

Shale Production Uncertainty Cases:
A Scenario ExaminationCalifornia Energy Commission
DOCKETED

DOCKETED 13-IEP-1K TN # 70498 APR. 26 2013

Staff Workshop

2013 Integrated Energy Policy Report California Energy Commission

April 24, 2013

Leon D. Brathwaite Electricity Analysis Office Electricity Supply Analysis Division leon.brathwaite@energy.ca.gov//916-654-4771

Shale Production Uncertainty Scenario Cases: Brief Background

- In the last ten years, the development of natural gas resources from shale formations has generated much controversy
 - The potential for groundwater contamination
 - The possibility of increased seismic activity
 - The diversion of freshwater used in hydraulic fracturing
 - The possibility of added methane emissions.

Shale Production Uncertainty Scenario Cases: Brief Background (cont'd)

- Decision-makers are re-examining policies related to the development of these resources
 - Some jurisdictions such as New York have delayed the development of its shale resources
 - Others have instituted environmental impact fees
 - Others are tightening regulation of hydraulic fracturing
- Technological innovation has accelerated in the natural gas industry.

Shale Production Uncertainty Scenario Cases: What are the Shale Production Uncertainty Cases?

- Shale Abundance
- Shale Reconsidered
- Shale Expensive
- Shale Deferred

Shale Production Uncertainty Scenario Cases: Key Variables

- Variations in four key variables:
 - Changes in the supply cost curves
 - Changes in the time of availability of some resources
 - Changes in environmental impact fees
 - Changes in the rate of growth of technological innovation
- Changes relative to the reference case.

Shale Production Uncertainty Scenario Cases: <u>Shale Abundance</u>

- Shale Abundance:
 - Begins with the Reference Case
 - Supply Cost Curves ~
 - Expanded resource base
 - All known shale formations developed
 - Current estimates 15% low; lead to upward adjustment of curves
 - Availability ~ No delay in production hook-ups
 - Environmental Impact Fees/O &M ~ Impact fees and water handling cost at low end of range: \$0.30/Mcf
 - Technology & Innovation ~ Technology grows at 2.5%.

Shale Production Uncertainty Scenario Cases: <u>Shale Reconsidered</u>

- Shale Reconsidered:
 - Begins with the Reference Case
 - Supply Cost Curves ~
 - Concerns about hydraulic fracturing delay further development of shale formations
 - Targeted moratorium on new drilling into shale formations
 - Resource base shrinks by 15%
 - Availability ~ Hookup of new production faces significant environmental challenges; delays run about 3 years
 - Environmental Impact Fees/O &M ~ Impact fees and water handling cost at high end of range: \$0.55/Mcf
 - Technology & Innovation ~ Technology grows at 1.0%.

Shale Production Uncertainty Scenario Cases: Shale Expensive

- Shale Expensive:
 - Begins with the Reference Case
 - Supply Cost Curves
 - Resource base unchanged from the reference case
 - Availability ~ Hookup of new production faces significant environmental challenges; delays run about 3 years
 - Environmental Impact Fees/O &M ~ Environmental impact fees in many jurisdictions are 20% higher than high end cost, reaching \$0.67/Mcf
 - Technology & Innovation ~ Technology grows at 0.5%.

Shale Production Uncertainty Scenario Cases: Shale Deferred

- Shale Deferred:
 - Begins with the Reference Case
 - Supply Cost Curves ~
 - Resource base unchanged from the reference case
 - Availability ~ Hookup of new production faces significant environmental challenges; delays run 3 - 5 years
 - Environmental Impact Fees/O &M ~ Impact fees and water handling cost at high end of range at \$0.55/Mcf
 - Technology & Innovation ~ Technology grows at 1.0%.

Shale Production Uncertainty Scenario Cases: Final

Questions & Comments