonattainment		(one way trip: trucks	Offsite Linears Equipment	0.00	0.00	0.00	0.00	0.00	0.00
	CO Maintenance - Maderate - Fresno, CA		= worker vehicles =	Offsite Trucks	1.02	5.16	0.42	0.21	0.00	0.22
	(Part of Fresno County), Modesto, CA (Part		20 miles)	Offsite Vehicles	5.98	0.72	0.20	0.07	0.01	0.18
	of Stanislaus County), Stockton, CA (Part			Offsite Total	6.99	5.87	0.61	0.28	0.01	0.41
San Joaquin Valley,	of San Joaquin County)	0.04000		Total Construction Emission (ton/yr)	9.87	10.06	1.40	0.60	0.02	1.34
ĊA		SJVAPCD		Offsite Train Offsite Truck	2.31 1.85	8.93 3.05	0.14 0.84	0.14 0.25	0.16	0.25
	PM10 Maintenance		Operation - Entire	Offsite Workers Commuting	1.39	0.16	0.84	0.25	0.02	0.20
			SJVAPCD	Onsite Train	0.29	0.82	0.01	0.03	0.02	0.04
			jurisdiction area	Onsite Truck	0.21	0.33	0.05	0.02	0.00	0.05
			(one way trip: trains = 63 to 287 miles,	Total Operation Emissions	6.05	13.29	1.40	0.52	0.21	0.64
			trucks = 40 to 80	Total Construction and Operation	15.92	23.35	2.80	1.12	0.23	1.98
			miles, worker vehicles = 20 miles)	Overlapping Emissions Applicable General Conformity <i>de</i>	100	10	100	1.12	100	1.90
			vernoles - 20 miles)	minimis Thresholds		-				
	9 Hour Ozono (2009) Novetto invest		+	Less Than Thresholds?	Yes	No	Yes	Yes	Yes	Yes
	8-Hour Ozone (2008) Nonattainment - Extreme		Entire SCAQMD	Offsite Train	0.00	0.00	0.00	0.00	0.00	0.00
Los Angeles-South	PM10 Nonattainment - Serious PM2.5 Nonattainment	SCAQMD	jurisdiction area	Offsite Truck Total Emissions	1.72 1.72	2.84 2.84	0.78 0.78	0.24	0.02	0.24
Coast Air Basin, CA	PM2.5 Nonattainment	SCAQIND	(one way trip: trucks	Applicable General Conformity <i>de</i>						
	NO2 Maintenance		= 88 to 150 miles)	minimis Thresholds	100	10	70	100	100	10
	CO Maintenance - Serious			Less Than Thresholds?	Yes	Yes	Yes	Yes	Yes	Yes
	8-Hour Ozone (2008) Nonattainment - Marginal			Offsite Train		4.86	0.08			0.13
Kern County (East	PM10 Nonattainment - Serious		Entire EKAPCD jurisdiction area	Offsite Truck		0.00	0.00			0.00
Kern), CA		EKAPCD	(one way trip: trains	Total Emissions		4.86	0.08			0.13
Keini), OA			= 62 to 83 miles)	Applicable General Conformity de		100	70			100
			02 10 00 111100)	minimis Thresholds						
				Less Than Thresholds?		Yes	Yes			Yes
Los Angeles-San			Los Angeles-San Bernardino Counties	Offsite Train Offsite Truck		8.27 0.00				0.23
Bernardino	8-Hour Ozone (2008) Nonattainment -		(West Mojave	Total Emissions		8.27				0.00
Counties (West	Severe 15 (Part of San Bernardino and Los	MDAQMD		Applicable General Conformity de						
Mojave Desert), CA	Angeles Counties)		(2008) NAA (one	minimis Thresholds		25				25
			way trip: trains = 120	Less Than Thresholds?		Yes				Yes
	PM10 Nonattainment - Moderate			Offsite Train			0.23			
			Entire MDAQMD	Offsite Truck			0.00			
San Bernardino		MDAQMD	jurisdiction area	Total Emissions			0.23			
County, CA (Mojave Desert)		MDAQMD	(one way trip: trains = 204 miles)	Applicable General Conformity <i>de</i> <i>minimis</i> Thresholds			100			
				Less Than Thresholds?			Yes			
	8-Hour Ozone (2008) Nonattainment - Severe 15			Offsite Train	0.20	0.77	0.01	0.01	0.01	0.02
- · · · ·	PM10 Nonattainment - Moderate (Sacramento County)		Entire SMAQMD	Offsite Truck	0.00	0.00	0.00	0.00	0.00	0.00
Sacramento Metro,	PM2.5 Nonattainment	SMAQMD	jurisdiction area	Total Emissions	0.20	0.77	0.01	0.01	0.01	0.02
CA	CO Maintenance - Moderate - Sacramento, CA (Part of Placer, Sacramento and Yolo Counties)		(one way trip: trains = 80 miles)	Applicable General Conformity <i>de minimis</i> Thresholds	100	25	100	100	100	25
	·			Less Than Thresholds?	Yes	Yes	Yes	Yes	Yes	Yes
	PM2.5 Nonattainment (Sutter and Part of		Yuba City-	Offsite Train		0.48		0.01	0.01	0.01
V I. 0"	Yuba Counties)		Marysville, CA -	Offsite Truck		0.00		0.00	0.00	0.00
Yuba City-		FRAQMD	PM2.5 NAA (one	Total Emissions		0.48		0.01	0.01	0.01
Marysville, CA			way trip: trains = 50 miles)	Applicable General Conformity <i>de minimis</i> Thresholds Less Than Thresholds?		100 Xos		100 Xoc	100	100 Xoc
	8-Hour Ozone (2008) Nonattainment - Marginal (Butte County)			Offsite Train	0.12	Yes 0.48		Yes 0.01	Yes 0.01	Yes 0.01
	PM2.5 Nonattainment (Part of Butte County)		Chico, CA - 8-Hour Ozone (2008) NAA -	Offsite Truck	0.00	0.00		0.00	0.00	0.00
	CO Maintenance - Moderate (Part of Butte	BCAQMD	Entire Butte County							
Chico, CA		bondinb	(one way trip: trains	Total Emissions	0.12	0.48		0.01	0.01	0.01
Chico, CA	County)	Dorigino		Total Emissions Applicable General Conformity <i>de minimis</i> Thresholds	0.12 100	0.48 100		0.01 100	0.01	100

Summary of Applicable Operational Emissions for General Conformity (Alternative 1) - 2017 Overlapping with Construction

Hydrogen Energy California LLC HECA Project

3/05/2013 revision

	8-Hour Ozone (2008) Nonattainment - Marginal - Phoenix-Mesa, AZ (Part of Maricopa and Pinal County)			Offsite Train	6.48	25.08	0.41	0.39	0.46	0.69
	PM10 Nonattainment (Moderate, Serious, or Maintenance) (12 Counties) PM2.5 Nonattainment - Nogales, AZ (Part of Santa Cruz County), West Central Pinal			Offsite Truck	0.00	0.00	0.00	0.00	0.00	0.00
NAAs in State of				Total Emissions	6.48	25.08	0.41	0.39	0.46	0.69
Arizona SO2 Nonattainment - Hayden (Pinal County), AZ (Part of Pinal County),	ADEQ	(one way trip: trains = 364 miles)	Applicable General Conformity <i>de minimis</i> Thresholds	100	100	70	100	100	100	
	AZ CO Maintenance - Serious - Phoenix, AZ. (Part of Maricopa)			Less Than Thresholds?	Yes	Yes	Yes	Yes	Yes	Yes
	PM10 Nonattainment - Moderate - Anthony, NM (Dona Ana County)		Entire NMED-AQB	Offsite Train	1.81		1.40		0.13	
NAAs in State of	CO Maintenance (Bernalillo County)			Offsite Truck	0.00		0.00		0.00	
New Mexico	As in State of SO2 Maintenance - Grant Co, NM	NMED-AQB		Total Emissions	1.81		1.40		0.13	
INCW MEXICU				Applicable General Conformity de minimis Thresholds	100		100		100	
				Less Than Thresholds?	Yes		Yes		Yes	

Notes:

1. The associated emissions from the onsite worker travel are negligible

2. To simplify the analysis, the biggest area among all detailed NAA areas was conservativly used to estimate the emissions in each main NAA category area.

For State of Arizona and New Mexico the total distances accross each state along the train routes were conservativly used to estimate the emissions in NAA.

3. The distance for trains and trucks are varied depending on the type to materials transporting and their destinations. 4. In MDAQMD, it is important to note that the size of the ozone NAA and PM10 NAA area are different and the ozone NAA is smaller than PM10 NAA. Therefore, the train route (distance) within MDAQMD in ozone nonattainment area is smaller than the distance in PM10 nonattainment area. 5. ACRONYMS AND ABBREVIATIONS

MDAQMD = Mojave Desert Air Quality Management District

SCAQMD = South Coast Air Quality Management District EKAPCD = East Kern County Air Pollution Control District

SMAQMD = Sacramento Metro Air Quality Management District BCAQMD = Butte County Air Quality Management District FRAQMD = Feather River Air Quality Management District

ADEQ = Arizona Department of Environmental Quality

NMED-AQB = New Mexico Environment Department - Air Quality Bureau

6. Construction of the project is expected to complete in June 2017 and the operation will start from September. Therefore, the operational emissions were scaled from the entire year of project operation.

Summary of Applicable Operational Emissions for General Conformity (Alternative 1) - 2018 and Beyond

Hydrogen Energy California LLC HECA Project

Federal NAAQS Nonattainment or Maintenance Area	Detailed Status in Nonattainment or	Authority	Basis to Estimate the Offsite	Emission Sources / Applicable General	Proje		ional Ann neral Con			s - for
General Name and State	Maintenance Area	Agency	Transportation Distance	Conformity Thresholds / Comparisons	со	NOx	PM10	PM2.5	SO2	voc
	8-Hour Ozone (2008) Nonattainment - Extreme			Offsite Train	6.93	26.80	0.43	0.42	0.49	0.74
	PM2.5 Nonattainment		Entire SJVAPCD	Offsite Truck	5.56	9.15	2.51	0.76	0.07	0.77
	CO Maintenance - Moderate - Fresno, CA		jurisdiction area	Offsite Workers Commuting	4.17	0.48	1.05	0.28	0.01	0.13
San Joaquin Valley,	(Part of Fresno County), Modesto, CA		(one way trip: trains	Onsite Train	0.87	2.45	0.04	0.04	0.06	0.12
CA	(Part of Stanislaus County), Stockton, CA	SJVAPCD	= 63 to 287 miles,	Onsite Truck	0.63	0.98	0.15	0.05	0.01	0.16
	(Part of San Joaquin County)		trucks = 40 to 80	Total Emissions	18.16	39.87	4.19	1.55	0.63	1.93
	PM10 Maintenance		miles, workers= 20 miles)	Applicable General Conformity <i>de minimis</i> Thresholds	100	10	100	100	100	10
				Less Than Thresholds?	Yes	No	Yes	Yes	Yes	Yes
	8-Hour Ozone (2008) Nonattainment - Extreme			Offsite Train	0.00	0.00	0.00	0.00	0.00	0.00
	PM10 Nonattainment - Serious		Entire SCAQMD	Offsite Truck	5.17	8.52	2.34	0.71	0.06	0.72
	PM2.5 Nonattainment	SCAQMD	jurisdiction area	Total Emissions	5.17	8.52	2.34	0.71	0.06	0.72
Coast Air Basin, CA	NO2 Maintenance	CONQUE	(one way trip: trucks = 88 to 150 miles)	Applicable General Conformity <i>de minimis</i> Thresholds	100	10	70	100	100	10
	CO Maintenance - Serious			Less Than Thresholds?	Yes	Yes	Yes	Yes	Yes	Yes
	8-Hour Ozone (2008) Nonattainment - Marginal			Offsite Train		14.57	0.24			0.40
	PM10 Nonattainment - Serious		Entire EKAPCD	Offsite Truck		0.00	0.00			0.00
Kern County (East		EKAPCD	jurisdiction area (one way trip: trains	Total Emissions		14.57	0.24			0.40
Kern), CA		= 62 to 83 miles)	Applicable General Conformity <i>de minimis</i> Thresholds		100	70			100	
				Less Than Thresholds?		Yes	Yes			Yes
			Los Angeles-San	Offsite Train		24.80				0.69
Los Angeles-San			Bernardino Counties			0.00				0.00
Bernardino	8-Hour Ozone (2008) Nonattainment -		(West Mojave	Total Emissions		24.80				0.69
Counties (West Mojave Desert), CA	Severe 15 (Part of San Bernardino and Los Angeles Counties)	MDAQMD	Desert) - 8-hr Ozone (2008) NAA (one way trip: trains	Applicable General Conformity <i>de minimis</i> Thresholds		25				25
			= 120 miles)	Less Than Thresholds?		Yes				Yes
	PM10 Nonattainment - Moderate		,	Offsite Train			0.70			
				Offsite Truck			0.00			
San Bernardino			Entire MDAQMD	Total Emissions			0.70			
County, CA (Mojave Desert)		MDAQMD	jurisdiction area (one way trip: trains = 204 miles)	Applicable General Conformity <i>de minimis</i> Thresholds			100			
				Less Than Thresholds?			Yes			
	8-Hour Ozone (2008) Nonattainment - Severe 15			Offsite Train	0.59	2.30	0.04	0.04	0.04	0.06
Concernante Motro	PM10 Nonattainment - Moderate (Sacramento County)		Entire SMAQMD	Offsite Truck	0.00	0.00	0.00	0.00	0.00	0.00
Sacramento Metro, CA	PM2.5 Nonattainment	SMAQMD	jurisdiction area (one way trip: trains	Total Emissions	0.59	2.30	0.04	0.04	0.04	0.06
U.	CO Maintenance - Moderate - Sacramento, CA (Part of Placer, Sacramento and Yolo Counties)		= 80 miles)	Applicable General Conformity <i>de minimis</i> Thresholds	100	25	100	100	100	25
				Less Than Thresholds?	Yes	Yes	Yes	Yes	Yes	Yes
	PM2.5 Nonattainment (Sutter and Part of			Offsite Train		1.44		0.02	0.03	0.04
	Yuba Counties)		Yuba City-	Offsite Truck		0.00		0.00	0.00	0.00
Yuba City-			Marysville, CA -	Total Emissions		1.44		0.02	0.03	0.04
Marysville, CA	Manysville CA	PM2.5 NAA (one way trip: trains = 50 miles)	Applicable General Conformity <i>de minimis</i> Thresholds		100		100	100	100	
			/	Less Than Thresholds?		Yes		Yes	Yes	Yes
	8-Hour Ozone (2008) Nonattainment - Marginal (Butte County)			Offsite Train	0.37	1.44		0.02	0.03	0.04
		Chico, CA - 8-Hour Ozone (2008) NAA -		0.00	0.00		0.00	0.00	0.00	
Chico, CA	County)	BCAQMD	Entire Butte County (one way trip: trains	Total Emissions Applicable General	0.37	1.44		0.02	0.03	0.04
			= 50 miles)	Conformity <i>de minimis</i> Thresholds	100	100		100	100	100
				Less Than Thresholds?	Yes	Yes		Yes	Yes	Yes

Summary of Applicable Operational Emissions for General Conformity (Alternative 1) - 2018 and Beyond

3/05/2013 revision

Hydrogen Energy C HECA Project	alifornia LLC								3/05/201	3 revision
	8-Hour Ozone (2008) Nonattainment - Marginal - Phoenix-Mesa, AZ (Part of Maricopa and Pinal County)			Offsite Train	19.45	75.23	1.22	1.18	1.37	2.08
	PM10 Nonattainment (Moderate, Serious, or Maintenance) (12 Counties) PM2.5 Nonattainment - Nogales, AZ (Part of Santa Cruz County), West Central Pinal, AZ (West Pinal County)	Offsite Truck	0.00	0.00	0.00	0.00	0.00	0.00		
			Total Emissions	19.45	75.23	1.22	1.18	1.37	2.08	
	SO2 Nonattainment - Hayden (Pinal County), AZ (Part of Pinal County), Maintenance - San Manual (Pinal County), AZ, Ajo (Pima County), AZ, Douglas (Cochise County), AZ, Miami (Gila County), AZ	ADEQ (one way trip: t = 364 miles	(one way trip: trains = 364 miles)	Applicable General Conformity <i>de minimis</i> Thresholds	100	100	70	100	100	100
	CO Maintenance - Serious - Phoenix, AZ. (Part of Maricopa)			Less Than Thresholds?	Yes	Yes	Yes	Yes	Yes	Yes
	PM10 Nonattainment - Moderate - Anthony, NM (Dona Ana County)		Entire NMED-AQB	Offsite Train	5.42		4.21		0.38	
	CO Maintenance (Bernalillo County)		jurisdiction area	Offsite Truck	0.00		0.00		0.00	
NAAs in State of	JAAs in State of New Mexico SO2 Maintenance - Grant Co, NM NMED-AQB (One = 102		Total Emissions	5.42		4.21		0.38		
New Mexico		= 102 miles to coal mine site)	Applicable General Conformity <i>de minimis</i> Thresholds	100		100		100		
				Less Than Thresholds?	Yes		Yes		Yes	

Notes:

1. The associated emissions from the onsite worker travel are negligible

2. To simplify the analysis, the biggest area among all detailed NAA areas was conservativly used to estimate the emissions in each main NAA category area.

For State of Arizona and New Mexico the total distances accross each state along the train routes were conservativly used to estimate the emissions in NAA.

3. The distance for trains and trucks are varied depending on the type to materials transporting and their destinations. 4. In MDAQMD, it is important to note that the size of the ozone NAA and PM10 NAA area are different and the ozone NAA is smaller than PM10 NAA. Therefore, the train route (distance) within MDAQMD in ozone nonattainment area is smaller than the distance in PM10 nonattainment area.

5. ACRONYMS AND ABBREVIATIONS

MDAQMD = Mojave Desert Air Quality Management District SCAQMD = South Coast Air Quality Management District

EKAPCD = East Kern County Air Pollution Control District

SMAQMD = Sacramento Metro Air Quality Management District

BCAQMD = Butte County Air Quality Management District FRAQMD = Feather River Air Quality Management District

ADEQ = Arizona Department of Environmental Quality NMED-AQB = New Mexico Environment Department - Air Quality Bureau

Emissions Summary

3/05/2013 revision

Annual Number of Train Cars (incoming/outgoing)

			Gasification				Maximum
		Liquid Sulfur	Cars	Ammonia Cars	Urea Cars	UAN Cars	Total Trains
	Coal Cars (incoming)	Cars (outgoing)	(outgoing)	(outgoing)	(outgoing)	(outgoing)	per period
Annual average number of train cars	13100	85	3170	0	4298	2335	22988

		Line-Haul Engine for Product Trains				
	Line-Haul Engine for Coal Train	Liquid Sulfur	Gasification	Ammonia	Urea	UAN
ton-mile/gallon	480	480	480	480	480	480
Train car capacity (ton)	117	100	100	0	100	100
Unloaded train car weight (ton)	25	25	25	25	25	25

480 ton-mile/gallon is based on 2009 class I rail freight fuel consumption and travel data (Association of American Railroads, Railroad Facts)

	Coal Train	Coal Trains			id Sulfur Product	Train	Gasification Solid Product Train		
			Fuel Use for	Miles traveled		Fuel Use for	Miles traveled		Fuel Use for
		Coal Train (ton-	Coal Train	per Train	Product Train	Product Train	per Train	Product Train	Product Train
	Miles traveled per Train (mile/engine) - One	miles/year) -	(gal/year) -	(mile/engine) -	(ton-miles/year)	(gal/year) -	(mile/engine) -	(ton-miles/year) -	(gal/year) -
Area	Way *	Round Trip	Round Trip	One Way	 Round Trip 	Round Trip	One Way	Round Trip	Round Trip
San Joaquin Valley, CA	63	137,825,100	287,126	150	1,912,500	3,984	63	29,956,500	62,407
Kern County (East Kern), CA	62	135,637,400	282,568		0	0	83	39,457,775	82,201
San Bernardino County, CA (Mojave									
Desert) (PM10 nonattainment)	204	445,196,950	927,461		0	0	52	24,734,725	51,529
Los Angeles-San Bernardino Counties									
(West Mojave Desert), CA - (Ozone									
nonattainment)	120	262,524,000	546,906		0	0		C	0
State of Arizona (PM10 nonattainment, the									
maximum distance)	364	796,322,800	1,658,947		0	0		C	0
State of New Mexico	102	222,051,550	462,591		0	0		C	0

* Since exact route of coal train was not determined yet, It was assumed that the coal train would travel across the maximum distance of the nonattainment area for all pollutants in Arizona.

	Ammonia Produc	ct Train		l	Jrea Product Trai	in	UAN Product Train		
			Fuel Use for	Miles traveled		Fuel Use for	Miles traveled		Fuel Use for
		Product Train	Product Train	per Train	Product Train	Product Train	per Train	Product Train	Product Train
	Miles traveled per Train (mile/engine) - One	(ton-miles/year) -	(gal/year) -	(mile/engine) -	(ton-miles/year)	(gal/year) -	(mile/engine) -	(ton-miles/year) -	(gal/year) -
Area	Way	Round Trip	Round Trip	One Way	- Round Trip	Round Trip	One Way	Round Trip	Round Trip
San Joaquin Valley, CA	0	0	0	287	185,007,375	385,418	264	92,466,000	192,631
Sacramento Metro, CA		0	0	80	51,570,000	107,434		0	0
Yuba City-Marysville, CA		0	0	50	32,231,250	67,146		0	0
Chico, CA		0	0	50	32,231,250	67,146		0	0
Other Area in State of California		0	0	161	103,784,625	216,210		0	0

Emissions Summary

3/05/2013 revision

offsite locomotive travelling speed in average ratio of required horsepower (empty train/full train) locomotive load factor 40 mph 0.76 28%

Train Type	Coal	Liquid Sulfur	Gasification Solids	Ammonia	Urea	UAN
Railcar Capacity (ton)	117	100	100	-	100	100
Locomotive Engine Power (hp, each)	4,400	3,000	3,000	3,000	3,000	3,000
Railcars per train	111	60	60	60	60	60
Numbers of locomotive engine per train	6	2	2	2	2	2
Total ton of material per locomotive						
engine	2,165	3,000	3,000	-	3,000	3,000
Total # locomotive engines needed to						
transport material per year	706	3	106		144	78
Total # locomotive engines needed for						
returning trains per year	536	2	80	-	109	59
Total locomotive hours per year in San						
Joaquin Valley, CA	1,956	20	294	-	1,818	906
Total locomotive hours per year in Kern						
County (East Kern), CA	1,925		387			
Total locomotive hours per year in San						
Bernardino County, CA (Mojave Desert)						
(PM10 nonattainment)	6,319		243			
Total locomotive hours per year in Los						
Angeles-San Bernardino Counties (West						
Mojave Desert), CA - (Ozone						
nonattainment)	3,726					
Total locomotive hours per year in						
Arizona (PM10 nonattainment, the						
maximum distance)	11,303					
Total locomotive hours per year in						
Arizona (PM2.5 nonattainment)	621					
Total locomotive hours per year in						
Arizona (Ozone nonattainment)	3,105					
Total locomotive hours per year in State						
of Arizona	6,210					
Total locomotive hours per year in State						
of New Mexico	3,152					
Total locomotive hours per year in						
Sacramento Metro, CA					507	
Total locomotive hours per year in Yuba						
City-Marysville, CA					317	
Total locomotive hours per year in						
Chico, CA					317	
Total locomotive hours per year in Other						
Area in the rest State of California and						
State of Oregon/State of Washington					1,020	

Emissions Summary

3/05/2013 revision

Line-Haul Emission Factors	CO	NOx	PM10	PM2.5	SO2	VOC
Tier 3 Emission Factor (g/bhp-hr)	1.28	4.95	0.08	0.08	0.09	0.14
Tier 3 Emission Factor (g/gal)	26.62	102.96	1.66	1.61	1.88	2.85

Annual Emission Rates by Area

Area	Train Types	CO	NOx	PM10	PM2.5	SO2	VOC
Area	Train Types		Annual	Emission Rates	(tons/year) all	trains	
San Joaquin Valley, CA	Line-haul coal engines	3.37	13.02	0.21	0.20	0.24	0.36
	Line-haul liquid sulfur product engines	0.02	0.09	0.00	0.00	0.00	0.00
	Line-haul gasification product engines	0.34	1.33	0.02	0.02	0.02	0.04
	Line-haul ammonia product engines	0.00	0.00	0.00	0.00	0.00	0.00
	Line-haul urea product engines	2.13	8.25	0.13	0.13	0.15	0.23
	Line-haul UAN product engines	1.06	4.11	0.07	0.06	0.08	0.11
	Total Trains (ton/yr)	6.93	26.80	0.43	0.42	0.49	0.74
Kern County (East Kern), CA	Line-haul coal engines	3.31	12.81	0.21	0.20	0.23	0.35
	Line-haul gasification product engines	0.45	1.76	0.03	0.03	0.03	0.05
	Total Trains (ton/yr)	3.77	14.57	0.24	0.23	0.27	0.40
San Bernardino County, CA (Mojave	Line-haul coal engines	10.88	42.06	0.68	0.66	0.77	1.16
Desert) (PM10 nonattainment)	Line-haul gasification product engines	0.28	1.10	0.02	0.02	0.02	0.03
	Total Trains (ton/yr)	11.16	43.16	0.70	0.68	0.79	1.19
Los Angeles-San Bernardino Counties (West	Line-haul coal engines	6.41	24.80	0.40	0.39	0.45	0.69
	Line-haul gasification product engines	0.00	0.00	0.00	0.00	0.00	0.00
	Total Trains (ton/yr)	6.41	24.80	0.40	0.39	0.45	0.69
State of Arizona	Line-haul coal engines	19.45	75.23	1.22	1.18	1.37	2.08
	Total Trains (ton/yr)	19.45	75.23	1.22	1.18	1.37	2.08
Sacramento Metro, CA	Line-haul urea product engines	0.59	2.30	0.04	0.04	0.04	0.06
	Total Trains (ton/yr)	0.59	2.30	0.04	0.04	0.04	0.06
Yuba City-Marysville, CA	Line-haul urea product engines	0.37	1.44	0.02	0.02	0.03	0.04
	Total Trains (ton/yr)	0.37	1.44	0.02	0.02	0.03	0.04
Chico, CA	Line-haul urea product engines	0.37	1.44	0.02	0.02	0.03	0.04
	Total Trains (ton/yr)	0.37	1.44	0.02	0.02	0.03	0.04
Other Area in California and State of	Line-haul urea product engines	1.20	4.63	0.07	0.07	0.08	0.13
Oregon/State of Washington	Total Trains (ton/yr)	1.20	4.63	0.07	0.07	0.08	0.13
State of New Mexico	Line-haul coal engines	5.42	20.98	0.34	0.33	0.38	0.58
	Total Trains (ton/yr)	5.42	20.98	0.34	0.33	0.38	0.58

EPA Estimated Locomotive (line-haul) Average Emission Rates by Tiers

		Emission Fact	or (g/bhp-hr)	
Tier	со	NOx	PM	HC
Uncontrolled	1.28	13.00	0.32	0.48
Tier 0	1.28	8.60	0.32	0.48
Tier 0+	1.28	7.20	0.20	0.30
Tier 1	1.28	6.70	0.32	0.47
Tier 1+	1.28	6.70	0.20	0.29
Tier 2	1.28	4.95	0.18	0.26
Tier 2+ and Tier 3	1.28	4.95	0.08	0.13
Tier 4	1.28	1.00	0.015	0.04

Emissions Summary

3/05/2013 revision

Emission Factors For all Locomotives					
SOx ⁽³⁾					
g/gal					
1.88					

Locomotive Application	Conversion Factor (bhp-hr/gal)
Large Line-haul & Passenger	20.8
Small Line-haul	18.2
Switching	15.2

Note:

(1) EPA's Technical Highlights: Emission Factors for Locomotives, 2009 (http://www.epa.gov/nonroad/locomotv/420f09025.pdf).

(2) Line-haul engine emissions of CO, NOx, PM, and HC are based on EPA Tier 2+ and Tier 3 emission factors.

(3) Based on 300 ppm sulfur diesel fuel.

(4) VOC emissions can be assumed to be equal to 1.053 times the HC emissions

(5) PM_{2.5} Fraction of PM₁₀, = 0.97

(6) No off-site switching or idling was assumed for train transportation.

(7) Average line haul locomotive load factor was obtained from Table 5.12 of The Port Of Long Beach - 2007 Air Emissions Inventory (http://www.polb.com/civica/filebank/blobdload.asp?BlobID=6021)

Calculations for Trucks Operations

Parameter	Coke Trucks (Max @ 50 or 60 mph)	Liquid Sulfur Product Trucks (Max @ 50 or 60 mph)	Gasification Product Trucks (Max @ 50 or 60 mph)	Ammonia Product Trucks (Max @ 50 or 60 mph)	Urea Product Trucks (Max @ 50 or 60 mph)	UAN Sulfur Product Trucks (Max @ 50 or 60 mph)	Equipment and Miscellaneous Trucks (Ma @ 50 or 60 mph)
	Running Emissions	Running Emissions	Running Emissions	Running Emissions	Running Emissions	Running Emissions	Running Emissions
Distance traveled per truck in San Joaquin Valley, CA (mi)		104	160	0	80	80	92
Distance traveled per truck in Los Angeles-South Coast Air Basin, CA (mi)		180	0	0	0	0	151
Maximum number of trucks or loads:							
Annual average trucks or loads	15,200	1,020	3,170	0	5,730	9,340	4,690

Distance traveled per truck is based on round-trip.

EMFAC2007 Emission Factors + Fugitive Dust (g/mi) For Truck Model year 2010, Scenario year 2015

	Coke and Coal Trucks (Max @ 50 or 60 mph) Running Emissions	Running Emissions	Gasification Product Trucks (Max @ 50 or 60 mph) Running Emissions	Ammonia Product Trucks (Max @ 50 or 60 mph) Running Emissions	(Max @ 50 or 60 mph) Running Emissions	(Max @ 50 or 60 mph) Running Emissions	Equipment and Miscelleneous Trucks (Max @ 50 or 60 mph) Running Emissions
Pollutant	(g/mile/trk)	(g/mile/trk)	(g/mile/trk)	(g/mile/trk)	(g/mile/trk)	(g/mile/trk)	(g/mile/trk)
CO	1.32	1.32	1.32	1.32	1.32	1.32	1.32
NOx	2.17	2.17	2.17	2.17	2.17	2.17	2.17
ROG	0.18	0.18	0.18	0.18	0.18	0.18	0.18
SOx	0.02	0.02	0.02	0.02	0.02	0.02	0.02
PM10 *	0.60	0.60	0.60	0.60	0.60	0.60	0.60
PM2.5 *	0.18	0.18	0.18	0.18	0.18	0.18	0.18

EMFAC2007 is the approved federal model for vehicle combustion emissions * PM10 and PM2.5 includes fugitive dust factor for paved roads obtained from AP-42 Ch. 13 plus PM factors from EMFAC 2007

PM factors from EMFAC = combustion exhaust + tire wear + break wear

The maximum emission factor from either truck speed at 50 mph or 60 mph was used.

Most California highways have speed limits of 60 or 70 mph and large trucks travel more slowly than the speed limit.

Annual Emission Rates in ton/yr all trucks

	Coke and Coal Trucks (Max @ 50 or 60 mph)	Liquid Sulfur Product Trucks (Max @ 50 or 60	Gasification Product Trucks (Max @ 50 or 60	Ammonia Product Trucks (Max @ 50 or 60 mph)	Urea Product Trucks (Max @ 50 or 60 mph)	UAN Sulfur Product Trucks (Max @ 50 or 60 mph)	Equipment and Miscelleneous Trucks (Max	Total Truck
Pollutant	Running Emissions	Running Emissions	Running Emissions	Running Emissions	Running Emissions	Running Emissions	Running Emissions	Emission Rates (tons/yr)
San Joaquin Valley, CA								
CO	2.29	0.15	0.74	0.00	0.66	1.08	0.63	5.56
NOx	3.78	0.25	1.21	0.00	1.09	1.78	1.03	9.15
ROG	0.32	0.02	0.10	0.00	0.09	0.15	0.09	0.77
SOx	0.03	0.00	0.01	0.00	0.01	0.01	0.01	0.07
PM10	1.04	0.07	0.33	0.00	0.30	0.49	0.28	2.51
PM2.5	0.31	0.02	0.10	0.00	0.09	0.15	0.09	0.76
Los Angeles-South Coast Air Basin, CA								
CO	3.88	0.27	0.00	0.00	0.00	0.00	1.03	5.17
NOx	6.39	0.44	0.00	0.00	0.00	0.00	1.69	8.52
ROG	0.54	0.04	0.00	0.00	0.00	0.00	0.14	0.72
SOx		0.00	0.00	0.00	0.00	0.00	0.01	0.06
PM10	1.76	0.12	0.00	0.00	0.00	0.00	0.46	2.34
PM2.5	0.53	0.04	0.00	0.00	0.00	0.00	0.14	0.71

Summary of Worker Commute Vehicle Emissions - HECA

Calculations for Worker Commute Vehicle Operation

OFFSITE - 50 MPH EF (g/mile) Round Total Trip Vehicle Number of Daily Distance Fuel Type Туре Workers Vehicle (miles/vehi Trips per VMT PM₁₀ тос Onroad Vehicle per day Count cle/day) day (Annual) со NOx PM_{2.5} SO₂ Personal Commuting Vehicles 40.0 0.4234 G/D LDA/ LDT 200 154 1 2,246,154 1.6825 0.1930 0.1134 3.50E-03 0.0540

Assumptions:

Assumed average distance traveled off site for all employees commuting will be 20 miles

times 2 for return trip =	40 miles
	365 days per year
Number of workers per commuter vehicle =	1.3

EMFAC2007 emissions are for fleet mix years 1971-2015 travelling at 50 mph.

Area	Description	со	NOx	PM10	PM2.5	SO2	VOC	
		Annual Emission Rates (tons/year) all worker commute vehicles						
San Joaquin Valley, CA	Personal Commuting Vehicles	4.17	0.48	1.05	0.28	0.01	0.13	

Fugitive Dust on Paved Road

AP 42 13.2.1 Paved Roads, updated January 2011

For a daily basis, $E = [k (sL)^{0.91} x (W)^{1.02} (1-P/4N)$

(2)

P = number of "wet" days with at least 0.254 mm (0.01 in) of precipitation during the averaging period

W = average weight (tons) of vehicles traveling the road

 ${\sf k}$ = particle size multiplier for particle size range and units of interest

sL = road surface silt loading (g/m^2)

	k
	g/VMT
PM2.5	0.25
PM10	1.00

Table 13.2.1-1 PARTICLE SIZE MULTIPLIERS FOR PAVED ROAD EQUATION

Fleet mix on highway

VV=	9.1 tons, aver	age
sL=	0.031 g/m2	Default value from URBEMIS 9.2 for Kern County
P=	36 days/year	Buttonwillow Station 1940-2011, WRCC

E=

0.09836 g/VMT PM2.5 0.39344 g/VMT PM10

fraction of each vehicle type
0.75
0.18
0.07

9.1 weighted average for all vehicles (ton)

On I-5 near the Project, 75% of all vehicles are passenger vehicles,

of the remaining vehicle, 73% are 5-axle trucks and the remainder are 2-4 axle trucks.

From information provided by California Department of Transportation for the traffic analysis.

Industrial Wind Erosion, AP-42 Section 13.2.5

Emission factor (g/m ² -yr) = k $\sum P_i$ (from i=1,N) Erosion Potential (P _i) (g/m ²) = 58 (u* - u _t *) ² + 25(u* - u _t *)			(Equation 2)	3/05/2013 revision
Erosion Pot	ential (F	P_i) (g/m ²) = 58 (u [*] - u _t [*]) ² + 25(u [*] - u _t [*])	(Equation 3)	
0.5	k =	PM ₁₀ particle size multiplier		
0.075	k =	PM _{2.5} particle size multiplier		
1	N =	number of disturbances per year		
33.76	A =	exposed area of coal, m^2 , per car (Table 4.1, Ja	n 2008 Connell Hatch: exposed area = 33.76 m ²)	
Use Equation	on (1) to	o determine friction velocity:		
u(z) = u* / 0).4 x ln(2	z/z ₀)		
17.88	u(z) =	fastest mile (m/s) (based on speed of train)		
0.2	z =		based on the height above the coal cars at which difference between the height of the locomotive	
0.003	z ₀ =	roughness height for uncrusted coal pile (m), fr	om Table 13.2.5-2	
1.70	u* =	friction velocity (m/s), solved for using Equation	1	
0.55	u _t * =	threshold friction velocity (m/s); Table 13.2.5-2	value for ground coal (surrounding coal pile)	

Erosion Potential

			erosion potential corresponding to the observed (or probable) fastest mile of wind for
	P =	105.9 g/m ²	the i th period between disturbances, g/m ²
Annual	A =	442,256.0 m ² /yr	exposed area of coal per car (m ²) times number of cars per year

Unmitigated Emissions

Emission factor $(g/m^2-yr) = k \sum P_i$ (from i=1,N) E = 23,423,432 grams PM₁₀ / year 25.82 tons PM₁₀ / year E = 3,513,515 grams PM_{2.5} / year 3.87 tons PM_{2.5} / year

Mitigation Effi Su	ciency of rfactant: 85%	* HECA will be requiring the coal supplier to apply a surfactant to the coal transported by rail to reduce fugitive losses during transport. Surfactant achieves at least an 85% control efficiency.
Mitigated PM ₁₀ :	3.87 tons PM ₁₀ / year	
Mitigated PM _{2.5} :	0.58 tons PM _{2.5} / year	* It has been assumed that all emitted PM will be lost during the first 100 miles of the trip and has thus all been assigned to New Mexico. Maximum train speed (and thus wind speed) will certainly be reached within this time, and according to AP-42
40 train speed, m	iph	Section 13.2.5.1, "particulate emission rates tend to decay rapidly
0.447 m/s per 1 mpł	ו	(half-life of a few minutes) during an erosion event."
453.6 grams per pou		
2000 pounds per to		
13,100 Required rail o at normal ope	car loads per year ration (cars/yr)	

Summary of Transportation Vehicles and Routes

3/05/2013 revision

Commodity Handled	Petcoke	Coal	Liquid Sulfur	Gasification Solids	Urea	UAN-32	Equipment Maintenance (1)	Miscellaneous Activities (2)
Expected plant operation								
Expected plant operation is 8000 hours / year								
The plant will operate 24 hours / day	24 hours / day	24 hours / day	24 hours / day	24 hours / day	24 hours / day	24 hours / day	24 hours / day	24 hours / day
The plant will operate 333 days / year	333 days / yr	333 days / yr	333 days / yr	333 days / yr	333 days / yr	333 days / yr	333 days / yr	333 days / yr
Shipment by trucks	100 %	0 %	75 %	25 %	25 %	50 %	100 %	100 %
Shipment by train	0 %	100 %	25 %	75 %	75 %	50 %	0 %	0 %
Production rate								
Required Normal Flow / day	1,140 tons / day	4,580 tons / day	100 tons / day	950 tons / day	1,720 tons / day	1,400 tons / day		
Required Normal Flow / year	380,000 tons / yr	1,526,000 tons / yr	34,000 tons / yr	317,000 tons / yr	573,000 tons / yr	467,000 tons / yr		
Required Maximum Flow day	2,000 tons / day (3)	6,500 tons / day (4)	200 tons / day (5)	1,900 tons / day (6)	3,440 tons / day (6)	2,800 tons / day (6)		
Truck Shipments								
Truck Capacity	25 tons / truck		25 tons / truck	25 tons / truck	25 tons / truck	25 tons / truck	25 tons / truck	25 tons / truck
Required trucks loads for normal operation / day	46 trucks / day		3 trucks / day	10 trucks / day	18 trucks / day	28 trucks / day	3 trucks / day	11 trucks / day
Required trucks loads for normal operation / yr	15,200 truck / yr		1,020 truck / yr	3,170 truck / yr	5,730 truck / yr	9,340 truck / yr	1,000 truck / yr	3,690 truck / yr
Required trucks loads for maximum operation /day	80 trucks / day		6 trucks / day	19 trucks / day	35 trucks / day	56 trucks / day	5 trucks / day	17 trucks / day
Train Shipments								
Railcar Capacity		117 tons / car	100 tons / car	100 tons / car	100 tons / car	100 tons / car		
Required railcars for normal operation / day		40 cars / day	0.25 cars / day	8 cars / day	13 cars / day	7 cars / day		
Required railcar loads for normal operation / yr		13,100 cars / yr	85 cars / yr	3,170 cars / yr	4,298 cars / yr	2,335 cars / yr		
Required railcars for maximum operation / day		200 cars / day	1 cars / day	19 cars / day	26 cars / day	14 cars / day		
Basis	- 91% availability	- 91% availability	- 91% availability	- 91% availability	- 91% availability	- 91% availability		
	- 25% petcoke (heat input) per year	- 75% coal (heat input) per year	- High sulfur case - 100 tons/day	- 75% coal max annual average	- 75% by rail	- 75% by rail		
	- 25 ton/truck	- 117 tons/car	- 25 ton/truck	- 100% capable by rail	-empty 45 day storage in 10 days	-empty 45 day storage in 10 days	•	
	- 7 days/week receiving	- 100% coal for maximum	- Weekdays only	- 25% capable by truck				
	- 25% excess truck	- Rack sized to handle two	- Can only move up to 25% of	- Maximun is double the daily				
	movement capacity	trains/day -	production by rail	average rate				
Traffic route	Truck Route	Truck Route	Truck Route	Truck Route	Truck Route	Truck Route	Truck Route	Truck Route
Destination/Origin	Carson Refinery	None	California Sulfur	Various	Various	Various	Various	Various
Address Distance	1801 E Sepulveda, Carson 140 Miles		2509 E Grant Street, Wilmingto 142 Miles	on 80 Mile radius	40 mile radius	40 mile radius	40 mile radius	40 mile radius
Route	Alameda		Grant	40 mile radius	Station Road	Station Road	5 fwy	5 fwy
	405 Fwy		Henry Ford	Station Road	Morris Road	Morris Road	Stockdale Hwy	Stockdale Hwy
	5 Fwy		Alameda	Morris Road	Stockdale Hywy	Stockdale Hywy	Dairy Road	Dairy Road
1	Stockdale hwy Morris Road		405 Fwy 5 Fwy	Stockdale Hywy 5 Fwy	5 Fwy	5 Fwy		
	Station Road		Stockdale hwy	o,				
			Morris Road					1
	Station Road		Station Road					
Rail Route	Rail Route	Rail Route	Rail Route	Rail Route	Rail Route	Rail Route	Rail Route	Rail Route
Destination/Origin	None	Elk Ranch New Mexico	In SJVAPCD	CEMEX, Victorville	Oregon/Washington	Calamco	None	None
Address						Port Rd G15, Stockton, CA		
Distance Route		794 miles	Line neer Deren CA to neeth erer	198 miles SJVR/BNSF	628 Miles SJVR/UPRR	264 miles		
NULL		Kern County: 132.2 miles (County Mine to Boron, CA: 662 miles	Line near Boron, CA to north prop	OUV AVDINOF	JUT RR			
1		Total Distance: 794.2 miles						
1								
	1	1	1		1	1	1	

Notes

 Notes

 1) Equipment Maintenance Trucks are considered to be 2% of the total trucks per day for the feed and product operation.

 2) Miscellaneous trucks are considered to be 3% of the total trucks per day for the feed and product operation plus a small number of additional trucks to provide additives to the gasification.

 3) The maximum flow rate of coke is ratioed up from the normal flow rate at 25% to 30% of feed

 4) The maximum dialy transfer rate of coke is based on supplying 7-days of normal coal required feed (75% of feedstock on a heat input basis) in 5 days and rounded upward to 2 significant figures.

 5) The maximum flow rate of suffur is 2 times the normal production

 6) The maximum flow rate of suffur is 2 times the normal production

 7) The sources of flow data used in the Production Rate calculation were based on the flow rates provided in "Conference Note: Rail and Truck Traffic - Planning Session" and the "FertilizerProductMovement Update", 01-25-12.

Summary of On-Site Operations Train Emissions

Calculations for Trucks Operation onsite

Assumed Number of Unit Trains (incoming/outgoing)

Coal Unit Trains	Unit Trains of Product	Maximum Total Trains per period 284	
	165		
111	60		
200-240	42-46		
Switching Enigne/ Rail car movers	Line-Haul Engine for Coal Train	Line-Haul Engine for Product Trains	
	4400	3000	
	1	1	
	5.0%	5.0%	
260	220	150	
1	2	2	
	2	1	
8			
1248			
	(incoming) 119 111 200-240 Switching Enigne/ Rail car movers 260 1 8	(incoming) (outgoing) 119 165 111 60 200-240 42-46 Switching Enigne/ Rail car movers Line-Haul Engine for Coal Train 4400 1 5.0% 260 260 220 1 2 260 220 1 2 260 220 1 2 260 220 1 2 8 50%	

The majority of the time the line-haul engine will operate in Notch 1 or idling, therefore emissions were conservatively estimated for Notch 1 horsepower.

Notch percentage presented in PORT OF LONG BEACH AIR EMISSIONS INVENTORY for 2007 (POLB, Jan 2009) derived from EPA data.

For each coal train it takes 2 hours to complete the onsite loop to unload

For each product train it takes 1 hour to load

	CO	NOx	PM10	PM2.5	SO2	VOC
Switching Engine Emission Factors						
Tier 3 Emission Factor (g/bhp-hr)	1.83	4.50	0.08	0.08	0.12	0.27
Emissions (lbs/hr /engine)	1.05	2.58	0.05	0.04	0.07	0.16
Line-Haul Emission Factors						
Tier 3 Emission Factor (g/bhp-hr)	1.28	4.95	0.08	0.08	0.09	0.14
Coal Train Emissions (lbs/hr /engine)	0.62	2.40	0.04	0.04	0.04	0.07
Product Train Emissions (lbs/hr /engine)	0.42	1.64	0.03	0.03	0.03	0.05

Annual Emission Rates in tons/year

	CO	NOx	PM10	PM2.5	SO2	VOC
Switching engines	0.65	1.61	0.03	0.03	0.04	0.10
Line-haul coal engines	0.15	0.57	0.01	0.01	0.01	0.02
Line-haul product engines	0.07	0.27	0.00	0.00	0.00	0.01

Emissions Summary

Summary of On-Site Operations Train Emissions

Emissions Summary

3/05/2013 revision

Emission Factors For all Locomotives

SOx	
g/gal	
1.88	
Locomotive Application	Conversion Factor (bhp-hr/gal)
Large Line-haul & Passenger	20.8
Small Line-haul	18.2
Switching	15.2

Notes:

New line-haul engines will be AC locomotives such as the GE Evolution Series, that meet Tier 3 emissions

New switching engines will meet Tier 3 emissions, they may be the Titan Trackmobile railcar movers or similar

Emission factors from EPA's Technical Highlights: Emission Factors for Locomotives, 2009 (http://www.epa.gov/nonroad/locomotv/420f09025.pdf).

SO2 emissions Based on 300 ppm sulfur diesel fuel.

VOC emissions can be assumed to be equal to 1.053 times the HC emissions

PM_{2.5} Fraction of PM₁₀, = 0.97

Line-haul engine emissions of CO, NOx, PM, and HC are based on EPA Tier 2+ and Tier 3 emission factors.

3/05/2013 revision

Calculations for Trucks Operation onsite

Data Supplied By Client								
Parameter Petcoke Trucks			Product	Miscellaneous Trucks				
	Running Emissions	Idling Emissions	Running Emissions	Idling Emissions	Running Emissions			
Distance Traveled (mi)*	0.96		2.49		2.20			
Per Truck Idle Time (hr)		0.083		0.083				
Maximum number of trucks or loads:								
Annual average trucks or loads	15,200	15,200	19,260	19,260	4,690			

EMFAC2007 Emission Factors + Fugitive Dust (g/mi or g/idle-hour) For Truck Model year 2010

	Petcoke Trucks		Product Trucks		Miscellaneous Trucks
Pollutant	Running Emissions (g/mile/trk)	ldling Emissions (g/idle- hour/trk)	Running Emissions (g/mile/trk)	Idling Emissions (g/idle- hour/trk)	Running Emissions (g/mile/trk)
CO	3.03	43.69	3.03	43.69	3.03
NOx	5.43	122.65	5.43	122.65	5.43
ROG	1.39	7.74	1.39	7.74	1.39
SOx	0.03	0.06	0.03	0.06	0.03
PM10 *	0.92	0.11	0.92	0.11	0.92
PM2.5 *	0.29	0.10	0.29	0.10	0.29

EMFAC2007 is the approved federal model for vehicle combustion emissions * PM10 and PM2.5 includes fugitive dust factor for paved roads obtained from AP-42 Ch. 13 plus PM factors from EMFAC 2007 PM factors from EMFAC = combustion exhaust + tire wear + break wear EMFAC emissions are for fleet year 2010 travelling at 10 mph.

Annual Emission Rates in g/s For All Trucks

	Petcoke	Trucks	Produc	t Trucks	Miscellaneous Trucks		
Pollutant	Running Emissions	Idling Emissions (at each Idle Point)	Running Emissions	Idling Emissions (at each Idle Point)	Running Emissions	TOTAL (g/s)	TOTAL (tpy)
CO	1.40E-03	1.755E-03	4.596E-03	2.224E-03	9.906E-04	1.10E-02	3.81E-01
NOx	2.501E-03	4.926E-03	8.238E-03	6.242E-03	1.775E-03	2.37E-02	8.23E-01
ROG	6.398E-04	3.110E-04	2.107E-03	3.941E-04	4.541E-04	3.91E-03	1.36E-01
SOx	1.383E-05	2.490E-06	4.554E-05	3.155E-06	9.814E-06	7.48E-05	2.60E-03
PM10	4.226E-04	4.579E-06	1.392E-03	5.802E-06	3.000E-04	2.12E-03	7.39E-02
PM2.5	1.348E-04	4.177E-06	4.440E-04	5.293E-06	9.568E-05	6.84E-04	2.38E-02

Volume, Line Sources

Guidance for Air Dispersion Modeling, SJV	idance for Air Dispersion Modeling, SJVAPCD, 2007 and Section 1.2.2 of Volume II of ISC User's Guide							
2.3.2 Oyo=12W/2.15								
Truck Traveling vol src		Truck Idling pt src						
6	ft Release height	12.6	ft Release height					
12	ft Width	0.1	m diam					
66.98	ft init horz dim Syo	51.71	m/s vel					
5.58	ft init vert dim Szo	366	K Temp					
		199.134	F Temp					

Volume, Stand Alone

Guidance for Air Dispersion Modeling, SJ\	/APCD, 2007
2.3.2 + modelers judgement + ISC guidant	ce
Truck Traveling vol src	
6	ft Release height
12	ft Width
	ft init horz dim Syo
5.58	ft init vert dim Szo

Summary of On-Site Operations Truck Emissions

Calculations for Trucks Operation onsite

Transportation Information

- Maximum annual mileage =

- Onsite Vehicle =

- Vehicle year=

2010 10,000 miles/truck-year

20 trucks

- Information Provided By Applicant

Notes

- Information Provided By Applicant

- All routine vehicular traffic is anticipated to travel exclusively on paved roads

- Assumed 15 mph average speed within HECA facility

EMFAC2007 Emission Factors (g/mi) For Truck Model year 2010

	Emission Factors in g/mi				
Pollutant	Gas LHDT1	Diesel LHDT2			
CO	0.229	0.920			
NOx	0.064	0.672			
ROG	0.014	0.085			
SOx	0.011	0.005			
PM10 *	0.167	0.176			
PM2.5 *	0.054	0.062			

EMFAC2007 is the approved federal model for vehicle combustion emissions

* PM10 and PM2.5 includes fugitive dust factor for paved roads obtained from AP-42 Ch. 13 plus PM factors from EMFAC 2007

PM factors from EMFAC = combustion exhaust + tire wear + break wear

EMFAC emissions are for fleet year 2010 travelling at 15 mph.

Annual Emission Rates in g/s From All Trucks

	Emissio	ns in g/s		
Pollutant	Gas LHDT1	Diesel LHDT2	TOTAL (g/s)	TOTAL (tpy)
CO	1.45E-03	5.83E-03	7.29E-03	0.253
NOx	4.06E-04	4.26E-03	4.67E-03	0.162
ROG	8.88E-05	5.39E-04	6.28E-04	0.022
SOx	6.98E-05	3.17E-05	1.01E-04	0.004
PM10	1.06E-03	1.11E-03	2.17E-03	0.076
PM2.5	3.40E-04	3.91E-04	7.32E-04	0.025

Emissions Summary

3/05/2013 revision

Fugitive Dust on Paved Road

3/05/2013 revision

AP 42 13.2.1 Paved Roads, updated January 2011	
Calculations for Trucks Operation onsite	

For a daily basis, E = $[k (sL)^{0.91} x (W)^{1.02}](1-P/4N)$

(2)

P = number of "wet" days with at least 0.254 mm (0.01 in) of precipitation during the averaging period W = average weight (tons) of vehicles traveling the road k = particle size multiplier for particle size range and units of interest sL = road surface silt loading (g/m²)

	k
	g/VMT
PM2.5	0.25
PM10	1.00

Table 13.2.1-1 PARTICLE SIZE MULTIPLIERS FOR PAVED ROAD EQUATION

Large Trucks

		Empty truck	full truck	Load Capacity
W=	17.5 tons, average		5 30	0 tons
sL=	0.031 g/m2	Default value from URBEMIS 9.2 for	Kern County	/
P=	36 days/year Butte	onwillow Station 1940-2011, WRCC		

E=

0.19149 g/VMT PM2.5 large delivery trucks 0.76594 g/VMT PM10 large delivery trucks

Operation and Maintenance Vehicles

W= 3 tons

sL=0.031 g/m2Default value from URBEMIS 9.2 for Kern CountyP=36 days/year Buttonwillow Station 1940-2011, WRCC

E=

0.03169 g/VMT PM2.5 O&M trucks 0.12675 g/VMT PM10 O&M trucks

APPENDIX D

REVISED OPERATIONAL TRANSPORTATION EMISSIONS FOR ALTERNATIVE 2

Summary of Applicable Operational Emissions for General Conformity (Alternative 2) - 2017 Overlapping with Construction

Hydrogen Energy California LLC HECA Project

3/05/2013 revision

Federal NAAQS Nonattainment or Maintenance	Detailed Status in Nonattainment or	Authority Agency	Basis to Estimate the Offsite Transportation	Emission Sources / Applicable General	Project Operational Annual Emission Rates - for General Conformity (tpy)					
Area General Name and State	Maintenance Area	Authonity Agency	Distance	Conformity Thresholds / Comparisons	со	NOx	PM10	PM2.5	SO2	voc
				Onsite Construction Equipmen	2.65	3.84	0.48	0.27	0.00	0.83
				Onsite Trucks	0.15	0.34	0.09	0.03	0.00	0.09
	8-Hour Ozone (2008)		Construction - Entire	Onsite Vehicles	0.08	0.01	0.22	0.02	0.00	0.01
	Nonattainment - Extreme		SJVAPCD jurisdiction area	Onsite Total	2.88	4.18	0.79	0.32	0.01	0.93
	PM2.5 Nonattainment		(one way trip: trucks =	Offsite Linears Equipment	0.00	0.00	0.00	0.00	0.00	0.00
	CO Maintenance -		worker vehicles = 20 miles)	Offsite Trucks	1.02	5.16	0.42	0.21	0.00	0.22
	Maderate - Fresno, CA		worker vehicles = 20 miles)	Offsite Vehicles	5.98	0.72	0.20	0.07	0.01	0.18
	(Part of Fresno County),			Offsite Total	6.99	5.87	0.61	0.28	0.01	0.41
	Modesto, CA (Part of			Total Construction Emission	9.87	10.06	1.40	0.60	0.02	1.34
	Stanislaus County),					1				
	Stockton, CA (Part of San			Offsite Train	1.25	4.82	0.08	0.08	0.09	0.13
San Joaquin	Joaquin County)	SJVAPCD		Offsite Truck	5.20	8.56	2.35	0.71	0.06	0.72
Valley, CA	PM10 Maintenance	STAT OD		Offsite Workers Commuting	1.39	0.16	0.35	0.09	0.00	0.04
	FINITO Maintenance			Onsite Train	0.00	0.00	0.00	0.09	0.00	0.04
			Operation - Entire							
			SJVAPCD jurisdiction area	Onsite Truck	0.51	0.99	0.10	0.03	0.00	0.15
			(one way trip: trains = 70	Total Operation Emissions	8.34	14.53	2.88	0.91	0.16	1.05
			miles, trucks = 26.5 to 80 miles, workers= 20 miles)	Total Construction and Operation Overlapping	18.21	24.59	4.28	1.51	0.17	2.39
				Emissions Applicable General Conformity <i>de minimis</i>	100	10	100	100	100	10
				Thresholds Less Than Thresholds?	Yes	No	Yes	Yes	Yes	Yes
	8-Hour Ozone (2008)			Offsite Train	0.00	0.00	0.00	0.00	0.00	0.00
	Nonattainment - Extreme PM10 Nonattainment -		Entire SCAQMD	Offsite Truck	1.75	2.89	0.00	0.00	0.00	0.00
Los Angeles- Serious		jurisdiction area (one way								
Basin, CA	PM2.5 Nonattainment	SCAQMD	trip: trucks = 88 to 150 miles)	Total Emission Conformity De minimis	1.75 100	2.89 10	0.79 70	0.24	0.02 100	0.24
NO2 Maintenance CO Maintenance - Se	CO Maintenance - Serious	,	(ton/yr) Less than De minimis?	Yes	Yes	Yes	Yes	Yes	Yes	
	8-Hour Ozone (2008) Nonattainment - Marginal			Offsite Train		4.27	0.07			0.12
Kern County	PM10 Nonattainment - Serious	EKAPCD	62 miles) C			0.00	0.00			0.00
(East Kern), CA		EIGH OD		Total Emission		4.27	0.07			0.12
				Conformity De minimis		100	70			100
				(ton/yr) Less than De minimis?		Yes	Yes			Yes
	8-Hour Ozone (2008)		Los Angeles-San Bernardino Counties (West	Offsite Train		8.27	103			0.23
Counties (West	Nonattainment - Severe 15	MDAQMD	Mojave Desert) - 8-hr	Offsite Truck		0.00				0.00
Mojave Desert),	(Part of San Bernardino		Ozone (2008) NAA (one	Total Emission		8.27				0.23
CA	and Los Angeles Counties)		way trip: trains = 120 miles)	Conformity De minimis (ton/yr)		25				25
				Less than De minimis?		Yes				Yes
	PM10 Nonattainment -			Offsite Train			0.23			
	Moderate									
San Bernardino			Entire MDAQMD	Offsite Truck			0.00			
County, CA		MDAQMD	jurisdiction area (one way	Total Emission			0.23			
(Mojave Desert)			trip: trains = 204 miles)	Conformity De minimis			400			
				(ton/yr)			100			
				Less than De minimis?			Yes			
	8-Hour Ozone (2008) Nonattainment - Severe 15			Offsite Train	0.00	0.00	0.00	0.00	0.00	0.00
	PM10 Nonattainment - Moderate (Sacramento County)		Entire SMAQMD	Offsite Truck	0.00	0.00	0.00	0.00	0.00	0.00
Sacramento	PM2.5 Nonattainment	SMAQMD	jurisdiction area (one way	Total Emission	0.00	0.00	0.00	0.00	0.00	0.00
Metro, CA	CO Maintenance - Moderate - Sacramento, CA (Part of Placer, Sacramento and Yolo Counties)		trip: trains = 0 miles)	Conformity De minimis (ton/yr)	NA	25	100	100	100	25
			1	Less than De minimis?	Yes	Yes	Yes	Yes	Yes	Yes
	PM2.5 Nonattainment			Offsite Train		0.00		0.00	0.00	0.00
	(Sutter and Part of Yuba		Vuba City Marriella Ct	Offsite Truck		0.00		0.00	0.00	0.00
Yuba City-	Counties)		Yuba City-Marysville, CA -	Total Emission		0.00		0.00	0.00	0.00
Marysville, CA	1-Hour Ozone (Yuba City)	FRAQMD	PM2.5 NAA (one way trip:	Conformity De minimis						
	(Laba oity)		trains = 0 miles)	(ton/yr)		100		100	100	100
			1	Less than De minimis?		Yes		Yes	Yes	Yes
	8-Hour Ozone (2008)		1			100		103	100	103
	Nonattainment - Marginal (Butte County)			Offsite Train	0.00	0.00		0.00	0.00	0.0
	PM2.5 Nonattainment (Part of Butte County)		Chico, CA - 8-Hour Ozone (2008) NAA - Entire Butte	Offsite Truck	0.00	0.00		0.00	0.00	0.00
	CO Maintenance - Moderate (Part of Butte County)	BCAQMD	County (one way trip: trains = 0 miles)	Total Emission	0.00	0.00		0.00	0.00	0.00
				Conformity De minimis	NA	100		100	100	100
				(ton/yr) Less than De minimis?	Yes	Yes		Yes	Yes	Ye

Summary of Applicable Operational Emissions for General Conformity (Alternative 2) - 2017 Overlapping with Construction

Hydrogen Energy California LLC HECA Project

3/05/2013 revision

Federal NAAQS Nonattainment	Detailed Status in Nonattainment or	Authority Aronov	Basis to Estimate the	Emission Sources / Applicable General	Project Operational Annual Emission Rates - for General Conformity (tpy)						
or Maintenance Area General Name and State	Maintenance Area	Authority Agency	Offsite Transportation Distance	Conformity Thresholds / Comparisons	со	NOx	PM10	PM2.5	SO2	voc	
	8-Hour Ozone (2008) Nonattainment - Marginal - Phoenix-Mesa, AZ (Part of Maricopa and Pinal County)			Offsite Train	6.48	25.08	0.41	0.39	0.46	0.69	
	PM10 Nonattainment (Moderate, Serious, or Maintenance) (12 Counties)	us, or 2		Offsite Truck	0.00	0.00	0.00	0.00	0.00	0.00	
NAAs in State of Arizona	PM2.5 Nonattainment - Nogales, AZ (Part of Santa Cruz County), West Central Pinal, AZ (West Pinal County)	ADEQ	Entire ADEQ jurisdiction area (one way trip: trains = 364 miles)	Total Emission	6.48	25.08	0.41	0.39	0.46	0.69	
SO2 Non: Hayden (I (Part of P Maintena (Pinal Co (Pima Co Douglas (AZ, Miam	SO2 Nonattainment - Hayden (Pinal County), AZ (Part of Pinal County), Maintenance - San Manual (Pinal County), AZ, Ajo (Pima County), AZ, J Douglas (Cochise County), AZ, Miami (Gila County), AZ	ounty), AZ unty), an Manual AZ, Ajo AZ, es County),		Conformity De minimis (ton/yr)	100	100	70	100	100	100	
	CO Maintenance - Serious - Phoenix, AZ. (Part of Maricopa)			Less than De minimis?	Yes	Yes	Yes	Yes	Yes	Yes	
	PM10 Nonattainment - Moderate - Anthony, NM (Dona Ana County)		c	Offsite Train	1.81		1.40		0.13		
NAAs in State of	CO Maintenance (Bernalillo County)		Entire NMED-AQB jurisdiction area (one way	Offsite Truck	0.00		0.00		0.00		
New Mexico	SO2 Maintenance - Grant Co, NM	NMED-AQB	trip: trains = 102 miles to coal mine site)	Total Emission	1.81		1.40		0.13		
			Conformity De minimis (ton/yr)	100		100		100			
				Less than De minimis?	Yes		Yes		Yes		

Notes: 1. The associated emissions from the onsite worker travel are negligible To simplify the analysis, the biggest area among all detailed NAA area 2. To simplify the analysis, the biggest area among all detailed NAA areas was conservativly used to estimate the emissions in each main NAA category area. For State of Arizona and New Mexico the total distances accross each state along the train routes were conservativly used to estimate the emissions in NAA.

3. The distance for trains and trucks are varied depending on the type to materials transporting and their destinations. ozone nonattainment area is smaller than the distance in PM10 nonattainment area. 5. ACRONYMS AND ABBREVIATIONS

MDAQMD = Mojave Desert Air Quality Management District

SCAQMD = South Coast Air Quality Management District EKAPCD = East Kern County Air Pollution Control District

EXACUP - East Neth Could yair Politicul Colling Data to SMAQMD = Sacramento Metro Air Quality Management District BCAQMD = Butte County Air Quality Management District FRAQMD = Feather River Air Quality Management District ADEQ = Arizona Department of Environmental Quality MMED-AQB = New Mexico Environment Department - Air Quality Bureau 6. Construction of the project is expected to complete in June 2017 and the operation will start from September. Therefore, the operational emissions were scaled from the entire year of project operation.

Summary of Applicable Operational Emissions for General Conformity (Alternative 2) - 2018 and Beyond

Hydrogen Energy California LLC HECA Project

Federal NAAQS Nonattainment or Maintenance	Detailed Status in Nonattainment or	Authority Agency	Basis to Estimate the Offsite Transportation	Applicable General		Project Operational Annual Emission Rates - for General Conformity (tpy)						
or Maintenance Area General Name and State	Maintenance Area	Authority Agency	Distance	Conformity Thresholds / Comparisons	со	NOx	PM10	PM2.5	SO2	voc		
	8-Hour Ozone (2008) Nonattainment - Extreme			Offsite Train	3.74	14.47	0.23	0.23	0.26	0.40		
	PM2.5 Nonattainment		Entire SJVAPCD	Offsite Truck	15.59	25.67	7.05	2.12	0.19	2.17		
	CO Maintenance -		jurisdiction area (one way	Offsite Workers Commuting	4.17	0.48	1.05	0.28	0.01	0.13		
San Joaquin	Maderate - Fresno, CA	SJVAPCD	trip: trains = 70 miles,	Onsite Train	0.00	0.00	0.00	0.00	0.00	0.00		
Valley, CA	(Part of Fresno County),	63VA 65	trucks = 26.5 to 80 miles,	Onsite Truck	1.52	2.97	0.30	0.10	0.01	0.45		
	Modesto, CA (Part of		workers= 20 miles)	Total Emission	25.02	43.59	8.64	2.73	0.47	3.16		
	PM10 Maintenance		workers- 20 miles)	Conformity De minimis	100	10	100	100	100	10		
				(ton/yr) Less than De minimis?	Yes	No	Yes	Yes	Yes	Yes		
	8-Hour Ozone (2008) Nonattainment - Extreme			Offsite Train	0.00	0.00	0.00	0.00	0.00	0.00		
Los Angeles-	PM10 Nonattainment - Serious		Entire SCAQMD jurisdiction	Offsite Truck	5.26	8.67	2.38	0.72	0.06	0.73		
South Coast Air	PM2.5 Nonattainment	SCAQMD	area (one way trip: trucks =	Total Emission	5.26	8.67	2.38	0.72	0.06	0.73		
Basin, CA	F MZ.5 Nonattainment	GOAGMD	88 to 150 miles)	Conformity De minimis								
	NO2 Maintenance CO Maintenance - Serious			(ton/yr)	100	10	70	100	100	10		
	8-Hour Ozone (2008)			Less than De minimis?	Yes	Yes	Yes	Yes	Yes	Yes		
	Nonattainment - Marginal PM10 Nonattainment -			Offsite Train		12.81	0.21			0.35		
Kern County	Serious	EKAPCD	Entire EKAPCD jurisdiction area (one way trip: trains =			0.00	0.00			0.00		
(East Kern), CA			62 miles)	Total Emission		12.81	0.21			0.35		
			02 (11103)	Conformity De minimis		100	70			100		
				(ton/yr)								
				Less than De minimis? Offsite Train		Yes 24.80	Yes			Yes 0.69		
Los Angeles-San				24.00				0.00				
Counties (West (Part of Sa	Nonattainment - Severe 15	MDAOMD	Bernardino Counties (West Mojave Desert) - 8-hr Ozone (2008) NAA (one	Offsite Truck		0.00				0.00		
	(Part of San Bernardino	MDAQMD		Total Emission		24.80				0.69		
Mojave Desert),	and Los Angeles Counties)			Conformity De minimis								
CA			way trip: trains = 120 miles)	(ton/yr)		25				25		
				Less than De minimis?		Yes				Yes		
	PM10 Nonattainment - Moderate			Offsite Train			0.68					
San Bernardino	Moderale		Entire MDAQMD	Offsite Truck			0.00					
		MDAQMD					0.00					
County, CA		MDAQMD	jurisdiction area (one way	Total Emission			0.68					
(Mojave Desert)			trip: trains = 204 miles)	Conformity De minimis			100					
				(ton/yr)								
				Less than De minimis?			Yes					
	8-Hour Ozone (2008) Nonattainment - Severe 15			Offsite Train	0.00	0.00	0.00	0.00	0.00	0.00		
	PM10 Nonattainment - Moderate (Sacramento		Entire SMAQMD	Offsite Truck	0.00	0.00	0.00	0.00	0.00	0.00		
Sacramento	County) PM2.5 Nonattainment	SMAQMD	jurisdiction area (one way	Total Emission	0.00	0.00	0.00	0.00	0.00	0.00		
Metro, CA	CO Maintenance - Moderate - Sacramento,		trip: trains = 0 miles)	Conformity De minimis								
	CA (Part of Placer, Sacramento and Yolo			(ton/yr)	NA	25	100	100	100	25		
	Counties)			Less than De minimis?	Yes	Yes	Yes	Yes	Yes	Yes		
	PM2.5 Nonattainment			Offsite Train	.03	0.00	100	0.00	0.00	0.00		
	(Sutter and Part of Yuba			Offsite Truck		0.00		0.00	0.00	0.00		
Yuba City-			Yuba City-Marysville, CA -	Total Emission		0.00		0.00	0.00	0.00		
		FRAQMD	PM2.5 NAA (one way trip:	Conformity De minimis								
Marysville, CA			trains = 0 miles)	(ton/yr)		100		100	100	100		
Marysville, CA				Less than De minimis?		Yes		Yes	Yes	Yes		
Marysville, CA					0.00	0.00		0.00	0.00	0.00		
Marysville, CA	8-Hour Ozone (2008) Nonattainment - Marginal			Offsite Train	0.00	0.00			0.00			
Marysville, CA			Chico, CA - 8-Hour Ozone		0.00	0.00		0.00	0.00	0.00		
Marysville, CA Chico, CA	Nonattainment - Marginal (Butte County) PM2.5 Nonattainment (Part of Butte County) CO Maintenance - Moderate (Part of Butte	BCAQMD	Chico, CA - 8-Hour Ozone (2008) NAA - Entire Butte County (one way trip: trains = 0 miles)	Offsite Truck								
	Nonattainment - Marginal (Butte County) PM2.5 Nonattainment (Part of Butte County) CO Maintenance -	BCAQMD	(2008) NAA - Entire Butte County (one way trip: trains	Offsite Truck	0.00	0.00		0.00	0.00	0.00		

Summary of Applicable Operational Emissions for General Conformity (Alternative 2) - 2018 and Beyond

Hydrogen Energy California LLC

HECA Project

Federal NAAQS Nonattainment	Detailed Status in Nonattainment or	Authority Agency	Basis to Estimate the	Emission Sources / Applicable General	Proje		onal Ann neral Con			s - for
or Maintenance Area General Name and State	Area General Maintenance Area Distance		Offsite Transportation Distance	Conformity Thresholds / Comparisons	со	NOx	PM10	PM2.5	SO2	voc
	8-Hour Ozone (2008) Nonattainment - Marginal - Phoenix-Mesa, AZ (Part of Maricopa and Pinal County)			Offsite Train	19.45	75.23	1.22	1.18	1.37	2.08
PM10 Nonattainment (Moderate, Serious, or Maintenance) (12 Counties)			Offsite Truck	0.00	0.00	0.00	0.00	0.00	0.00	
	PM2.5 Nonattainment - Nogales, AZ (Part of Santa Cruz County), West Central Pinal, AZ (West Pinal County)	ADEQ	Entire ADEQ jurisdiction area (one way trip: trains = 364 miles)	Total Emission	19.45	75.23	1.22	1.18	1.37	2.08
SO2 Nonattain Hayden (Pinal I (Part of Pinal C Maintenance - (Pinal County), (Pima County), Douglas (Coch AZ, Miami (Gila	SO2 Nonattainment - Hayden (Pinal County), AZ (Part of Pinal County), Maintenance - San Manual (Pinal County), AZ, Ajo (Pima County), AZ, Oouglas (Cochise County), AZ, Miami (Gila County), AZ	rden (Pinal County), AZ rt of Pinal County), ntenance - San Manual nal County), AZ, Ajo na County), AZ, ıglas (Cochise County),		Conformity De minimis (ton/yr)	100	100	70	100	100	100
	CO Maintenance - Serious - Phoenix, AZ. (Part of Maricopa)			Less than De minimis?	Yes	Yes	Yes	Yes	Yes	Yes
	PM10 Nonattainment - Moderate - Anthony, NM (Dona Ana County)			Offsite Train	5.42		4.21		0.38	
NAAs in State of	CO Maintenance (Bernalillo County)	NMED-AQB	Entire NMED-AQB jurisdiction area (one way	Offsite Truck	0.00		0.00		0.00	
	SO2 Maintenance - Grant Co, NM	NMED-AQB	trip: trains = 102 miles to coal mine site)	Total Emission	5.42		4.21		0.38	
				Conformity De minimis (ton/yr)	100		100		100	
			Less than De minimis?	Yes		Yes		Yes		

Notes:

1. The associated emissions from the onsite worker travel are negligible

2. To simplify the analysis, the biggest area among all detailed NAA areas was conservativly used to estimate the emissions in each main NAA category area.

For State of Arizona and New Mexico the total distances accross each state along the train routes were conservativly used to estimate the emissions in NAA.

3. The distance for trains and trucks are varied depending on the type to materials transporting and their destinations. nonattainment area is smaller than the distance in PM10 nonattainment area.

5. ACRONYMS AND ABBREVIATIONS

MDAQMD = Mojave Desert Air Quality Management District

SCAQMD = South Coast Air Quality Management District

EKAPCD = East Kern County Air Pollution Control District SMAQMD = Sacramento Metro Air Quality Management District

BCAQMD = Butte County Air Quality Management District

FRAQMD = Feather River Air Quality Management District ADEQ = Arizona Department of Environmental Quality

NMED-AQB = New Mexico Environment Department - Air Quality Bureau

3/05/2013 revision

Summary of Offsite Operations Train Emissions - HECA

Emissions Summary 3/05/2013 revision

Annual Number of Train Cars (incoming/outgoing)

	Coal Cars (incoming)	Liquid Sulfur Cars (outgoing)	Gasification Cars (outgoing)	Ammonia Cars (outgoing)	Urea Cars (outgoing)	UAN Cars (outgoing)	Maximum Total Trains per period
Annual average number of train cars	13100	0	0	0	0	0	13100
			Line-Haul	Engine for Produ	ct Trains		
	Line-Haul Engine for Coal Train	Liquid Sulfur	Gasification	Ammonia	Urea	UAN	
ton-mile/gallon	480	480	480	480	480	480	
Train car capacity (ton)	117	100	100	0	100	100	
Unloaded train car weight (ton)	25	25	25	25	25	25	

 Train car capacity (ton)
 117
 100
 100
 00

 Unloaded train car weight (ton)
 25
 25
 25
 25

 480 ton-mile/gallon is based on 2009 class I rail freight fuel consumption and travel data (Association of American Railroads, Railroad Facts)

	Coal Train:	s		Liqu	id Sulfur Product	Train	Gasifi	cation Solid Produ	ct Train
			Fuel Use for	Miles traveled		Fuel Use for	Miles traveled		Fuel Use for
		Coal Train (ton-	Coal Train	per Train	Product Train	Product Train	per Train	Product Train	Product Train
	Miles traveled per Train (mile/engine) - One	miles/year) -	(gal/year) -	(mile/engine) -	(ton-miles/year)	(gal/year) -	(mile/engine) -	(ton-miles/year) -	(gal/year) -
Area	Way *	Round Trip	Round Trip	One Way	- Round Trip	Round Trip	One Way	Round Trip	Round Trip
SJVAPCD	70	153,139,000	319,028	0	0	0	0	C	0 0
EKAPCD	62	135,637,400	282,568		0	0	0	C	0 0
MDAQMD (PM10 nonattainment and the									
maximum distance)	204	445,196,950	927,461		0	0	0	C	0
MDAQMD (Ozone nonattainment)	120	262,524,000	546,906		0	0		C	0 0
Arizona (PM10 nonattainment and the									
maximum distance)	364	796,322,800	1,658,947		0	0		C	0
New Mexico	102	222,051,550	462,591		0	0		C	0 0

* Since exact route of coal train was not determined yet, It was assumed that the coal train would travel across the maximum distance of the nonattainment area for all pollutants in Arizona.

	Ammonia Produc	ct Train		l	Jrea Product Tra	in		UAN Product Train	
			Fuel Use for	Miles traveled		Fuel Use for	Miles traveled		Fuel Use for
		Product Train	Product Train	per Train	Product Train	Product Train	per Train	Product Train	Product Train
	Miles traveled per Train (mile/engine) - One	(ton-miles/year) -	(gal/year) -	(mile/engine) -	(ton-miles/year)	(gal/year) -	(mile/engine) -	(ton-miles/year) -	(gal/year) -
Area	Way	Round Trip	Round Trip	One Way	- Round Trip	Round Trip	One Way	Round Trip	Round Trip
SJVAPCD	0	0	0	0	0	0	0	0	0
Sacramento Metro		0	0	0	0	0		0	0
Yuba City-Marysville		0	0	0	0	0		0	0
Chico		0	0	0	0	0		0	0
Other Area in California and									
Oregon/Washington		0	0	0	0	0		0	0

offsite locomotive travelling speed in average ratio of required horsepower (empty train/full train) locomotive load factor

40 mph 0.76

28%

Summary of Offsite Operations Train Emissions - HECA

Emissions Summary 3/05/2013 revision

			Gasification			
Train Type	Coal	Liquid Sulfur	Solids	Ammonia	Urea	UAN
Railcar Capacity (ton)	117	100	100	-	100	100
Locomotive Engine Power (hp, each)	4,400	3,000	3,000		3,000	3,000
Railcars per train	111	60	60		60	60
Numbers of locomotive engine per train	6	2	2		2	2
Total ton of material per locomotive						
engine	2,165	3,000	3,000		3,000	3,000
Total # locomotive engines needed to						
transport material per year	706	-	-		-	-
Total # locomotive engines needed for						
returning trains per year	536	-	-		-	-
Total locomotive hours per year in	o /= ·					
SJVAPCD	2,174					
Total locomotive hours per year in	4 005					
EKAPCD Total locomotive hours per year in	1,925					
MDAQMD (PM10 nonattainment and the						
	0.040					
maximum distance) Total locomotive hours per year in	6,319					
MDAQMD (Ozone nonattainment)	3.726					
Total locomotive hours per year in	3,720					
Arizona (PM10 nonattainment and the						
maximum distance)	11.303					
Total locomotive hours per year in	11,303					
Arizona (PM2.5 nonattainment)	621					
Total locomotive hours per year in	021					
Arizona (Ozone nonattainment)	3.105					
Total locomotive hours per year in	5,105					
Arizona (SO2 and CO nonattainment)	6,210					
Total locomotive hours per year in New	0,210					
Mexico	3,152					
Total locomotive hours per year in	0,702					
Sacramento Metro						
Total locomotive hours per year in Yuba						
City-Marysville						
Total locomotive hours per year in Chico						
Total locomotive hours per year in Other						
Area in California and						
Oregon/Washington						

Line-Haul Emission Factors	CO	NOx	PM10	PM2.5	SO2	VOC
Tier 3 Emission Factor (g/bhp-hr)	1.28	4.95	0.08	0.08	0.09	0.14
Tier 3 Emission Factor (g/gal)	26.62	102.96	1.66	1.61	1.88	2.85

Summary of Offsite Operations Train Emissions - HECA

Emissions Summary 3/05/2013 revision

Area		со	NOx	PM10	PM2.5	SO2	VOC
			Annua	Emission Rate	s (tons/year) all	trains	
SJVAPCD (San Joaquin Valley), CA	Line-haul coal engines	3.74	14.47	0.23	0.23	0.26	0.40
	Line-haul liquid sulfur product engines	0.00	0.00	0.00	0.00	0.00	0.00
	Line-haul gasification product engines	0.00	0.00	0.00	0.00	0.00	0.00
	Line-haul ammonia product engines	0.00	0.00	0.00	0.00	0.00	0.00
	Line-haul urea product engines	0.00	0.00	0.00	0.00	0.00	0.00
	Line-haul UAN product engines	0.00	0.00	0.00	0.00	0.00	0.00
	Total Trains (ton/yr)	3.74	14.47	0.23	0.23	0.26	0.40
EKAPCD (East Kern County), CA	Line-haul coal engines	3.31	12.81	0.21	0.20	0.23	0.35
	Line-haul gasification product engines	0.00	0.00	0.00	0.00	0.00	0.00
	Total Trains (ton/yr)	3.31	12.81	0.21	0.20	0.23	0.35
MDAQMD (PM10 nonattainment and total	Line-haul coal engines	10.88	42.06	0.68	0.66	0.77	1.16
listance)	Line-haul gasification product engines	0.00	0.00	0.00	0.00	0.00	0.00
	Total Trains (ton/yr)	10.88	42.06	0.68	0.66	0.77	1.16
MDAQMD (Ozone nonattainment)	Line-haul coal engines	6.41	24.80	0.40	0.39	0.45	0.69
	Line-haul gasification product engines	0.00	0.00	0.00	0.00	0.00	0.00
	Total Trains (ton/yr)	6.41	24.80	0.40	0.39	0.45	0.69
Arizona	Line-haul coal engines	19.45	75.23	1.22	1.18	1.37	2.08
	Total Trains (ton/yr)	19.45	75.23	1.22	1.18	1.37	2.08
Sacramento Metro, CA	Line-haul urea product engines	0.00	0.00	0.00	0.00	0.00	0.00
	Total Trains (ton/yr)	0.00	0.00	0.00	0.00	0.00	0.00
Yuba City-Marysville, CA	Line-haul urea product engines	0.00	0.00	0.00	0.00	0.00	0.00
	Total Trains (ton/yr)	0.00	0.00	0.00	0.00	0.00	0.00
Chico, CA	Line-haul urea product engines	0.00	0.00	0.00	0.00	0.00	0.00
	Total Trains (ton/yr)	0.00	0.00	0.00	0.00	0.00	0.00
Other Area in California and	Line-haul urea product engines	0.00	0.00	0.00	0.00	0.00	0.00
Oregon/Washington	Total Trains (ton/yr)	0.00	0.00	0.00	0.00	0.00	0.00
New Mexico	Line-haul coal engines	5.42	20.98	0.34	0.33	0.38	0.58
	Total Trains (ton/yr)	5.42	20.98	0.34	0.33	0.38	0.58

EPA Estimated Locomotive Average Emission Rates by Tiers

		Emission Fact	or (g/bhp-hr)	
Tier	co	NOx	PM	HC
Uncontrolled	1.28	13.00	0.32	0.48
Tier 0	1.28	8.60	0.32	0.48
Tier 0+	1.28	7.20	0.20	0.30
Tier 1	1.28	6.70	0.32	0.47
Tier 1+	1.28	6.70	0.20	0.29
Tier 2	1.28	4.95	0.18	0.26
Tier 2+ and Tier 3	1.28	4.95	0.08	0.13
Tier 4	1.28	1.00	0.015	0.04

Emission Factors For all Locomotives SOx ⁽³⁾ g/gal 1.88

Locomotive Application	Conversion Factor (bhp-hr/gal)
Large Line-haul & Passenger	20.8
Small Line-haul	18.2
Switching	15.2

Note:

(1) EPA's Technical Highlights: Emission Factors for Locomotives, 2009 (http://www.epa.gov/nonroad/locomotv/420f09025.pdf).

(2) Line-haul engine emissions of CO, Nox, PM, and HC are based on EPA Tier 3.

(3) Based on 300 ppm sulfur diesel fuel.

(4) VOC emissions can be assumed to be equal to 1.053 times the HC emissions

(5) PM_{2.5} Fraction of PM₁₀, = 0.97

(6) No off-site switching or idling was assumed for train transportation.

(7) Average line haul locomotive load factor was obtained from Table 5.12 of The Port Of Long Beach - 2007 Air Emissions Inventory (http://www.polb.com/civica/filebank/blobdload.asp?BlobID=6021)

Calculations for Trucks Operation

Data Supplied By Client							
Parameter	Coke Trucks (Max @ 50 or 60 mph)	Coal Trucks (Max @ 50 or 60 mph)	Liquid Sulfur Product Trucks (Max @ 50 or 60 mph)	Gasification Product Trucks (Max @ 50 or 60 mph)	Urea Product Trucks (Max @ 50 or 60 mph)	UAN Sulfur Product Trucks (Max @ 50 or 60 mph)	Equipment and Miscellaneous Trucks (Max @ 50 or 60 mph)
	Running Emissions	Running Emissions	Running Emissions	Running Emissions	Running Emissions	Running Emissions	Running Emissions
Distance traveled per truck in San Joaquin Valley, CA (mi)		53	104	160	80	80	92
Distance traveled per truck in Los Angeles- South Coast Air Basin, CA (mi)	176	0	180	0	0	0	151
Maximum number of trucks or loads:							
Annual average trucks or loads	15,200	61,040	1,360	12,680	22,920	18,680	4,690
No off-site idling was assumed for truck transpo	rtation			•	•	•	

No off-site idling was assumed for truck transportation

Distance traveled per truck is based on round-trip.

EMFAC2007 Emission Factors + Fugitive Dust (g/mi) For Truck Model year 2010, Scenario year 2015

	Coke Trucks (Max @ 50 or 60 mph)	Coal Trucks (Max @ 50 or 60 mph)	Liquid Sulfur Product Trucks (Max @ 50 or 60 mph)	Gasification Product Trucks (Max @ 50 or 60 mph)	Urea Product Trucks (Max @ 50 or 60 mph)	UAN Sulfur Product Trucks (Max @ 50 or 60 mph)	Equipment and Miscelleneous Trucks (Max @ 50 or 60 mph)
Pollutant	Running Emissions (g/mile/trk)	Running Emissions (g/mile/trk)	Running Emissions (g/mile/trk)	Running Emissions (g/mile/trk)	Running Emissions (g/mile/trk)	Running Emissions (g/mile/trk)	Running Emissions (g/mile/trk)
CO	1.32	1.32	1.32	1.32	1.32	1.32	1.32
NOx	2.17	2.17	2.17	2.17	2.17	2.17	2.17
ROG	0.18	0.18	0.18	0.18	0.18	0.18	0.18
SOx	0.02	0.02	0.02	0.02	0.02	0.02	0.02
PM10 *	0.60	0.60	0.60	0.60	0.60	0.60	0.60
PM2.5 *	0.18	0.18	0.18	0.18	0.18	0.18	0.18

EMFAC2007 is the approved federal model for vehicle combustion emissions * PM10 and PM2.5 includes fugitive dust factor for paved roads obtained from AP-42 Ch. 13 plus PM factors from EMFAC 2007

PM factors from EMFAC = combustion exhaust + tire wear + break wear

The maximum emission factor from either truck speed at 50 mph or 60 mph was used.

Most California highways have speed limits of 60 or 70 mph and large trucks travel more slowly than the speed limit.

Annual Emission Rates in ton/yr all trucks

	Coke Trucks (Max @ 50 or 60 mph)	Coal Trucks (Max @ 50 or 60 mph)	Liquid Sulfur Product Trucks (Max @ 50 or 60	Gasification Product Trucks (Max @ 50 or 60	Urea Product Trucks (Max @ 50 or 60 mph)	UAN Sulfur Product Trucks (Max @ 50 or 60 mph)	Equipment and Miscelleneous Trucks (Max	
Pollutant	Running Emissions	Running Emissions	Running Emissions	Running Emissions	Running Emissions	Running Emissions	Running Emissions	Emission Rates (tons/yr)
San Joaquin Valley, CA								
CO	2.29	4.69	0.21	2.94	2.66	2.17	0.63	15.59
NOx	3.78	7.73	0.34	4.85	4.38	3.57	1.03	25.67
ROG	0.32	0.65	0.03	0.41	0.37	0.30	0.09	2.17
SOx	0.03	0.06	0.00	0.04	0.03	0.03	0.01	0.19
PM10	1.04	2.12	0.09	1.33	1.20	0.98	0.28	7.05
PM2.5	0.31	0.64	0.03	0.40	0.36	0.30	0.09	2.12
Los Angeles-South Coast Air Basin, CA				•	-			
CO	3.88	0.00	0.36	0.00	0.00	0.00	1.03	5.26
NOx	6.39	0.00	0.58	0.00	0.00	0.00	1.69	8.67
ROG	0.54	0.00	0.05	0.00	0.00	0.00	0.14	0.73
SOx	0.05	0.00	0.00	0.00	0.00	0.00	0.01	0.06
PM10	1.76	0.00	0.16	0.00	0.00	0.00	0.46	2.38
PM2.5	0.53	0.00	0.05	0.00	0.00	0.00	0.14	0.72

3/05/2013 revision

Summary of Worker Commute Vehicle Emissions - HECA

Calculations for Worker Commute Vehicle Operation

OFFSITE - 50 MPH EF (g/mile) Round Total Trip Vehicle Number of Daily Distance Fuel Type Туре Workers Vehicle (miles/vehi Trips per VMT Onroad Vehicle per day Count cle/day) day (Annual) со NOx PM_{10} PM_{2.5} SO₂ тос Personal Commuting Vehicles LDA/ LDT 40.0 0.4234 G/D 200 154 1 2,246,154 1.6825 0.1930 0.1134 3.50E-03 0.0540

Assumptions:

Assumed average distance traveled off site for all employees commuting will be 20 miles

times 2 for return trip =	40 miles
	365 days per year
Number of workers per commuter vehicle =	1.3

EMFAC2007 emissions are for fleet mix years 1971-2015 travelling at 50 mph.

		Annual Emission Rates (tons/year) all worker commute vehicles					
Area	Description	CO	NOx	PM10	PM2.5	SO2	VOC
San Joaquin Valley, CA	Personal Commuting	4 47	0.49	1.05	0.00	0.01	0.12
	Vehicles	4.17	0.48	1.05	0.28	0.01	0.13

3/05/2013 revision

Fugitive Dust on Paved Road

3/05/2013 revision

AP 42 13.2.1 Paved Roads, updated January 2011

For a daily basis, E = [k (sL)^0.91 x (W)^1.02](1-P/4N)

(2)

P = number of "wet" days with at least 0.254 mm (0.01 in) of precipitation during the averaging period W = average weight (tons) of vehicles traveling the road k = particle size multiplier for particle size range and units of interest

sL = road surface silt loading (g/m^2)

	k	Table 13.2.1-1
	g/VMT	PARTICLE SIZE MULTIPLIERS FOR PAVED ROAD EQUATION
PM2.5	0.25	
PM10	1.00	

Fleet mix on highway

VV=	9.1 tons, avera	age
sL=	0.031 g/m2	Default value from URBEMIS 9.2 for Kern County
P=	36 days/year	Buttonwillow Station 1940-2011, WRCC

E=

0.09836 g/VMT PM2.5 0.39344 g/VMT PM10

Vehicle weight (tons)	fraction of each vehicle type
1.6 passenger vehicles	0.75
40 large trucks	0.18
9 2-4 axle trucks	0.07

9.1 weighted average for all vehicles (ton)

On I-5 near the Project, 75% of all vehicles are passenger vehicles, of the remaining vehicle, 73% are 5-axle trucks and the remainder are 2-4 axle trucks.

From information provided by California Department of Transportation for the traffic analysis.

Industrial Wind Erosion, AP-42 Section 13.2.5

Emission fac	tor (g/m ² -yr) = k Σ P _i (from i=1,N)	(Equation 2)	3/05/2013 revision
Erosion Potential (P _i) (g/m ²) = 58 (u [*] - u _t [*]) ² + 25(u [*] - u _t [*])		(Equation 3)	
0.5	k = PM ₁₀ particle size multiplier		
0.075	$k = PM_{25}$ particle size multiplier		
1	N = number of disturbances per year		
33.76	A = exposed area of coal, m ² , per car (Table 4.1, Ja	n 2008 Connell Hatch: exposed area = 33.76 m ²)	
Use Equatio	n (1) to determine friction velocity:		
u(z) = u* / 0.	4 x ln(z/z ₀)		
17.88	u(z) = fastest mile (m/s) (based on speed of train)		
0.2		(based on the height above the coal cars at which wind flow would difference between the height of the locomotive engine and the	
0.003	z_0 = roughness height for uncrusted coal pile (m), fr	om Table 13.2.5-2	
1.70	u* = friction velocity (m/s), solved for using Equatio	n 1	

0.55 u_t^* = threshold friction velocity (m/s); Table 13.2.5-2 value for ground coal (surrounding coal pile)

Erosion Potential

			erosion potential corresponding to the observed (or probable) fastest mile of wind for
	P =	105.9 g/m ²	the i th period between disturbances, g/m ²
Annual	A =	442,256.0 m ² /yr	exposed area of coal per car (m ²) times number of cars per year

Unmitigated Emissions

Emission factor (g/m²-yr) = k $\sum P_i$ (from i=1,N)

E = 23,423,432 grams PM₁₀ / year 25.82 tons PM₁₀ / year E = 3,513,515 grams PM_{2.5} / year 3.87 tons PM_{2.5} / year

Mitigation Effi Su	ciency of rfactant: 85%	* HECA will be requiring the coal supplier to apply a surfactant to the coal transported by rail to reduce fugitive losses during transport. Surfactant achieves at least an 85% control efficiency.
Mitigated PM ₁₀ :	3.87 tons PM ₁₀ / year	
Mitigated PM _{2.5} :	0.58 tons PM _{2.5} / year	* It has been assumed that all emitted PM will be lost during the first 100 miles of the trip and has thus all been assigned to New Mexico. Maximum train speed (and thus wind speed) will certainly be reached within this time, and according to AP-42
40 train speed, m	iph	Section 13.2.5.1, "particulate emission rates tend to decay rapidly
0.447 m/s per 1 mpł	n	(half-life of a few minutes) during an erosion event."
453.6 grams per pou	ind	
2000 pounds per to	n	
13,100 Required rail o	car loads per year	
at normal ope	ration (cars/yr)	

Summary of Transportation Vehicles and Routes

3/05/2013 revision

Commodity Handled	Petcoke	Coal	Liquid Sulfur	Gasification Solids	Urea	UAN-32	Equipment Maintenance (1)	Miscellaneous Activities (2)
Expected plant operation								
Expected plant operation is 8000 hours / year								
The plant will operate 24 hours / day	24 hours / day	24 hours / day	24 hours / day	24 hours / day	24 hours / day	24 hours / day	24 hours / day	24 hours / day
The plant will operate 333 days / year	333 days / yr	333 days / yr	333 days / yr	333 days / yr	333 days / yr	333 days / yr	333 days / yr	333 days / yr
Shipment by trucks	100 %	100 %	100 %	100 %	100 %	100 %	100 %	100 %
Shipment by train	0 %	100 %	0 %	0 %	0 %	0 %	0 %	0 %
Production rate								
Required Normal Flow / day	1,140 tons / day	4,580 tons / day	100 tons / day	950 tons / day	1,720 tons / day	1,400 tons / day		
Required Normal Flow / year	380,000 tons / yr	1,526,000 tons / yr	34,000 tons / yr	317,000 tons / yr	573,000 tons / yr	467,000 tons / yr		
Required Maximum Flow day	2,000 tons / day (3)	6,500 tons / day (4)	200 tons / day (5)	1,900 tons / day (6)	3,440 tons / day (6)	2,800 tons / day (6)		
Truck Shipments								
Truck Capacity	25 tons / truck	25 tons / truck	25 tons / truck	25 tons / truck	25 tons / truck	25 tons / truck	25 tons / truck	25 tons / truck
Required trucks loads for normal operation / day	46 trucks / day	184 trucks / day	4 trucks / day	38 trucks / day	69 trucks / day	56 trucks / day	3 trucks / day	11 trucks / day
Required trucks loads for normal operation / yr	15,200 truck / yr	61,040 truck / yr	1,360 truck / yr	12,680 truck / yr	22,920 truck / yr	18,680 truck / yr	1,000 truck / yr	3,690 truck / yr
Required trucks loads for maximum operation /day	80 trucks / day	260 trucks / day	8 trucks / day	76 trucks / day	138 trucks / day	112 trucks / day	5 trucks / day	17 trucks / day
Train Shipments								
Railcar Capacity		117 tons / car	100 tons / car	100 tons / car	100 tons / car	100 tons / car		
Required railcars for normal operation / day		40 cars / day	0 cars / day	0 cars / day	0 cars / day	0 cars / day		
Required railcar loads for normal operation / yr		13,100 cars / yr	0 cars / yr	0 cars / yr	0 cars / yr	0 cars / yr		
Required railcars for maximum operation / day		200 cars / day	0 cars / day	0 cars / day	0 cars / day	0 cars / day		
Basis	- 91% availability	- 91% availability	- 91% availability	- 91% availability	- 91% availability	- 91% availability		
	- 25% petcoke (heat input)	- 75% coal (heat input) per yea	- High sulfur case - 100 tons/dav	- 75% coal max annual				
	per year - 25 ton/truck	- 117 tons/car	- 25 ton/truck	average		-empty 45 day storage in 10		
					days	days		
	- 7 days/week receiving	- 100% coal for maximum	- Weekdays only		10 days	10 days		
	- 25% excess truck							
	movement capacity	- Rack sized to handle two		- Maximum is double the				
		trains/day		daily average rate				
Traffic route	Truck Route	Truck Route	Truck Route	Truck Route	Truck Route	Truck Route	Truck Route	Truck Route
Destination/Origin	Carson Refinery	Wasco rail terminal to site	California Sulfur 2509 E Grant Street,	Various	Various	Various	Various	Various
Address Distance	1801 E Sepulveda, Carson 140 miles	26.5 miles	Wilmington	80 mile radius	40 mile radius	40 mile radius	40 mile ratius	40 mile ratius
Route	Alameda	26.5 miles	142 miles Grant	40 mile radius	40 mile radius Station Road	40 mile radius Station Road	40 mile ratius 5 fwy	40 mile ratius 5 fwy
	405 Fwy		Henry Ford	Station Road	Morris Road	Morris Road	Stockdale Hwy	Stockdale Hwy
	5 Fwy Stockdale hwy		Alameda 405 Fwy	Morris Road Stockdale Hywy	Stockdale Hywy 5 Fwy	Stockdale Hywy 5 Fwy	Dairy Road	Dairy Road
	Morris Road		5 Fwy	5 Fwy	5 F wy	5 FWy		
	Station Road		Stockdale hwy	·				
			Morris Road Station Road					
	Rail Route	Rail Route	Rail Route	Rail Route	Rail Route	Rail Route	Rail Route	Rail Route
Destination/Origin	None	Elk Ranch New Mexico	None	None	None	None	None	None
	1	801 miles						
Address				1	1	1	1	
		801 miles						
Address Distance		Kern County: 139.2 miles						
Address Distance		Kern County: 139.2 miles (County Line near Boron, CA to	8					
Address Distance		Kern County: 139.2 miles (County Line near Boron, CA to north property line of plant)	1					
Address Distance		Kern County: 139.2 miles (County Line near Boron, CA to	1					

 Notes

 1) Equipment Maintenance Trucks are considered to be 2% of the total trucks per day for the feed and product operation.

 2) Miscellaneous trucks are considered to be 3% of the total trucks per day for the feed and product operation.

 3) The maximum flow rate of coke is ratioed up from the normal flow rate at 25% to 30% of feed

 4) The maximum flow rate of solar is raticed up from the normal flow rate at 25% to 30% of feed

 5) The maximum flow rate of solar is raticed up from the normal flow rate at 25% to 30% of feed

 6) The maximum flow rate of solar to a state of up from the normal flow rate at 75% to 100% of feed

 6) The maximum flow rate of solar to a state of up romating non-colors

 7) The sources of flow data used in the Production Rate calculation were based on the flow rates provided in "Conference Note: Rail and Truck Traffic - Planning Session" and the "FertilizerProductMovement Update", 01-25-12.

3/05/2013 revision

Calculations for Trucks Operation onsite

Data Supplied By Client								
Parameter	Petcoke and	Coal Trucks	Produc	Miscellaneous Trucks				
	Running Emissions	Idling Emissions	Running Emissions	Idling Emissions	Running Emissions			
Distance Traveled (mi)*	0.96		2.49		2.20			
Per Truck Idle Time (hr)		0.083		0.083				
Maximum number of trucks or loads:								
Annual average trucks or loads	76,240	76,240	55,640	55,640	4,662			

EMFAC2007 Emission Factors + Fugitive Dust (g/mi or g/idle-hour) For Truck Model year 2010

	Coke and Coal Trucks		Product Trucks		Miscellaneous Trucks	
Pollutant	Running Emissions (g/mile/trk)	ldling Emissions (g/idle- hour/trk)	Running Emissions (g/mile/trk)	Idling Emissions (g/idle- hour/trk)	Running Emissions (g/mile/trk)	
CO	3.03	43.69	3.03	43.69	3.03	
NOx	5.43	122.65	5.43	122.65	5.43	
ROG	1.39	7.74	1.39	7.74	1.39	
SOx	0.03	0.06	0.03	0.06	0.03	
PM10 *	0.92	0.11	0.92	0.11	0.92	
PM2.5 *	0.29	0.10	0.29	0.10	0.29	

EMFAC2007 is the approved federal model for vehicle combustion emissions * PM10 and PM2.5 includes fugitive dust factor for paved roads obtained from AP-42 Ch. 13 plus PM factors from EMFAC 2007 PM factors from EMFAC = combustion exhaust + tire wear + break wear EMFAC emissions are for fleet year 2010 travelling at 10 mph.

Annual Emission Rates in g/s For All Trucks

	Coke and C	Coal Trucks	Product Trucks		Miscellaneous Trucks		
Pollutant	Running Emissions	Idling Emissions (at each Idle Point)	Running Emissions	Idling Emissions (at each Idle Point)	Running Emissions	TOTAL (g/s)	TOTAL (tpy)
CO	7.000E-03	8.802E-03	1.328E-02	6.423E-03	9.846E-04	3.65E-02	1.27E+00
NOx	1.255E-02	2.471E-02	2.380E-02	1.803E-02	1.765E-03	8.09E-02	2.81E+00
ROG	3.209E-03	1.560E-03	6.087E-03	1.139E-03	4.513E-04	1.24E-02	4.33E-01
SOx	6.936E-05	1.249E-05	1.316E-04	9.116E-06	9.755E-06	2.32E-04	8.07E-03
PM10	2.120E-03	2.297E-05	4.021E-03	1.676E-05	2.982E-04	6.48E-03	2.25E-01
PM2.5	6.762E-04	2.095E-05	1.283E-03	1.529E-05	9.511E-05	2.09E-03	7.27E-02

Volume, Line Sources

Guidance for Air Dispersion Modeling, SJVAPCD, 2007 and Section 1.2.2 of Volume II of ISC User's Guide					
2.3.2 Oyo=12W/2.15					
Truck Traveling vol src		Truck Idling pt src			
6	ft Release height	12.6	ft Release height		
12	ft Width	0.1	m diam		
66.98	ft init horz dim Syo	51.71	m/s vel		
5.58	ft init vert dim Szo	366	K Temp		
		199.134	F Temp		

Volume, Stand Alone

Guidance for Air Dispersion Modeling, SJVAPCD, 2007					
2.3.2 + modelers judgement + ISC guidan	2.3.2 + modelers judgement + ISC guidance				
Truck Traveling vol src					
6	ft Release height				
12	ft Width				
2.79	ft init horz dim Syo				
5.58	ft init vert dim Szo				

Summary of On-Site Operations Truck Emissions

Emissions Summary

3/05/2013 revision

Transportation Information

- Onsite Vehicle =

Vehicle year=Maximum annual mileage =

2010 10,000 miles/truck-year

20 trucks

- Information Provided By Applicant

Notes

- Information Provided By Applicant

- All routine vehicular traffic is anticipated to travel exclusively on paved roads
- Assumed 15 mph average speed within HECA facility

EMFAC2007 Emission Factors (g/mi) For Truck Model year 2010

-	Emission Factors in g/mi		
Pollutant	Gas LHDT1	Diesel LHDT2	
CO	0.229	0.920	
NOx	0.064	0.672	
ROG	0.014	0.085	
SOx	0.011	0.005	
PM10 *	0.167	0.176	
PM2.5 *	0.054	0.062	

EMFAC2007 is the approved federal model for vehicle combustion emissions

* PM10 and PM2.5 includes fugitive dust factor for paved roads obtained from AP-42 Ch. 13 plus PM factors from EMFAC 2007

PM factors from EMFAC = combustion exhaust + tire wear + break wear

EMFAC emissions are for fleet year 2010 travelling at 15 mph.

Annual Emission Rates in g/s From All Trucks

	Emissions in g/s			
Pollutant	Gas LHDT1	Diesel LHDT2	TOTAL (g/s)	TOTAL (tpy)
CO	1.45E-03	5.83E-03	7.29E-03	0.253
NOx	4.06E-04	4.26E-03	4.67E-03	0.162
ROG	8.88E-05	5.39E-04	6.28E-04	0.022
SOx	6.98E-05	3.17E-05	1.01E-04	0.004
PM10	1.06E-03	1.11E-03	2.17E-03	0.076
PM2.5	3.40E-04	3.91E-04	7.32E-04	0.025

Fugitive Dust on Paved Road

AP 42 13.2.1 Paved Roads, updated January 2011

For a daily basis,

 $E = [k (sL)^{0.91} x (W)^{1.02}](1-P/4N)$

(2)

 ${\sf P}$ = number of "wet" days with at least 0.254 mm (0.01 in) of precipitation during the averaging period W = average weight (tons) of vehicles traveling the road

k = particle size multiplier for particle size range and units of interest

sL = road surface silt loading (g/m^2)

	k
	g/VMT
PM2.5	0.25
PM10	1.00

Table 13.2.1-1 PARTICLE SIZE MULTIPLIERS FOR PAVED ROAD EQUATION

Large Trucks

		Empty truck	full truck	Load Capacity
W=	17.5 tons, average	5	5 30	0 tons
sL=	0.031 g/m2 Default value	e from URBEMIS 9.2 for k	Kern County	
P=	36 days/year Buttonwillow Station	on 1940-2011, WRCC		

E=

0.19149 g/VMT PM2.5 large delivery trucks 0.76594 g/VMT PM10 large delivery trucks

Operation and Maintenance Vehicles

W=	3 tons	
sL=	0.031 g/m2	Default value from URBEMIS 9.2 for Kern County
P=	36 days/year Butto	nwillow Station 1940-2011, WRCC

E=

0.03169 g/VMT PM2.5 large delivery trucks 0.12675 g/VMT PM10 large delivery trucks

3/05/2013 revision

APPENDIX E

REVISED OPERATIONAL GREENHOUSE GAS EMISSIONS

HECA Annual CO2e Emissions

Emissions Summary

Hydrogen Energy California LLC HECA Project 5/1/2013

	Permitted CO2e Emissions
Source	(tonne/year)
CTG/HRSG Hydrogen-Rich Fuel and PSA Off-gas	267,117
CTG/HRSG Natural Gas	44,772
CO ₂ Vent	175,493
SF ₆ Circuit breakers	86
Flares	8,257
Thermal Oxidizer	6,048
Emergency generators and fire pump	181
Auxiliary boiler	24,782
Ammonia Synthesis Plant Startup Heater	417
Urea Absorber Vents	116
Nitric Acid Unit	12,659
Fugitives	42
Total CO2e Annual Emissions	539,971

HECA Maximum Annual CO2e Emissions

Notes:

Maximum permitted emissions include periods of startup and shutdown.

SB1368 Emission Performance Standard

Emissions Summary

Hydrogen Energy California LLC HECA Project

HECA Annual CO2 Emissions for SB1368 Emission Performance Standard

Sources of CO2	Total	Power	Fertilizer	Allocation
Sources of CO2	CO2 Emissions (tons/yr)			
CTG/HRSG burning syngas/PSA off-gas	283,181	183,784	99,396	С
CTG/HRSG burning natural gas	49,304	49,304	-	Р
CO2 Vent	193,446	125,547	67,900	С
Flares pilot	564	366	198	С
Flares SU/SD	8,534	5,538	2,995	С
Thermal Oxidizer standby	6,323	4,104	2,219	С
Thermal Oxidizer SU/SD, maintenance	337	219	118	С
Emergency Engines	115	-	-	exempt
Auxiliary Boiler	27,290	17,711	9,579	С
Ammonia Start-Up Heater	459	-	459	F
Urea Absorber Vents	128	-	128	F
Nitric Acid Unit	0	-	-	F
Fugitives	39	26	14	С
Total Emissions attributable to each Section				
Total Early Operations	569,721	386,599	183,006	
Total Mature Operations	422,333	290,944	131,273	
Total Steady State Operations	290,350	188,279	101,956	

Syngas allocation by section (daily average)				
P	Power	64.9%		
F	Fertilizer	35.1%		
С	Common			

HECA Power Generation for SB1368 Emission Performance Standard

Power Balance	Unit	On-Peak	Off-Peak	Daily Average
Power Generation				
Gross Output	MW	416.0	315.2	382.4
Allocation to Power	MW	412.5	303.9	376.3
Allocation to Fertilizer	MW	3.5	11.3	6.1
Auxiliary Power				
Common	MW	85.7	86.0	
Power	MW	12.7	12.4	
Fertilizer	MW	52.1	65.6	
Syngas Allocation				
To Power Block	%	71.3%	52.1%	64.9%
To Fertilizer	%	28.7%	47.9%	35.1%
Power Allocation				
IGCC Net Output (w/o Fertilizer)	MW	338.7	246.6	308.1
IGCC Net Output	MW-hr/year			2,464,574
Natural Gas-Fired Net Power Output	MW			300
Natural Gas-Fired Power Production	MW-hr/year			100,800
Fertilizer Power Consumption	MW	(73.2)	(95.5)	(80.6)

SB1368 Emission Performance Standard

	Early Operations (Maximum Permitted)	Mature Operations	Steady-State Syngas Operations
Total CO ₂ Annual Emissions Attributable to Power Production (ton/yr)	386,599	290,944	188,279
Net Power Output (MWh)	2,565,374	2,565,374	2,464,574
CO ₂ EPS (lb/MWh)	301	227	153

Notes:

Emissions presented include CO2 from the turbine during startups and shutdowns.

Emissions from the emergency engines are exempt from the SB1368 standard.

The annual power output does not include the megawatts generated during startup and shutdown, thus the EPS may be conservatively high.

Scenario definitions:

Early Operations - expected to last approximately 2 years, during which time hydrogen-rich fuel availability will be approximately 65 to 75 percent. During this period, all sources are expected to be operated at maximum operating conditions, including two plant start-ups and shut-downs. The CO2 vent is included with maximum permitted venting emissions of up to 504 hours at full capacity.

Mature Operations - expected to occur after the first 2 years of commercial operation, when the hydrogen-rich fuel availability will be approximately 85 percent. At this stage, significantly less venting is expected to occur; thus, CO2 vent emissions are estimated based on approximately 10 days of venting at 50 percent capacity (or 120 hours of venting at 100 percent capacity). All other sources are operated at maximum operating conditions, including two plant start-ups and shut-downs.

Steady State Operations - which occur in the same time frame as mature operations; that is, after the 2 years of early operation. In this scenario, emissions are estimated based on maximum operating conditions, excluding start-ups, shut-downs and CO2 venting. Emissions from operation of the CTG/HRSG on syngas are included; no natural gas use is included.

Emissions Summary

Hydrogen Energy California LLC HECA Project

GHG emissions are numerically depicted as metric tons (tonne) of carbon dioxide equivalents (CO_2e). CO_2e represents CO_2 plus the additional warming potential from CH_4 and N_2O . CH_4 and N_2O have 21 and 310 times the warming potential of CO_2 , respectively.

	Natural Ga	s GHG Emissi	on Factors		Diesel GHG Emission Factors				
CO ₂ =	53.06	kg/MMBtu =	116.98	lb/MMBtu	CO ₂ =	10.15	kg/gal =	22.38	lb/gal
CH ₄ =	0.001	kg/MMBtu =	0.002	lb/MMBtu	CH ₄ =	0.0004	kg/gal =	0.001	lb/gal
$N_2O =$	0.0001	kg/MMBtu =	0.00022	lb/MMBtu	$N_2O =$	0.0001	kg/gal =	0.0002	lb/gal

CO2, CH4, and N2O emission factors are taken from Appendix C of the California Climate Action Registry (CCAR) General Reporting Protocol Version 3.1 (Jan 2009)

Turbine - Burning Hydrogen-Rich Fuel - released to HRSG and Feedstock Dryer Stacks

Operating Ho	ours	8012	hr/yr		Syngas GHG Emission Factors		
Heat Input (H	HV)	2,537	MMBtu/hr		CO ₂ =	17.7	lb/MMBtu
		•		_	CH ₄ =	0.03	lb/MMBtu
CO ₂ =	163,244	tonne/yr					
CH ₄ =	288	tonne/yr =	6,043	tonne CO2e/yr			
N ₂ O =	2.03	tonne/yr =	630	tonne CO2e/yr	Total to	nne CO ₂ e/yr =	169,917

HRSG heat input rate is based Case 5, average ambient temperature and peak load.

Operating hours include startup and shutdown operations

Although N2O emissions are expected to be lower than from the combustion of natural gas, N2O emissions were conservatively estimated using the natural gas emission factor.

Duct burner - Burning Hydrogen-Rich Fuel - released to HRSG and Feedstock Dryer Stacks

Operating Ho	ours	8000	hr/yr		Syngas GHG Emission Factors		
Heat Input (H	IHV)	165	MMBtu/hr	Ţ	CO ₂ =	17.7	lb/MMBtu
				_	CH ₄ =	0.03	lb/MMBtu
CO ₂ =	10,603	tonne/yr					
CH ₄ =	19	tonne/yr =	393	tonne CO2e/yr			
N ₂ O =	0.13	tonne/yr =	41	tonne CO2e/yr	Total to	nne $CO_2e/yr =$	11,036

Duct burner heat input rate is based Case 5, average ambient temperature and peak load.

Duct burner not operated during turbine startup and shutdown

Although N2O emissions are expected to be lower than from the combustion of natural gas, N2O emissions were conservatively estimated using the natural gas emission factor.

Duct burner - Burning PSA Offgas - released to HRSG and Feedstock Dryer Stacks

Operating H	lours	8,000	hr/yr Syngas GHG Emission F			Factors	
Heat Input ((HHV)	149	MMBtu/hr		CO ₂ =	153.6	lb/MMBtu
		•		-	CH ₄ =	0.3	lb/MMBtu
CO ₂ =	83,053	tonne/yr					
CH ₄ =	146	tonne/yr =	3,073	tonne CO2e/yr			
N ₂ O =	0.12	tonne/yr =	37	tonne CO ₂ e/yr	Total to	nne CO ₂ e/yr =	86,163

Duct burner heat input rate is based Case 5, average ambient temperature and peak load.

Duct burner not operated during turbine startup and shutdown

Although N2O emissions are expected to be lower than from the combustion of natural gas, N2O emissions were conservatively estimated using the natural gas emission factor.

Turbine - Burning Natural Gas - released to HRSG Stack

Operating Ho	urs	351	hr/yr			
Heat Input (H	HV)	2,401	MMBtu/hr	I		
				-		
CO ₂ =	44,729	tonne/yr				
CH ₄ =	0.84	tonne/yr =	18	tonne CO2e/yr		
$N_2O =$	0.08	tonne/yr =	26	tonne CO2e/yr	Total tonne CO ₂ e/yr =	44,772

HRSG heat input rate is assumed to be the maximum heat input rate firing natural gas. Hours of operation include startup and shutdown.

Hydrogen Energy California LLC HECA Project

Auxiliary Bo	iler					
Operating Ho	ours	2,190	hr/yr			
Heat Input		213	MMBtu/hr	I		
CO ₂ =	24,758	tonne/yr				
CH ₄ =	0.47	tonne/yr =	10	tonne CO2e/yr		
N ₂ O =	0.05	tonne/yr =	14	tonne CO2e/yr	Total tonne CO ₂ e/yr =	24,782

Emergency Generators (2)

Operating Ho	ours	50	hr/yr			
Heat Input		2,922	Bhp]		
		1				
CO ₂ =	3,341	lb/hr =	76	tonne CO ₂ /yr		
CH ₄ =	0.13	lb/hr =	0.063	tonne CO2e/yr		
N ₂ O =	0.03	lb/hr =	0.2315	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr* =	152

The following conversions were used to convert from lb/gallon to lb/hp-hour; and then multiplying by the rated horsepower rating: 1 gallon/137,000 Btu; and 7,000 Btu/hp-hour.

* Total tonnes CO2e per year represent the contributions from both generators.

Fire Water Pump

Operating Ho	urs	100	hr/yr			
Heat Input		556	Bhp			
CO ₂ =	636	lb/hr =	29	tonne CO ₂ /yr		
CH ₄ =	0.03	lb/hr =	0.024	tonne CO2e/yr		
N ₂ O =	0.01	lb/hr =	0.0881	tonne CO2e/yr	Total tonne CO ₂ e/yr =	29

The following conversions were used to convert from lb/gallon to lb/hp-hour; and then multiplying by the rated horsepower rating: 1 gallon/137,000 Btu; and 7,000 Btu/hp-hour.

Gasification Flare

Pilot Operati	on					
Operating Ho		8,760	hr/yr	T		
Heat Input		0.5	MMBtu/hr	1		
	_			-		
CO ₂ =	232	tonne/yr				
CH ₄ =	0.00	tonne/yr =	0.1	tonne CO2e/yr		
N ₂ O =	0.0004	tonne/yr =	0.1	tonne CO2e/yr	Total tonne CO ₂ e/yr =	233
Flaring Even	ts			_		
Total Operation	on	70,536	MMBtu/yr]		
			_			
CO ₂ =	3,744	tonne/yr				
CH ₄ =	0.1	tonne/yr =	1	tonne CO2e/yr		
N ₂ O =	0.01	tonne/yr =	2	tonne CO2e/yr	Total tonne CO ₂ e/yr =	3,747

GHG emissions from flaring events are conservatively estimated using GHG emission factors for natural gas combustion.

Rectisol Flare

on					
urs	8,760	hr/yr	1		
	0.3	MMBtu/hr]		
		,			
139	tonne/yr				
0.00	tonne/yr =	0.1	tonne CO2e/yr		
0.0003	tonne/yr =	0.08	tonne CO2e/yr	Total tonne CO ₂ e/yr =	140
ts	-		-		
urs	40	hr/yr			
	4542	lb-mole/hr			
-	-	-			
3,627	tonne/yr				
	tonne/yr =		tonne CO2e/yr		
	tonne/yr =		tonne CO ₂ e/yr	Total tonne CO ₂ e/yr =	3,627
	139 0.00 0.0003 ts urs	urs 8,760 0.3 0.3 139 tonne/yr 0.00 tonne/yr = 0.0003 tonne/yr = ts 40 4542 3,627 tonne/yr = tonne/yr =	urs 8,760 hr/yr 0.3 MMBtu/hr 139 tonne/yr 0.00 tonne/yr = 0.003 tonne/yr = 0.003 tonne/yr = 0.003 tonne/yr = 0.003 tonne/yr = 139 tonne/yr = 0.003 tonne/yr = 3,627 tonne/yr =	urs 8,760 hr/yr 0.3 MMBtu/hr 139 tonne/yr 0.00 tonne/yr 0.00 tonne/yr 0.003 tonne/yr 0.003 tonne/yr 0.003 tonne/yr 0.003 tonne/yr 0.08 tonne CO2e/yr ts urs 40 hr/yr 4542 lb-mole/hr 3,627 tonne/yr tonne/yr = tonne CO2e/yr	urs 8,760 hr/yr 0.3 MMBtu/hr 139 tonne/yr 0.00 tonne/yr = 0.00 tonne/yr = 0.003 tonne/yr = 0.003 tonne/yr = 0.08 tonne CO2e/yr Total tonne CO2e/yr = ts urs 40 4542 lb-mole/hr 3,627 tonne/yr = tonne/yr = tonne CO2e/yr

GHG emissions from flaring event based on 100% carbon content of the gas during startup.

Emissions Summary

Hydrogen Energy California LLC HECA Project

Pilot Opera	tion					
Operating H	ours	8,760	hr/yr	T		
Heat Input		0.3	MMBtu/hr]		
CO ₂ =	139	tonne/yr]			
CH ₄ =	0.00	tonne/yr =	0.1	tonne CO2e/yr		
N ₂ O =	0.0003	tonne/yr =	0.08	tonne CO2e/yr	Total tonne CO ₂ e/yr =	140
		assist for aci		g during startup		
Flaring Eve Operating H Heat Input			id gas ventin hr/yr MMBtu/hr	g during startup		
Operating H Heat Input Throughpu		40 36 gas venting du	hr/yr MMBtu/hr iring startup	g during startup		
Operating H Heat Input	lours	40 36	hr/yr MMBtu/hr	g during startup		
Operating H Heat Input Throughpu	lours	40 36 gas venting du	hr/yr MMBtu/hr iring startup	g during startup		
Operating H Heat Input Throughpu CO ₂ =	lours	40 36 gas venting du 140000	hr/yr MMBtu/hr iring startup scf/hr	g during startup		
Operating H Heat Input Throughpu $CO_2 =$ $CO_2 =$	lours It (inerts) - acid ç	40 36 jas venting du 140000 16,240	hr/yr MMBtu/hr iring startup scf/hr	g during startup		

Throughtput (inerts) provided from design engineers.

Tail Gas Thermal Oxidizer

Process Ven	t Disposal Emis	ssions				
Operating Ho	urs	8,314	hr/yr			
Heat Input		13	MMBtu/hr	Ī		
				_		
CO ₂ =	5,736	tonne/yr				
CH ₄ =	0.11	tonne/yr =	2.3	tonne CO2e/yr		
$N_2O =$	0.0108	tonne/yr =	3.4	tonne CO2e/yr	Total tonne CO ₂ e/yr =	5,742
	•	•				
SRU Startup	& Shutdown					
Operating Ho	urs	72	hr/yr	Ī		
Heat Input		80	MMBtu/hr	I		
				_		
CO ₂ =	306	tonne/yr				
CH ₄ =	0.006	tonne/yr =	0.12	tonne CO2e/yr		
N ₂ O =	0.00058	tonne/yr =	0.179	tonne CO2e/yr	Total tonne CO ₂ e/yr =	306

GHG emissions from thermal oxidizer are estimated using GHG emission factors for natural gas combustion for the assist gas.

Intermittent CO₂ Vent

Operating Hours	504	hr/yr	
CO ₂ Emission Rate	767,435	lb/hr	
			Total tonne CO ₂ e/yr =

Assumes 504 hours per year venting at full rate.

Fugitives - Gasification Block

Operating He	ours	8,760	hr/yr			
CO ₂ =	32.0	tpy	31.12	tonne CO2e/yr		
CH ₄ =	0.27	tpy	5.55	tonne CO2e/yr		
					Total tonne CO ₂ e/yr =	37

Detailed emission calculations are provided in Appendix M, Public Health.

Fugitives - Manufacturing Complex

Operating Ho	urs	8,760	hr/yr			
CO ₂ =	4.7	tpy	4.53	tonne CO2e/yr		
CH ₄ =	0.04	tpy	0.91	tonne CO2e/yr		
					Total tonne CO ₂ e/yr =	5

Detailed emission calculations are provided in Appendix M, Public Health.

Hydrogen Energy California LLC HECA Project

Ammonia Synthesis Plant Startup Heater

Operating Ho	urs	140	hr/yr			
Heat Input		56	MMBtu/hr	I		
				_		
CO ₂ =	416	tonne/yr				
CH ₄ =	0	tonne/yr =	0	tonne CO2e/yr		
$N_2O =$	0.00	tonne/yr =	0	tonne CO2e/yr	Total tonne CO ₂ e/yr =	417

Urea Absorber Vents

Operating Ho	ours	8,000	hr/yr			
CO ₂		32	lb/hour			
		•		_		
CO ₂ =	116	tonne/yr				
CH ₄ =		tonne/yr =	0	tonne CO2e/yr		
N ₂ O =		tonne/yr =	0	tonne CO2e/yr	Total tonne CO ₂ e/yr =	116

Emission rate provided by project engineers.

Nitric Acid Unit

Operating Hours	8,000	hr/yr				
N ₂ O uncontrolled	10.78	lb/ton NHO3				
Production rate	501	ton/day				
N ₂ O uncontrolled	225	lb/hour				
destruction efficiency	95	%				
N ₂ O controlled	11.25	lb/hour				
N ₂ O controlled	0.54	lb/ton NHO3				
	-	-				
CO ₂ =	tonne/yr					
CH ₄ =	tonne/yr =	0	tonne CO2e/yr			
N ₂ O = 41	tonne/yr =	12,659	tonne CO2e/yr	Total tonne CO ₂ e/yr =	12,659	

Emission factor and destruction efficiency provided by design engineer.

230 kV Circuit Breakers

Number of C	Circuit Breakers	6			
SF6 capacity	/	240	lb/breaker	Ţ	
Annual Leak	nnual Leakage rate 0.5%			_	
			-		
SF ₆ =	0.003	tonne/yr =	78	tonne CO2e/yr	Total tonne CO ₂ e/yr =

SF6 GWP = 23,900 http://www.epa.gov/electricpower-sf6/faq.html) Sources: SF6 inventory and maximum leakage rates from electrical equipment suppliers

18 kV Circuit Breakers

			1		
	73	lb/breaker	Ĩ		
;	0.5%		-		
	-				
.000	tonne/yr =	8	tonne CO2e/yr	Total tonne CO ₂ e/yr =	8
		0.5%	0.5%	0.5%	0.5%

SF6 GWP = 23,900 http://www.epa.gov/electricpower-sf6/faq.html) Sources: SF6 inventory and maximum leakage rates from electrical equipment suppliers

Total tonne CO₂e/yr for Stationary Sources=

5/1/2013

539,971

Gas Composition for the Syngas and PSA Off-gas

Emissions Summary

5/1/2013

Hydrogen Energy California LLC HECA Project

				Gr	eenhouse (Gas Fuel S	ummary an	nd Durations of Major Fuel Consumers					
				Syngas						PSA	Off-Gas		
COMPONENTS	MW	mol%	mol*MW (lb/lbmole)	Wt%	MW C	% C	wt%Cmix	mol%	mol*MW (lb/lbmole)	Wt%	MW C	% C	wt%Cmix
CO (CARBON MONOXIDE)	28.01	1.92	0.54	8.48%	12	42.84%	3.63%	9.10	2.55	11.36%	12	42.84%	4.87%
H2 (HYDROGEN)	2.02	83.80	1.69	26.62%	-	0.00%	0.00%	23.78	0.48	2.14%	-	0.00%	0.00%
CO2 (CARBON DIOXIDE)	44.01	1.50	0.66	10.38%	12	27.27%	2.83%	7.09	3.12	13.92%	12	27.27%	3.79%
H2O (WATER)	18.02	-	-	0.00%	-	0.00%	0.00%	-		0.00%	-	0.00%	0.00%
CH4 (METHANE)	16.04	1.07	0.17	2.69%	12	74.81%	2.01%	5.03	0.81	3.60%	12	74.81%	2.69%
Ar (ARGON)	39.95	0.13	0.05	0.79%	-	0.00%	0.00%	0.59	0.23	1.04%	-	0.00%	0.00%
N2 (NITROGEN)	28.01	11.58	3.24	51.02%	-	0.00%	0.00%	54.38	15.23	67.90%	-	0.00%	0.00%
H2S (HYDROGEN SULFIDE)	34.08	0.00	0.00	0.00%	-	0.00%	0.00%	0.00	0.00	0.00%	-	0.00%	0.00%
COS (CARBONYL SULFIDE)	60.07	0.00	0.00	0.00%	12	19.98%	0.00%	0.00	0.00	0.00%	12	19.98%	0.00%
CH3OH (METHANOL)	32.03	0.01	0.00	0.03%	12	37.46%	0.01%	0.03	0.01	0.04%	12	37.46%	0.01%
C2H6 (ETHANE)	30.07	-	-	0.00%	24	79.81%	0.00%	-	-	0.00%	24	79.81%	0.00%
C3H8 (PROPANE)	44.10	-	-	0.00%	36	81.63%	0.00%	-	-	0.00%	36	81.63%	0.00%
C4H10 (N-BUTANE)	58.12	-	-	0.00%	48	82.59%	0.00%	-	-	0.00%	48	82.59%	0.00%
C4H10 (ISO-BUTANE)	58.12	-	-	0.00%	48	82.59%	0.00%	-	-	0.00%	48	82.59%	0.00%
C5H12 (N-PENTANE)	72.15	-	-	0.00%	60	83.16%	0.00%	-	-	0.00%	60	83.16%	0.00%
C5H12 (ISO-PENTANE)	72.15	-	-	0.00%	60	83.16%	0.00%	-	-	0.00%	60	83.16%	0.00%
C6+ (HEXANES, ETC)	86.18	-	-	0.00%	72	83.55%	0.00%	-	-	0.00%	72	83.55%	0.00%
NH3 (AMMONIA)	17.04	-	-	0.00%	-	0.00%	0.00%	-	-	0.00%	-	0.00%	0.00%
HCI (HYDROGEN CHLORIDE)	36.48	-	-	0.00%	-	0.00%	0.00%	-	-	0.00%	-	0.00%	0.00%
HCN (HYDROGEN CYANIDE)	27.03	-	-	0.00%	12	44.40%	0.00%	-		0.00%	12	44.40%	0.00%
Total		100.00	6.36	100.00%			8.48%	100.00	22.43	100.00%			11.37%

		Duration (hr)	Fuel input HHV (MMBtu/hr)	fuel consumption (MMscf/hr)	Duration (hr)	Fuel input HHV (MMBtu/hr)	fuel consumption (MMscf/hr)
Gas Turbine	mmBTU/h	8,012	2,536.57	8.79	-	-	
Duct Burner	mmBTU/h	8,000	165.00	0.57	8,000	149.00	0.95
HHV (Btu/scf)		288.6			157.3		
Percentage of destruction of CH4		98.0%			98.0%		
CO2 lb/MMBtu HHV		17.704			153.56		
CH4 lb/MMBtu HHV		0.031			0.27		
		Hourly Emissions (lb/hr)	Annual Emissions (ton/yr)	Annual Emissions (tonnes/yr)	Hourly Emissions (Ib/hr)	Annual Emissions (ton/yr)	Annual Emissions (tonnes/yr)
CO2 emissions (lb/hr)	Gas Turbine	44,906	179,895	163,244	22,881	91,524	83,053
CH4 emissions (lb/hr)	Gas Turbine	79	317	288	40	161	146
CO2 emissions (lb/hr)	Duct Burner	2,921	11,684	10,603			
CH4 emissions (lb/hr)	Duct Burner	5	21	19			

Notes:

All Data based on Case 5 Performance Avg Ambient On-Peak

Includes startup and shutdown hours in the turbine operations. Assumed max heating value during SU/SD hours.

No startup or shutdown for duct burners

Hydrogen Energy California LLC HECA Project

5/1/2013

Emissions Summary

Greenhouse Gas Emissions Associated with the Mobile Sources During

	Annual CO2e Emissions
Source	(tonne/year)
Onsite Trucks	422
Onsite Trains	297
Offsite Workers Commuting	824
Offsite Trucks	12,372
Offsite Trains	50,075
Total CO2e Annual Emissions	63,990

Notes:

Onsite worker travel and associated emissions are negligible

Emissions Summary

5/1/2013

Hydrogen Energy California LLC HECA Project

GHG emissions are numerically depicted as metric tons (tonne) of carbon dioxide equivalents (CQe). CO_2e represents CO_2 plus the additional warming potential from CH_4 and N_2O . CH_4 and N_2O have 21 and 310 times the warming potential of CQ_2 , respectively.

Onsite LHD Gasoline Trucks

Number of Onsite	e Trucks	10	trucks		$EF CO_2 =$	1,175	g/mi
Total Annual VM	Г	10,000	miles/ truck		$EF CH_4 =$	0.0157	g/mi
				_	EF N ₂ O =	0.0101	g/mi
CO ₂ =	118	tonne/yr			_		
CH ₄ =	1.57E-03	tonne/yr =	3.E-02	tonne CO2e/yr			
N ₂ O =	1.01E-03	tonne/vr =	3.E-01	tonne CO ₂ e/yr	Total to	nne CO ₂ e/yr =	118

CO2 emissions from EMFAC2007 for fleet year 2010 for light heavy-duty gasoline trucks travelling at 15 mph. Running emission Factor for N2O and CH4 is based on Table C.4, California Climate Action Registry General Reporting Protocol Version 3.1, Jan 2009 for light gasoline trucks.

Onsite LHD Diesel Trucks

Number of Onsite	e Trucks	10	trucks		$EF CO_2 =$	519	g/mi
Total Annual VM	Г	10,000	miles/ truck		$EF CH_4 =$	0.001	g/mi
				-	EF N ₂ O =	0.0015	g/mi
	1		I. I				
CO ₂ =	52	tonne/yr					
CH ₄ =	1.00E-04	tonne/yr =	2.E-03	tonne CO2e/yr			
N ₂ O =	1.50E-04	tonne/yr =	5.E-02	tonne CO2e/yr	Total to	nne CO ₂ e/yr =	52

CO2 emissions from EMFAC2007 for fleet year 2010 for light heavy-duty diesel trucks travelling at 15 mph. Running emission Factor for N2O and CH4 is based on Table C.4, California Climate Action Registry General Reporting Protocol Version 3.1, Jan 2009 for light diesel trucks.

Onsite Petcoke Trucks

Oligite i etcoke	Tuoko						
Number of Truck loads		15,200	truck loads		EF CO ₂ =	3,165	g/mi
Distrance Travelle	ed Onsite	1.0	mi/ load		EF CH ₄ =	0.0051	g/mi
Truck Idle Time		0.08	hr/load		EF N ₂ O =	0.0048	g/mi
				-			
					EF CO ₂ =	6,542	g/ idle hr
					$EF CH_4 =$	0.011	g/ idle hr
					EF N ₂ O =	0.010	g/ idle hr
		-	1				
CO ₂ =	54	tonne/yr					
CH ₄ =	8.75E-05	tonne/yr =	2.E-03	tonne CO2e/yr			
N ₂ O =	8.23E-05	tonne/yr =	3.E-02	tonne CO2e/yr	Total to	nne CO ₂ e/yr =	54

CO2 emissions from EMFAC2007 for fleet year 2010 heavy-heavy duty diesel trucks travelling at 10 mph. Running emission Factor for N2O and CH4 is based on Table C.4, California Climate Action Registry General Reporting Protocol Version 3.1, Jan 2009 for diesel heavy duty vehicles. Idling emission Factor for N2O and CH4 were extrapolated based on the ratio of CO2 emission factor for running vs idling.

Onsite Fluxant & Product Trucks

Offsite Fluxant &	TTOULCE TTUCKS						
Number of Truck loads Distrance Travelled Onsite		21,620	truck loads		EF CO ₂ =	3,165	g/mi
		2.49	mi/ load	mi/ load	EF CH ₄ =	0.0051	g/mi
Truck Idle Time		0.08	hr/load		EF N ₂ O =	0.0048	g/mi
					EF CO ₂ =	6,542	g/ idle hr
					$EF CH_4 =$	0.011	g/ idle hr
					EF N ₂ O =	0.010	g/ idle hr
CO ₂ =	182	tonne/yr					
CH ₄ =	2.93E-04	tonne/yr =	6.E-03	tonne CO2e/yr			
N ₂ O =	2.76E-04	tonne/yr =	9.E-02	tonne CO2e/yr	Total to	nne CO ₂ e/yr =	182

CO2 emissions from EMFAC2007 for fleet year 2010 heavy-heavy duty diesel trucks travelling at 10 mph. Running emission Factor for N2O and CH4 is based on Table C.4, California Climate Action Registry General Reporting Protocol Version 3.1, Jan 2009 for diesel heavy duty vehicles. Idling emission Factor for N2O and CH4 were extrapolated based on the ratio of CO2 emission factor for running vs filma.

Onsite Miscellaneous Diesel Trucks

Number of True	er of Truck loads		truck loads		EF CO ₂ =	3,165	g/mi
Distrance Travelled Onsite		2.2	mi/ load		$EF CH_4 =$	0.0051	g/mi
				-	EF N ₂ O =	0.0048	g/mi
CO ₂ =	16	tonne/yr]				
CH ₄ =	2.61E-05	tonne/yr =	5.E-04	tonne CO2e/yr			
N ₂ O =	2.46E-05	tonne/yr =	8.E-03	tonne CO2e/yr	Total to	nne CO ₂ e/yr =	16

CO2 emissions from EMFAC2007 for fleet year 2010 heavy-heavy duty diesel trucks travelling at 10 mph. Running emission Factor for N2O and CH4 is based on Table C.4, California Climate Action Registry General Reporting Protocol Version 3.1, Jan 2009 for diesel heavy duty vehicles.

5/1/2013

Hydrogen Energy California LLC HECA Project

Onsite Switching Engines

.

	5 5 5						
Number of engine	es	1	per year		EF CO ₂ =	672	g/bhp-hr
Avg power used of	onsite	260	hp		EF CH ₄ =	0.053	g/bhp-hr
Annual operations		1248	hours/yr		EF N ₂ O =	0.0171	g/bhp-hr
				-			
CO ₂ =	218	tonne/yr					
CH ₄ =	1.71E-02	tonne/yr =	4.E-01	tonne CO2e/yr			
$N_2O =$	5.55E-03	tonne/yr =	2.E+00	tonne CO2e/yr	Total to	nne CO ₂ e/yr =	220

New engines will meet Tier 3 emissions (40 CFR Part 1033, EPA Switch and Line-haul Locomotive Emission Standards). CH4 and N2O factors are from California Climate Action Registry General Reporting Protocol Version 3.1 (January 2009), Table C.6 (Methane and Nitrous Oxide Emission Factors for Non-Highway Vehicles) for locomotives.

Number of Trains		119	per year		EF CO ₂ =	491	g/bhp-hr
Number of engine	es	238	per year		$EF CH_4 =$	0.038	g/bhp-hr
Avg power used onsite		220	hp		EF N ₂ O =	0.0125	g/bhp-hr
Time to unload each train		2	hours				
CO ₂ =	51	tonne/yr					
CH ₄ =	4.03E-03	tonne/yr =	8.E-02	tonne CO2e/yr			
N ₂ O =	1.31E-03	tonne/yr =	4.E-01	tonne CO2e/yr	Total to	nne CO ₂ e/yr =	52

New engines will meet Tier 3 emissions (40 CFR Part 1033, EPA Switch and Line-haul Locomotive Emission Standards). CH4 and N2O factors are from California Climate Action Registry General Reporting Protocol Version 3.1 (January 2009), Table C.6 (Methane and Nitrous Oxide Emission Factors for Non-Highway Vehicles) for locomotives.

Onsite Product	Trains						
Number of Trains	s	165	per year		EF CO ₂ =	491	g/bhp-hr
Number of engin	es	330	per year		EF CH ₄ =	0.038	g/bhp-hr
Avg power used	onsite	150	hp		EF N ₂ O =	0.0125	g/bhp-hr
Time to unload each train		1	hours				
CO ₂ =	24	tonne/vr					
CH ₄ =	1.90E-03	tonne/yr =	4.E-02	tonne CO2e/yr			
N ₂ O =	6.19E-04	tonne/yr =	2.E-01	tonne CO2e/yr	Total to	nne CO ₂ e/yr =	25

New engines will meet Tier 3 emissions (40 CFR Part 1033, EPA Switch and Line-haul Locomotive Emission Standards). CH4 and N2O factors are from California Climate Action Registry General Reporting Protocol Version 3.1 (January 2009), Table C.6 (Methane and Nitrous Oxide Emission Factors for Non-Highway Vehicles) for locomotives.

Number of Trains	cars per year	13,100	per year		$EF CO_2 =$	10,217	g/gal
Miles Traveled Pe	er Train	794	Miles one way		$EF CH_4 =$	0.8	g/gal
Rail Freight Fuel (Consumption	480	ton-mile/gallon		$EF N_2O =$	0.26	g/gal
Loaded train car v	veight	142	ton				
Unloaded train ca	r weight	25	ton				
All Trains - Round Trip		1.74E+09	ton-miles/year				
Fuel Use for all Tr	rains - Round Trip	3,618,693	gal/year				
CO ₂ =	36,972	tonne/yr					
CH ₄ =	2.89	tonne/yr =	60.79	tonne CO2e/yr]		
N ₂ O =	0.94	tonne/yr =	291.67	tonne CO2e/yr	Total to	nne CO ₂ e/yr =	37,325

New engines will meet Tier 3 emissions (40 CFR Part 1033, EPA Switch and Line-haul Locomotive Emission Standards). CH4 and N2O factors are from California Climate Action Registry General Reporting Protocol Version 3.1 (January 2009), Table C.6 (Methane and Nitrous Oxide Emission Factors for Non-Highway Vehicles) for locomotives.

Offsite Liquid Sulfur Product Trains

Ononce Elquid							
Number of Trair	ns cars per year	85	per year		EF CO ₂ =	10,217	g/gal
Miles Traveled I	Per Train	150	Miles one way		EF CH ₄ =	0.8	g/gal
Rail Freight Fuel Consumption		480	ton-mile/gallon		EF N ₂ O =	0.26	g/gal
Loaded train ca	r weight	125	ton				
Unloaded train	car weight	25	ton				
All Trains - Round Trip		1.91E+06	ton-miles/year				
Fuel Use for all Trains - Round Trip		3,984	gal/year				
CO ₂ =	40.71	tonne/yr					
CH ₄ =	3.19E-03	tonne/yr =	7.E-02	tonne CO2e/yr			
N ₂ O =	1.04E-03	tonne/yr =	3.E-01	tonne CO2e/yr	Total to	nne CO ₂ e/yr =	41

Emissions Summary

GHG Emissions Summary for Mobile Sources	Emissions Summary
Hydrogen Energy California LLC	5/1/2013
HECA Project	

New engines will meet Tier 3 emissions (40 CFR Part 1033, EPA Switch and Line-haul Locomotive Emission Standards). CH4 and N2O factors are from California Climate Action Registry General Reporting Protocol Version 3.1 (January 2009), Table C.6 (Methane and Nitrous Oxide Emission Factors for Non-Highway Vehicles) for locomotives.

Number of Trains	cars per year	3,170	per year		$EF CO_2 =$	10,217	g/gal
Miles Traveled Pe	er Train	198	Miles one way		$EF CH_4 =$	0.8	g/gal
Rail Freight Fuel (Consumption	480	ton-mile/gallon		$EF N_2O =$	0.26	g/gal
Loaded train car w	veight	125	ton		-	•	
Unloaded train ca	r weight	25	ton				
All Trains - Round	l Trip	9.41E+07	ton-miles/year				
Fuel Use for all Tr	ains - Round Trip	196,137	gal/year				
CO ₂ =	2,004	tonne/yr					
CH ₄ =	1.57E-01	tonne/yr =	3.E+00	tonne CO2e/yr			
N ₂ O =	5.10E-02	tonne/yr =	2.E+01	tonne CO2e/yr	Total to	nne CO ₂ e/yr =	2,023

New engines will meet Tier 3 emissions (40 CFR Part 1033, EPA Switch and Line-haul Locomotive Emission Standards). CH4 and N2O factors are from California Climate Action Registry General Reporting Protocol Version 3.1 (January 2009), Table C.6 (Methane and Nitrous Oxide Emission Factors for Non-Highway Vehicles) for locomotives.

Offsite Ammonia Product Trains

Number of Train	s cars per year	0	per year		$EF CO_2 =$	10,217	g/gal
Miles Traveled F	Per Train	264	Miles one way		$EF CH_4 =$	0.8	g/gal
Rail Freight Fue	I Consumption	480	ton-mile/gallon		EF N ₂ O =	0.26	g/gal
Loaded train car	weight	142	ton				
Unloaded train o	ar weight	25	ton				
All Trains - Rour	nd Trip	0.00E+00	ton-miles/year				
Fuel Use for all	Trains - Round Trip	0	gal/year]			
~~			l				
CO ₂ =	0	tonne/yr					
CH ₄ =	0.00E+00	tonne/yr =	0.E+00	tonne CO2e/yr			
N ₂ O =	0.00E+00	tonne/yr =	0.E+00	tonne CO2e/yr	Total to	nne CO ₂ e/yr =	0

New engines will meet Tier 3 emissions (40 CFR Part 1033, EPA Switch and Line-haul Locomotive Emission Standards). CH4 and N2O factors are from California Climate Action Registry General Reporting Protocol Version 3.1 (January 2009), Table C.6 (Methane and Nitrous Oxide Emission Factors for Non-Highway Vehicles) for locomotives.

Offsite Urea Product Trains

Offeito LIAN Product Trains

Number of Train	s cars per year	4,298	per year		EF CO ₂ =	10,217	g/gal
Miles Traveled F	Per Train	628	Miles one way		$EF CH_4 =$	0.8	g/gal
Rail Freight Fuel	I Consumption	480	ton-mile/gallon		EF N ₂ O =	0.26	g/gal
Loaded train car	weight	125	ton				
Unloaded train c	ar weight	25	ton				
All Trains - Rour	nd Trip	4.05E+08	ton-miles/year				
Fuel Use for all 1	Trains - Round Trip	843,453	gal/year]			
CO ₂ =	8,618	tonne/yr					
CH ₄ =	6.75E-01	tonne/yr =	1.E+01	tonne CO2e/yr			
N ₂ O =	2.19E-01	tonne/yr =	7.E+01	tonne CO2e/yr	Total to	nne CO ₂ e/yr =	8,700

New engines will meet Tier 3 emissions (40 CFR Part 1033, EPA Switch and Line-haul Locomotive Emission Standards). CH4 and N2O factors are from California Climate Action Registry General Reporting Protocol Version 3.1 (January 2009), Table C.6 (Methane and Nitrous Oxide Emission Factors for Non-Highway Vehicles) for locomotives.

Unsite UAN PI							
Number of Traii	ns cars per year	2,335	per year		EF CO ₂ =	10,217	g/gal
Miles Traveled	Per Train	264	Miles one way		$EF CH_4 =$	0.8	g/gal
Rail Freight Fue	el Consumption	480	ton-mile/gallon		EF N ₂ O =	0.26	g/gal
Loaded train ca	r weight	125	ton				
Unloaded train	car weight	25	ton				
All Trains - Rou	nd Trip	9.25E+07	ton-miles/year				
Fuel Use for all	Trains - Round Trip	192,631	gal/year				
CO ₂ =	1,968	tonne/yr					
CH ₄ =	1.54E-01	tonne/yr =	3.E+00	tonne CO2e/yr			
$N_2O =$	5.01E-02	tonne/yr =	2.E+01	tonne CO2e/yr	Total to	nne CO ₂ e/yr =	1,987

New engines will meet Tier 3 emissions (40 CFR Part 1033, EPA Switch and Line-haul Locomotive Emission Standards). CH4 and N2O factors are from California Climate Action Registry General Reporting Protocol Version 3.1 (January 2009), Table C.6 (Methane and Nitrous Oxide Emission Factors for Non-Highway Vehicles) for locomotives.

Hydrogen Energy California LLC

HECA Project

Number of Truck	S	15,200	truck per year		$EF CO_2 =$	1,671	g/mi
Distance traveled	per Truck (Round Trip)	280	miles/ truck		EF CH ₄ =	0.0051	g/mi
Total Annual VM	Т	4,256,000	miles/ year		EF N ₂ O =	0.0048	g/mi
CO ₂ =	7,110	tonne/yr					
CO ₂ = CH ₄ =	7,110 2.17E-02	tonne/yr tonne/yr =	5.E-01	tonne CO2e/yr]		

CO2 emissions from EMFAC2007 for fleet year 2010 heavy-heavy duty diesel trucks travelling at 50 mph. Running emission Factor for N2O and CH4 is based on Table C.4, California Climate Action Registry General Reporting Protocol Version 3.1, Jan 2009 for diesel heavy duty vehicles. Idling emission Factor for N2O and CH4 were extrapolated based on the ratio of CO2 emission factor for running vs idling.

Offsite Fluxant Trucks

Number of Truc	s	2,360	truck per year		EF CO ₂ =	1,671	g/mi
Distance travele	d per Truck (Round Trip)	404	miles/ truck		$EF CH_4 =$	0.0051	g/mi
Total Annual VN	1T	953,440	miles/ year		EF N ₂ O =	0.0048	g/mi
CO ₂ =	1,593	tonne/yr			_		
CH ₄ =	4.86E-03	tonne/yr =	1.E-01	tonne CO2e/yr			
$N_2O =$	4.58E-03	tonne/yr =	1.E+00	tonne CO2e/yr	Total to	nne CO ₂ e/yr =	1,594

CO2 emissions from EMFAC2007 for fleet year 2010 heavy-heavy duty diesel trucks travelling at 50 mph. Running emission Factor for N2O and CH4 is based on Table C.4, California Climate Action Registry General Reporting Protocol Version 3.1, Jan 2009 for diesel heavy duty vehicles. Idling emission Factor for N2O and CH4 were extrapolated based on the ratio of CO2 emission factor for running vs idling.

Offsite Liquid Sulfur Product Trucks

Number of Trucks		1,020	truck per year		$EF CO_2 =$	1,671	g/mi
Distance traveled	per Truck (Round Trip)	284	miles/ truck		EF CH ₄ =	0.0051	g/mi
Total Annual VMT		289,680	miles/ year		EF N ₂ O =	0.0048	g/mi
CO ₂ =	484	tonne/vr					
CH ₄ =	1.48E-03	tonne/yr =	3.E-02	tonne CO2e/yr	1		

CO2 emissions from EMFAC2007 for fleet year 2010 heavy-heavy duty diesel trucks travelling at 50 mph. Running emission Factor for N2O and CH4 is based on Table C.4, California Climate Action Registry General Reporting Protocol Version 3.1, Jan 2009 for diesel heavy duty vehicles. Idling emission Factor for N2O and CH4 were extrapolated based on the ratio of CO2 emission factor for running vs idling.

Offsite Gasification Solids Product Trucks

Number of Trucks	3	3,170	truck per year		$EF CO_2 =$	1,671	g/mi
Distance traveled	per Truck (Round Trip)	160	miles/ truck		$EF CH_4 =$	0.0051	g/mi
Total Annual VM1	Γ	507,200	miles/ year		EF N ₂ O =	0.0048	g/mi
CO ₂ =	847	tonne/yr					
CO ₂ = CH ₄ =	847 2.59E-03	tonne/yr tonne/yr =	5.E-02	tonne CO2e/yr]		

CO2 emissions from EMFAC2007 for fleet year 2010 heavy-heavy duty diesel trucks travelling at 50 mph. Running emission Factor for N2O and CH4 is based on Table C.4, California Climate Action Registry General Reporting Protocol Version 3.1, Jan 2009 for diesel heavy duty vehicles. Idling emission Factor for N2O and CH4 were extrapolated based on the ratio of CO2 emission factor for running vs idling.

Offsite Ammonia Product Trucks

Number of Tru	cks	0	truck per year		EF CO ₂ =	1,671	g/mi
Distance travel	ed per Truck (Round Trip)	80	miles/ truck		$EF CH_4 =$	0.0051	g/mi
Total Annual V	MT	0	miles/ year		EF N ₂ O =	0.0048	g/mi
CO ₂ =	0	tonne/yr			_		
CH ₄ =	0.00E+00	tonne/yr =	0.E+00	tonne CO2e/yr			
N ₂ O =	0.00E+00	tonne/yr =	0.E+00	tonne CO ₂ e/yr	Total to	nne CO ₂ e/yr =	٥

CO2 emissions from EMFAC2007 for fleet year 2010 heavy-heavy duty diesel trucks travelling at 50 mph. Running emission Factor for N2O and CH4 is based on Table C.4, California Climate Action Registry General Reporting Protocol Version 3.1, Jan 2009 for diesel heavy duty vehicles. Idling emission Factor for N2O and CH4 were extrapolated based on the ratio of CO2 emission factor for running vs idling.

Emissions Summary

Hydrogen Energy California LLC

HECA Project

Offsite Urea Pro	duct Trucks						
Number of Trucks	5	5,730	truck per year		EF CO ₂ =	1,671	g/mi
Distance traveled	l per Truck (Round Trip)	80	miles/ truck		$EF CH_4 =$	0.0051	g/mi
Total Annual VM	Г	458,400	miles/ year		EF N ₂ O =	0.0048	g/mi
CO ₂ =	766	tonne/yr					
CH ₄ =	2.34E-03	tonne/yr =	5.E-02	tonne CO_2e/yr			
N ₂ O =	2.20E-03	tonne/yr =	7.E-01	tonne CO2e/yr	Total to	nne CO ₂ e/yr =	767

CO2 emissions from EMFAC2007 for fleet year 2010 heavy-heavy duty diesel trucks travelling at 50 mph. Running emission Factor for N2O and CH4 is based on Table C.4, California Climate Action Registry General Reporting Protocol Version 3.1, Jan 2009 for diesel heavy duty vehicles. Idling emission Factor for N2O and CH4 were extrapolated based on the ratio of CO2 emission factor for running vs idling.

Offsite UAN Product Trucks

Number of Trucks	3	9,340	truck per year		EF CO ₂ =	1,671	g/mi
Distance traveled	per Truck (Round Trip)	80	miles/ truck		$EF CH_4 =$	0.0051	g/mi
Total Annual VM	Г	747,200	miles/ year		$EF N_2O =$	0.0048	g/mi
CO ₂ =	1,248	tonne/yr					
CH ₄ =	3.81E-03	tonne/yr =	8.E-02	tonne CO2e/yr			
N ₂ O =	3.59E-03	tonne/yr =	1.E+00	tonne CO2e/yr	Total to	nne CO ₂ e/yr =	1,250

CO2 emissions from EMFAC2007 for fleet year 2010 heavy-heavy duty diesel trucks travelling at 50 mph. Running emission Factor for N2O and CH4 is based on Table C.4, California Climate Action Registry General Reporting Protocol Version 3.1, Jan 2009 for diesel heavy duty vehicles. Idling emission Factor for N2O and CH4 were extrapolated based on the ratio of CO2 emission factor for running vs idling.

Offsite Equipment and Miscellaneous Trucks

Number of Trucks	;	2,330	truck per year		$EF CO_2 =$	1,671	g/mi
Distance traveled	per Truck (Round Trip)	80	miles/ truck		$EF CH_4 =$	0.0051	g/mi
Total Annual VMT	-	186,400	miles/ year		EF N ₂ O =	0.0048	g/mi
CO ₂ =	311	tonne/yr					
CH ₄ =	9.51E-04	tonne/yr =	2.E-02	tonne CO2e/yr]		
$N_2O =$	8.95E-04	tonne/yr =	3.E-01	tonne CO2e/yr	Total to	nne CO ₂ e/yr =	312

CO2 emissions from EMFAC2007 for fleet year 2010 heavy-heavy duty diesel trucks travelling at 50 mph. Running emission Factor for N2O and CH4 is based on Table C.4, California Climate Action Registry General Reporting Protocol Version 3.1, Jan 2009 for diesel heavy duty vehicles. Idling emission Factor for N2O and CH4 were extrapolated based on the ratio of CO2 emission factor for running vs idling.

Offsite Employee Commute Vehicles

Total Number of E	mployee	200	employees/day		EF CO ₂ =	364	g/mi
Number of Worker per Commuter Vehicle		1.3			$EF CH_4 =$	0.0159	g/mi
Daily Vehicle Count		154	vehicles/day		EF N ₂ O =	0.0093	g/mi
Distance traveled per vehicle (Round Trip)		40	miles/ vehicle/ day				
Day of Commute per Month		365	days/yr				
Total Annual VMT		2,246,154	miles/year]			
CO ₂ =	817	tonne/yr]				
CH ₄ =	3.57E-02	tonne/yr =	7.E-01	tonne CO2e/yr			
N ₂ O =	2.09E-02	tonne/yr =	6.E+00	tonne CO2e/yr	Total to	nne CO ₂ e/yr =	824

CO2 emission factor for CO2 is from EMFAC 2007 (average of light duty automobile and light duty truck) for the vehicle model year from 1971 to 2015. Running emission Factor for N2O and CH4 is based on Table C.4, California Climate Action Registry General Reporting Protocol Version 3.1, Jan 2009 for average of gasoline passenger cars, gasoline light trucks, diesel passenger cars, and diesel light truck.

Total tonne CO ₂ e/yr for Mobile Sources=	63,990

APPENDIX F

REVISED FUMIGATION MODELING RESULTS

Nocturnal Fumigation - Inversion Break-up Fumigation

04/01/2013 revision

Max model scenario from crit pollutants modeling	Impact Selection	Stack height (m)	Stack Diameter (m)	Exit Velocity (m/s)	Exit Temperature (K)	Max Conc X/Q (ug/m^3/g/s)	Distance to max (m)
	HRSG max impact no fumigation simple terrain	64.92	7.32	10.93	366.48	0.9826	1,100
	HRSG inversion Break-up Fumigation max impact	64.92	7.32	10.93	366.48	0.9861	18,902
NO2 1hr HRSG and coal dryer in	Coal Dryer max impact no fumigation simple terrain	92.96	4.88	3.47	366.48	4.0270	900
startup 40% NG mode, TO startup,	Coal Dryer Inversion Break-up Fumigation max impact	92.96	4.88	3.47	366.48	1.9960	10,850
nitric acid plant on	TAIL TO max impact no fumigation simple terrain	50.29	0.76	15.52	922.04	6.5420	700
	TAIL TO Inversion Break-up Fumigation max impact	50.29	0.76	15.52	922.04	6.2880	4,775
	Nitric Acid Plant max impact no fumigation simple terrain	36.58	2.44	5.09	403.71	6.2480	713
	Nitric Acid Plant Inversion Break-up Fumigation max impact	36.58	2.44	5.09	403.71	7.1900	4,400
	HRSG no fumigation simple terrain	64.92	7.32	11.42	366.48	0.9781	1,100
SO2 1hr HRSG startup 80% natural	HRSG inversion Break-up Fumigation max impact	64.92	7.32	11.42	366.48	0.9615	19,261
gas mode, coal dryer normal emissions	Coal Dryer max impact no fumigation simple terrain	92.96	4.88	5.84	366.48	2.6210	1,000
mix, TO startup	Coal Dryer Break-up Fumigation max impact	92.96	4.88	5.84	366.48	1.5420	13,225
mix, TO startup	TAIL TO max impact no fumigation simple terrain	50.29	0.76	15.52	922.04	6.5420	700
	TAIL TO Inversion Break-up Fumigation max impact	50.29	0.76	15.52	922.04	6.2880	4,775
CO 1hr HRSG shutdown 20% load NG	HRSG max impact no fumigation simple terrain	64.92	7.32	11.48	366.48	0.9776	1,100
	HRSG inversion Break-up Fumigation max impact	64.92	7.32	11.48	366.48	0.9586	19,304
mode, no coal dryer, TO normal	TAIL TO max impact no fumigation simple terrain	50.29	0.76	15.52	922.04	6.5420	700
process vent	TAIL TO Inversion Break-up Fumigation max impact	50.29	0.76	15.52	922.04	6.2880	4,775

Since the peak impacts occur at different locations the peak concentrations predicted from fumigation of all together sources will be greatly overpredicted.

				X1 = 1 hour				
				no				
			Xf = 1 hour	fumigation	Predicted conc		Total model +	
			fumigation conc	conc	for averaging	Background	background	
NO2 1 hr	Emission Rate (g/s)		(ug/m3)	(ug/m3)	time (ug/m3)	conc (ug/m3)	conc (ug/m3)	
HRSG startup		13.5065	13.319	13.271	13.32	,	,	
COAL DRYER startup		1.9064	3.805	7.677	7.68			
TAIL TO startup		2.8123	17.684	18.398	18.40			NO OLM
NITRIC ACID PLANT		0.5260	3.782	3.287	3.78			
					43.18	140	183	
SO2 1 hr								
HRSG Startup natural gas mode		0.5984	0.575	0.585	0.59			
COAL DRYER normal operations mod	le	0.1180	0.182	0.309				
TAIL TO startup		15.7497	99.034	103.035				
TAIL_TO startup		13.7437	33.034	105.055	103.93		146	
CO 1 hr					105.55	72	140	
HRSG Shutdown 20% CTG load on N	G	285,9802	274.141	279.574	279.57			
TAIL TO normal process vent	0	0.3276	2,060	2,19.574				
TAIL_TO Normal process vent		0.5270	2.000	2.145	281.72		4863	
					201.72	4001	4003	

for 2 cases the Xf is more than X1, therefore fumigation must be considered

Scenarios match worst case criteria pollutant modeling

Assumptions and stack parameters

Average annual temp: 63.4 F (or 290.5944 K) daily average Buttonwillow, WRCC AFC Table 5.1-2 Flat terrain only

No downwash

Add max impacts from all sources regardless of location, conservative

	Distance to nearest fenceline (m)
HRSG	421.00
Coal Dryer	483.00
Thermal Oxidizer	595.00
Nitric Acid Plant	713.00

Closest receptor for each source are the distances above, plus receptors out to 10 km with receptor spacing every 100 m from fenceline receptor to 3 km, and every 500 m from 3 km to 10 km.

BEFORE THE ENERGY RESOURCES CONSERVATION AND DEVELOPMENT COMMISSION OF THE STATE OF CALIFORNIA 1516 NINTH STREET, SACRAMENTO, CA 95814 1-800-822-6228 – WWW.ENERGY.CA.GOV

Amended Application for Certification for the HYDROGEN ENERGY CALIFORNIA PROJECT

Docket No. 08-AFC-08A PROOF OF SERVICE (Revised 05/10/2013)

SERVICE LIST:

<u>APPLICANT</u>

SCS Energy, LLC Marisa Mascaro 30 Monument Square, Suite 235 Concord, MA 01742 mmascaro@scsenergyllc.com

Tiffany Rau 2629 Manhattan Avenue, PMB# 187 Hermosa Beach, CA 90254 trau@heca.com

Hydrogen Energy California, LLC George Landman Director of Finance and Regulatory Affairs *1 Embarcadero Center, 29th Floor San Francisco, CA 94111 glandman@heca.com

CONSULTANT FOR APPLICANT

URS Corporation Dale Shileikis, Vice President Energy Services Manager Major Environmental Programs One Montgomery Street, Suite 900 San Francisco, CA 94104-4538 dale_shileikis@urscorp.com

COUNSEL FOR APPLICANT

Michael J. Carroll Marc T. Campopiano Latham & Watkins, LLP 650 Town Center Drive, 20th Floor Costa Mesa, CA 92626-1925 michael.carroll@lw.com marc.campopiano@lw.com

INTERESTED AGENCIES

California ISO e-recipient@caiso.com

Department of Conservation Office of Governmental and Environmental Relations (Department of Oil, Gas & Geothermal Resources) Marni Weber 801 K Street, MS 2402 Sacramento, CA 95814-3530 marni.weber@conservation.ca.gov

INTERVENORS

California Unions for Reliable Energy Thomas A. Enslow Marc D. Joseph Adams Broadwell Joseph & Cardozo 520 Capitol Mall, Suite 350 Sacramento, CA 95814 tenslow@adamsbroadwell.com

Association of Irritated Residents Tom Frantz 30100 Orange Street Shafter, CA 93263 tom.frantz49@gmail.com Kern-Kaweah Chapter of the Sierra Club Andrea Issod Matthew Vespa 85 Second Street, 2nd Floor San Francisco, CA 94105 andrea.issod@sierraclub.org matt.vespa@sierraclub.org

Environmental Defense Fund (EDF) Timothy O'Connor, Esq. 123 Mission Street, 28th Floor San Francisco, CA 94105 toconnor@edf.org

Natural Resources Defense Council George Peridas 111 Sutter Street, 20th Floor San Francisco, CA 94104 gperidas@nrdc.org

Kern County Farm Bureau, Inc. Benjamin McFarland 801 South Mt. Vernon Avenue Bakersfield, CA 93307 bmcfarland@kerncfb.com

HECA Neighbors c/o Chris Romanini P.O. Box 786 Buttonwillow, CA 93206 roman93311@aol.com

ENERGY COMMISSION STAFF

Robert Worl Project Manager robert.worl@energy.ca.gov

John Heiser Associate Project Manager john.heiser@energy.ca.gov

Lisa DeCarlo Staff Counsel lisa.decarlo@energy.ca.gov

ENERGY COMMISSION – PUBLIC ADVISER

Blake Roberts Assistant Public Adviser publicadviser@energy.ca.gov

COMMISSION DOCKET UNIT

CALIFORNIA ENERGY COMMISSION – DOCKET UNIT Attn: Docket No. 08-AFC-08A 1516 Ninth Street, MS-4 Sacramento, CA 95814-5512 docket@energy.ca.gov

OTHER ENERGY COMMISSION PARTICIPANTS (LISTED FOR CONVENIENCE ONLY):

After docketing, the Docket Unit will provide a copy to the persons listed below. Do not send copies of documents to these persons unless specifically directed to do so.

KAREN DOUGLAS Commissioner and Presiding Member

ANDREW McALLISTER Commissioner and Associate Member

Raoul Renaud Hearing Adviser

Galen Lemei Adviser to Presiding Member

Jennifer Nelson Adviser to Presiding Member

Hazel Miranda Adviser to Associate Member

David Hungerford Adviser to Associate Member

Patrick Saxton Adviser to Associate Member

Eileen Allen Commissioners' Technical Adviser for Facility Siting

DECLARATION OF SERVICE

I, <u>Dale Shileikis</u>, declare that on <u>May 17</u>, 2013, I served and filed copies of the attached <u>Updated Emissions and</u> <u>Modeling Report</u> dated <u>May</u>, 2013. This document is accompanied by the most recent Proof of Service, which I copied from the web page for this project at: http://www.energy.ca.gov/sitingcases/hydrogen_energy/.

The document has been sent to the other persons on the Service List above in the following manner:

(Check one)

For service to all other parties and filing with the Docket Unit at the Energy Commission:

- I e-mailed the document to all e-mail addresses on the Service List above and personally delivered it or deposited it in the U.S. mail with first class postage to those persons noted above as "hard copy required"; OR
- X Instead of e-mailing the document, I personally delivered it or deposited it in the U.S. mail with first class postage to all of the persons on the Service List for whom a mailing address is given.

I declare under penalty of perjury under the laws of the State of California that the foregoing is true and correct, and that I am over the age of 18 years.

Dated: <u>May 17</u>, 2013

Da Aklaka