

February 27, 2013

Mr. Eric Solorio
California Energy Commission
Docket No. 11-AFC-3
1516 9th St.
Sacramento, CA 95814

California Energy Commission
DOCKETED
11-AFC-03
TN # 69714

FEB. 27 2013

Cogentrix Quail Brush Generation Project - Docket Number 11-AFC-3, Quail Brush Generation Project Revised 1-Hour NO2 Modeling Assessment and Modeling Files

Docket Clerk:

Pursuant to the provisions of Title 20, California Code of Regulation, and on behalf of Quail Brush Genco, LLC, a wholly owned subsidiary of Cogentrix Energy, LLC, Tetra Tech hereby submits the *Quail Brush Generation Project Revised 1-Hour NO2 Modeling Assessment and Modeling Files* for the Quail Brush Power Project (11-AFC-3). The Quail Brush Generation Project is a 100 megawatt natural gas fired electric generation peaking facility to be located in the City of San Diego, California. As specific computer software is needed to open and run the modeling files, the Applicant is not serving each party with the CD but is filing with the Docket Unit and will provide a copy of the CD upon request.

If you have any questions regarding this submittal, please contact Rick Neff at (704) 525-3800 or me at (303) 980-3653.

Sincerely,

Constance E. Farmer

Project Manager/Tetra Tech

Constance C. France

BEFORE THE ENERGY RESOURCES CONSERVATION AND DEVELOPMENT COMMISSION OF THE STATE OF CALIFORNIA

1516 NINTH STREET, SACRAMENTO, CA 95814 1-800-822-6228 – www.ENERGY.CA.GOV

APPLICATION FOR CERTIFICATION FOR THE QUAIL BRUSH GENERATION PROJECT

Docket No. 11-AFC-03

PROOF OF SERVICE (Revised 02/12/2013)

SERVICE LIST:

APPLICANT

Cogentrix Energy, LLC
C. Richard "Rick" Neff, Vice President
Environmental, Health & Safety
John Collins, VP Development
Lori Ziebart, Project Manager
Quail Brush Generation Project
9405 Arrowpoint Boulevard
Charlotte, NC 28273
rickneff@cogentrix.com
johncollins@cogentrix.com
loriziebart@cogentrix.com

APPLICANT'S CONSULTANTS

Tetra Tech EC, Inc.
Connie Farmer
Sr. Environmental Project Manager
Sarah McCall
Sr. Environmental Planner
143 Union Boulevard, Suite 1010
Lakewood, CO 80228
connie.farmer@tetratech.com
sarah.mccall@tetratech.com

Tetra Tech EC, Inc.
Barry McDonald
VP Solar Energy Development
17885 Von Karman Avenue, Ste. 500
Irvine, CA 92614-6213
barry.mcdonald@tetratech.com

APPLICANT'S COUNSEL

Ella Foley Gannon
Camarin Madigan
Bingham McCutchen LLP
Three Embarcadero Center
San Francisco, CA 94111-4067
ella.gannon@bingham.com
camarin.madigan@bingham.com

INTERVENORS

Roslind Varghese 9360 Leticia Drive Santee, CA 92071 roslindv@gmail.com

Rudy Reyes 8655 Graves Avenue, #117 Santee, CA 92071 rreyes2777@hotmail.com

Dorian S. Houser 7951 Shantung Drive Santee, CA 92071 dhouser@cox.net

Kevin Brewster 8502 Mesa Heights Road Santee, CA 92071 Izpup@yahoo.com

Helping Hand Tools Mr. Rob Simpson, CEO 1901 First Avenue, Suite 219 San Diego, CA 92101 rob@redwoodrob.com

Sierra Club, San Diego Chapter c/o Law Office of Robert W. Wright Robert W. Wright 716 Castro Street Solana Beach, CA 92075 bob.wright@mac.com

INTERVENORS (Cont'd.)

Sunset Greens
Homeowners Association
c/o Briggs Law Corporation
Cory J. Briggs
Isabel E. O'Donnell
99 East "C" Street, Suite 111
Upland, CA 91786
cory@briggslawcorp.com
isabel@briggslawcorp.com

HomeFed Fanita Rancho, LLC c/o Allen Matkins Leck Gamble Mallory & Natsis LLP Jeffrey A. Chine Heather S. Riley 501 West Broadway, 15th Floor San Diego, CA 92101 jchine@allenmatkins.com hriley@allenmatkins.com jkaup@allenmatkins.com vhoy@allenmatkins.com

Preserve Wild Santee Van Collinsworth 9222 Lake Canyon Road Santee, CA 92071 savefanita@cox.net

Center for Biological Diversity John Buse Aruna Prabhala 351 California Street, Suite 600 San Francisco, CA 94104 jbuse@biologicaldiversity.org aprabhala@biologicaldiversity.org

INTERVENORS (Cont'd.)

California Pilots Association Andy Wilson 31438 Greenbrier Lane Hayward, CA 94544 andy.wilson@calpilots.org

INTERESTED AGENCIES

California ISO e-recipient@caiso.com

City of Santee
Department of Development Services
Melanie Kush, Director of Planning
10601 Magnolia Avenue, Bldg. 4
Santee, CA 92071
mkush@ci.santee.ca.us

City of San Diego
Development Services Dept.
Morris E. Dye
1222 First Avenue, MS 501
San Diego, CA 92101
mdye@sandiego.gov

County of San Diego
Department of Planning & Land Use
Mindy Fogg
Land Use Environmental Planner
Advance Planning
5510 Overland Avenue, Suite 310
San Diego, CA 92123
mindy.fogg@sdcounty.ca.gov

ENERGY COMMISSION STAFF

Eric Solorio
Project Manager
eric.solorio@energy.ca.gov

Stephen Adams
Staff Counsel
stephen.adams@energy.ca.gov

<u>ENERGY COMMISSION –</u> <u>PUBLIC ADVISER</u>

*Blake Roberts Assistant Public Adviser publicadviser@energy.ca.gov

COMMISSION DOCKET UNIT

California Energy Commission
– Docket Unit
Attn: Docket No. 11-AFC-03
1516 Ninth Street, MS-4
Sacramento, CA 95814-5512
docket@energy.ca.gov

OTHER ENERGY COMMISSION PARTICIPANTS (LISTED FOR CONVENIENCE ONLY):

After docketing, the Docket Unit will provide a copy to the persons listed below. <u>Do not</u> send copies of documents to these persons unless specifically directed to do so.

KAREN DOUGLAS
Commissioner and Presiding Member

ANDREW McALLISTER
Commissioner and Associate Member

Raoul Renaud Hearing Adviser

Galen Lemei Adviser to Commissioner Douglas

Jennifer Nelson Adviser to Commissioner Douglas

David Hungerford Adviser to Commissioner McAllister

Patrick Saxton Adviser to Commissioner McAllister

Eileen Allen Commissioners' Technical Adviser for Facility Siting

^{*} Indicates change

Declaration of Service

I, Constance Farmer, declare that on February 27, 2013, I served and filed copies of the attached Revised 1-Hour NO2 Modeling Assessment, Cogentrix Quail Brush Generation Project, City of San Diego, San Diego County, California (11-AFC-03). This document is accompanied by the most recent Proof of Service, which I copied from the web page for this project at: http://www.energy.ca.gov/sitingcases/quailbrush/index.html.

The document has been sent to the other persons on the Service List above in the following manner:

(Check one)

For service to all other parties and filing with the Docket Unit at the Energy Commission:

X I e-mailed the document to all e-mail addresses on the Service List above and personally delivered it or deposited it in the US mail with first class postage to those parties noted above as "hard copy required"; OR

Instead of e-mailing the document, I personally delivered it or deposited it in the US mail with first class postage to all of the persons on the Service List for whom a mailing address is given.

I declare under penalty of perjury under the laws of the State of California that the foregoing is true and correct, and that I am over the age of 18 years.

Dated: February 27, 2013

Constance C. France

REVISED 1-HOUR NO₂ MODELING ASSESSMENT

For the:

QUAIL BRUSH GENERATION PROJECT

Prepared for:

Quail Brush Genco, LLC. 9405 Arrowpoint Boulevard Charlotte, NC 28273

Prepared by:

Atmospheric Dynamics, Inc. Torres 3 SW of Mountain View P.O. Box 5907 Carmel-by-the-Sea, CA. 93921-5907

February 2013

Revised Quail Brush Generation Project 1-Hour NO₂ Startup Air Quality Impact Assessment

This report describes the Quail Brush Generation Project (QBGP) air quality modeling results for the comparison to the Federal 1-hour standard of 188 ug/m^3 . Potential air quality impacts were evaluated based on air quality dispersion modeling, as described herein. With the exception of the binary data files, all input and output modeling files are contained on a CD-ROM disk provided with this report. The modeling analyses were performed using the techniques and methods outlined by the EPA in the June 2010 "Guidance Concerning the Implementation of the 1-hour NO_2 NAAQS for the Prevention of Significant Deterioration Program" (EPA, June 2010).

DISPERSION MODELING

For modeling the potential impact of QBGP in terrain that is both below and above stack top (defined as simple terrain when the terrain is below stack top and complex terrain when it is above stack top), the USEPA guideline model AERMOD (version 12345) was used with the Plume Volume Molar Ratio Method for comparison with the Federal 1-hour NO₂ standard. The meteorological and receptor data sets used in this revised analysis were based on the data used in the October 2012 assessment.

The purpose of the revised AERMOD modeling analysis was to evaluate compliance with the federal 1-hour NO_2 air quality standard. As discussed with CEC Staff, the modeled 98th percentile daily average 1-hour NO_2 modeled concentration was added to the seasonal monitored background NO_2 concentrations in order to determine the total modeled impact.

Two operating profiles were assessed for compliance with the 1-hour NO_2 standard: (1) six engines starting up in the same hour with the other five engines nonoperational and (2) six engines starting up in the same hour with the other five engines at full operational load. In both cases, the heaters are fully operational. The stack parameters were those used in the October 2012 application.

The worst case cold startup emissions along with the assumptions on the NO_2/NO_x ratios were modified with this submittal and are based upon the following procedures:

- 1. Only six (6) engines may start-up at any one-time (1-hour time frame).
- 2. Per the most recent analysis of applicable NO_2/NO_x ratios, QBGP has proposed to use the following ratios for the following time periods:
 - a. 25% for the cold startup period of 25 minutes for each engine.
 - b. 18.5% for the remaining 35 minutes in the startup hour for each engine.
 - c. These changes result in a weighted start-up hour NO₂/NO_x ratio of 21.2%.
- 3. QBGP has reduced, per item 3 above, the cold start-up time from 30 to 25 minutes. This reduction amounts to a 17% reduction in the cold start-up time.
- 4. QBGP has approved a reduction in the cold start-up NOx emissions of 10%, which decreases the pound/event value from 8.82 lbs to 7.94 lbs of NO_x.

37

- 5. The pound per hour NOx emission rate used in the assessment becomes 8.7091 lb/hr or 1.09735 g/s per engine for a startup hour. Thus, each engine in startup represents 25 minutes in startup mode and 35 minutes at 100 percent base load.
- 6. For all other operations hours, including warm start hours, the previously established NO_2/NO_x ratio of 18.5% will apply.

The previous worst-case hour included a shutdown, but this case was removed from the analysis as the engines will not startup, run and then shut down during any one-hour period. The updated emissions for all engines are provided as an attachment at the end of this document.

The worst case NO₂ facility configuration, eleven engines at 100% load for 70°F ambient temperatures (Case I), was modeled with AERMOD. The modeling options and inputs were the same as the previous modeled, namely:

Seasonal NO₂ background data for 2008-2010 (third-highest seasonal value for each hour, with the NO₂ data first processed in accordance with the guidance contained in the CAPCOA Guidance Document "Modeling Compliance of The Federal 1-Hour NO₂ NAAQS" dated October 27, 2011) from the Kearny Mesa site were used to assess compliance with the NAAQS based on the 5-year average of the annual 8th highest daily 1-hour maxima.

Receptor and source base elevations were determined from the USGS National Elevation Dataset (NED) data in the GeoTIFF format at a horizontal resolution of 1/3 arc-second (approximate 10 meter spacing). Because of the format of the NED data, all coordinates (both sources and receptors) were referenced to UTM North American Datum 1983 (NAD83, Zone 11). Elevation locations in the NED dataset were interpolated by AERMAP to the UTM locations appropriate for the receptor grid spacings shown below.

The receptor grids used in the modeling analysis are presented in Figure 1.

PLUME VOLUME MOLAR RATIO METHOD

As with one of the existing techniques called the Ozone Limiting Method (OLM), the Plume Volume Molar Ratio Method (PVMRM) approach limits the conversion of NO to NO_2 based on the amount of ambient ozone available. The OLM involves an initial comparison of the estimated maximum NO_x concentration and the ambient ozone concentration to determine which is the limiting factor to NO_2 formation. If the ozone concentration is greater than the maximum NO_x concentration, total conversion is assumed. If the NO_x concentration is greater than the ozone concentration, the formation of NO_2 is limited by the ambient ozone concentration. In this case, the NO_2 concentration is set equal to the ozone concentration plus a correction factor that accounts for in-stack and near-stack thermal conversion. However, the PVMRM approach limits the conversion based on the amount of ozone within the volume of the plume. With PVMRM, the NO_2/NO_x conversion ratio is coupled with the dispersion of the plume. The PVMRM approach also incorporates a technique for merging plumes from nearby sources for purposes of calculating the NO_2/NO_x ratios.

The PVMRM was used with concurrent hourly 1-hour ozone concentrations to calculate the 1-hour NO₂ concentrations using the AERMOD PVMRM subroutine. Ozone data from the Overland Avenue Monitoring Station for the same period as the meteorological data (2003-2007) were used for the PVMRM analyses. Missing ozone data for periods of 1 hour were interpolated from the monitoring data before/after the missing period. Missing data for longer periods were replaced with data from nearest ozone monitoring station.

As stated above, seasonal background NO₂ data was added to the modeled concentrations to produce a combined impact for comparison with the Federal 1-hour NO₂ standard.

Figure 1 Receptor Grids used in AERMOD for the Revised 1-hour NO₂ Analysis

AERMOD MODELING RESULTS

In order to determine which of the six (6) engines in startup mode would produce the largest impact, a series of screening runs were performed with various combinations of engines in startup and in base load operation. It was determined that the worst-case impacts would occur for the case where five (5) of the engines were at 100 percent load and the remaining six (6) were in startup. The engines are clustered into two groups, with one of the groups of six (6) engines on the western side and five (5) engines in the eastern side. Six engine startups of beginning on the western side and rotating towards the east were assessed. It became apparent that the eastern engines always produce the largest impacts for the 1-hour NO₂ standard. Thus, the worst case 1-hour NO₂ results are based on the five (5) engines starting up on the eastern cluster with one (1) engine starting up in the western grouping. The remaining five (5) engines are at 100 percent load.

The revised 1-hour NO₂ impacts are compared below to the AAQS. Maximum impacts for both NAAQS/CAAQS occurred on the high resolution receptor grids, so no additional refined receptor grids were necessary. Figure 1 identifies the location of the maximum 1-hour NO₂ impact. As can be seen in Table 1, the facility will comply with applicable state/California and Federal/ National NO₂ standards.

Table 1 Comparison of NO₂ Air Quality Impacts to the AAQS

Tubic I comp	unioun or ive	z i i z wwiity	Timpueto to ti	10 111120		
Pollutant	Avg. Period	Maximum Concentration	Background (μg/m³)	g/m³) (μg/m³) CAAQS/NA. (μg/m³) (μg/m³) - 180.23 -	Quality	
		(μg/m³) (μg/m²)			(μg/m³)	(μg/m³)
STARTUP QBG	P CONDITION	S:				
NO ₂	1-hour Federal	180.232	-	180.23	-	188
$1NO_2$	1-hour State	314.044	-	314.04	339	-

Notes: Background concentrations included by AERMOD for 1-hour NO₂ impacts.

CONCLUSION

The results of the revised startup modeling analysis for NO₂ demonstrates that the proposed project will safely comply with the federal 1-hour ambient air quality standard for NO₂.

Table F.1-1 (Revised 02-26-13)

Maximum Hourly, Daily, and Annual Emissions Calculations Full Load Case

Number of Identical Engines:

11

Input data pe	er unit:		Avg # of Cold	Avg # of Warm	Cold Startup	Warm Startup	Shutdown	Cold	Warm	Estimated	Max Estimated
	Operation	Annual	Startups	Startups	Time	Time	Time	Starts	Starts	Shutdowns	Shutdowns
	hrs/day	Op hrs	day	day	hrs	hrs	hrs	yr	yr	yr	day
	24	4032	1	1	0.416	0.25	0.1417	300	100	400	2
	Cold	Warm						Annual			
	Startup	Startup	Shutdown	Steady State	Total Cold	Total Warm	Total	Steady State	Tota	al Annual Emis	sions
	Emissions	Emissions	Emissions	Emissions	Start	Start	Shutdown	Non SU/SD	Cold Starts	Warm Starts	Shutdowns
	lbs/event	lbs/event	lbs/event	lbs/hr	hrs/yr	hrs/yr	hrs/yr	hrs/yr	lbs/yr	lbs/yr	lbs/yr
				(100% Load)							
NOx	7.94	2.43	0.2	1.317	124.8	25	56.68	3825.52	2382.0	243.0	80.0
СО	12.57	1.322	0.31	1.564					3771.0	132.2	124.0
VOC	6.614	1.764	0.34	1.584					1984.2	176.4	136.0
SOx	0.137	0.07	0.05	0.256					41.1	7.0	20.0
PM10	1.54	1.54	0.35	1.379					462.0	154.0	140.0
PM2.5	1.54	1.54	0.35	1.379					462.0	154.0	140.0

- 1. SU/SD emissions data and times derived from: Wartsila Emissions Data Sheet, DBAB715360, 2-27-11.
- 2. Cold start (CS): engine will reach steady state in 10 minutes and controls (SCR and CO Cat) will be fully operational in 30 minutes.
- 3. Warm start (WS): engine will reach steady state in 10 minutes and controls (SCR and CO Cat) will be fully operational in 15 minutes.
- 4. A warm start is defined as a start initiated within 2-6 hours after the engine has been shutdown, or when the emissions control system is at a temperature of no less than 270 C (518 F).
- 5. Shutdown time is optimally 8.5 minutes per Wartsila.

6. Cold start w/o shutdown =	0.416	hrs	steady state =	0.584	hrs
7. Warm start w/o shutdown =	0.25	hrs	steady state =	0.75	hrs
8. Shut down =	0.1417	hrs	steady state =	0.8583	hrs

- 9. Steady state (SS) emissions values derived from Cogentrix/Wartsila.
- 10. SO2 emissions include S to SO2 from lube oil burn-off from cylinder sleeves.

Maximum Estimated Hourly Emissions 1 Hour Period		NOx lbs/hr	CO lbs/hr	VOC lbs/hr	SOx lbs/hr	PM10 lbs/hr	PM2.5 lbs/hr	
Scenario 1		8.71	13.48	7.54	0.29	2.35	2.35	1 Engine
Cold Start w/Steady State (5 Engines)		43.55	67.42	37.70	1.43	11.73	11.73	5 Engines
Cold Start w/Steady State (6 Engines)		52.25	80.90	45.23	1.72	14.07	14.07	6 Engines
Scenario 2	3.42	2.50	2.95	0.26	2.57	2.57	1 Engine	
Warm Start w/Steady State	37.60	27.45	32.47	2.88	28.32	28.32	All Engines	
Scenario 3	•		13.79	7.88	0.34	2.70	2.70	1 Engine
Cold Start, Steady State, Shutdown	***	98.00	151.73	86.67	3.70	29.65	29.65	All Engines
Scenario 4		3.62	2.81	3.29	0.31	2.92	2.92	1 Engine
Warm Start, Steady State, Shutdown	***	39.80	30.86	36.21	3.43	32.17	32.17	All Engines
Scenario 5		1.33	1.65	1.70	0.27	1.53	1.53	1 Engine
Steady State w/Shutdown		14.63	18.18	18.70	2.97	16.87	16.87	All Engines
Scenario 6		1.32	1.56	1.58	0.26	1.38	1.38	1 Engine
Steady State		14.49	17.20	17.42	2.82	15.17	15.17	All Engines
	*** cannot o	ccur, once SU	l is finalized, th	ne unit(s) mus	t run for 2 hou	irs prior to a S	D	

Maximum Estimated Daily Emissions	NOx	СО	VOC	SOx	PM10	PM2.5	
24 Hr Period Run Day	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	
Scenario 1	39.20	49.77	44.31	6.22	34.41	34.41	1 Engine
Cold Start, Steady State, Shutdown	431.20	547.42	487.42	68.47	378.54	378.54	All Engines
Scenario 2	33.91	38.78	39.72	6.20	34.64	34.64	1 Engine
Warm Start, Steady State, Shutdown	373.00	426.55	436.96	68.20	381.05	381.05	All Engines
Scenario 3	31.61	37.54	38.02	6.14	33.10	33.10	1 Engine
Steady State	347.69	412.90	418.18	67.58	364.06	364.06	All Engines
Scenario 4	347.03	412.50	410.10	07.50	304.00	304.00	1 Engine
*****							All Engines
							7 III Eligilies
Maximum Estimated Daily Emissions	NOx	СО	VOC	SOx	PM10	PM2.5	
16 Hr Period Run Day	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	
,	,,	,,		,	,,	,,	
Scenario 1	28.66	37.25	31.64	4.18	23.38	23.38	1 Engine
Cold Start, Steady State, Shutdown	315.31	409.79	348.03	45.94	257.18	257.18	All Engines
Scenario 2	23.37	26.27	27.05	4.15	23.61	23.61	1 Engine
Warm Start, Steady State, Shutdown	257.10	288.92	297.57	45.67	259.70	259.70	All Engines
Scenario 3	21.07	25.02	25.34	4.10	22.06	22.06	1 Engine
Steady State	231.79	275.26	278.78	45.06	242.70	242.70	All Engines
Scenario 4							1 Engine
*****							All Engines
Maximum Estimated Daily Emissions	NOx	CO	VOC	SOx	PM10	PM2.5	
8 Hr Period Run Day	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	
Scenario 1	18.13	24.74	18.97	2.13	12.35	12.35	1 Engine
Cold Start, Steady State, Shutdown	199.41	272.16	208.64	23.41	135.83	135.83	All Engines
Scenario 2	12.84	13.75	14.38	2.10	12.58	12.58	1 Engine
Warm Start, Steady State, Shutdown	141.20	151.28	158.18	23.14	138.35	138.35	All Engines
Scenario 3	10.54	12.51	12.67	2.05	11.03	11.03	1 Engine
Steady State	115.90	137.63	139.39	22.53	121.35	121.35	All Engines
Scenario 4							1 Engine
****							All Engines
							J
Other Misc Scenarios -based on run hour type							
(CS-cold start hour, WS-warm start hour, SD-shutdown hour, SS-s	teady state hour)						
	NOx	CO	VOC	SOx	PM10	PM2.5	
	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	
a - CS, SS, SD, WS, SS, SD (total ops period 12 hrs)							
	25.32	31.80	26.56	3.14	19.02	19.02	1 Engine
	278.56	349.75	292.18	34.50	209.21	209.21	All Engines
b - 3 CSs, 1 WS, 4 SDs, SS (total ops period 24 hrs)							
	55.94	74.58	57.71	6.30	37.81	37.81	1 Engine
	615.33	820.37	634.82	69.26	415.90	415.90	All Engines

Maximum Es	stimated Annu	ual Emissions	NOx	СО	VOC	SOx	PM10	PM2.5
			lbs/yr	lbs/yr	lbs/yr	lbs/yr	lbs/yr	lbs/yr
Ops Scenario)							
Cold Startup	S		2382.0	3771.0	1984.2	41.1	462.0	462.0
Warm Startu	ps		243.0	132.2	176.4	7.0	154.0	154.0
Shutdowns			80.0	124.0	136.0	20.0	140.0	140.0
Steady State	•			5983.1	6059.6	979.3	5275.4	5275.4
	1 Engine Totals, lbs/yr:		7743.2	10010.3	8356.2	1047.4	6031.4	6031.4
		1 Engine Totals, tons/yr:	3.87	5.01	4.18	0.52	3.02	3.02
			NOx	со	voc	SOx	PM10	PM2.5
			tpy	tpy	tpy	tpy	tpy	tpy
	То	tal Tons/Yr All Engines:	42.59	55.06	45.96	5.76	33.17	33.17
EPA	PSD Significa	nt Emissions Rates, TPY:	40	100	40	40	15	10
SDAPCD	Air Agency O	ffset Trigger Levels, TPY:	50	100	50	100	100	100
GHG Emission	ns Estimates		CCAR, Gener	al Reporting Pi	rotocol, Versi	on 3.1, Januar	y 2009, Table (C.6.
Fuel:	Natural Gas		1 short ton = 20	00 lbs, 1 metric to	on = 2200 lbs.			
Btu/scf:	1019	HHV						
Heat Rate:	80.18	80.18 mmbtu/hr					CO2e	
Fuel Rate:	0.0787	mmscf/hr			short	IPCC SAR	short	
Emissions Fa	ctors	Emissions	lbs/hr	lbs/year	tons/yr	Values	tons/yr	

9.38E+03

1.04E+00

1.77E-02

3.78E+07

4.21E+03

7.13E+01

1.89E+04

2.10E+00

3.56E-02

1

21

310

Total CO2e:

Total CO2e:

Total CO2e:

Total CO2e:

1.89E+04

4.42E+01

1.10E+01

18960

208560

17236

189600

short TPY

short TPY

metric TPY

metric TPY

1 Engine All Engines

1 Engine

All Engines

CO2

CH4

N20

PSD Triggered for GHGs:

116.954

0.01301

lbs/mmbtu

lbs/mmbtu

Yes

0.0002205 lbs/mmbtu

Max

Input data pe	er unit:		Avg	Avg	Cold	Warm					Max
			# of Cold	# of Warm	Startup	Startup	Shutdown	Cold	Warm	Estimated	Estimated
	Operation	Annual	Startups	Startups	Time	Time	Time	Starts	Starts	Shutdowns	Shutdowns
	hrs/day	Op hrs	day	day	hrs	hrs	hrs	yr	yr	yr	day
	24	4032	1	1	0.416	0.25	0.1417	300	100	400	2
	Cold	Warm									
	Startup	Startup	Shutdown	Steady State							
	Emissions	Emissions	Emissions	Emissions							
	lbs/event	lbs/event	lbs/event	lbs/hr							
				(75% Load)							
NOx	7.94	2.43	0.2	1.11							
CO	12.57	1.322	0.31	1.48							
VOC	6.614	1.764	0.34	1.541							
SOx	0.137	0.07	0.05	0.256							
PM10	1.54	1.54	0.35	1.372							
PM2.5	1.54	1.54	0.35	1.372							

- 1. SU/SD emissions data and times derived from: Wartsila Emissions Data Sheet, DBAB715360, 2-27-11.
- 2. Cold start (CS): engine will reach steady state in 10 minutes and controls (SCR and CO Cat) will be fully operational in 25 minutes.
- 3. Warm start (WS): engine will reach steady state in 10 minutes and controls (SCR and CO Cat) will be fully operational in 15 minutes.
- 4. A warm start is defined as a start initiated within 2-6 hours after the engine has been shutdown, or when the emissions control system is at a temperature of no less than 270 C (518 F).
- 5. Shutdown time is optimally 8.5 minutes per Wartsila.

6. Cold start w/o shutdown =	0.416	hrs	steady state =	0.584	hrs
7. Warm start w/o shutdown =	0.25	hrs	steady state =	0.75	hrs
8. Shut down =	0.1417	hrs	steady state =	0.8583	hrs

- 9. Steady state (SS) emissions values derived from Cogentrix/Wartsila.
- 10. SO2 emissions include S to SO2 from lube oil burn-off from cylinder sleeves.

Maximum Estimated Hourly Emissions 1 Hour Period		NOx lbs/hr	CO lbs/hr	VOC lbs/hr	SOx lbs/hr	PM10 lbs/hr	PM2.5 lbs/hr	
Scenario 1		8.59	13.43	7.51	0.29	2.34	2.34	1 Engine
Cold Start w/Steady State (5 Engines)	42.94	67.17	37.57	1.43	11.71	11.71	5 Engines	
Cold Start w/Steady State (6 Engines)	51.53	80.61	45.08	1.72	14.05	14.05	6 Engines	
Scenario 2	3.26	2.43	2.92	0.26	2.57	2.57	1 Engine	
Warm Start w/Steady State	35.89	26.75	32.12	2.88	28.26	28.26	All Engines	
Scenario 3	rio 3		13.74	7.85	0.34	2.69	2.69	1 Engine
Cold Start, Steady State, Shutdown	***	96.67	151.19	86.39	3.70	29.60	29.60	All Engines
Scenario 4		3.46	2.74	3.26	0.31	2.92	2.92	1 Engine
Warm Start, Steady State, Shutdown	***	38.09	30.16	35.86	3.43	32.11	32.11	All Engines
Scenario 5		1.15	1.58	1.66	0.27	1.53	1.53	1 Engine
Steady State w/Shutdown		12.68	17.38	18.29	2.97	16.80	16.80	All Engines
Scenario 6		1.11	1.48	1.54	0.26	1.37	1.37	1 Engine
Steady State		12.21	16.28	16.95	2.82	15.09	15.09	All Engines
	*** cannot o	ccur, once SU	is finalized, th	ne unit(s) must	t run for 2 hou	irs prior to a S	D	

Maximum Estimated Daily Emissions	NOx	СО	VOC	SOx	PM10	PM2.5	
24 Hr Period Run Day	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	
Scenario 1	34.32	47.78	43.30	6.22	34.25	34.25	1 Engine
Cold Start, Steady State, Shutdown	377.50	525.63	476.27	68.47	376.72	376.72	All Engines
Scenario 2	28.99	36.78	38.70	6.20	34.48	34.48	1 Engine
Warm Start, Steady State, Shutdown	318.92	404.60	425.73	68.20	379.23	379.23	All Engines
Scenario 3	26.64	35.52	36.98	6.14	32.93	32.93	1 Engine
Steady State	293.04	390.72	406.82	67.58	362.21	362.21	All Engines
Scenario 4							1 Engine
*****							All Engines
Maximum Estimated Daily Emissions	NOx	CO	VOC	SOx	PM10	PM2.5	
16 Hr Period Run Day	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	
Scenario 1	25.44	35.94	30.97	4.18	23.27	23.27	1 Engine
Cold Start, Steady State, Shutdown	279.82	395.39	340.66	45.94	255.98	255.98	All Engines
Scenario 2	20.11	24.94	26.37	4.15	23.50	23.50	1 Engine
Warm Start, Steady State, Shutdown	221.24	274.36	290.12	45.67	258.49	258.49	All Engines
Scenario 3	17.76	23.68	24.66	4.10	21.95	21.95	1 Engine
Steady State	195.36	260.48	271.22	45.06	241.47	241.47	All Engines
Scenario 4							1 Engine
*****							All Engines
Maximum Estimated Daily Emissions	NOx	СО	VOC	SOx	PM10	PM2.5	
8 Hr Period Run Day	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	
o ni renou kun bay	103/ 444	ibs/ day	103/ 444	103/ uay	103/ 44	103/ uay	
Scenario 1	16.56	24.10	18.64	2.13	12.30	12.30	1 Engine
Cold Start, Steady State, Shutdown	182.14	265.15	205.05	23.41	135.25	135.25	All Engines
Scenario 2	11.23	13.10	14.05	2.10	12.52	12.52	1 Engine
Warm Start, Steady State, Shutdown	123.56	144.12	154.51	23.14	137.75	137.75	All Engines
Scenario 3	8.88	11.84	12.33	2.05	10.98	10.98	1 Engine
Steady State	97.68	130.24	135.61	22.53	120.74	120.74	All Engines
Scenario 4 *****							1 Engine
****							All Engines
Other Misc Scenarios -based on run hour type							
(CS-cold start hour, WS-warm start hour, SD-shutdown hour, SS-s	teady state hour)						
(,	NOx	СО	VOC	SOx	PM10	PM2.5	
	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	
a - CS, SS, SD, WS, SS, SD (total ops period 12 hrs)	,	,	, ,	, ,		,	
	23.04	30.87	26.09	3.14	18.94	18.94	1 Engine
	253.40	339.54	286.96	34.50	208.36	208.36	All Engines
							-
b - 3 CSs, 1 WS, 4 SDs, SS (total ops period 24 hrs)							
	51.40	72.74	56.77	6.30	37.66	37.66	1 Engine

50% Load Evaluation **Maximum Hourly, Daily Emissions Calculations**

Number of Identical Engines:

11

Input data pe	er unit:		Avg # of Cold	Avg # of Warm	Cold Startup	Warm Startup	Shutdown	Cold	Warm	Estimated	Max Estimated
	Operation	Annual	Startups	Startups	Time	Time	Time	Starts	Starts	Shutdowns	Shutdowns
	hrs/day	Op hrs	day	day	hrs	hrs	hrs	yr	yr	yr	day
	24	4032	1	1	0.416	0.25	0.1417	300	100	400	2
	Cold Startup Emissions Ibs/event	Warm Startup Emissions Ibs/event	Shutdown Emissions Ibs/event	Steady State Emissions Ibs/hr (50% Load)							
NOx	7.94	2.43	0.2	0.921							
CO	12.57	1.322	0.31	1.494							
VOC	6.614	1.764	0.34	1.504							
SOx	0.137	0.07	0.05	0.256							
PM10	1.54	1.54	0.35	1.361							
PM2.5	1.54	1.54	0.35	1.361							

- 1. SU/SD emissions data and times derived from: Wartsila Emissions Data Sheet, DBAB715360, 2-27-11.
- 2. Cold start (CS): engine will reach steady state in 10 minutes and controls (SCR and CO Cat) will be fully operational in 30 minutes.
- 3. Warm start (WS): engine will reach steady state in 10 minutes and controls (SCR and CO Cat) will be fully operational in 15 minutes.
- 4. A warm start is defined as a start initiated within 2-6 hours after the engine has been shutdown, or when the emissions control system is at a temperature of no less than 270 C (518 F).
- 5. Shutdown time is optimally 8.5 minutes per Wartsila.

Cold start w/o shutdown =	0.416	hrs	steady state =	0.584	hrs
7. Warm start w/o shutdown =	0.25	hrs	steady state =	0.75	hrs
8. Shut down =	0.1417	hrs	steady state =	0.8583	hrs

- 9. Steady state (SS) emissions values derived from Cogentrix/Wartsila.
- 10. SO2 emissions include S to SO2 from lube oil burn-off from cylinder sleeves.

Maximum Estimated Hourly Emissions 1 Hour Period		NOx lbs/hr	CO lbs/hr	VOC lbs/hr	SOx lbs/hr	PM10 lbs/hr	PM2.5 lbs/hr	
Scenario 1		8.48	13.44	7.49	0.29	2.33	2.33	1 Engine
Cold Start w/Steady State (5 Engines)		42.39	67.21	37.46	1.43	11.67	11.67	5 Engines
Cold Start w/Steady State (6 Engines)		50.87	80.65	44.95	1.72	14.01	14.01	6 Engines
Scenario 2		3.12	2.44	2.89	0.26	2.56	2.56	1 Engine
Warm Start w/Steady State		34.33	26.87	31.81	2.88	28.17	28.17	All Engines
Scenario 3		8.68	13.75	7.83	0.34	2.68	2.68	1 Engine
Cold Start, Steady State, Shutdown	***	95.46	151.28	86.16	3.70	29.53	29.53	All Engines
Scenario 4		3.32	2.75	3.23	0.31	2.91	2.91	1 Engine
Warm Start, Steady State, Shutdown	***	36.53	30.28	35.55	3.43	32.02	32.02	All Engines
Scenario 5		0.99	1.59	1.63	0.27	1.52	1.52	1 Engine
Steady State w/Shutdown		10.90	17.52	17.94	2.97	16.70	16.70	All Engines
Scenario 6		0.92	1.49	1.50	0.26	1.36	1.36	1 Engine
Steady State		10.13	16.43	16.54	2.82	14.97	14.97	All Engines
	*** cannot o	ccur once SI	l is finalized, th	e unit(s) must	run for 2 hou	irs prior to a S	D	

Maximum Estimated Daily Emissions	NOx	СО	VOC	SOx	PM10	PM2.5	
24 Hr Period Run Day	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	
Compute 1	20.00	40 11	42.42	C 22	22.00	22.00	1 Engine
Scenario 1 Cold Start, Steady State, Shutdown	29.86 328.47	48.11 529.26	42.42 466.67	6.22 68.47	33.99 373.87	33.99 373.87	1 Engine All Engines
Scenario 2	24.50	37.11	37.82	6.20	34.21	34.21	1 Engines
Warm Start, Steady State, Shutdown	269.54	408.26	416.06	68.20	376.35	376.35	All Engines
Scenario 3	22.10	35.86	36.10	6.14	32.66	32.66	1 Engine
Steady State	243.14	394.42	397.06	67.58	359.30	359.30	All Engines
Scenario 4	243.14	334.42	337.00	07.50	333.30	333.30	1 Engine
*****							All Engines
							7 2.1.gc3
Maximum Estimated Daily Emissions	NOx	СО	VOC	SOx	PM10	PM2.5	
16 Hr Period Run Day	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	
,		, ,		. ,			
Scenario 1	22.49	36.16	30.39	4.18	23.10	23.10	1 Engine
Cold Start, Steady State, Shutdown	247.42	397.79	334.32	45.94	254.10	254.10	All Engines
Scenario 2	17.14	25.16	25.79	4.15	23.33	23.33	1 Engine
Warm Start, Steady State, Shutdown	188.49	276.79	283.71	45.67	256.58	256.58	All Engines
Scenario 3	14.74	23.90	24.06	4.10	21.78	21.78	1 Engine
Steady State	162.10	262.94	264.70	45.06	239.54	239.54	All Engines
Scenario 4							1 Engine
*****							All Engines
Maximum Estimated Daily Emissions	NOx	CO	VOC	SOx	PM10	PM2.5	
8 Hr Period Run Day	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	
Scenario 1	15.12	24.21	18.36	2.13	12.21	12.21	1 Engine
Cold Start, Steady State, Shutdown	166.37	266.32	201.96	23.41	134.33	134.33	All Engines
Scenario 2	9.77	13.21	13.76	2.10	12.44	12.44	1 Engine
Warm Start, Steady State, Shutdown	107.45	145.32	151.36	23.14	136.82	136.82	All Engines
Scenario 3	7.37	11.95	12.03	2.05	10.89	10.89	1 Engine
Steady State	81.05	131.47	132.35	22.53	119.77	119.77	All Engines
Scenario 4							1 Engine
*****							All Engines
Other Misc Scenarios -based on run hour type							
(CS-cold start hour, WS-warm start hour, SD-shutdown hour, SS-s	steady state hour)						
	NOx	CO	VOC	SOx	PM10	PM2.5	
	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	lbs/day	
a - CS, SS, SD, WS, SS, SD (total ops period 12 hrs)							
	20.95	31.02	25.68	3.14	18.82	18.82	1 Engine
	230.42	341.24	282.46	34.50	207.02	207.02	All Engines
b - 3 CSs, 1 WS, 4 SDs, SS (total ops period 24 hrs)							
	47.25 519.78	73.04 803.48	55.96 615.52	6.30 69.26	37.41 411.55	37.41 411.55	1 Engine All Engines