

500 Capitol Mall, Suite 1600 Sacramento, CA 95814 main 916,447.0700 fax 916,447.4781 www.stocl.com

MELISSA A. FOSTER Direct (916) 319-4673 mafoster@stoel.com

February 27, 2013

**VIA EMAIL** 

Ms. Felicia Miller, Siting Project Manager California Energy Commission 1516 Ninth Street Sacramento, CA 95814



### Re: Huntington Beach Energy Project (12-AFC-02) Applicant's Correspondence Related to Air Quality (January and February 2013)

Dear Ms. Miller:

Applicant AES Southland Development, LLC and its consultant, CH2M Hill, Inc., have corresponded with the South Coast Air Quality Management District and California Energy Commission air quality staff to resolve questions related to air quality emissions. Enclosed herein for docketing, please find such correspondence and data files on disk.

We note that some emails indicate there are attachments; however, the attachments are data files that require special applications to access. To that end, Applicant is docketing a copy of the data files on disk, and will provide a copy of the related correspondence to all parties pursuant to the enclosed Proof of Service. If any party wishes to receive a copy of the disk containing the air quality data files, please contact the Applicant directly.

Respectfully submitted,

Melissa A. Foster

MAF:jmw Enclosure cc: Proof of Service List

73458573.1 0043653-00005



BEFORE THE ENERGY RESOURCES CONSERVATION AND DEVELOPMENT COMMISSION OF THE STATE OF CALIFORNIA 1516 NINTH STREET, SACRAMENTO, CA 95814 1-800-822-6228 – WWW.ENERGY.CA.GOV

### APPLICATION FOR CERTIFICATION FOR THE HUNTINGTON BEACH ENERGY PROJECT

### Docket No. 12-AFC-02

PROOF OF SERVICE (Revised 02/19/2013)

### SERVICE LIST:

### APPLICANT

AES Southland, LLC Stephen O'Kane Jennifer Didlo 690 Studebaker Road Long Beach, CA 90803 stephen.okane@aes.com iennifer.didlo@aes.com

### APPLICANT'S CONSULTANTS

CH2MHill Robert Mason Project Manager 6 Hutton Centre Drive, Suite 700 Santa Ana, CA 92707 robert.mason@CH2M.com

### **APPLICANT'S COUNSEL**

Melissa A. Foster Stoel Rives, LLP 500 Capitol Mall, Suite 1600 Sacramento, CA 95814 mafoster@stoel.com

### INTERVENOR

Jason Pyle 9071 Kapaa Drive Huntington Beach, CA 92646 jasonpyle@me.com

### **INTERESTED AGENCIES**

California ISO e-recipient@caiso.com

### **INTERESTED AGENCIES (Cont'd.)**

California Coastal Commission Tom Luster 45 Fremont Street, Suite 2000 San Francisco, CA 94105-2219 tluster@coastal.ca.gov

California State Parks Huntington State Beach Brian Ketterer 21601 Pacific Coast Highway Huntington Beach, CA 92646 bketterer@parks.ca.gov

City of Huntington Beach Planning & Building Department Jane James Scott Hess Aaron Klemm 2000 Main Street, 3<sup>rd</sup> floor Huntington Beach, CA 92648 jjames@surfcity-hb.org shess@surfcity-hb.org aaron.klemm@surfcity-hb.org

City of Huntington Beach City Council Cathy Fikes Johanna Stephenson 2000 Main Street, 4<sup>th</sup> floor Huntington Beach, CA 92648 cfikes@surfcity-hb.org johanna.stephenson@surfcity-hb.org.

### **INTERESTED AGENCIES (Cont'd.)**

Santa Ana Regional Water Quality Board Gary Stewart 3737 Main Street, Suite 500 Riverside, CA 92501-3339 gstewart@waterboards.ca.gov

Huntington Beach Wetlands Conservancy Jack Kirkorn, Director 21900 Pacific Coast Highway Huntington Beach, CA 92646 jfk0480@aol.com

### **ENERGY COMMISSION STAFF**

Felicia Miller Project Manager felicia.miller@energy.ca.gov

Kevin W. Bell Staff Counsel kevin.w.bell@energy.ca.gov

### ENERGY COMMISSION -

PUBLIC ADVISER Blake Roberts Assistant Public Adviser publicadviser@energy.ca.gov

### COMMISSION DOCKET UNIT

California Energy Commission – Docket Unit Attn: Docket No. 12-AFC-02 1516 Ninth Street, MS-4 Sacramento, CA 95814-5512 docket@energy.ca.gov

### OTHER ENERGY COMMISSION PARTICIPANTS (LISTED FOR CONVENIENCE ONLY):

After docketing, the Docket Unit will provide a copy to the persons listed below. <u>Do not</u> send copies of documents to these persons unless specifically directed to do so.

ANDREW McALLISTER Commissioner and Presiding Member

KAREN DOUGLAS Commissioner and Associate Member

\*Susan Cochran Hearing Adviser

David Hungerford Adviser to Commissioner McAllister

Patrick Saxton Adviser to Commissioner McAllister

Galen Lemei Adviser to Commissioner Douglas

Jennifer Nelson Adviser to Commissioner Douglas

Eileen Allen Commissioners' Technical Adviser for Facility Siting

### DECLARATION OF SERVICE

I, Judith M. Warmuth, declare that on February 27, 2013, I served and filed copies of the attached Applicant's Correspondence Related to Air Quality (January and February 2013) dated February 27, 2013. This document is accompanied by the most recent Proof of Service, which I copied from the web page for this project at: <a href="http://www.energy.ca.gov/sitingcases/huntington\_beach\_energy/index.html">http://www.energy.ca.gov/sitingcases/huntington\_beach\_energy/index.html</a>.

The document has been sent to the other parties on the Service List above in the following manner:

### (Check one)

### For service to all other parties and filing with the Docket Unit at the Energy Commission:

- I e-mailed the correspondence only to all e-mail addresses on the Service List above and personally delivered it or deposited it in the US mail with first class postage to those parties noted above as "hard copy required"; OR
- Instead of e-mailing the document, I personally delivered it or deposited it in the US mail with first class postage to all of the persons on the Service List for whom a mailing address is given.

I declare under penalty of perjury under the laws of the State of California that the foregoing is true and correct, and that I am over the age of 18 years.

Dated: February 27, 2013

Juin M. Warmines

Judith M. Warmuth

From: Sent: To: Cc: Subject: jbaker@aqmd.gov Friday, January 18, 2013 2:57 PM Jerry.Salamy@CH2M.com; Keith.McGregor@CH2M.com CPerri@aqmd.gov; tchico@aqmd.gov Huntington Beach Energy Project

Hi Jerry,

Based on my preliminary review of the modeling performed for the Huntington Beach Energy Project, I have the following comments:

- 1) A 5-year meteorological dataset is required for all PSD projects. I will provide those files along with the ozone files in a subsequent email.
- 2) In your submitted report, the analysis for the impact related to the Federal 1-hour NO<sub>2</sub> standard is extremely conservative and is not consistent with the methods contained in the March 1, 2011 memo issued by the US EPA (i.e. it does not follow the form of the standard and does not take into account the conversion of NO<sub>x</sub> to NO<sub>2</sub>). You can find the memo here: http://www.epa.gov/ttn/scram/guidance/clarification/Additional\_Clarifications\_AppendixW\_Hourly-NO2-NAAQS\_FINAL\_03-01-2011.pdf.
- 3) Based on your analysis, this project will exceed the SIL for the Federal 1-hour NO<sub>2</sub> standard. This will require a cumulative analysis of ambient impacts for NO<sub>2</sub>. As I explained in our phone conversation, the overly conservative nature of the Federal 1-hour NO<sub>2</sub> project impact analysis contained in your report would cause a larger area within the project impact contour than is necessary when performing the cumulative impact analysis. It is my understanding that such an analysis has been prepared and will be submitted to the District for our review. Therefore, I am unable to complete my modeling review of this project until the cumulative analysis report is received.

Please let me know if you have any questions.

Jillian Baker, Ph.D. South Coast AQMD 21865 Copley Drive, Diamond Bar, CA 91765 Direct: 909.396.3176 From: Sent: To: Cc: Subject: jbaker@aqmd.gov Tuesday, January 22, 2013 12:57 PM Benjamin.Beattie@CH2M.com Jerry.Salamy@CH2M.com; Elyse.Engel@ch2m.com; Keith.McGregor@CH2M.com RE: AERMET Meteorological Data Request

Ben,

Attached is the ozone file for CSTA.

Jillian Baker, Ph.D. South Coast AQMD 21865 Copley Drive, Diamond Bar, CA 91765 Direct: 909.396.3176

From: <u>Benjamin.Beattie@CH2M.com</u> [<u>mailto:Benjamin.Beattie@CH2M.com</u>] Sent: Friday, January 18, 2013 3:21 PM To: Jillian Baker Cc: <u>Jerry.Salamy@CH2M.com</u>; <u>Elyse.Engel@ch2m.com</u>; <u>Keith.McGregor@CH2M.com</u> Subject: RE: AERMET Meteorological Data Request

We will be using the latest released version of AERMOD (12345).

Benjamin Beattie Engineer



2485 Natomas Park Drive, Suite 600 Sacramento, CA 95833 (916) 572-0679

From: Jillian Baker [mailto:jbaker@aqmd.gov]
Sent: Friday, January 18, 2013 3:17 PM
To: Beattie, Benjamin/SAC
Cc: Salamy, Jerry/SAC; Engel, Elyse/SJC; McGregor, Keith/SAC
Subject: RE: AERMET Meteorological Data Request

Hi Ben,

For the 5-year meteorological data, which version of AERMOD do you intend to use? This will determine which dataset I send you.

Jillian Baker, Ph.D. South Coast AQMD 21865 Copley Drive, Diamond Bar, CA 91765 Direct: 909.396.3176 From: <u>Benjamin.Beattie@CH2M.com</u> [<u>mailto:Benjamin.Beattie@CH2M.com</u>]
Sent: Friday, January 18, 2013 12:33 PM
To: Jillian Baker
Cc: <u>Jerry.Salamy@CH2M.com</u>; <u>Elyse.Engel@ch2m.com</u>; <u>Keith.McGregor@CH2M.com</u>
Subject: AERMET Meteorological Data Request

Hi Jillian,

Thank you for the advice and information you gave us regarding the federal 1-hr NO2 standard cumulative assessment. If you have it available, could you please send me the five-year AERMET dataset for the Costa Mesa station and the accompanying hourly background ozone files? Thank you,

Benjamin Beattie Engineer



2485 Natomas Park Drive, Suite 600 Sacramento, CA 95833 (916) 572-0679

| From:        | Jerry.Salamy@CH2M.com                                                          |
|--------------|--------------------------------------------------------------------------------|
| Sent:        | Wednesday, January 23, 2013 11:45 AM                                           |
| То:          | CPerri@aqmd.gov                                                                |
| Cc:          | stephen.okane@AES.com; Jennifer.Didlo@AES.com; Robert.Mason@CH2M.com; Hellwig, |
|              | Kimberly J.; Foster, Melissa A.; Felicia.Miller@energy.ca.gov                  |
| Subject:     | HBEP Cumulative Impact Assessment                                              |
| Attachments: | HBEP_Cum_Imp_Cover_and_Attachment_1-23-13.pdf                                  |

Mr. Perri,

Attached is a cumulative impact assessment prepared in response to a California Energy Commission data request. A hard copy of this document along with a CD containing the air dispersion modeling files will be sent via overnight mail.

Thanks,

Jerry Salamy Principal Project Manager CH2M HILL/Sacramento Phone 916-286-0207 Fax 916-614-3407 Cell Phone 916-769-8919



CH2M HILL 2485 Natomas Park Drive Suite 600 Sacramento, CA 95833 Tel 916.920.0300 Fax 916.920.8463

January 23, 2013

Mr. Chris Perri Air Quality Engineer South Coast Air Quality Management District 21865 Copley Drive Diamond Bar, CA 91765-4178

Subject: Huntington Beach Energy Project Permit Application (Facility ID# 115389)

Dear Mr. Perri:

On behalf of AES Huntington Beach, LLC (AES-HB) and at the direction of Mr. Stephen O'Kane, Manager at AES-HB, CH2M HILL is submitting the attached Huntington Beach Energy Project (HBEP) Data Responses, Set 1B, which contains a cumulative air quality impact assessment. This cumulative air quality impact assessment was prepared in response to a California Energy Commission (CEC) data request and was docketed with the CEC. Also included is a compact disk containing the dispersion modeling input and output files.

The cumulative air quality impact assessment demonstrates that HBEP's air quality impacts, combined with air quality impacts of other nearby sources recently permitted but not yet in operation or undergoing permitting and representative background concentrations, will not cause or contribute to a violation of an ambient air quality standard for which the area is in attainment of these standards. AES-HB looks forward to working with the District to resolve any questions the District may have regarding the air dispersion modeling conducted for the HBEP project.

If you require further information, please do not hesitate contacting Mr. Stephen O'Kane at 562-493-7840.

Sincerely,

CH2M HILL

Jours Arlans

Jerry Salamy Principal Project Manager

Attachments

cc: Stephen O'Kane/AES w/o Attachment Robert Mason/CH2M HILL w/o Attachment Jennifer Didlo/AES w/o Attachment Missy Foster/Stoel Rives w/o Attachment Jerry Salamy/CH2M HILL w/o Attachment Felicia Miller/CEC w/o Attachment

# Huntington Beach Energy Project

## Data Responses, Set 1B

(Responses to Data Requests 11 and 23-26)

Submitted to California Energy Commission

AES Southland Development, LLC

With Assistance from



2485 Natomas Park Drive Suite 600 Sacramento, CA 95833

January 17, 2013

### Contents

### Section

| Introduction         | 1 |
|----------------------|---|
|                      |   |
| Air Quality          |   |
| Biological Resources |   |

### Tables

- DR11-2 Summary of Modeled Emission Rates and Source Parameters
- DR11-3 Cumulative Impacts Analysis—Maximum Modeled Impacts Compared to the Ambient Air Quality Standards
- DR23-1 Critical Loads of Nitrogen for the California Mediterranean Ecoregion and Wetlands
- DR24-1 HBEP Average Annual Depositional Nitrogen Emissions (per turbine)
- DR24-2 Comparison of the Predicted HBEP N Deposition Flux to the Critical Loads of Nitrogen for the California Mediterranean Ecoregion and Wetlands
- DR26-1 Cumulative Source Depositional Nitrogen Emissions
- DR26-2 Comparison of the Predicted Cumulative Sources and HBEP N Deposition Flux to the Critical Loads of Nitrogen for the California Mediterranean Ecoregion and Wetlands

### Figures (Figures are provided at the end of their respective sections)

- DR25-1 HBEP Total Nitrogen Deposition on Surrounding Habitats
- DR25-2 HBEP Total Nitrogen Deposition on Surrounding Habitats
- DR26-1 HBEP Cumulative Nitrogen Deposition on Surrounding Habitats
- DR26-2 HBEP Cumulative Nitrogen Deposition on Surrounding Habitats

### Attachments

- DR11-1 Facilities Removed from Cumulative Impact Assessment
- DR11-2 Facilities Included in Cumulative Impact Assessment
- DR11-3 Summary of Dispersion Modeling Parameters and Results

### Introduction

Attached are AES Southland Development, LLC's (AES or the Applicant) updated responses to the California Energy Commission (CEC) Data Request, Set 1B regarding the Huntington Beach Energy Project (HBEP) (12-AFC-02) Application for Certification (AFC). This submittal includes responses to the following data requests: 11 and 23–26.

The responses are grouped by individual discipline or topic area. Within each discipline area, the responses are presented in the same order as the CEC presented them and are keyed to the Data Request numbers.

New or revised graphics or tables are numbered in reference to the Data Request number. For example, the first table used in response to Data Request 36 would be numbered Table DR36-1. The first figure used in response to Data Request 42 would be Figure DR42-1, and so on. Figures or tables from the HBEP AFC that have been revised have "R1" following the original number, indicating revision 1.

Additional tables, figures, or documents submitted in response to a data request (for example, supporting data, stand-alone documents such as plans, folding graphics, etc.) are found at the end of each discipline-specific section and are not sequentially page-numbered consistently with the remainder of the document, though they may have their own internal page numbering system.

### BACKGROUND

### CUMULATIVE MODELING ANALYSIS

Applicant states in the AFC they are working with South Coast Air Quality Management District (SCAQMD) to complete all the background information for the cumulative air impact analysis, and are currently trying to identify other applicable sources from SCAQMD to get a complete cumulative air impact analysis.

### DATA REQUEST

11. Please provide the cumulative modeling and impact analysis, including HBEP and the other projects approved by staff.

### **Response:**

As presented in Attachment DR10-1<sup>1</sup>, additional information was requested from the SCAQMD to complete the assessment of the potential cumulative impact sources included within six (6) miles of HBEP. Based on the detailed permit application data received from the SCAQMD, additional facilities were removed from the cumulative assessment if the applications were administrative changes only, the permitted sources did not result in an increase in emissions, it was concluded that the emissions increase would be less than significant (e.g., less than a 5 ton increase), or it was determined the location of the permitted source was beyond 6 miles from HBEP. Attachment DR11-1 provides a summary of the facilities removed from the list of potential cumulative sources. The complete package of SCAQMD permit application materials received is included on a supplemental CD.

Table DR11-1 presents a final list of the facilities that have been included in the HBEP cumulative impact modeling assessment. Attachment DR11-2 provides a summary of the information used to develop the list of facilities included in the cumulative impact assessment.

| Facility<br>ID | Facility Name                        | Number of<br>Sources | Permit Application<br>Number(s)                                      | Description                                                                                           |
|----------------|--------------------------------------|----------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| 17301          | Orange County<br>Sanitation District | 4                    | 486760, 486792, 486793,<br>494460                                    | Addition of a boiler and three IC engines.                                                            |
| 29110          | Orange County<br>Sanitation District | 8                    | 455670, 455671, 455673,<br>474766, 474767, 474768,<br>474769, 474770 | Addition of three emergency diesel ICEs. Permit modification for five existing emergency diesel ICEs. |
| 167066         | Arlon Graphics LLC                   | 1                    | 534234                                                               | Addition of recuperative thermal oxidizer and change in conditions for existing oxidizer.             |

### TABLE DR11-1 HBEP Cumulative Impact Sources

### Cumulative Air Quality Impact Analysis

The cumulative air quality impact analysis was conducted using the model settings and receptor grid approach outlined in the AFC, with the exception of the receptor grid. The spatial extent of the receptor grid was reduced from 50 km to 10 km because the maximum impacts for the HBEP dispersion modeling analysis were within

 $<sup>^{1}</sup>$  In response to Data Request #10 in the Data Response Set 1A submittal on November 2, 2012.

10 km. Receptors within the cumulative facility fence lines were also removed from the model setup because they would not be representative of ambient conditions.

### **Modeling Parameters**

The emission and exhaust parameters used to estimate the cumulative impacts are presented in Table DR11-2. Because specific locations for each cumulative emission source were not available, all sources at a facility were modeled as though they were at the center of the facility. Also, because emission rates for  $PM_{2.5}$  were not available for the cumulative sources, it was conservatively assumed that  $PM_{2.5}$  emission rates were equal to those of  $PM_{10}$ . The source parameters were based on the following data sources. A summary of the dispersion modeling inputs and output is also included in Attachment DR11-3.

### **Huntington Beach Energy Project:**

- Source parameters and emission rates were based on the operating scenario, which includes start-up and shutdown emissions, resulting in the maximum predicted impacts presented in Table 5.1-29 of the AFC.
- The hourly NO<sub>2</sub> concentrations in AFC Table 5.1-29 conservatively assumed a complete conversion of NO<sub>x</sub> to NO<sub>2</sub>. However, the 1-hour NO<sub>2</sub> concentrations for the cumulative impacts were modeled using the Plume Volume Molar Ratio Method (PVMRM) as discussed in Section 5.1.6.3 of the AFC.

### Orange County Sanitation District (Facility ID 17301):

- Source parameters and emission rates were based on permitted source data received from the SCAQMD on October 24, 2012, and November 2, 2012, with additional data provided by the SCAQMD on November 29, 2012.
- The annual emissions from the three digester gas ICEs were based on the daily maximum permitted allowances for the engines.
- The short-term NO<sub>x</sub> emissions from the permitted boiler were modeled at 15 ppm, based on the permit limit beginning in 2015.

### Orange County Sanitation District (Facility ID 29110):

- Source parameters and emission rates were based on permitted source data received from the SCAQMD on October 25, 2012, with additional data provided by the SCAQMD on November 29, 2012.
- The permit applications for the five emergency diesel ICEs (permitted February 27, 2008) are for a change in conditions only (increasing annual operating hours for each engine from 30 to 50 hours). Therefore, there was no increase in short-term emissions from these sources and the annual emissions modeled reflect only the increase in total emissions.
- As stack parameters were unavailable for the three emergency diesel ICEs (permitted April 12, 2006), it was assumed these were equivalent to the five emergency diesel ICEs previously described.

### Arlon Graphics, LLC (Facility ID 167066):

- Source parameters and emission rates were based on permitted source data received from the SCAQMD on October 24, 2012, with additional data provided by the SCAQMD on December 5, 2012.
- Permit application numbers 532302 and 534234 are for new construction of a recuperative thermal oxidizer (RTO) and reductions to the permit limits of an existing RTO. The result of these permits is a net increase of emissions of CO, SO<sub>2</sub>, PM<sub>10</sub>, and PM<sub>2.5</sub>, and a net decrease in emissions of NO<sub>x</sub>. Therefore, only the increase in short-term and annual emissions were modeled using the stack parameters of the new RTO.

### TABLE DR11-2

Summary of Modeled Emission Rates and Source Parameters

|                                                       |                |                 | Base             | Stack          |                     | Fvit               | Stack            |             |            | En          | nissions    | (lb/hr)ª   |              |                                              | Emiss         | ions (tpy) <sup>a</sup>                       |
|-------------------------------------------------------|----------------|-----------------|------------------|----------------|---------------------|--------------------|------------------|-------------|------------|-------------|-------------|------------|--------------|----------------------------------------------|---------------|-----------------------------------------------|
| Source<br>Description                                 | Easting<br>(m) | Northing<br>(m) | Elevation<br>(m) | Height<br>(ft) | Temperature<br>(°F) | Velocity<br>(ft/s) | Diameter<br>(ft) | 1-hr<br>NOx | 1-hr<br>CO | 1-hr<br>SO₂ | 3-hr<br>SO₂ | 8-hr<br>CO | 24-hr<br>SO₂ | 24-hr<br>PM <sub>10</sub> /PM <sub>2.5</sub> | Annual<br>NOx | Annual<br>PM <sub>10</sub> /PM <sub>2.5</sub> |
| Orange County Sanitation District (Facility ID 17301) |                |                 |                  |                |                     |                    |                  |             |            |             |             |            |              |                                              |               |                                               |
| Boiler                                                | 412725         | 3728250         | 7.7              | 42             | 360                 | 30.5               | 1.5              | 0.22        | 0.90       | 0.13        | 0.13        | 0.90       | 0.13         | 0.056                                        | 1.60          | 0.60                                          |
| Digester<br>Gas ICEs<br>(3)                           | 412725         | 3728250         | 7.7              | 62             | 500                 | 58.7               | 2.5              | 23.01       | 55.05      | 2.25        | 2.25        | 55.1       | 2.25         | 2.25                                         | 67.2          | 6.57                                          |
| Orange Count                                          | ty Sanitatio   | on District (F  | acility ID 29    | 110)           |                     |                    |                  |             |            |             |             |            |              |                                              |               |                                               |
| Emergency<br>Diesel ICEs<br>(8) <sup>b</sup>          | 411100         | 3722400         | 1.6              | 28             | 597                 | 111.3              | 1.3              | _           | _          | _           | 1.19        | 20.6       | 0.15         | 0.32                                         | 5.38          | 0.17                                          |
| Arlon Graphic                                         | cs, LLC (Fac   | ility ID 1670   | 966)             |                |                     |                    |                  |             |            |             |             |            |              |                                              |               |                                               |
| RTO                                                   | 414875         | 3730325         | 13.5             | 25             | 195                 | 80.3               | 4.3              | 0           | 0.34       | 0.002       | 0.002       | 0.34       | 0.002        | 0.017                                        | 0             | 0.073                                         |

<sup>a</sup>Emissions are presented as totals for each source type.

<sup>b</sup>Sources identified as emergency diesel ICEs are permitted for 50 hr/yr of maintenance and testing. Therefore, it is assumed that the simultaneous testing of all ICEs and a startup cycle for all six turbines at HBEP would not occur.

### **Modeling Results**

The maximum modeled cumulative NO<sub>2</sub>, CO, SO<sub>2</sub>, and PM<sub>2.5</sub> concentrations combined with the background concentrations do not exceed the ambient air quality standards (AAQS). The results of the cumulative modeling analysis also assumes that the contribution to background air quality that results from the existing Huntington Beach Generating Station emissions would remain the same in the future. However, as noted in the AFC, the existing Huntington Beach Generating Station boiler units will be removed after completion of HBEP construction. Therefore, the cumulative sources are not expected to cause or contribute to the violation of a standard, and the NO<sub>2</sub>, CO, SO<sub>2</sub>, and PM<sub>2.5</sub> impacts will be less than significant.

For PM<sub>10</sub>, the background concentrations exceed the AAQS without the cumulative sources, with the exception of the federal 24-hour standard. As a result, the impact of the cumulative sources plus background also exceeds the AAQS and the operation of the cumulative sources would further contribute to an existing violation of the state standards absent mitigation. As discussed in the AFC, HBEP emissions will be fully offset consistent with SCAQMD Rules 1303 and 1304 using the SCAQMD internal offset bank. Therefore the PM<sub>10</sub> impacts will be mitigated to a less-than-significant level.

### TABLE DR11-3

Cumulative Impacts Analysis—Maximum Modeled Impacts Compared to the Ambient Air Quality Standards

| Pollutant         | Averaging Time                 | Maximum<br>Modeled<br>Concentration<br>(μg/m <sup>3</sup> ) | Background<br>Concentration<br>(μg/m³)ª | Total Predicted<br>Concentration<br>(µg/m <sup>3</sup> ) | State Standard<br>(µg/m³) | Federal Standard<br>(µg/m³) |
|-------------------|--------------------------------|-------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------|---------------------------|-----------------------------|
| NO <sub>2</sub>   | 1-hour <sup>b</sup>            | 28.4                                                        | 152                                     | 180                                                      | 339                       | _                           |
|                   | federal 1-hour <sup>b, c</sup> | 28.4                                                        | 111                                     | 139                                                      | _                         | 188                         |
|                   | annual                         | 1.05                                                        | 24.8                                    | 25.9                                                     | 57                        | 100                         |
| SO <sub>2</sub>   | 1-hour                         | 2.19                                                        | 26.2                                    | 28.4                                                     | 655                       | -                           |
|                   | federal 1-hour <sup>d</sup>    | 2.19                                                        | 17                                      | 19.2                                                     | _                         | 196                         |
|                   | 3-hour                         | 3.62                                                        | 17.3                                    | 20.9                                                     | _                         | 1,300                       |
|                   | 24-hour                        | 0.73                                                        | 10.5                                    | 11.2                                                     | 105                       | 365                         |
| СО                | 1-hour                         | 161                                                         | 3,436                                   | 3597                                                     | 23,000                    | 40,000                      |
|                   | 8-hour                         | 46.7                                                        | 2,519                                   | 2566                                                     | 10,000                    | 10,000                      |
| PM <sub>10</sub>  | 24-hour                        | 2.81                                                        | 56                                      | 58.8                                                     | 50                        | 150                         |
|                   | annual                         | 0.45                                                        | 23.5                                    | 24.0                                                     | 20                        | _                           |
| PM <sub>2.5</sub> | 24-hour <sup>c</sup>           | 2.81                                                        | 22.7                                    | 25.5                                                     | _                         | 35                          |
|                   | annual                         | 0.45                                                        | 10.4                                    | 10.9                                                     | 12                        | 15                          |

<sup>a</sup>Background concentrations were the highest concentrations monitored during 2008 through 2010, unless otherwise noted.

<sup>b</sup>The hourly NO<sub>2</sub> concentrations in the AFC Table 5.1-29 conservatively assumed a complete conversion of NOx to NO<sub>2</sub>. However, the 1-hour NO<sub>2</sub> concentrations for the cumulative impacts were modeled using PVMRM. The PVMRM is a refined approach that results in a less conservative estimate.

<sup>c</sup>Total predicted concentrations for the federal 1-hour NO<sub>2</sub> standard and 24-hour PM<sub>2.5</sub> standard are the respective maximum modeled concentrations combined with the 3-year average of 98<sup>th</sup> percentile background concentrations.

<sup>d</sup>Total predicted concentrations for the federal 1-hour SO<sub>2</sub> standard is the maximum modeled concentrations combined with the 3-year average of 99<sup>th</sup> percentile background concentrations.

Attachment DR11-1 Facilities Removed from Cumulative Impact Assessment

|     | HUNTINGTON BEACH CITY, WATER DEPT - Facility 24427 Sources    |        |           |        |       |                                     |          |                    |                                                                  |  |  |  |
|-----|---------------------------------------------------------------|--------|-----------|--------|-------|-------------------------------------|----------|--------------------|------------------------------------------------------------------|--|--|--|
| Арр | Application Permit Permit Issued Permit Equipment Application |        |           |        |       |                                     |          |                    |                                                                  |  |  |  |
| Nun | nber                                                          | Number | Date      | Status | Туре  | Equipment Description               | Date     | Application Status | Reason for Exclusion from Analysis                               |  |  |  |
|     |                                                               |        |           |        |       | I C E (50-500 HP) N-EM STAT NAT GAS |          | PERMIT TO OPERATE  | Permitted source did not result in an increase in emissions. See |  |  |  |
|     | <u>532000</u>                                                 | G19503 | 7/26/2012 | ACTIVE | Basic | ONLY                                | 2/3/2012 | GRANTED            | correspondence with SCAQMD.                                      |  |  |  |

### **CH2MHILL®** TELEPHONE CONVERSATION RECORD

Call To: Ray Ronquillo, Engineer, South Coast Air Quality Management District

Phone No.: (909) 396-3049 Date: 11/28/12

Call From: Beth Storelli Time: 4:25pm

Message Taken By: Beth Storelli

Subject: Source Information

Project No.: 458993.01.01

### Notes:

I asked Ray about the following source:

Control #70458 HUNTINGTON BEACH CITY, WATER DEPT - Facility 24427

• Form 400 indicates that this is a replacement for an existing engine, confirm with engineer that old engine (Waukesha VHP5790) was retired, and that new engine has fewer emissions. If not, need permit application for emissions and exhaust parameters.

Ray responded that he believes the old engine has been retired and that newer engines should have fewer emissions.

|               | WEST NEWPORT OIL COMPANY - Facility 42775 Sources |        |        |           |                                       |             |                                        |                                                       |  |  |  |  |
|---------------|---------------------------------------------------|--------|--------|-----------|---------------------------------------|-------------|----------------------------------------|-------------------------------------------------------|--|--|--|--|
|               |                                                   | Permit |        |           |                                       |             |                                        |                                                       |  |  |  |  |
| Application   | Permit                                            | Issued | Permit | Equipment |                                       | Application |                                        |                                                       |  |  |  |  |
| Number        | Number                                            | Date   | Status | Туре      | Equipment Description                 | Date        | Application Status                     | Reason for Exclusion from Analysis                    |  |  |  |  |
|               |                                                   |        |        |           |                                       |             |                                        | Information unavailable at time of analysis. Based on |  |  |  |  |
|               |                                                   |        |        |           |                                       |             |                                        | equipment description, assumed permitted source did   |  |  |  |  |
|               |                                                   |        |        |           |                                       |             |                                        | not result in an increase in emissions greater than 5 |  |  |  |  |
| <u>536895</u> |                                                   |        | ACTIVE | Basic     | BOILER (5-20 MMBTU/HR) NAT GAS ONLY   | 5/17/2012   | PERMIT TO OPERATE GRANTED              | tons/yr.                                              |  |  |  |  |
|               |                                                   |        |        |           |                                       |             |                                        | Information unavailable at time of analysis. Based on |  |  |  |  |
|               |                                                   |        |        |           |                                       |             |                                        | equipment description, assumed permitted source did   |  |  |  |  |
|               |                                                   |        |        |           |                                       |             |                                        | not result in an increase in emissions greater than 5 |  |  |  |  |
| <u>509314</u> |                                                   |        |        | Basic     | BOILER (5-20 MMBTU/HR) COMB GAS-LPG   | 3/24/2010   | APPLICATION CHANGED FROM CLASS I - III | tons/yr.                                              |  |  |  |  |
|               |                                                   |        |        |           |                                       |             |                                        | Information unavailable at time of analysis. Based on |  |  |  |  |
|               |                                                   |        |        |           |                                       |             |                                        | equipment description, assumed administrative change  |  |  |  |  |
| <u>512550</u> |                                                   |        |        | Basic     | FACILITY PERMIT AMEND-RECLAIM/TITLE V | 7/1/2010    | ASSIGNED TO ENGINEER - CLASS III       | only.                                                 |  |  |  |  |

|               | OXY USA INC - Facility 169754 Sources |        |        |           |                                       |             |                                |                                                         |  |  |  |  |
|---------------|---------------------------------------|--------|--------|-----------|---------------------------------------|-------------|--------------------------------|---------------------------------------------------------|--|--|--|--|
|               |                                       | Permit |        | _         |                                       |             |                                |                                                         |  |  |  |  |
| Application   | Permit                                | Issued | Permit | Equipment |                                       | Application |                                |                                                         |  |  |  |  |
| Number        | Number                                | Date   | Status | Туре      | Equipment Description                 | Date        | Application Status             | Reason for Exclusion from Analysis                      |  |  |  |  |
|               |                                       |        |        |           |                                       |             |                                | Information unavailable at time of analysis. Based on   |  |  |  |  |
|               |                                       |        |        |           |                                       |             |                                | equipment description, assumed permitted source         |  |  |  |  |
|               |                                       |        |        |           |                                       |             |                                | did not result in an increase in emissions greater than |  |  |  |  |
| <u>538851</u> |                                       |        |        | Basic     | HEATER/FURNACE (                      | 6/19/2012   | ASSIGNED TO ENGINEER - CLASS I | 5 tons/yr.                                              |  |  |  |  |
|               |                                       |        |        |           |                                       |             |                                | Information unavailable at time of analysis. Based on   |  |  |  |  |
|               |                                       |        |        |           |                                       |             |                                | equipment description, assumed permitted source         |  |  |  |  |
|               |                                       |        |        |           | BOILER (5-20 MMBTU/HR) NAT GAS        |             |                                | did not result in an increase in emissions greater than |  |  |  |  |
| <u>533146</u> |                                       |        |        | Basic     | ONLY                                  | 3/6/2012    | ASSIGNED TO ENGINEER - CLASS I | 5 tons/yr.                                              |  |  |  |  |
| <u>529234</u> |                                       |        | ACTIVE | Basic     | HEATER/FURNACE (                      | 11/8/2011   | PERMIT TO OPERATE GRANTED      | Administrative change only                              |  |  |  |  |
| <u>529223</u> |                                       |        | ACTIVE | Basic     | I C E (50-500 HP) EM ELEC GEN-DIESEL  | 11/8/2011   | PERMIT TO OPERATE GRANTED      | Administrative change only                              |  |  |  |  |
| <u>529225</u> |                                       |        | ACTIVE | Basic     | I C E (50-500 HP) EM FIRE FGHT-DIESEL | 11/8/2011   | PERMIT TO OPERATE GRANTED      | Administrative change only                              |  |  |  |  |
| <u>529224</u> |                                       |        | ACTIVE | Basic     | I C E (50-500 HP) EM FIRE FGHT-DIESEL | 11/8/2011   | PERMIT TO OPERATE GRANTED      | Administrative change only                              |  |  |  |  |
|               |                                       |        |        |           |                                       |             |                                |                                                         |  |  |  |  |
| <u>529226</u> |                                       |        | ACTIVE | Basic     | I C E (50-500 HP) EMERG OTHER, DIESEL | 11/8/2011   | PERMIT TO OPERATE GRANTED      | Administrative change only                              |  |  |  |  |
| <u>529240</u> |                                       |        | ACTIVE | Basic     | I C E (50-500 HP) N-EM STAT DIESEL    | 11/8/2011   | PERMIT TO OPERATE GRANTED      | Administrative change only                              |  |  |  |  |
|               |                                       |        |        |           |                                       |             |                                |                                                         |  |  |  |  |
|               |                                       |        |        |           |                                       |             |                                | Information unavailable at time of analysis. Based on   |  |  |  |  |
|               |                                       |        |        |           |                                       |             |                                | same application date and status of other sources,      |  |  |  |  |
| <u>529236</u> |                                       |        | ACTIVE | Control   | FLARE, OTHER                          | 11/8/2011   | PERMIT TO OPERATE GRANTED      | assumed administrative change only.                     |  |  |  |  |
| <u>529235</u> |                                       |        | ACTIVE | Control   | TAIL GAS INCINERATOR                  | 11/8/2011   | PERMIT TO OPERATE GRANTED      | Administrative change only                              |  |  |  |  |
|               |                                       |        |        |           |                                       |             |                                | Information unavailable at time of analysis. Based on   |  |  |  |  |
|               |                                       |        |        |           |                                       |             |                                | equipment description, assumed permitted source         |  |  |  |  |
|               |                                       |        |        |           | MICRO-TURBINE NOT NAT                 |             |                                | did not result in an increase in emissions greater than |  |  |  |  |
| <u>534354</u> |                                       |        |        | Basic     | GAS,METHANOL OR LPG                   | 3/27/2012   | ASSIGNED TO ENGINEER - CLASS I | 5 tons/yr.                                              |  |  |  |  |
| <u>529232</u> |                                       |        | ACTIVE | Basic     | NATURAL GAS DRYING                    | 11/8/2011   | PERMIT TO OPERATE GRANTED      | Administrative change only                              |  |  |  |  |
| 529229        |                                       |        | ACTIVE | Basic     | NATURAL GAS DRYING                    | 11/8/2011   | PERMIT TO OPERATE GRANTED      | Administrative change only                              |  |  |  |  |

|                       | YAKULT U.S.A., INC Facility 168160 Sources |                          |                  |                   |                                     |                     |                                        |                                                                                                                                                                                   |  |  |  |  |
|-----------------------|--------------------------------------------|--------------------------|------------------|-------------------|-------------------------------------|---------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Application<br>Number | Permit<br>Number                           | Permit<br>Issued<br>Date | Permit<br>Status | Equipment<br>Type | Equipment Description               | Application<br>Date | Application Status                     | Reason for Exclusion from Analysis                                                                                                                                                |  |  |  |  |
| <u>524509</u>         |                                            |                          |                  | Basic             | BOILER (5-20 MMBTU/HR) NAT GAS ONLY | 6/24/2011           | APPLICATION CHANGED FROM CLASS I - III | Information unavailable at time of analysis. Based<br>on equipment description, assumed permitted<br>source did not result in an increase in emissions<br>greater than 5 tons/yr. |  |  |  |  |
| <u>524510</u>         |                                            |                          |                  | Basic             | BOILER (5-20 MMBTU/HR) NAT GAS ONLY | 6/24/2011           | APPLICATION CHANGED FROM CLASS I - III | Information unavailable at time of analysis. Based<br>on equipment description, assumed permitted<br>source did not result in an increase in emissions<br>greater than 5 tons/yr. |  |  |  |  |

Hi Beth,

Thank you! I have not received the files yet. I sent out the Third Reminder. I will notify you as soon as I here from them.

From: Elizabeth.Storelli@ch2m.com [mailto:Elizabeth.Storelli@ch2m.com] Sent: Thursday, January 03, 2013 9:13 AM To: Maria Rubio Subject: RE: CH2M Hill Records Request - update

Hi Maria,

I hope you had a nice holiday break. Can you please provide me with an update on the status of our remaining data requests?

Outstanding requests: Control #s: 70235, 70236, 70238, 70231

Thank you,

Beth Storelli

CH2M HILL 2485 Natomas Park Drive, Suite 600 Sacramento, CA 95833 Office 916.286.0259 elizabeth.storelli@ch2m.com

From: Maria Rubio [mailto:mrubio@aqmd.gov] Sent: Wednesday, December 05, 2012 4:12 PM To: Storelli, Elizabeth/SAC Subject: RE: CH2M Hill Records Request - update

Hi Beth,

All your request are still with the engineer I will send a second reminder.

Subject: RE: CH2M Hill Records Request - update

Hi Maria,

I thought I would check in on the status of our last few data requests.

As of 11/14 (3 weeks ago), it looks like PRR #70235, 70236, 70238, 70231 were with the engineer.

Do you have any update on when these may be available to us? We are starting to close in on our project due date.

Thank you,

**Beth Storelli** 

CH2M HILL 2485 Natomas Park Drive, Suite 600 Sacramento, CA 95833 Office 916.286.0259 elizabeth.storelli@ch2m.com

From: Maria Rubio [mailto:mrubio@aqmd.gov] Sent: Wednesday, November 14, 2012 10:09 AM To: Storelli, Elizabeth/SAC Subject: RE: CH2M Hill Records Request - update

Hi Elizabeth,

For PRR #70458 I still need to work on it.I have 15 requests ahead of yours.

PRR #70235, 70236, 70238, 70231 are with the engineer.

PRR #70236 This facility is a Title V. I have routed for most current facility permit.

I will forward emails for Control 70237 & 70230.

Maria

From: <u>Elizabeth.Storelli@ch2m.com</u> [mailto:Elizabeth.Storelli@ch2m.com] Sent: Wednesday, November 14, 2012 9:24 AM To: Maria Rubio Subject: CH2M Hill Records Request - update

Hi Maria,

In order to ensure that we are both on the same page, below is a summary of the information that I am still waiting on. Can you please confirm that you have submitted requests to the engineers for the following:

| Control #                       | Application #                                                       |
|---------------------------------|---------------------------------------------------------------------|
| 70458                           | 532000                                                              |
| 70235                           | 536895, 509314, 512550                                              |
| 70236                           | 517842, 516030, 516026 – 29, 533625                                 |
| 70237 - I was sent a completion | on letter, but I only received the routing slip (attached)          |
| 70238                           | 524509, 524510                                                      |
| 70231                           | 538851, 533146, 534354                                              |
| 70230 – For App #: 514139 a     | Il I received was the attached, do you have additional information? |

I have also attached a tracker that I created to keep track of everything you have sent me, if that is more helpful.

Thank you and please don't hesitate to call if you have any questions!

Beth Storelli

CH2M HILL 2485 Natomas Park Drive, Suite 600 Sacramento, CA 95833 Office 916.286.0259 elizabeth.storelli@ch2m.com

|               | BETA OFFSHORE - Facility 166073 Sources |        |        |           |                                         |             |                                        |                                                               |  |  |  |  |
|---------------|-----------------------------------------|--------|--------|-----------|-----------------------------------------|-------------|----------------------------------------|---------------------------------------------------------------|--|--|--|--|
|               |                                         | Permit |        |           |                                         |             |                                        |                                                               |  |  |  |  |
| Application   | Permit                                  | Issued | Permit | Equipment |                                         | Application |                                        |                                                               |  |  |  |  |
| Number        | Number                                  | Date   | Status | Туре      | Equipment Description                   | Date        | Application Status                     | Reason for Exclusion from Analysis                            |  |  |  |  |
| <u>517842</u> |                                         |        | ACTIVE | Basic     | I C E (50-500 HP) N-EM STAT DIESEL      | 1/18/2011   | PERMIT TO OPERATE GRANTED              | Location of the permitted sources is beyond 6 miles from HBEP |  |  |  |  |
| <u>517841</u> |                                         |        | ACTIVE | Basic     | I C E (50-500 HP) N-EM STAT DIESEL      | 1/18/2011   | PERMIT TO OPERATE GRANTED              | Location of the permitted sources is beyond 6 miles from HBEP |  |  |  |  |
| <u>517840</u> |                                         |        | ACTIVE | Basic     | I C E (50-500 HP) N-EM STAT DIESEL      | 1/18/2011   | PERMIT TO OPERATE GRANTED              | Location of the permitted sources is beyond 6 miles from HBEP |  |  |  |  |
| <u>517839</u> |                                         |        | ACTIVE | Basic     | I C E (50-500 HP) N-EM STAT DIESEL      | 1/18/2011   | PERMIT TO OPERATE GRANTED              | Location of the permitted sources is beyond 6 miles from HBEP |  |  |  |  |
| <u>517838</u> |                                         |        | ACTIVE | Basic     | I C E (50-500 HP) N-EM STAT DIESEL      | 1/18/2011   | PERMIT TO OPERATE GRANTED              | Location of the permitted sources is beyond 6 miles from HBEP |  |  |  |  |
| <u>516030</u> |                                         |        |        | Basic     | I C E (>500 HP) N-EM STAT DIESEL        | 11/2/2010   | PERMIT TO CONSTRUCT GRANTED            | Location of the permitted sources is beyond 6 miles from HBEP |  |  |  |  |
| <u>516026</u> |                                         |        |        | Basic     | I C E (>500 HP) N-EM STAT DIESEL        | 11/2/2010   | APPLICATION CHANGED FROM CLASS I - III | Location of the permitted sources is beyond 6 miles from HBEP |  |  |  |  |
| <u>516027</u> |                                         |        |        | Basic     | I C E (>500 HP) N-EM STAT DIESEL        | 11/2/2010   | APPLICATION CHANGED FROM CLASS I - III | Location of the permitted sources is beyond 6 miles from HBEP |  |  |  |  |
| <u>516028</u> |                                         |        |        | Basic     | I C E (>500 HP) N-EM STAT DIESEL        | 11/2/2010   | APPLICATION CHANGED FROM CLASS I - III | Location of the permitted sources is beyond 6 miles from HBEP |  |  |  |  |
| <u>516029</u> |                                         |        |        | Basic     | I C E (>500 HP) N-EM STAT DIESEL        | 11/2/2010   | APPLICATION CHANGED FROM CLASS I - III | Location of the permitted sources is beyond 6 miles from HBEP |  |  |  |  |
| <u>516024</u> |                                         |        | ACTIVE | Basic     | I C E (50-500 HP) EM ELEC GEN-DIESEL    | 11/2/2010   | PERMIT TO OPERATE GRANTED              | Location of the permitted sources is beyond 6 miles from HBEP |  |  |  |  |
| <u>516034</u> |                                         |        | ACTIVE | Basic     | I C E (50-500 HP) N-EM STAT DIESEL      | 11/2/2010   | PERMIT TO OPERATE GRANTED              | Location of the permitted sources is beyond 6 miles from HBEP |  |  |  |  |
| <u>516037</u> |                                         |        | ACTIVE | Basic     | I C E (50-500 HP) N-EM STAT DIESEL      | 11/2/2010   | PERMIT TO OPERATE GRANTED              | Location of the permitted sources is beyond 6 miles from HBEP |  |  |  |  |
| <u>516020</u> |                                         |        | ACTIVE | Basic     | I C E (>500 HP) EM ELEC GEN DIESEL      | 11/2/2010   | PERMIT TO OPERATE GRANTED              | Location of the permitted sources is beyond 6 miles from HBEP |  |  |  |  |
| <u>516021</u> |                                         |        | ACTIVE | Basic     | I C E (>500 HP) EM ELEC GEN DIESEL      | 11/2/2010   | PERMIT TO OPERATE GRANTED              | Location of the permitted sources is beyond 6 miles from HBEP |  |  |  |  |
| <u>516022</u> |                                         |        | ACTIVE | Basic     | I C E (>500 HP) EM ELEC GEN DIESEL      | 11/2/2010   | PERMIT TO OPERATE GRANTED              | Location of the permitted sources is beyond 6 miles from HBEP |  |  |  |  |
| <u>516023</u> |                                         |        | ACTIVE | Basic     | I C E (>500 HP) EM ELEC GEN DIESEL      | 11/2/2010   | PERMIT TO OPERATE GRANTED              | Location of the permitted sources is beyond 6 miles from HBEP |  |  |  |  |
| <u>516025</u> |                                         |        | ACTIVE | Basic     | I C E (>500 HP) N-EM STAT DIESEL        | 11/2/2010   | PERMIT TO OPERATE GRANTED              | Location of the permitted sources is beyond 6 miles from HBEP |  |  |  |  |
| <u>516045</u> |                                         |        | ACTIVE | Control   | FLARE, OTHER                            | 11/2/2010   | PERMIT TO OPERATE GRANTED              | Location of the permitted sources is beyond 6 miles from HBEP |  |  |  |  |
| <u>516047</u> |                                         |        | ACTIVE | Control   | FLARE, OTHER                            | 11/2/2010   | PERMIT TO OPERATE GRANTED              | Location of the permitted sources is beyond 6 miles from HBEP |  |  |  |  |
| <u>531455</u> |                                         |        | ACTIVE | Basic     | TURBINE ENGINE (<=50 MW) N G/P G-DIESEL | 1/24/2012   | PERMIT TO OPERATE GRANTED              | Location of the permitted sources is beyond 6 miles from HBEP |  |  |  |  |
| <u>516038</u> |                                         |        | ACTIVE | Basic     | TURBINE ENGINE (<=50 MW) N G/P G-DIESEL | 11/2/2010   | PERMIT TO OPERATE GRANTED              | Location of the permitted sources is beyond 6 miles from HBEP |  |  |  |  |
| <u>516039</u> |                                         |        | ACTIVE | Basic     | TURBINE ENGINE (<=50 MW) N G/P G-DIESEL | 11/2/2010   | PERMIT TO OPERATE GRANTED              | Location of the permitted sources is beyond 6 miles from HBEP |  |  |  |  |
| <u>516040</u> |                                         |        | ACTIVE | Basic     | TURBINE ENGINE (<=50 MW) N G/P G-DIESEL | 11/2/2010   | PERMIT TO OPERATE GRANTED              | Location of the permitted sources is beyond 6 miles from HBEP |  |  |  |  |
| <u>516041</u> |                                         |        | ACTIVE | Basic     | TURBINE ENGINE (<=50 MW) N G/P G-DIESEL | 11/2/2010   | PERMIT TO OPERATE GRANTED              | Location of the permitted sources is beyond 6 miles from HBEP |  |  |  |  |
| 516043        |                                         |        | ACTIVE | Basic     | TURBINE ENGINE (<=50 MW) N G/P G-DIESEL | 11/2/2010   | PERMIT TO OPERATE GRANTED              | Location of the permitted sources is beyond 6 miles from HBEP |  |  |  |  |
| <u>516044</u> |                                         |        | ACTIVE | Basic     | TURBINE ENGINE (<=50 MW) N G/P G-DIESEL | 11/2/2010   | PERMIT TO OPERATE GRANTED              | Location of the permitted sources is beyond 6 miles from HBEP |  |  |  |  |
| 516046        |                                         |        | ACTIVE | Basic     | TURBINE ENGINE (<=50 MW) N G/P G-DIESEL | 11/2/2010   | PERMIT TO OPERATE GRANTED              | Location of the permitted sources is beyond 6 miles from HBEP |  |  |  |  |
| 533625        |                                         |        |        | Basic     | FACILITY PERMIT AMEND-RECLAIM/TITLE V   | 3/8/2012    | ASSIGNED TO ENGINEER - CLASS III       | Location of the permitted sources is beyond 6 miles from HBEP |  |  |  |  |
| 531454        |                                         |        |        | Basic     | FACILITY PERMIT AMEND-RECLAIM/TITLE V   | 1/24/2012   | ASSIGNED TO ENGINEER - CLASS III       | Location of the permitted sources is beyond 6 miles from HBEP |  |  |  |  |
| <u>517837</u> |                                         |        |        | Basic     | FACILITY PERMIT AMEND-RECLAIM/TITLE V   | 1/18/2011   | BANKING/ PLAN GRANTED                  | Location of the permitted sources is beyond 6 miles from HBEP |  |  |  |  |

|               | CHEVRON PRODUCTS COMPANY - Facility 800302 Sources |        |         |              |                           |             |                                  |                                                 |  |  |
|---------------|----------------------------------------------------|--------|---------|--------------|---------------------------|-------------|----------------------------------|-------------------------------------------------|--|--|
| Angligation   | Downsit                                            | Permit | Downsit | Faultane and |                           | Amelianting |                                  |                                                 |  |  |
| Application   | Permit                                             | Issued | Permit  | Equipment    |                           | Application |                                  |                                                 |  |  |
| Number        | Number                                             | Date   | Status  | Туре         | Equipment Description     | Date        | Application Status               | Reason for Exclusion from Analysis              |  |  |
|               |                                                    |        |         |              |                           |             |                                  |                                                 |  |  |
| <u>540059</u> |                                                    |        |         | Control      | AFTERBURNER, DIRECT FLAME | 6/29/2012   | ASSIGNED TO ENGINEER - CLASS III | Application cancelled                           |  |  |
|               |                                                    |        |         |              |                           |             |                                  |                                                 |  |  |
| <u>514139</u> |                                                    |        |         | Control      | AFTERBURNER, DIRECT FLAME | 8/31/2010   | ASSIGNED TO ENGINEER - CLASS III | Administrative change only                      |  |  |
| <u>514138</u> |                                                    |        |         | Basic        | Title V Permit Revision   | 8/31/2010   | BANKING/ PLAN GRANTED            | Administrative change only                      |  |  |
|               |                                                    |        |         |              |                           |             |                                  | Permitted source did not result in emissions of |  |  |
| 501915        |                                                    |        |         | Basic        | Title V Permit Revision   | 8/26/2009   | BANKING/ PLAN GRANTED            | cumulative modeled pollutants                   |  |  |

Attachment DR11-2 Facilities Included in Cumulative Impact Assessment

|                       | ORANGE COUNTY SANITATION DISTRICT - Facility 17301 Sources |                          |                  |                   |                                       |                     |                                |                                                                                                       |  |
|-----------------------|------------------------------------------------------------|--------------------------|------------------|-------------------|---------------------------------------|---------------------|--------------------------------|-------------------------------------------------------------------------------------------------------|--|
| Application<br>Number | Permit<br>Number                                           | Permit<br>Issued<br>Date | Permit<br>Status | Equipment<br>Type | Equipment Description                 | Application<br>Date | Application Status             | Reference of data for Analysis / Reason for<br>Exclusion from Analysis                                |  |
| <u>486760</u>         | G2955                                                      | 5/22/2009                | ACTIVE           | Basic             | I C E (>500 HP) NAT & DIGESTER GAS    | 8/12/2008           | PERMIT TO OPERATE<br>GRANTED   | Data obtained from SCAQMD Engineering<br>Application folder and direct correspondence with<br>SCAQMD. |  |
| <u>486792</u>         | G2956                                                      | 5/22/2009                | ACTIVE           | Basic             | I C E (>500 HP) NAT & DIGESTER GAS    | 8/12/2008           | PERMIT TO OPERATE<br>GRANTED   | Data obtained from SCAQMD Engineering<br>Application folder and direct correspondence with<br>SCAQMD. |  |
| <u>486793</u>         | G2957                                                      | 5/22/2009                | ACTIVE           | Basic             | I C E (>500 HP) NAT & DIGESTER GAS    | 8/12/2008           | PERMIT TO OPERATE<br>GRANTED   | Data obtained from SCAQMD Engineering<br>Application folder and direct correspondence with<br>SCAQMD. |  |
| <u>494460</u>         |                                                            |                          |                  | Basic             | BOILER (5-20 MMBTU/HR) NAT & PROC GAS | 12/30/2008          | PERMIT TO CONSTRUCT<br>GRANTED | Data obtained from SCAQMD Permit and Application.                                                     |  |
| <u>491468</u>         | G1549                                                      | 2/19/2009                | ACTIVE           | Basic             | UNSPECIFIED EQUIP/PROCESS (SCH C)     | 10/30/2008          | PERMIT TO OPERATE<br>GRANTED   | Source not included in analysis. Temporary research unit, permit expired on 11/30/2009                |  |
| <u>520795</u>         |                                                            |                          |                  | Basic             | Title V Permit Revision               | 6/12/2009           | BANKING/ PLAN<br>GRANTED       | Source not included in analysis. Administrative change only.                                          |  |
| <u>514393</u>         |                                                            |                          |                  | Basic             | Title V Permit Revision               | 2/6/2009            | BANKING/ PLAN<br>GRANTED       | Source not included in analysis. Administrative change only.                                          |  |

Hi Beth,

Attached is the requested info.

One plant (ID 17301) has 3-identical engines and the other plant (ID 29110) has five identical engines.

Hope, this information will be helpful.

Regards,

**Gaurang Rawal** 

From: Ahn, Terry [mailto:tahn@ocsd.com]
Sent: Thursday, November 29, 2012 8:52 AM
To: Gaurang Rawal
Cc: Kogan, Vlad
Subject: RE: Stack Parameters data request - follow-up email

Hi Gaurang,

The data in the attached file comes from the AB2588 HRA reports we submitted to SCAQMD in 2008.

If you need anything else please let me know.

Terry

From: Gaurang Rawal [mailto:grawal@aqmd.gov]
Sent: Thursday, November 29, 2012 8:36 AM
To: Ahn, Terry
Subject: FW: Stack Parameters data request - follow-up email

Terry,

Just a follow up to our conversation this morning. Below is the requested info. Thanks for your prompt attention and assistance.

Gaurang 9909) 396-2543 Sent: Wednesday, November 28, 2012 4:46 PM To: Gaurang Rawal Subject: Stack Parameters data request - follow-up email

Hi Gaurang,

Thank you for speaking with me this evening. As I mentioned, we are working on a cumulative air quality analyses on the area surrounding our client's project site in Huntington Beach. We have gone through SCAQMD's FIND database as well as submitted and received information through your Public Records Request process.

We have a few outstanding pieces of information that we still need regarding facilities that you are the engineer on. Can you please provide us with the following infomration:

- 1. Orange County Sanitation District Facility (ID: 17301): Can you please provide the stack parameters (height(ft), diameter(ft), temp(F), velocity(FPs)) for dispersion modeling for the following Application #s: 486760, 486792, 486793
- Orange County Sanitation District Facility District Facility (ID: 29110) Can you please provide the stack parameters (height(ft), diameter(ft), temp(F), velocity(FPs)) for dispersion modeling for the following Application #: 480908

Please feel free to call if you have any additional questions.

Thank you,

Beth Storelli

CH2M HILL 2485 Natomas Park Drive, Suite 600 Sacramento, CA 95833 Office 916.286.0259 elizabeth.storelli@ch2m.com

### OCSD CGS Engines Source Parameters

| POINT SOURCES                       | Stack Height |       | Exhaust<br>Temperature |        | Exhaust<br>Flow rate   |                       | Exhaust<br>Velocity |       | Stack Diameter |      |
|-------------------------------------|--------------|-------|------------------------|--------|------------------------|-----------------------|---------------------|-------|----------------|------|
|                                     | (feet)       | (m)   | (°F)                   | (°K)   | (ft <sup>3</sup> /min) | (m <sup>3</sup> /sec) | (ft/min)            | (m/s) | (feet)         | (m)  |
| 3 CGS Engines - Facility ID. 017301 | 62.0         | 18.90 | 500.0                  | 533.2  | 17,274.0               | 8.2                   | 3519.03             | 17.88 | 2.5            | 0.76 |
| 5 CGS Engines - Facility ID. 029110 | 59.0         | 17.98 | 600.0                  | 588.71 | 22088.43               | 10.42                 | 4499.82             | 22.86 | 2.5            | 0.76 |

### SCAQMD PERMIT PROCESSING SYSTEM (PPS)

### **AEIS DATA SHEET**

Company Name : ORANGE COUNTY SANITATION DISTRICT

ו.

Equipment Address : 10844 ELLIS AVE

FOUNTAIN VALLEY CA 92708

Application Number: 486760

Estimated Completion Date : 01/16/09

Equipment Type : Basic

Equipment Description : I C E (>500 HP) NAT & DIGESTER GAS

Emissions R1 R2 LB/HR LB/HR Emittants со 18.35 18.35 NOX 7.67 7.67 22 **PM10** 0.75 0.75 ROG 5.75 5.75 0.75 SOX 0.75

t

Applicable Rules

| 1110.2 | 02/01/2008 | Emissions from Gaseous-and Liquid-fueled Engines |
|--------|------------|--------------------------------------------------|
| 401    | 11/09/2001 | Visible Emissions                                |
| 402    | 05/07/1976 | Nuisance                                         |

|                        | Mon            | Tue      | Wed          | Thu   | Fri                                                                                                                                                                                                 | Sat      | Sun             |
|------------------------|----------------|----------|--------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|
| Daily Start Times :    | 00:00          | 00:00    | 00:00        | 00:00 | 00:00                                                                                                                                                                                               | 00:00    | 00:00           |
| Daily Stop Times :     | 24:00          | 24:00    | 24:00        | 24:00 | 24:00                                                                                                                                                                                               | 24:00    | 24:00           |
| User's Initials : GR01 | Date: 01/16/09 | Supervis | sor's Name : | COT   | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, _,, _ | Review I | Date : 5 126104 |

Facility ID : 17301

Equipment B-Cat: 056057 Equipment C-Cat :



Section D Page 29 Facility I.D.#: 017301 Revision #: 01 Date: May 28, 2009

### FACILITY PERMIT TO OPERATE ORANGE COUNTY SANITATION DISTRICT

- 9. THE TOTAL HEAT INPUT OF GASEOUS FUEL, OR FUEL BLEND, BURNED IN THIS ENGINE SHALL NOT EXCEED 28.5 MM BTU PER HOUR. A LOG SHALL BE KEPT INDICATING THE TOTAL HEATING VALUE OF FUEL GAS, OR FUEL BLEND, BURNED IN THIS ENGINE BASED ON THE RECORDED FLOW RATE (SCFM) AND THE LATEST MONTHLY BTU CONTENT READING. [RULE 1303 (b) (1) AND 1303 (b) (2)-MODELING AND EMISSIONS OFFSET]
- 10. THIS EQUIPMENT SHALL BE OPERATED IN COMPLIANCE WITH RULES 218, 431.1 AND 1110.2. [RULE 218, 431.1 AND 1110.2]
- 11. THIS EQUIPMENT SHALL BE OPERATED IN SUCH A MANNER THAT THE FOLLOWING EMISSION RATES ARE NOT EXCEEDED.

AIR CONTAMINANTCARBON MONOXIDE590 PPMV AT 15% O2PARTICULATES (PM10)0.0087 GRAINS/ DSCFROG OR TNMHC (AS CARBON)209 PPMV AT 15% O2[RULE 1303 (a) (1), 1303(b) (1) AND 1303 (b) (2)-BACT, MODELING AND EMISSIONS OFFSET]

12. THE COMBINED EMISSIONS FROM THE THREE (3) CGS ENGINES, USING CALENDAR MONTHLY EMISSIONS DIVIDED BY 30, SHALL NOT EXCEED THE FOLLOWING:

AIR CONTAMINANT

LBS/DAY

| CARBON MONOXIDE                      | 1321 |
|--------------------------------------|------|
| NITROGEN OXIDES (AS NO2)             | 368  |
| PARTICULATES (PM10)                  | 36   |
| ROG OR TNMHC (AS CH4)                | 276  |
| SULFUR DIOXIDE                       | 36   |
| [RULE 1303 (b) (2)-EMISSIONS OFFSET] |      |

- 13. THE OPERATOR SHALL INSTALL AND MAINTAIN A CONTINUOUS EMISSION MONITORING SYSTEM (CEMS), OR AN ALTERNATIVE SYSTEM, AS APPROVED BY THE EXECUTIVE OFFICER, TO MEASURE THE ENGINE EXHAUST FOR NOX AND O2 CONCENTRATIONS ON A DRY BASIS, EXCEPT DURING SHUTDOWN FOR MAINTENANCE OF THE SYSTEM. IN ADDITION, THE CEMS SHALL CONVERT THE ACTUAL NOX TO MASS EMISSION RATES; AND RECORD THE ACTUAL AND CORRECTED ENGINE NOX CONCENTRATION AT 15% O2 AND MASS EMISSION RATES ON AN HOURLY AND DAILY BASIS. [RULE 218, RULE 1110.2]
- 14. THE OPERATOR SHALL CONDUCT PERFORMANCE TESTS ANNUALLY. WRITTEN NOTICE OF THE PERFORMANCE TEST SHALL BE PROVIDED TO THE AQMD AT LEAST 7 DAYS PRIOR TO THE TEST SO THAT AN OBSERVER MAY BE PRESENT. A COMPLETE FINAL REPORT OF THE TEST (LBS/HR, PPMVD AT 15% O2, LBS/MMBTU, ETC.) SHALL BE PROVIDED TO THE AQMD WITHIN 45 DAYS AFTER TESTING. ALL TEST RUNS REQUIRED BY AQMD SHALL BE REPORTED. THE TESTS SHALL INCLUDE BUT NOT BE LIMITED TO, A TEST OF THE FUELS BURNED AND ENGINE EXHAUST FOR:
  - A. TOTAL NON-METHANE HYDROCARBONS (EXHAUST ONLY).
  - B. CARBON MONOXIDE (EXHAUST ONLY)
  - C. TOTAL PARTICULATE MATTER (EXHAUST ONLY).
  - D. OXIDES OF NITROGEN (EXHAUST ONLY).



Section H Page 17 -Facility:4:D:#:-017301 Revision #: 01 Date: March 16, 2010

| FACILITY    | PERMIT    | FO OPEI | RATE     |
|-------------|-----------|---------|----------|
| ORANGE COUN | NTY SANIT | FATION  | DISTRICT |

TOTAL NON-METHANE ORGANICS (EXHAUST & INLET DIGESTER GAS) SPECIATED TRACE ORGANICS (EXHAUST, DIGESTER GAS) TOTAL PARTICULATES (EXHAUST) OXIDES OF NITROGEN (EXHAUST) CARBON MONOXIDE (EXHAUST) OXYGEN DIGESTER GAS BTU (HHV), AND TOTAL SULFUR CONTENT (AS H2S, PPMV)

THE REPORT SHALL PRESENT THE EMISSIONS DATA IN PARTS PER MILLION (PPMV) ON A DRY BASIS, POUNDS PER HOUR, AND LBS/MMBTU. [RULE 217, RULE 404, RULE 1146, RULE 1303(A) (1), 1303 (B) (1), 1303(B) (2) - BACT, MODELING AND OFFSET, 1401]

- MONITORING AND TESTING OF THE BOILER SHALL BE PERFORMED ACCORDING TO RULE 1146. [RULE 1146]
- 11. EMISSIONS RESULTING FROM THIS EQUIPMENT SHALL NOT EXCEED THE FOLLOWING:

| POLLUIANI                   | POUNDS PER HOUR                 |
|-----------------------------|---------------------------------|
| CO .                        | 0.90 (0.43 WITH NATURAL GAS)    |
| NOx                         | 0.44 (0.17 WITH NATURAL GAS     |
| .PM10                       | 0.056                           |
| ROG                         | 0.083                           |
| SOx                         | 0.13                            |
| [RULE 404, 431.1, 1303(a) ( | [1]-BACT, 1303(b) (2) - OFFSET] |
|                             |                                 |

- 12. THIS EQUIPMENT SHALL BE OPERATED IN COMPLIANCE WITH APPLICABLE REQUIREMENTS OF 40 CFR 63 SUBPART DDDDD. [40 CFR 63 SUBPART DDDDD]
  - ALL RECORDS REQUIRED BY THIS PERMIT SHALL BE KEPT AND MAINTAINED FOR A MINIMUM OF FIVE YEARS AND SHALL BE MADE AVAILABLE TO AQMD PERSONNEL UPON REQUEST. [RULE 3004 (a) (1)]

#### **Periodic Monitoring:**

13.

14. THE OPERATOR SHALL DETERMINE COMPLIANCE WITH THE EMISSION LIMIT(S) IN CONDITION NO. 11, AT LEAST ONCE EVERY FIVE YEARS USING AQMD-APPROVED TEST METHOD. THE TEST SHALL BE CONDUCTED WHEN THE EQUIPMENT IS OPERATING UNDER NORMAL CONDITIONS. THE OPERATOR SHALL COMPLY WIT H ALL GENERAL TESTING, REPORTING, AND RECORDKEEPING REQUIREMENTS IN SECTIONS E AND K OF THIS PERMIT. [RULE 1303 – OFFSET, 3004 (a) (4)]

Øř AQMO

)

PM10

7.5

,

South Coast Air Quality Management District FORM 400-E-9 **Engineer Report** 

| Data        |          | tin en de |                  |               | A/N:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·····      |           |
|-------------|----------|-----------|------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|
|             |          |           |                  |               | Alter Constant of the second s |            |           |
| GIVEN       |          |           |                  |               | 1997)<br>1997<br>1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |           |
|             |          |           |                  |               | ب                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |           |
|             |          | RAT       | ING: 10,50       | 0,000 btu/hr. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |
|             |          | HHV       | . 600            | btu/cu. ft.   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |
|             |          | FUE       | L USAGE:         |               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |           |
|             |          |           | 17500            | cu.ft./hr.    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |
|             |          |           | 420000           | cu.ft./day    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |
|             |          |           | 12600 <b>¥</b>   | cu.ft./mo.    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |
|             |          | OPE       | RATING SCHEDULE: |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |
|             |          |           | 24               | 4 hrs./day    | .`                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |           |
|             |          |           | 7                | days/wk.      | ·.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |           |
|             |          |           | 3(               | ) days/mo.    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |
|             | Q,       |           | 52               | 2wks./yr.     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |
|             | )°`      |           | 36               | 4_dys./yr.    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |
| Calculation | s. /     |           |                  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |
|             | EF       | EF        | HOURLY           | DAILY         | 30 DAY AVE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30 DAY NSR | ANNUAL    |
|             | Ibs/mmcf | lb./mmbtu | lbs./hr.         | lbs./day      | lbs./day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lbs./day   | lbs./yr.  |
| ROG         | ۲        | 0.0122    | 0.1281           | 3.0744        | 3.1062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3          | 1119.0816 |
| NOx /       | 30 🗸     | 0.0349    | 0.3665           | 8.7960        | 8.8869                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9          | 3201.7440 |
| SOx         | 40 ppm   | 0.0628    | 0.6594           | 15.8256       | 15.9891                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16         | 5760.5184 |
| со          | 100 ppm  | 0.0708    | 0.7434           | 17.8416       | 18.0260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18         | 6494.3424 |
| PM          | 7.5      | 0.0130    | 0.1365           | 3.2760        | 3.3099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3          | 1192.4640 |

r,

1192.4640

3

0.0130

0.1365

3.2760

3.3099
| , South Coast Air                                     | Quality Management Dis                                                                                                                                              | trict                                                 |                                          |                                                          |                                      | Mail Application To:                                 |  |  |  |  |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------|----------------------------------------------------------|--------------------------------------|------------------------------------------------------|--|--|--|--|
| FORM 40                                               | 0-PS<br>An and stac                                                                                                                                                 |                                                       |                                          | л                                                        |                                      | SCAQMD<br>P.O. Box 4944                              |  |  |  |  |
| AOME                                                  |                                                                                                                                                                     |                                                       |                                          | n                                                        |                                      | Diamond Bar, CA 91765                                |  |  |  |  |
| This form must be accompany                           | hied by a completed Appl                                                                                                                                            | cation for a Permit to                                | Construct/Operate -F                     | orm 400A and Form 400-C                                  | EQA                                  | www.aqmd.gov                                         |  |  |  |  |
| Orange County Sa                                      | nitation District                                                                                                                                                   | r to appear on permit)                                | 1                                        |                                                          |                                      |                                                      |  |  |  |  |
| Address where the equip                               | Address where the equipment will be operated (for equipment which will be moved to various location in AQMD's jurisdiction, please list the initial location site): |                                                       |                                          |                                                          |                                      |                                                      |  |  |  |  |
| 10844 Ellis Avenue                                    | e, Fountain Valley,                                                                                                                                                 | CA. 92708                                             |                                          | G                                                        | Fixed Location                       | O Various Locations                                  |  |  |  |  |
| SECTION A: LOCAT                                      | ION DATA                                                                                                                                                            |                                                       |                                          |                                                          |                                      |                                                      |  |  |  |  |
| Plot Plan                                             | Please attach a site map for the project. Identify and locate the proposed equipment on the property. A copy of the appropriate Thomas Brothers page                |                                                       |                                          |                                                          |                                      |                                                      |  |  |  |  |
|                                                       | is the facility located                                                                                                                                             | within a 1/4 mile ra                                  | dlus (1,320 feet) of th                  | e outer boundary of a sc                                 | hool?                                |                                                      |  |  |  |  |
|                                                       | ⊖ Yes ⊙ No. If                                                                                                                                                      | yes, please provide                                   | name(s) of school(s                      | ) below.                                                 |                                      |                                                      |  |  |  |  |
| Location of School                                    | School I                                                                                                                                                            | Vame                                                  | Schoo                                    | Address                                                  | Distance from sta                    | ck or equipment vent to the                          |  |  |  |  |
| Nearby                                                | -                                                                                                                                                                   | -                                                     |                                          | · · ·                                                    | Outer invu                           | many of the sector.                                  |  |  |  |  |
|                                                       | Note: Per Section 42301.                                                                                                                                            | 9 of the California Healt                             | n and Safety Code, a "scl                | ool" means any public or priva                           | te school used for purpo             | ses of the education of more than                    |  |  |  |  |
| Population Density                                    | 12 children in kindergarte                                                                                                                                          | n or any <u>of grades 1 to 1</u><br>lense population) | C Rural (area o                          | include any private school in w<br>of sparse population) | vhich education is prima             | rily conducted in                                    |  |  |  |  |
|                                                       | Miyod Lise Resi                                                                                                                                                     | idential Commercial                                   | Zone (M.U) () Se                         | price and Professional 7                                 | nne (C-S) 🔿 Med                      | ium Commercial (C-3)                                 |  |  |  |  |
| Classification                                        | O Heavy Commer                                                                                                                                                      | cial (C-4)                                            | C Cc                                     | ommercial Manufacturing                                  | (C-M)                                |                                                      |  |  |  |  |
| SECTION B: EMISSI                                     | ON RELEASE PAR                                                                                                                                                      | AMETERS -STA                                          | CKS, VENTS                               |                                                          |                                      |                                                      |  |  |  |  |
|                                                       | Stack Height:                                                                                                                                                       | 42.00 feet (height a                                  | bove around level)*                      | What Is the height of t                                  | he closest 30                        | .00 feet                                             |  |  |  |  |
|                                                       | Stack Inside Diamete                                                                                                                                                | r: 18.000 inc                                         | hes                                      | Stack Flow: 3230.00 a                                    | ack 7 Stack Ter                      | nperature: 360.00 oF                                 |  |  |  |  |
|                                                       | Rain Cap Present: (                                                                                                                                                 | ⊃Yes ⊙ N                                              | o Stack Orienta                          | tion:      Vertical                                      | Horizontal                           |                                                      |  |  |  |  |
| Stack Data                                            | * If the stack height is less<br>additional sheet if nece                                                                                                           | ss than 2.5 times the closes sary                     | sest building height (H), p              | lease provide information on a                           | ny building within 5xH di            | stance from the stack(attach                         |  |  |  |  |
|                                                       | Building #/name:                                                                                                                                                    | igester No. 8                                         |                                          | Building #name:                                          | gester No. 11                        |                                                      |  |  |  |  |
|                                                       | Building Helght: 3                                                                                                                                                  | 0.00 feet                                             | ······                                   | Building Height: 30.00 feet                              |                                      |                                                      |  |  |  |  |
|                                                       | Building Width: 9                                                                                                                                                   | 0.00 feet                                             |                                          | Building Width: 110                                      | 0.00 feet                            |                                                      |  |  |  |  |
| Receptor Distance from                                | Building Length: 9                                                                                                                                                  | 0.00 feet                                             | -213m -                                  | Building Length: 110                                     | 0.00 feet                            | 335                                                  |  |  |  |  |
| equipment stack or roof<br>vents/openings             | Distance to nearest n                                                                                                                                               | esidence 700.00                                       | feet ormet                               | ers Distance to nearest I                                | business 1100                        | ).0_feet or meters                                   |  |  |  |  |
|                                                       | Are the emissions re                                                                                                                                                | leased from vents a                                   | nd/or openings from                      | the building? 🔿 Yes                                      | ⊙ No                                 |                                                      |  |  |  |  |
| Building Information                                  | If yes, please provide                                                                                                                                              |                                                       |                                          |                                                          |                                      |                                                      |  |  |  |  |
|                                                       | Building height above<br>ground level:                                                                                                                              | eft. din                                              | Building                                 | length ft.<br>Or                                         | Total square for<br>source of the en | btage of building where the<br>Inlesions is located. |  |  |  |  |
| SECTION C: APPLIC                                     |                                                                                                                                                                     |                                                       |                                          | , wiatin it.                                             |                                      |                                                      |  |  |  |  |
| I nereby certify that all infor                       | mation contained herein a                                                                                                                                           | and information subm                                  | itted with this applicati                | on is true and correct.                                  |                                      |                                                      |  |  |  |  |
| Dim                                                   | de                                                                                                                                                                  | Regulatory Spec                                       | cialist PR                               | EPARER'S TELEPHONE                                       | NUMBER: (714) :<br>RESS: tahn@ocs    | 593-7082<br>id.com                                   |  |  |  |  |
| CONTACT PERSON FOR                                    | NFORMATION ON THIS                                                                                                                                                  | EQUIPMENT:                                            | CONTACT PERS                             | ON'S (714) 502                                           | ZOP2                                 | SIGNED:                                              |  |  |  |  |
| E-MAIL ADDRESS: tahn                                  | E-MAIL ADDRESS: tahn@ocsd.com FAX NUMBER: (714) 962-8379 12/15/08                                                                                                   |                                                       |                                          |                                                          |                                      |                                                      |  |  |  |  |
|                                                       |                                                                                                                                                                     | WWW.YOY IS BUILD IN THE OWNER.                        |                                          |                                                          | 711618                               |                                                      |  |  |  |  |
| Under the California Public                           | Records Act, all Informati                                                                                                                                          | COI<br>cn in your permit app                          | IFIDENTIAL INFORM                        | ATION<br>red a matter of public reco                     | id and may be disclo:                | ed to a third party of you                           |  |  |  |  |
| wish to keep certain items a<br>(a) Make a copy of ar | is confidential, please cor<br>ny page containing confid                                                                                                            | nplete the following s<br>ential information bla      | teps:<br>nked:out. Label this p          | age "public copy."                                       |                                      |                                                      |  |  |  |  |
| (b) Label the original<br>(c) Prepare a written       | page "confidential." Gircl<br>ustification for the confid                                                                                                           | e all confidential item<br>entiality of each confi    | s on the page.<br>dential item: Append ( | his to the confidential copy                             |                                      |                                                      |  |  |  |  |
| © South Coast Air Quality Manage                      | ement District, Form 400-E-P                                                                                                                                        | S (2006.02)                                           |                                          |                                                          |                                      |                                                      |  |  |  |  |

7

|               | ORANGE COUNTY SANITATION DISTRICT - Facility 29110 Sources |            |        |           |                                        |                       |                                  |                                                                       |  |  |  |  |
|---------------|------------------------------------------------------------|------------|--------|-----------|----------------------------------------|-----------------------|----------------------------------|-----------------------------------------------------------------------|--|--|--|--|
|               |                                                            | Permit     |        |           |                                        |                       |                                  |                                                                       |  |  |  |  |
| Application   | Permit                                                     | Issued     | Permit | Equipment |                                        | Application           |                                  |                                                                       |  |  |  |  |
| Number        | Number                                                     | Date       | Status | Туре      | Equipment Description                  | Date                  | Application Status               | Reference of data for Analysis / Reason for Exclusion from Analysis   |  |  |  |  |
|               |                                                            |            |        |           |                                        |                       |                                  | Source not included in analysis. Change in permitting conditions for  |  |  |  |  |
|               |                                                            |            |        |           |                                        |                       |                                  | existing unit, not resulting in an increase in emissions. See         |  |  |  |  |
| <u>480908</u> | G2958                                                      | 5/22/2009  | ACTIVE | Basic     | I C E (>500 HP) NAT & DIGESTER GAS     | 4/2/2008              | PERMIT TO OPERATE GRANTED        | correspondence with SCAQMD.                                           |  |  |  |  |
|               |                                                            |            |        |           |                                        |                       |                                  | Source not included in analysis. Change in permitting conditions for  |  |  |  |  |
|               |                                                            |            |        |           |                                        |                       |                                  | existing unit, not resulting in an increase in emissions. See         |  |  |  |  |
| <u>480909</u> | G2959                                                      | 5/22/2009  | ACTIVE | Basic     | I C E (>500 HP) NAT & DIGESTER GAS     | 4/2/2008              | PERMIT TO OPERATE GRANTED        | correspondence with SCAQMD.                                           |  |  |  |  |
|               |                                                            |            |        |           |                                        |                       |                                  | Source not included in analysis. Change in permitting conditions for  |  |  |  |  |
|               |                                                            |            |        |           |                                        |                       |                                  | existing unit, not resulting in an increase in emissions. See         |  |  |  |  |
| <u>480911</u> | G2964                                                      | 5/22/2009  | ACTIVE | Basic     | I C E (>500 HP) NAT & DIGESTER GAS     | 4/2/2008              | PERMIT TO OPERATE GRANTED        | correspondence with SCAQMD.                                           |  |  |  |  |
|               |                                                            |            |        |           |                                        |                       |                                  | Source not included in analysis. Change in permitting conditions for  |  |  |  |  |
|               |                                                            |            |        |           |                                        |                       |                                  | existing unit, not resulting in an increase in emissions. See         |  |  |  |  |
| <u>480912</u> | G2966                                                      | 5/22/2009  | ACTIVE | Basic     | I C E (>500 HP) NAT & DIGESTER GAS     | 4/2/2008              | PERMIT TO OPERATE GRANTED        | correspondence with SCAQMD.                                           |  |  |  |  |
|               |                                                            |            |        |           |                                        |                       |                                  | Source not included in analysis. Change in permitting conditions for  |  |  |  |  |
|               |                                                            |            |        |           |                                        |                       |                                  | existing unit, not resulting in an increase in emissions. See         |  |  |  |  |
| <u>480916</u> | G2967                                                      | 5/22/2009  | ACTIVE | Basic     | I C E (>500 HP) NAT & DIGESTER GAS     | 4/2/2008              | PERMIT TO OPERATE GRANTED        | correspondence with SCAQMD.                                           |  |  |  |  |
| <u>474766</u> | F95584                                                     | 2/27/2008  | ACTIVE | Basic     | I C E (>500 HP) EM ELEC GEN DIESEL     | 10/19/2007            | PERMIT TO OPERATE GRANTED        | Data obtained from SCAQMD Engineering Application folder.             |  |  |  |  |
| <u>474767</u> | F95585                                                     | 2/27/2008  | ACTIVE | Basic     | I C E (>500 HP) EM ELEC GEN DIESEL     | 10/19/2007            | PERMIT TO OPERATE GRANTED        | Data obtained from SCAQMD Engineering Application folder.             |  |  |  |  |
| <u>474768</u> | F95586                                                     | 2/27/2008  | ACTIVE | Basic     | I C E (>500 HP) EM ELEC GEN DIESEL     | 10/19/2007            | PERMIT TO OPERATE GRANTED        | Data obtained from SCAQMD Engineering Application folder.             |  |  |  |  |
| <u>474769</u> | F95587                                                     | 2/27/2008  | ACTIVE | Basic     | I C E (>500 HP) EM ELEC GEN DIESEL     | 10/19/2007            | PERMIT TO OPERATE GRANTED        | Data obtained from SCAQMD Engineering Application folder.             |  |  |  |  |
| <u>474770</u> | F95588                                                     | 2/27/2008  | ACTIVE | Basic     | I C E (>500 HP) EM ELEC GEN DIESEL     | 10/19/2007            | PERMIT TO OPERATE GRANTED        | Data obtained from SCAQMD Engineering Application folder.             |  |  |  |  |
|               |                                                            |            |        |           |                                        |                       |                                  | Source not included in analysis. Change in permitting conditions for  |  |  |  |  |
|               |                                                            |            |        |           |                                        |                       |                                  | existing unit, not resulting in an increase in emissions. See         |  |  |  |  |
| <u>540708</u> |                                                            |            |        | Basic     | I C E (>500 HP) NAT & DIGESTER GAS     | 7/18/2012             | ASSIGNED TO ENGINEER - CLASS III | correspondence with SCAQMD.                                           |  |  |  |  |
|               |                                                            |            |        |           |                                        |                       |                                  | Source not included in analysis. Change in permitting conditions for  |  |  |  |  |
|               |                                                            |            |        |           | /                                      |                       |                                  | existing unit, not resulting in an increase in emissions. See         |  |  |  |  |
| <u>540709</u> |                                                            |            |        | Basic     | I C E (>500 HP) NAT & DIGESTER GAS     | 7/18/2012             | ASSIGNED TO ENGINEER - CLASS III | correspondence with SCAQMD.                                           |  |  |  |  |
|               |                                                            |            |        |           |                                        |                       |                                  | Source not included in analysis. Change in permitting conditions for  |  |  |  |  |
|               |                                                            |            |        |           | /                                      |                       |                                  | existing unit, not resulting in an increase in emissions. See         |  |  |  |  |
| <u>540710</u> | <u>)</u>                                                   |            |        | Basic     | I C E (>500 HP) NAT & DIGESTER GAS     | 7/18/2012             | ASSIGNED TO ENGINEER - CLASS III | correspondence with SCAQMD.                                           |  |  |  |  |
|               |                                                            |            |        |           |                                        |                       |                                  | Source not included in analysis. Change in permitting conditions for  |  |  |  |  |
|               |                                                            |            |        |           |                                        | - / /                 |                                  | existing unit, not resulting in an increase in emissions. See         |  |  |  |  |
| 540/11        |                                                            |            |        | Basic     | I C E (>500 HP) NAT & DIGESTER GAS     | //18/2012             | ASSIGNED TO ENGINEER - CLASS III | correspondence with SCAQMD.                                           |  |  |  |  |
|               |                                                            |            |        |           |                                        |                       |                                  | Source not included in analysis. Change in permitting conditions for  |  |  |  |  |
| 5 4074        |                                                            |            |        |           |                                        | 7/10/2012             |                                  | existing unit, not resulting in an increase in emissions. See         |  |  |  |  |
| 540712        |                                                            |            |        | Basic     | TCE (>500 HP) NAT & DIGESTER GAS       | //18/2012             | ASSIGNED TO ENGINEER - CLASS III | correspondence with SCAQMD.                                           |  |  |  |  |
|               |                                                            |            |        |           |                                        |                       |                                  | Source not included in analysis. Information unavailable at time of   |  |  |  |  |
| 526425        | C10570                                                     | c /7 /2012 |        | Denia     |                                        | 0/4/2014              |                                  | analysis. Based on equipment description assumed permitted source did |  |  |  |  |
| 520135        | G18570                                                     | 6/7/2012   | ACTIVE | Basic     | UNSPECIFIED EQUIP/PROCESS (SCH B)      | 8/4/2011              | PERMIT TO OPERATE GRANTED        | not result in an increase in emissions.                               |  |  |  |  |
| 455672        |                                                            | 4/12/2006  |        | Bacic     |                                        | 4/12/2006             | DEDMIT TO ODEDATE CRANTED        | #416060 and direct correspondence with SCAOND                         |  |  |  |  |
| 455075        | F01000                                                     | 4/12/2000  | ACTIVE | Dasic     | I C E (50-500 HP) EM ELEC GEN-DIESEL   | 4/12/2000             | PERMIT TO OPERATE GRANTED        | #410909 and direct correspondence with SCAQIMD.                       |  |  |  |  |
| 455674        |                                                            | 1/12/2000  | ACTIVE | Pasic     |                                        | 4/12/2000             |                                  | #416060 and direct correspondence with SCAOMD                         |  |  |  |  |
| 455071        | 197333                                                     | 4/12/2006  | ACTIVE | Dasic     | I C L (30-300 HP) EIVI ELEC GEN-DIESEL | 4/12/2006             | TERMIT TO OPERATE GRANTED        | H410505 and unett torrespondence with stadium.                        |  |  |  |  |
| 455670        | E8155/                                                     | 1/12/2006  |        | Basic     |                                        | 4/12/2006             | DERMIT TO OPERATE GRANTED        | #416969 and direct correspondence with SCAOMD                         |  |  |  |  |
| 455070        | 101334                                                     | 4/12/2000  | ACTIVE | Basic     |                                        | 4/12/2000<br>2/5/2000 |                                  | Source not included in analysis. Administrative change only           |  |  |  |  |
| 47745         | 1                                                          | 1          | 1      | Dasic     |                                        | 3/3/2009              |                                  | pource not included in analysis. Autilitist ative thanke only.        |  |  |  |  |

Good Morning, Beth, and wish you a Happy and Prosperous New Year.

Yes, the engines listed below (also known as CGS by OC- Central Generation System) have been permitted since 1995. There are only 5 such identical engines at the site. Over the years, each engine's permit may have been revised for various reasons (e.g. alteration/modification, change of permit conditions, compliance with new rule emissions limits, administrative change, etc), there by new permit issued under a new application and permit # .

Hope, this answers your questions. If you have any questions, pl call me.

Gaurang Rawal (909) 396-2543

From: Elizabeth.Storelli@ch2m.com [mailto:Elizabeth.Storelli@ch2m.com]
Sent: Thursday, January 03, 2013 9:44 AM
To: Gaurang Rawal
Subject: RE: Stack Parameters data request - follow-up email

Good Morning Guarang,

I hope you had a nice holiday! I have a few follow-up questions to some of the information you provided in our correspondence below back in November.

For the OC Sanitation District Facility ID# 29110:

- 1. Can you please confirm that there are only 5 engines (ICE [>500 HP] NAT & DIGESTER GAS) at the facility?
- 2. Can you please confirm that these 5 engines were originally permitted in 1995?

Reasoning behind our questions:

In reviewing information in SCAQMD FIND, there are 10 applications for ICEs (app #'s 480908, 909, 911, 912 & 916 AND more recently: 540708 through 540712). We are assuming that the 5 most current applications (#'s: 540708 through 540712 ) are just modifications to the already existing engines. Can you please confirm this assumption.

Secondly, we believe that the 5 engines were permitted back in 1995 based on our review of their permits we received through SCAQMD Public Data Request process. Can you please confirm this as well. The date they were permitted is important criteria for whether or not we include them in our modeling.

Please feel free to call me if you have any questions,

**Beth Storelli** 

CH2M HILL 2485 Natomas Park Drive, Suite 600 Sacramento, CA 95833 Office 916.286.0259 elizabeth.storelli@ch2m.com

From: Gaurang Rawal [mailto:grawal@aqmd.gov]
Sent: Thursday, November 29, 2012 9:03 AM
To: Storelli, Elizabeth/SAC
Subject: FW: Stack Parameters data request - follow-up email

Hi Beth,

Attached is the requested info.

One plant (ID 17301) has 3-identical engines and the other plant (ID 29110) has five identical engines.

Hope, this information will be helpful.

Regards,

**Gaurang Rawal** 

From: Ahn, Terry [mailto:tahn@ocsd.com]
Sent: Thursday, November 29, 2012 8:52 AM
To: Gaurang Rawal
Cc: Kogan, Vlad
Subject: RE: Stack Parameters data request - follow-up email

Hi Gaurang,

The data in the attached file comes from the AB2588 HRA reports we submitted to SCAQMD in 2008.

If you need anything else please let me know.

Terry

From: Gaurang Rawal [mailto:grawal@aqmd.gov]
Sent: Thursday, November 29, 2012 8:36 AM
To: Ahn, Terry
Subject: FW: Stack Parameters data request - follow-up email

Terry,

Just a follow up to our conversation this morning. Below is the requested info. Thanks for your prompt attention and assistance.

Gaurang 9909) 396-2543

From: Elizabeth.Storelli@ch2m.com [mailto:Elizabeth.Storelli@ch2m.com] Sent: Wednesday, November 28, 2012 4:46 PM To: Gaurang Rawal Subject: Stack Parameters data request - follow-up email

Hi Gaurang,

Thank you for speaking with me this evening. As I mentioned, we are working on a cumulative air quality analyses on the area surrounding our client's project site in Huntington Beach. We have gone through SCAQMD's FIND database as well as submitted and received information through your Public Records Request process.

We have a few outstanding pieces of information that we still need regarding facilities that you are the engineer on. Can you please provide us with the following infomration:

- Orange County Sanitation District Facility (ID: 17301): Can you please provide the stack parameters (height(ft), diameter(ft), temp(F), velocity(FPs)) for dispersion modeling for the following Application #s: 486760, 486792, 486793
- Orange County Sanitation District Facility District Facility (ID: 29110) Can you please provide the stack parameters (height(ft), diameter(ft), temp(F), velocity(FPs)) for dispersion modeling for the following Application #: 480908

Please feel free to call if you have any additional questions.

Thank you,

Beth Storelli

CH2M HILL 2485 Natomas Park Drive, Suite 600 Sacramento, CA 95833 Office 916.286.0259 elizabeth.storelli@ch2m.com

#### NSR DATA SUMMARY SHEET

Application No:474766Application Type:Change of ConditionsApplication Status:PROCESSINGPrevious Apps, Dev, Permit #: 134617, 0 - ICE-PPS, NONE

| Company Name:      | ORANGE COUNTY SANITATION DISTRICT         |
|--------------------|-------------------------------------------|
| Company ID:        | 29110                                     |
| Address:           | 22212 BROOKHURST ST, HUNTINGTON BEACH, CA |
| RECLAIM:           | NO                                        |
| RECLAIM Zone:      | 01                                        |
| A <u>ir</u> Basin: | SC                                        |
| e:                 | 18                                        |
| The V:             | NO                                        |

0 - ICE-PPS Device ID: Estimated Completion Date: 12-30-2007 Heat Input Capacity. Million BTU/hr 0 NONE - No Priority Access Requested Priority Reserve: Recommended Disposition: 31 - PERMIT TO OPERATE GRANTED PR Expiration: School Within 1000 Feet: NO Operating Weeks Per Year: 50 Operating Days Per Week: 1 Monday Operating Hours: 00:00 to 01:00 Tuesday Operating Hours: 00:00 to 00:00 Wednesday Operating Hours: 00:00 to 00:00 Thursday Operating Hours: 00:00 to 00:00 riday Operating Hours: 00:00 to 00:00 urday Operating Hours: 00:00 to 00:00 Sunday Operating Hours: 00:00 to 00:00

| Company ID: 29110           | Application No: 474766                 | Page #2                               |           |
|-----------------------------|----------------------------------------|---------------------------------------|-----------|
| *                           | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                       |           |
| Emittant:                   | со                                     |                                       |           |
| BACT:                       |                                        |                                       |           |
| Cost Effectiveness:         | NO                                     |                                       |           |
| Source Type:                | MAJOR                                  |                                       |           |
| Emis Increase:              | 0                                      |                                       |           |
| Modeling:                   | N/A                                    |                                       |           |
| Public Notice:              |                                        |                                       |           |
| CONTROLLED EMR              | SSION                                  |                                       |           |
| Max Hourly:                 |                                        |                                       |           |
|                             | 9.8 LIDS/day                           |                                       |           |
|                             |                                        |                                       |           |
| Max Doily:                  | 30.24 lbs/dov                          |                                       |           |
|                             | 39.24 105/04y                          |                                       |           |
| BACT 30 days Av             | ra: 1 lbs/day                          |                                       |           |
| Annual Emission             | 490.5 lbs/vr                           |                                       |           |
| District Exemption          | 13 <del>04(</del> a)(4)=10/12/199      | 5-Emergency-Equipment                 | alterment |
|                             |                                        |                                       |           |
|                             |                                        | · · · · · · · · · · · · · · · · · · · |           |
|                             | Nov                                    |                                       |           |
| Emittant:                   | NOX                                    |                                       |           |
| BACT                        |                                        |                                       |           |
| Cost Effectiveness:         |                                        |                                       |           |
| Source Type:                | MAJUR                                  |                                       |           |
| Emis increase:              | U NIA                                  |                                       |           |
| Wodening.<br>Bublic Notice: |                                        |                                       |           |
| CONTROLLED EMIS             |                                        |                                       |           |
| Max Hourly:                 | 45.32 lbs/br                           |                                       |           |
| Max nouny.<br>Max Daily:    | 45.32 lbs/day                          |                                       |           |
|                             |                                        |                                       |           |
| Max Hourly:                 | 45.32 lbs/hr                           |                                       |           |
| Max Daily:                  | 181 28 lbs/day                         |                                       |           |
| CURRENT EMISSIC             | N                                      |                                       |           |
| BACT 30 days Av             | rg: 7 lbs/dav                          |                                       |           |
| Annual Emission:            | 2266 lbs/yr                            |                                       |           |
| District Exemption:         | 1304(a)(4)-10/12/199                   | 95-Emergency Equipment                |           |
|                             |                                        |                                       |           |
|                             | <u>.</u>                               |                                       |           |
|                             |                                        |                                       |           |
| Emittant:                   | PIMTU                                  |                                       |           |
| BAUT:                       | NO                                     |                                       |           |
|                             |                                        |                                       |           |
| Source Type:                |                                        |                                       |           |
| Emis increase:              |                                        |                                       |           |
| wodeling:<br>Rublia Nation: | N/A                                    |                                       |           |
| PUDIIC NOTICE:              |                                        |                                       |           |
|                             |                                        |                                       |           |

An Distric Emitta BACT Cost E Sourc Emis Mode Public CONT Max Hourly: 0.82 lbs/hr Max Daily: 3.28 lbs/day **UNCONTRÓLLED EMISSION** 0.82 lbs/hr Max Hourly:

3.28 lbs/day Max Daily: CURRENT EMISSION BACT 30 days Avg: 0 lbs/day 164 lbs/yr Annual Emission: **District Exemption:** None



Ì.

# ORANGE COUNTY SANITATION DISTRICT PLANT NO. 2 EMERGENCY DIESEL GENERATORS 2004 ENGINEERING SOURCE TEST REPORT

## **PREPARED FOR:**

Orange County Sanitation District Post Office Box 8127 10844 Ellis Avenue Fountain Valley, California 92728-8127

EQUIPMENT LOCATION: Plant No. 2 Internal Combustion Engine Emergency Diesel-Fired Generators Huntington Beach Wastewater Treatment Facility Huntington Beach, California

> **TEST DATES:** June 15-17, 2004

**ISSUE DATE:** July 15, 2004

## PREPARED BY: Mr. Michael W. Bell SCEC 1582-1 North Batavia Street Orange, California 92867

Report No:

2061.1014.rpt1

Tested By:

Michael W. Bell Asther Hand Reviewed By:

| Parameter                                                                                     | Units     | CAT 3512 | DD 9163-7305 | DD T163-7K16 |
|-----------------------------------------------------------------------------------------------|-----------|----------|--------------|--------------|
| Stack Heigh: Above Ground Level (1)                                                           | Ft        | 24.292   | 32.958       | 27.833       |
| Stack Inside Diameter                                                                         | In        | 11.75    | 12.875       | 15.25        |
| Stack Flow Rate                                                                               | ACFM      | 5,030    | 6,920        | 9,381        |
| Stack Flow Rate @ 68 deg F, 29.92 in Hg                                                       | DSCFM     | 1,886    | 3,600        | 4,332        |
| Stack Temp                                                                                    | Deg F     | 843      | 502          | 597          |
| Stack Moisture Content                                                                        | % Vol     | 7.4      | 4.7          | 7.0          |
| Test Load                                                                                     | KW        | 440      | 386          | 1150         |
| Horsepower (Rated @ Full Load)                                                                | BHP       | 1482     | 1515         | 2935         |
| Horsepower (Estimated Actual Based on KW Output) $^{(2)}$ $\mathcal{A} \mathcal{A}^{(2)}_{b}$ | BHP       | 652      | 547          | 1688         |
| PM Concentration (3)                                                                          | gr/DSCF   | 0.0224   | 0.0169       | 0.0103       |
| PM Mass Emissions <sup>(3)</sup>                                                              | Lb/Hr     | 0.36     | 0.52         | Q.33         |
| PM Mass Emissions (Based on Rated BHP) <sup>(3)</sup>                                         | Gm/BHP-Hr | 0.111    | 0.156        | 0.103        |
| PM Mass Emissions (Based on Estimated Actual BHP) <sup>(3)</sup>                              | Gm/BHP-Hr | 0.252    | 0.434        | 0.059        |
| O <sub>2</sub> Concentration                                                                  | % vd      | 11.59    | 16.40        | 12.30        |
| CO <sub>2</sub> Concentration                                                                 | % vd      | 6.88     | 3.38         | 6.36         |
| NO <sub>3</sub> Concentration                                                                 | ppmvd     | 1727     | 550          | 1356         |
| NO <sub>x</sub> Mass Emissions                                                                | Lb/Hr     | 23.33    | 14.18        | 42.08        |
| NO <sub>x</sub> Mass Emissions (Based on Rated BHP)                                           | Gm/BHP-Hr | 7.142    | 4.247        | 6.504        |
| NO <sub>x</sub> Mass Emissions (Based on Estimated Actual BHP)                                | Gm/BHP-Hr | 16.233   | 11.762       | 11,308       |
| CO Concentration                                                                              | ppmvd     | 242      | 105          | 79           |
| CO Mass Emissions                                                                             | Lb/Hr     | 1.99     | 1.65         | 1.49         |
| CO Mass Emissions (Based on Rated BHP)                                                        | Gm/BHP-Hr | 0.609    | 0.493        | 0.231        |
| CO Mass Emissions (Based on Estimated Actual BHP)                                             | Gm/BHP-Hr | 1.384    | 1.367        | 0.401        |
| TGNMEO Concentration                                                                          | ppmv      | 83.5     | 96.6         | 79.5         |
| TGNMEO Mass Emissions                                                                         | Lb/Hr     | 0.39     | 0.87         | 0.86         |
| TGNMEO Mass Emissions (Based on Rated BHP)                                                    | Gm/BHP-Hr | 0.120    | 0.259        | 0.133        |
| TGNMEO Mass Emissions (Based on Estimated Actual BHP)                                         | Gm/BHP-Hr | 0.273    | 0.718        | 0.231        |

# TABLE 1.1SUMMARY OF RESULTS

(i) Height was measured as best as possible; however ground level was sloped for CAT 3512 and DD 9163-7305 buildings.

<sup>(2)</sup> Horsepower is estimated based on calculated efficiency of full load generator to horsepower rating. Manufacturer curves should be utilized to more accurately determine horsepower at the test load.

<sup>(3)</sup> PM data is for the front-half (probe, nozzle and filter components). Additional PM data for the condensable fraction is provided in Appendix A.

2.4+ est.2

0100-00°

Ð

٠

| Imittant:COBACT:Cost Effectiveness:NOSource Type:MAJOREmis Increase:0Modeling:N/APublic Notice:N/ACONTROLLED EMISSIONMax Hourly:Max Daily:6.03 lbs/hrMax Daily:6.03 lbs/hrMax Hourly:6.03 lbs/hrMax Daily:24.12 lbs/dayCURRENT EMISSIONBACT 30 days Avg:1 lbs/dayAnnual Emission:301.5 lbs/yrDistrict Exemption:None                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Amittant: NOX<br>BACT:<br>Cost Effectiveness: NO<br>Gource Type: MAJOR<br>Emis Increase: 0<br>Modeling: N/A<br>Public Notice: N/A<br>CONTROLLED EMISSION<br>Max Hourly: 46.74 lbs/hr<br>Max Daily: 46.74 lbs/hr<br>Max Daily: 46.74 lbs/hr<br>Max Hourly: 46.74 lbs/hr<br>Max Daily: 186.96 lbs/day<br>CURRENT EMISSION<br>BACT 30 days Avg: 7 lbs/day<br>Annual Emission: 2337 lbs/yr |
| Emittant: PM10<br>BACT:<br>Cost Effectiveness: NO<br>Source Type: MINOR<br>Emis Increase: 0<br>Modeling: N/A<br>Public Notice: N/A<br>CONTROLLED EMISSION<br>Max Hourly: 0.64 lbs/hr<br>Max Daily: 0.64 lbs/hr<br>Max Daily: 0.64 lbs/hr<br>Max Hourly: 0.64 lbs/hr<br>Max Daily: 2.56 lbs/day<br>CURRENT EMISSION<br>BACT 30 days Avg: 0 lbs/day<br>Annual Emission: 32 lbs/yr        |

- -

.....

Hi Beth,

This attached should cover the three applications in question.

Sincerely,

David De Boer Program Supervisor Planning, Rule Development & Area Sources Phone: (909) 396-2329 Fax: (909) 396-3306

Please consider the environment before printing this email.

CONFIDENTIALITY NOTICE: This e-mail message and all attachments transmitted with it may contain legally privileged and confidential information intended solely for the use of the addressee. If the reader of this message is not the intended recipient, you are hereby notified that any reading, dissemination, distribution, copying, or other use of this message or its attachments is strictly prohibited. If you have received this message in error, please notify the sender immediately by telephone (909-396-2329) or by electronic mail (<u>ddeboer@aqmd.gov</u>), and delete this message and all copies and backups thereof. Thank you.

From: Elizabeth.Storelli@ch2m.com [mailto:Elizabeth.Storelli@ch2m.com] Sent: Thursday, November 29, 2012 4:31 PM To: David De Boer Subject: CH2M HIII - additional data request

Hi Dave,

Thank you for speaking with me this evening. As I mentioned, we are working on a cumulative air quality analyses on the area surrounding our client's project site in Huntington Beach.

Attached is our original Public Records Request. We did receive the 'ENG Application Folder' for the Appl #'s listed below, but they did not contain some information that we still need. Our Control # was 70234.

Therefore, can you please provide us with the following information for Orange County Sanitation District Facility District Facility (ID: 29110) Application #s: 455673, 455671, 455670:

- Stack parameters (height(ft), diameter(ft), temp(F), velocity(FPs))
- Emissions Data

For clarity, I inserted the table we are trying to populate:

|               |        |                                |         | Stack Para | meters | rs       |     |    | Emissions (lb/hr) |      |       |     | Annual Emissions (tpy) |       |
|---------------|--------|--------------------------------|---------|------------|--------|----------|-----|----|-------------------|------|-------|-----|------------------------|-------|
| Application   | Permit |                                | Stack   | Diameter   | Temp   | Velocity |     |    |                   |      |       |     |                        |       |
| Number        | Number | Equipment Description          | Ht (ft) | (ft)       | (F)    | (FPs)    | Nox | со | SO2               | PM10 | PM2.5 | Nox | PM10                   | PM2.5 |
|               |        | I C E (50-500 HP) EM ELEC GEN- |         |            |        |          |     |    |                   |      |       |     |                        |       |
| <u>455673</u> | F81556 | DIESEL                         |         |            |        |          |     |    |                   |      |       |     |                        |       |
|               |        | I C E (50-500 HP) EM ELEC GEN- |         |            |        |          |     |    |                   |      |       |     |                        |       |
| <u>455671</u> | F81555 | DIESEL                         |         |            |        |          |     |    |                   |      |       |     |                        |       |
|               |        | I C E (50-500 HP) EM ELEC GEN- |         |            |        |          |     |    |                   |      |       |     |                        |       |
| <u>455670</u> | F81554 | DIESEL                         |         |            |        |          |     |    |                   |      |       |     |                        |       |

Please feel free to call if you have any additional questions.

Thank you,

Beth Storelli

CH2M HILL 2485 Natomas Park Drive, Suite 600 Sacramento, CA 95833 Office 916.286.0259 elizabeth.storelli@ch2m.com Equipment Certification/Registration Program

## APPLICATION PROCESSING AND CALCULATIONS

| PAGES         | PAGE       |
|---------------|------------|
| 4             | 3          |
| APPL. NO.     | DATE       |
| <u>416967</u> | 7/9/03     |
| PROCESSED BY  | CHECKED BY |
| RCP           | Ì          |

SOx:

- Compliance with sulfur content limit of 0.05% by weight is expected and will be a required permit condition.
- <u>Rule 1401:</u> This equipment is exempted from requirements of this rule as per (g)(1)(F).

<u>EPA Grant 105</u> - Operating on a standby basis, emissions from these engines will not exceed the emissions specified in the Grant 105 Memorandum dated 2-16-84.

### DISCUSSION

It has been determined that the equipment will operate in compliance with all the applicable Rules and Regulations of the District.

#### RECOMMENDATION

Approve manufacturer's certification subject to the following permit conditions:

PERMIT CONDITIONS

#### Manufacturer Condition

1. THIS CERTIFIED EQUIPMENT PERMIT FOR THIS EQUIPMENT SHALL NOT RELIEVE THE PERSON CONSTRUCTING, INSTALLING OR OPERATING THE EQUIPMENT AT EACH SPECIFIC SITE FROM THE REQUIREMENT TO OBTAIN ALL NECESSARY PERMIT(S) TO CONSTRUCT AND PERMIT(S) TO OPERATE OR, FROM COMPLIANCE WITH ANY OTHER DISTRICT RULES INCLUDING THE REQUIREMENTS OF REGULATION XIII.

#### End User ConditionS

- 1. OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN ACCORDANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THIS APPLICATION UNDER WHICH A PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW.
- 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES.
- 3. A TIMER SHALL BE MAINTAINED TO INDICATE THE ENGINE ELAPSED OPERATING TIME.
- 4. AN ENGINE OPERATING LOG LISTING THE DATE OF OPERATION, THE ELAPSED TIME, IN HOURS, AND THE REASON FOR OPERATION SHALL BE KEPT AND MAINTAINED ON FILE FOR A MINIMUM OF TWO YEARS AND MADE AVAILABLE TO DISTRICT PERSONNEL UPON REQUEST.

| Application# 419969           | .: |
|-------------------------------|----|
| Detriot Diesel-Model T1637M36 | •  |
| EPA Certified-DDX-NR9-03-02   |    |
| Engine Family-3DDXL65.0GTP    |    |
| 2936 BPH/2190 Kw              |    |
| 16cyl, Diesel fuel, T/A       |    |

| Engine rating (BHP)            | 2936 |
|--------------------------------|------|
| Max. Daily operation (Hrs)     | 3.5  |
| Max. Month Operation (Hrs)     | 5.5  |
| Average Yearly Operation (Hrs) | 29   |

| • |                                    | RHC           | NÔX     | SOx    | CO      | PM   |
|---|------------------------------------|---------------|---------|--------|---------|------|
|   | E.F. (g/BHP-hr                     | - n. <b>1</b> | 6.9     | 0.184  | 8.5     | 0.4  |
|   | g/hr                               | 2936.0        | 20258.4 | 540.22 | 24956.0 | 1174 |
|   | lbs/hr                             | 6.47          | 44.66   | 1.19   | 55.02   | 2.59 |
|   | lbs/day-Distributor's Location (30 |               |         |        |         |      |
|   | day avg)*                          | 0             | 0       | 0      | 0       | 0    |
|   | Ibs/yr-Distributors Location*      | <br>0         | 0       | 0      | 0       | 0    |
|   | *To be debited to end user's       |               |         |        |         |      |
|   | location                           |               |         |        |         |      |

| End User Emission Increases | RHC    | NOX     | SOx   | CO      | PM     |
|-----------------------------|--------|---------|-------|---------|--------|
| Gms/hr                      | 2936.0 | 20258.4 | 540.2 | 24956.0 | 1174.4 |
| Lbs/hr                      | 6.47   | 44.66   | 1.19  | 55.02   | 2.59   |
| Lbs/day (max)               | 23     | 156     | 4     | 193     | 9      |
| Lbs/day (30 day average)    | 1      | 8       | 0     | 10      | 0      |
| Lbs/yr                      | 188    | 1295    | 35    | 1596    | 75     |

|                       |                  |                          |                  |                   | ARLON GRAPHICS L.L.C Facili                            | ty 167066 So        | urces                                     |                                                                                                                              |
|-----------------------|------------------|--------------------------|------------------|-------------------|--------------------------------------------------------|---------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Application<br>Number | Permit<br>Number | Permit<br>Issued<br>Date | Permit<br>Status | Equipment<br>Type | Equipment Description                                  | Application<br>Date | Application Status                        | Reference of data for Analysis /<br>Reason for Exclusion from Analysis                                                       |
| <u>532299</u>         |                  |                          |                  | Basic             | TITLE V PERMIT RENEWAL APPLICATION                     | 7/5/2011            | BANKING/ PLAN GRANTED                     | Source not included in analysis.<br>Administrative change only.                                                              |
| 534234                |                  |                          |                  | Control           | REGENERATIVE/RECUPERATIVE OXIDIZER<br>CERAMIC/HOT ROCK | 3/21/2012           | APPLICATION CHANGED<br>FROM CLASS I - III | Data obtained from direct<br>correspondence with SCAQMD and<br>Title V permit renewal application #<br>532299                |
| 532302                |                  |                          |                  | Control           | REGENERATIVE/RECUPERATIVE OXIDIZER<br>CERAMIC/HOT ROCK | 2/14/2012           | APPLICATION CHANGED<br>FROM CLASS I - III | Source not included in analysis.<br>Application resulted in net decrease in<br>emissions. See correspondence with<br>SCAQMD. |
| 519602                |                  |                          | ACTIVE           | Control           | REGENERATIVE/RECUPERATIVE OXIDIZER<br>CERAMIC/HOT ROCK | 3/9/2011            | PERMIT TO OPERATE<br>GRANTED              | Source not included in analysis.<br>Administrative change only. See<br>correspondence with SCAQMD.                           |

#### TELEPHONE CONVERSATION RECORD

Call To: Rene Loof, Engineer, South Coast Air Quality Management District

Phone No.: (909) 396-2544

Call From: Beth Storelli

**Date:** 12/5/12

Time: 3:40pm

Message Taken By: Beth Storelli

Subject: Source Information

Project No.: 458993.01.01

#### Notes:

I requested the following information from Mr. Loof:

- Need 3 applications for the RTO (thermal oxidizers): 534234, 532302, 519602 \_
- Control # 70237 ARLON GRAPHICS L.L.C. Facility 167066 \_
  - Appl # 534234
  - Need stack parameters for RTO (application # 534234)

Mr. Loof provided me with the following information:

Application #534234: Flow: 57,500 scf Ht: 25 ft Dia: 52 inches Temp: 195 F

Application #532302: This application was a change of conditions to make it more of a standby RTO. He had to go back to an application from Nov 29, 1995 (App #: 348436) to provide me with the following information:

Flow: 57,500 scf Ht: 25 ft Dia: 52 inches Temp: 195 F

Application #519602: Mr. Loof did not have this application. According to FIND, this application was for Change of Ownership, so would not be applicable for us. Mr. Loof mentioned that 532302 could have replaced 519602.

If we want the whole application/permits, we would need to go back through the Public Request process.

| SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT | PAGES     | PAGE        |
|---------------------------------------------|-----------|-------------|
|                                             | 24        | 17          |
| ENGINEERING DIVISION                        | APPL. NO. | DATE        |
|                                             | see below | x  05/18/12 |
| APPLICATION PROCESSING AND CALCULATIONS     | PRCSD BY  | CHCKD BY    |
|                                             | REL       |             |
|                                             |           | •           |

| Contaminant | C28 RTO 30 day<br>average | C4 coating 30<br>day average | C4 afterburner<br>30 day average | Delta |
|-------------|---------------------------|------------------------------|----------------------------------|-------|
| ROG*        | 0                         | 0.216                        | 0 .                              | 0     |
| NOx         | 19.87                     | 1.20                         | 23.8                             | -2.73 |
| Sox         | 0.17                      | 0.03                         | 0.15                             | +0.05 |
| CO          | 12.21                     | 2.288                        | 6.4                              | +8.09 |
| PM10        | 1.54                      | 0.231                        | 1.371                            | +0.4  |

\*the facility operates under a VOC cap and the operation of the new line will be kept under the facility VOC limit.

#### **Risk Assessment:**

Application 534232 Device C28 (new RTO)

This equipment passes Tier 2 Screen Risk Assessment for the combustion emissions from the new RTO with the following results:

Tier 2 results:

Μ

| ICR | Residential                        | Commercial                      |           |
|-----|------------------------------------|---------------------------------|-----------|
|     | ASI                                | ASI                             |           |
|     | 1.25E-08                           | 1.04 E-08                       |           |
| -   | Passes                             | Passes                          |           |
|     | The Hazard Index had no cumulative | impact that exceeded 1.0 for th | ne target |

organs for Acute or Chronic.

#### Application 532302 Device C4 (existing Afterburner)

This equipment is having its exhaust modified to accommodate the new C4 coating line. It is limited to 25,000 cfm and will not see an increased capacity. C4 will be conditioned so that it can only vent two lines at anytime. The modification will not cause an increase in toxic emissions and is exempt from the requirements of Rule 1401 pursuant to 1401(g)(1)(B) "Modifications with no increase in risk."

#### Application 532300 Device D26 & D27 (existing Prime Coating Line)

This application has been submitted as a change of condition to change the reporting method for triethylamine(TEA) usage. Originally the facility reported total gallons of material that included a diluted concentrated which contained TEA. They are requesting to report only TEA usage. Condition C1.3 will change from 16,560 gallons per month of materials containing TEA to 580 pounds per month of TEA. The content restriction of TEA in B59.3 will be removed. There will be no increase in TEA therefore this change of condition is exempt from the requirements of Rule 1401 pursuant to 1401(g)(1)(B).

Application 534234 Device D30 & D31 (New Vinyl Coating Line C4) The new coating line will use the following hazardous materials:

| new coating line will | use the following nazardous | materials: |
|-----------------------|-----------------------------|------------|
| <u>Contaminant</u>    | Annual Controlled           | Hourly     |
| Ethylbenzene          | 3.0 lbs/yr                  | 3.434E-04  |
| Xylene                | 6,337                       | 0.725      |

Attachment DR11-3 Summary of Dispersion Modeling Parameters and Results

# ATTACHMENT DR11-3 Cumulative Dispersion Modeling Information

Tables presented in this attachment are as follows:

| Table DR11-3.1  | Cumulative Modeling Parameters - Stack Parameters |
|-----------------|---------------------------------------------------|
| Table DR11-3.2  | Cumulative Modeling Parameters - Emission Rates   |
| Table DR11-3.3  | Cumulative Modeling Results Summary               |
|                 |                                                   |
| Figure DR11-3.1 | AERMOD Cumulative Model Setup                     |
| Figure DR11-3.2 | Cumulative Receptor Grids                         |

Huntington Beach Energy Project Attachment DR11-3 Table DR11-3.1 Cumulative Modeling Parameters - Stack Parameters January 2013

| Point Sources        |           |             |              |                |              |             |               |                |
|----------------------|-----------|-------------|--------------|----------------|--------------|-------------|---------------|----------------|
| Facility             | Source ID | Easting (X) | Northing (Y) | Base Elevation | Stack Height | Temperature | Exit Velocity | Stack Diameter |
|                      |           | (m)         | (m)          | (m)            | (m)          | (K)         | (m/s)         | (m)            |
|                      | Stack 1   | 409185      | 3723252      | 3.7            | 36.6         | 461         | 15.4          | 5.49           |
|                      | Stack 2   | 409216      | 3723231      | 3.7            | 36.6         | 461         | 15.4          | 5.49           |
|                      | Stack 3   | 409245      | 3723210      | 3.7            | 36.6         | 461         | 15.4          | 5.49           |
| HDEP (1-111 NO2, CO) | Stack 4   | 409522      | 3723157      | 3.7            | 36.6         | 461         | 15.4          | 5.49           |
|                      | Stack 5   | 409522      | 3723194      | 3.7            | 36.6         | 461         | 15.4          | 5.49           |
|                      | Stack 6   | 409522      | 3723230      | 3.7            | 36.6         | 461         | 15.4          | 5.49           |
|                      | Stack 1   | 409185      | 3723252      | 3.7            | 36.6         | 455         | 21.8          | 5.49           |
|                      | Stack 2   | 409216      | 3723231      | 3.7            | 36.6         | 455         | 21.8          | 5.49           |
| HBEP (SO2, 24-hr     | Stack 3   | 409245      | 3723210      | 3.7            | 36.6         | 455         | 21.8          | 5.49           |
| PM10, 24-hr PM2.5)   | Stack 4   | 409522      | 3723157      | 3.7            | 36.6         | 455         | 21.8          | 5.49           |
|                      | Stack 5   | 409522      | 3723194      | 3.7            | 36.6         | 455         | 21.8          | 5.49           |
|                      | Stack 6   | 409522      | 3723230      | 3.7            | 36.6         | 455         | 21.8          | 5.49           |
|                      | Stack 1   | 409185      | 3723252      | 3.7            | 36.6         | 471         | 23.6          | 5.49           |
|                      | Stack 2   | 409216      | 3723231      | 3.7            | 36.6         | 471         | 23.6          | 5.49           |
| HRED (Appual NOv)    | Stack 3   | 409245      | 3723210      | 3.7            | 36.6         | 471         | 23.6          | 5.49           |
|                      | Stack 4   | 409522      | 3723157      | 3.7            | 36.6         | 471         | 23.6          | 5.49           |
|                      | Stack 5   | 409522      | 3723194      | 3.7            | 36.6         | 471         | 23.6          | 5.49           |
|                      | Stack 6   | 409522      | 3723230      | 3.7            | 36.6         | 471         | 23.6          | 5.49           |
|                      | Stack 1   | 409185      | 3723252      | 3.7            | 36.6         | 460         | 16.7          | 5.49           |
|                      | Stack 2   | 409216      | 3723231      | 3.7            | 36.6         | 460         | 16.7          | 5.49           |
| HBEP (annual PM10,   | Stack 3   | 409245      | 3723210      | 3.7            | 36.6         | 460         | 16.7          | 5.49           |
| annual PM2.5)        | Stack 4   | 409522      | 3723157      | 3.7            | 36.6         | 460         | 16.7          | 5.49           |
|                      | Stack 5   | 409522      | 3723194      | 3.7            | 36.6         | 460         | 16.7          | 5.49           |
|                      | Stack 6   | 409522      | 3723230      | 3.7            | 36.6         | 460         | 16.7          | 5.49           |
| OC Sanitation 1      | OC11      | 412725      | 3728250      | 7.7            | 18.9         | 533         | 17.9          | 0.76           |
| oe samadon 1         | OC12      | 412725      | 3728250      | 7.7            | 12.8         | 455         | 9.3           | 0.46           |
| OC Sanitation 2      | OC22      | 411100      | 3722400      | 1.6            | 8.5          | 587         | 33.9          | 0.39           |
| Arlon Graphics       | AG        | 414875      | 3730325      | 13.5           | 7.6          | 364         | 24.5          | 1.32           |

Huntington Beach Energy Project Attachment DR11-3 Table DR11-3.2 Cumulative Modeling Parameters - Emission Rates January 2013

| Source ID | 1-hr NO <sub>2</sub> |         | 1-hr NO <sub>2</sub> 1-hr CO |         | 8-h   | 8-hr CO |         | 1-hr SO <sub>2</sub> |         | 3-hr SO <sub>2</sub> |         | r SO <sub>2</sub> | 24-hr  | PM <sub>10</sub> | 24-hr PM <sub>2.5</sub> |         |
|-----------|----------------------|---------|------------------------------|---------|-------|---------|---------|----------------------|---------|----------------------|---------|-------------------|--------|------------------|-------------------------|---------|
|           | (g/s)                | (lb/hr) | (g/s)                        | (lb/hr) | (g/s) | (lb/hr) | (g/s)   | (lb/hr)              | (g/s)   | (lb/hr)              | (g/s)   | (lb/hr)           | (g/s)  | (lb/hr)          | (g/s)                   | (lb/hr) |
| Stack 1   | 3.21                 | 25.5    | 14.5                         | 115     | 5.72  | 45.4    | 0.31    | 2.45                 | 0.31    | 2.45                 | 0.31    | 2.45              | 1.20   | 9.50             | 1.20                    | 9.50    |
| Stack 2   | 3.21                 | 25.5    | 14.5                         | 115     | 5.72  | 45.4    | 0.31    | 2.45                 | 0.31    | 2.45                 | 0.31    | 2.45              | 1.20   | 9.50             | 1.20                    | 9.50    |
| Stack 3   | 3.21                 | 25.5    | 14.5                         | 115     | 5.72  | 45.4    | 0.31    | 2.45                 | 0.31    | 2.45                 | 0.31    | 2.45              | 1.20   | 9.50             | 1.20                    | 9.50    |
| Stack 4   | 3.21                 | 25.5    | 14.5                         | 115     | 5.72  | 45.4    | 0.31    | 2.45                 | 0.31    | 2.45                 | 0.31    | 2.45              | 1.20   | 9.50             | 1.20                    | 9.50    |
| Stack 5   | 3.21                 | 25.5    | 14.5                         | 115     | 5.72  | 45.4    | 0.31    | 2.45                 | 0.31    | 2.45                 | 0.31    | 2.45              | 1.20   | 9.50             | 1.20                    | 9.50    |
| Stack 6   | 3.21                 | 25.5    | 14.5                         | 115     | 5.72  | 45.4    | 0.31    | 2.45                 | 0.31    | 2.45                 | 0.31    | 2.45              | 1.20   | 9.50             | 1.20                    | 9.50    |
| OC11      | 2.90                 | 23.01   | 6.94                         | 55.1    | 6.94  | 55.1    | 0.28    | 2.25                 | 0.28    | 2.25                 | 0.28    | 2.25              | 0.28   | 2.25             | 0.28                    | 2.25    |
| OC12      | 0.03                 | 0.22    | 0.11                         | 0.90    | 0.11  | 0.90    | 0.016   | 0.13                 | 0.016   | 0.13                 | 0.016   | 0.13              | 0.007  | 0.056            | 0.0071                  | 0.056   |
| OC22      | -                    | -       | -                            | -       | 2.60  | 20.6    | -       | -                    | 0.15    | 1.19                 | 0.019   | 0.15              | 0.041  | 0.32             | 0.041                   | 0.32    |
| AG        | -                    | -       | 0.042                        | 0.34    | 0.042 | 0.34    | 0.00026 | 0.0021               | 0.00026 | 0.0021               | 0.00026 | 0.0021            | 0.0021 | 0.017            | 0.0021                  | 0.017   |

#### Emission Rates for Annual Modeling

| Source ID | Annua | al NO <sub>2</sub> | Annua  | I PM <sub>10</sub> | Annual PM <sub>2.5</sub> |       |  |  |
|-----------|-------|--------------------|--------|--------------------|--------------------------|-------|--|--|
|           | (g/s) | (tpy)              | (g/s)  | (tpy)              | (g/s)                    | (tpy) |  |  |
| Stack 1   | 1.18  | 40.9               | 0.52   | 18.0               | 0.52                     | 18.0  |  |  |
| Stack 2   | 1.18  | 40.9               | 0.52   | 18.0               | 0.52                     | 18.0  |  |  |
| Stack 3   | 1.18  | 40.9               | 0.52   | 18.0               | 0.52                     | 18.0  |  |  |
| Stack 4   | 1.18  | 40.9               | 0.52   | 18.0               | 0.52                     | 18.0  |  |  |
| Stack 5   | 1.18  | 40.9               | 0.52   | 18.0               | 0.52                     | 18.0  |  |  |
| Stack 6   | 1.18  | 40.9               | 0.52   | 18.0               | 0.52                     | 18.0  |  |  |
| OC11      | 1.93  | 67.2               | 0.19   | 6.57               | 0.19                     | 6.57  |  |  |
| OC12      | 0.046 | 1.60               | 0.017  | 0.60               | 0.017                    | 0.60  |  |  |
| OC22      | 0.15  | 5.38               | 0.0049 | 0.17               | 0.0049                   | 0.17  |  |  |
| AG        | -     | -                  | 0.0021 | 0.073              | 0.0021                   | 0.073 |  |  |

#### Huntington Beach Energy Project Attachment DR11-3 Table DR11-3.3 Cumulative Modeling Results Summary January 2013

| Source Group | Year | NO <sub>2</sub> ( | μg/m³) | CO (μ | g/m3) |        | SO <sub>2</sub> (μg/m3) |        | PM <sub>10</sub> ( | μg/m3) | PM <sub>2.5</sub> (μg/m3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |  |
|--------------|------|-------------------|--------|-------|-------|--------|-------------------------|--------|--------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|
|              |      | 1-hr              | Annual | 1-hr  | 8-hr  | 1-hr   | 3-hr                    | 24-hr  | 24-hr              | Annual | 24-hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Annual |  |
|              | 2005 | 17.2              | 1.36   | 101   | 39.0  | 2.10   | 3.62                    | 0.66   | 2.26               | 0.45   | 2.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.45   |  |
| ALL          | 2006 | 28.1              | 1.41   | 159   | 46.7  | 2.19   | 3.26                    | 0.61   | 1.86               | 0.42   | 1.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.42   |  |
|              | 2007 | 28.4              | 1.13   | 161   | 33.9  | 2.13   | 2.70                    | 0.73   | 2.81               | 0.33   | PM2.5 (μg/m3)           24-hr         Annu           2.26         0.4           1.86         0.4           2.81         0.3           2.24         0.4           1.83         0.4           2.81         0.3           2.24         0.4           1.83         0.4           2.80         0.3           0.58         0.1           0.58         0.1           0.376         0.01           0.376         0.00           0.0080         0.00           0.0090         0.00           0.0083         0.00 | 0.33   |  |
|              | 2005 | 17.2              | 0.86   | 101   | 23.8  | 1.41   | 1.19                    | 0.58   | 2.24               | 0.44   | 2.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.44   |  |
| HBEP         | 2006 | 28.1              | 0.81   | 159   | 22.4  | 1.55   | 1.25                    | 0.47   | 1.83               | 0.41   | 1.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.41   |  |
|              | 2007 | 28.4              | 0.62   | 161   | 30.9  | 2.13   | 1.56                    | 0.72   | 2.80               | 0.32   | 2.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.32   |  |
|              | 2005 | 15.9              | 1.13   | 48.2  | 36.0  | 2.10   | 1.66                    | 0.61   | 0.58               | 0.13   | 0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.13   |  |
| OC1          | 2006 | 16.7              | 1.18   | 50.5  | 26.5  | 2.18   | 1.54                    | 0.57   | 0.54               | 0.14   | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.14   |  |
|              | 2007 | 15.8              | 0.94   | 47.8  | 22.0  | 2.10   | 1.46                    | 0.60   | 0.58               | 0.11   | 0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.11   |  |
|              | 2005 | -                 | 0.32   | -     | 39.0  | -      | 3.62                    | 0.225  | 0.490              | 0.010  | 0.490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.010  |  |
| OC2          | 2006 | -                 | 0.34   | -     | 46.5  | -      | 3.26                    | 0.173  | 0.376              | 0.011  | 0.376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.011  |  |
|              | 2007 | -                 | 0.26   | -     | 33.9  | -      | 2.70                    | 0.180  | 0.391              | 0.008  | 0.391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.008  |  |
|              | 2005 | -                 | -      | 0.44  | 0.32  | 0.0027 | 0.0025                  | 0.0010 | 0.0080             | 0.0033 | 0.0080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0033 |  |
| AG           | 2006 | -                 | -      | 0.48  | 0.36  | 0.0030 | 0.0026                  | 0.0011 | 0.0090             | 0.0031 | 0.0090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0031 |  |
|              | 2007 | -                 | -      | 0.58  | 0.30  | 0.0036 | 0.0029                  | 0.0010 | 0.0083             | 0.0025 | 0.0083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0025 |  |

Huntington Beach Energy Project Attachment DR11-3 Figure DR11-3.1 January 2013 Cumulative Model Setup



#### Huntington Beach Energy Project Attachment DR11-3 Figure DR11-3.2 January 2013 Cumulative Receptor Grids

| 397,000 | 399 | 1,000    | 401       | ,000     | 403                                     | 3,000    | 405                                     | ,000     | 407      | ,000  | 409      | 9,000    | 411    | 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 413      | 3,000 | 415          | ,000 | 417               | ,000     | 419          | ,000 | 421 | ,000     | 423,000   |
|---------|-----|----------|-----------|----------|-----------------------------------------|----------|-----------------------------------------|----------|----------|-------|----------|----------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|--------------|------|-------------------|----------|--------------|------|-----|----------|-----------|
|         |     | !        |           | <u>.</u> |                                         | <u> </u> |                                         | !        | <u>.</u> |       | <u>.</u> |          |        | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |       | <u>.</u>     |      | <u>.</u>          |          | <u>.</u>     |      | 1   |          | 3 733 000 |
|         |     |          |           |          | 1.                                      |          |                                         |          |          |       |          |          |        | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |       |              |      |                   |          |              |      | ļ   |          | 0,100,000 |
|         |     |          |           |          |                                         |          |                                         |          |          |       |          | ÷        |        | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ÷        |       |              | ••   |                   | ÷        |              |      | +   |          | 3,732,000 |
|         |     | • •      | • •       | • •      | • •                                     | • •      | • •                                     | • •      | • •      | • •   | • •      | • •      | • •    | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • •      | • •   | • •          | •••  | • •               | • •      | • •          | • •  | -   |          |           |
|         |     |          | • • • • • |          |                                         | ·        | • • • • •                               |          | +        |       | ÷        | +        | ÷      | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ÷        |       |              |      | ÷                 |          | +            |      | +   |          | 3,731,000 |
|         |     | •••      | • •       | •••      | • •                                     | • •      | • •                                     | •••      | •••      | •••   | • •      | • •      | • •    | •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • •      | • •   | -            | •    | • •               | • •      | • •          | •••  | •   |          |           |
|         |     | <u>.</u> |           | <u>.</u> |                                         |          |                                         | <u>.</u> | <u>.</u> | ÷     |          |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |       | ÷            |      |                   |          |              |      |     |          | 3,730,000 |
|         |     | ļ        |           | ļ        |                                         |          |                                         | ļ        | ļ        |       | ļ        | ļ        | ļ      | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ļ        |       |              |      |                   | ļ        | ļ            |      | ļ   | ļ        | 3.729.000 |
|         |     | 4.       |           |          | ÷ .                                     |          |                                         | 4.       |          |       |          |          |        | ÷ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -        | 7.    |              |      |                   |          | ÷ .          |      | ł   |          |           |
|         |     | ÷        | •         | ÷        | • • • • • • • •                         | ÷        | •                                       | ÷        | +        | •     | ÷        | +        | ÷      | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ΗĿ       | 4     | - <b>-</b>   | ••   | ÷                 | +        | +            |      | +   |          | 3,728,000 |
|         |     | • •      | • •       | • •      | • •                                     | • •      | • •                                     | • •      | • •      | • •   | • •      | • •      | • •    | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • •      | • •   | • •          | •••  | • •               | • •      | ÷ •          | • •  | ł   |          |           |
|         |     | +        | +         | +        | +                                       | +        | +                                       | +        | +        | ÷     | +        | +        | +      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +        | +     | +            | •    | +                 | +        | +            | ֥    | +   |          | 3,727,000 |
|         |     | : ·      |           | •••      | 1                                       |          |                                         | •••      | haddaad  | in in | ii.      | İmin     | inin 1 | i di sectione de la compacte de la compa |          |       | 1            | •••  | 1                 | 1        | 1            | •••  | 1   |          | 2,720,000 |
|         |     |          |           |          |                                         |          |                                         |          |          |       |          |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |       |              |      |                   |          |              |      | 1   |          |           |
|         |     |          |           | +        |                                         |          |                                         |          |          |       |          |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |       |              |      |                   | ÷        |              |      |     |          | 3,725,000 |
|         |     | ÷ •      |           | ÷ •      | ÷ •                                     |          |                                         | ÷ •      |          |       |          |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |       |              |      |                   |          |              |      | -   |          |           |
|         |     | +        |           | +        |                                         | +        |                                         | +        |          |       |          |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | +     |              |      | +                 | +        | +            |      | +   |          | 3,724,000 |
|         |     | · ·      | · ·       | · ·      | ÷ •                                     | • •      | · ·                                     | · ·      |          |       |          |          |        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | • •   | ÷ •          | • •  | ÷ •               | ÷ •      | ÷ •          | • •  | ł   |          |           |
|         |     | +        | •         | +        | •                                       | +        | •                                       | +        |          |       |          | M        |        | УI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | +     | -+           | ••   | +                 | +        | +            | +    | +   |          | 3,723,000 |
|         |     | •        | •         | •        | 1                                       | • •      | •                                       | •        |          |       |          |          | T. K   | ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | •     | •            | •    | •                 | •        |              | •    | 1   |          | 2 700 000 |
|         |     |          |           |          |                                         |          |                                         |          |          |       |          |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |       |              |      |                   |          |              |      | 1   |          |           |
|         |     | +        |           | +        |                                         |          |                                         | +        |          |       |          |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | +     |              |      |                   | +        | +            | ֥    | +   |          | 3,721,000 |
|         |     | ÷ •      |           | ÷ •      | ÷ •                                     |          |                                         | ÷ •      |          |       |          |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | • •   |              | • •  |                   | · ·      | ÷ •          |      | ł   |          |           |
|         |     | +        | •         | +        | •                                       | +        | • • • • • • • • • • • • • • • • • • • • | +        | ļ        |       |          | ļ        |        | <b>.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | +     | - <b>-</b>   | •    | • • • • • • • • • | +        | +            | ֥    | +   |          | 3,720,000 |
|         |     | · ·      | • •       | • •      | ÷ •                                     | • •      | • •                                     | • •      | • •      | • •   | • •      | • •      | • •    | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •        | • •   | • •          | •••  | • •               | •        | • •          | • •  | •   |          |           |
|         |     | +        | +         | +        | •                                       | +        | +                                       | +        | +        | +     | +        | +        | +      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +        | +     | •            | +    | +                 | +        | +            | +•   | +   |          | 3,719,000 |
|         |     | 1        |           | 1        | <u>.</u>                                |          |                                         | 1        | <u>.</u> |       | <u>.</u> | <u>.</u> | 1      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>.</u> |       | <u>.</u>     |      | 1                 | <u>.</u> | <u>.</u>     |      | 1   | <u>.</u> | 3 718 000 |
|         |     |          |           |          |                                         |          |                                         |          |          |       |          |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |       |              |      |                   |          |              |      |     |          | 0,110,000 |
|         |     | ÷        | ÷         | ÷        | · • - · • ·                             |          | ÷                                       | ÷        | ÷        | ÷     | +        | ÷        | ÷      | -+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ÷        | ÷     | - <b>+</b> • | ÷    | +                 | ÷        | - <b>+</b> • |      | 4   |          | 3,717,000 |
|         |     | • •      | • •       | • •      | • •                                     | • •      | • •                                     | • •      | • •      | • •   | • •      | •        | • •    | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • •      | • •   | • •          | • •  | • •               | •        | • •          | • •  |     |          |           |
|         |     | +        | •         | +        | • • • • • • • • • • • • • • • • • • • • | •        | •                                       | +        |          |       | •        | +        | +      | -+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +        | •     |              | •    | •                 | +        | +            | +    | +   |          | 3,716,000 |
|         |     | • •      | • •       | • •      | • •                                     | • •      | • •                                     | • •      | •        | • •   | • •      | • •      |        | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · ·      | • •   | • •          | • •  | • •               | • •      | •            | • •  | 1   |          |           |
|         |     | +        |           | +        |                                         | •        |                                         | +        | +        | •     | ÷        | +        | +      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +        | +     | +            | •    | ÷                 | +        | •            | ••   |     |          | 3,715,000 |
|         |     | ļ        |           |          |                                         |          |                                         | ļ        | ļ        |       | ļ        |          | ļ      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ļ        |       |              |      | ļ                 |          |              |      |     | ļ        | 3,714 000 |
|         |     |          |           |          |                                         |          |                                         |          |          |       |          |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |       |              |      |                   |          |              |      |     |          | 5,174,000 |
| 1       | 1   | 1        | 1         | 1        | 1                                       | 1        | 1                                       | 1        | 1        | 1     | 1        | 1        | 1      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1        | 1     | 1            | 1    | 1                 | 1        | 1            | 1    | 1   | 1        | 1         |

## BACKGROUND

The AFC (Section 5.2.3.3.1) states that the critical load for atmospheric nitrogen deposition into coastal wetlands is difficult to establish because wetlands subject to tidal exchange have open nutrient cycles. It further states that nitrogen loading in wetlands is often affected by sources other than atmospheric deposition. In addition, it states that air pollution controls limit emissions of oxides of nitrogen and that RECLAIM puts a cap on region wide NOx emissions. The section concludes that the HBEP nitrogen deposition impacts are not expected to contribute significantly to nitrogen loading on coastal salt marshes. However, there is no discussion of the relative location of the proposed project and sensitive habitats that could be affected by nitrogen emissions from HBEP nor is there a quantitative analysis of nitrogen deposition impacts.

Background data that could be used in conjunction with nitrogen deposition modeling for the HBEP could be established using available resources such as the California Energy Commission publication *Assessment of Nitrogen Deposition: Modeling and Habitat Assessment* (CEC-500-2006-032, March 2007). However, because no nitrogen deposition modeling was performed for the HBEP, this step is still needed and the qualitative information provided in the AFC does not support the applicant's conclusion that nitrogen deposition from HBEP emissions would have no impacts on coastal salt marshes. Energy Commission staff believes that nitrogen deposition resulting from emissions from the proposed HBEP, namely nitrogen oxides (NO<sub>x</sub>) and ammonia (NH<sub>3</sub>) could have negative impacts on biological resources and that a quantitative analysis of such impacts is needed.

Impacts of excessive nitrogen deposition to plant communities include direct toxicity, changes in species composition among native species and enhancement of non-native invasive species. The increased dominance and growth of invasive annual grasses is especially prevalent in low-biomass vegetation communities that are naturally nitrogen-limited, such as salt marshes. Invasive non-native vegetation, enhanced by atmospheric nitrogen deposition, affects these species by outcompeting them for space, sunlight, moisture, and nutrients. The salt marshes fringing estuaries intercept a substantial part of the land-derived nitrogen load and thus protect other components of estuaries from eutrophication; loss of these fringing marshes would therefore have wider consequences. Additionally, southern coastal salt marsh, southern coast live oak woodland, and southern dune scrub located in the vicinity of the project site could potentially be impacted by nitrogen deposition contributed by the HBEP. The anticipated nitrogen emissions may contribute to the ongoing (cumulative) degradation of sensitive species habitat located near the project site.

In order to assess impacts to nitrogen-sensitive biological resources, staff requires additional information on nitrogen deposition as established by proper modeling of nitrogen emissions resulting from the HBEP.

## DATA REQUEST

23. Please quantify the existing baseline total nitrogen deposition rate in the vicinity of the HBEP in kilograms per hectare per year (kg/ha/yr). The geographical extent of the nitrogen deposition mapping should be directed by the results, i.e. extend geographically to where the deposition is considered below any stated threshold of significance for vegetation communities. Conduct a literature review to identify appropriate thresholds. Thresholds for nitrogen deposition by vegetation type are available within the March 2007 California Energy Commission PIER report, titled "Assessment of Nitrogen Deposition: Modeling and Habitat Assessment," available at: http://www.energy.ca.gov/2006publications/CEC-500-2006-032/CEC-500-2006-032.PDF, and the May 2007 California Energy Commission PIER report, titled "Impacts of Nitrogen Deposition on California Ecosystems and Biodiversity, available at:

http://www.energy.ca.gov/2005publications/CEC-500-2005-165/CEC-500-2005-165.PDF. Please include references and guidelines used in your baseline analyses.

**Response:** Based on nitrogen deposition rates presented in the California Energy Commission's *Impacts of Nitrogen Deposition on California Ecosystem and Biodiversity*,<sup>2</sup> the background nitrogen deposition rates in the South Coast Air Basin ranges from 1 or 2 kg-N ha<sup>-1</sup> yr<sup>-1</sup> along the coastline to 21 kg-N ha<sup>-1</sup> yr<sup>-1</sup> in the Central Los Angeles Basin. The Applicant estimates that the existing baseline nitrogen deposition rates near the project site are less than or equal to 2 kg-N ha<sup>-1</sup> yr<sup>-1</sup> because the HBEP project and neighboring biological resource areas are within 5 kilometers of the coastline.

The Applicant conducted a literature review to identify critical load (CL) rates for the various biologically sensitive communities within 6 miles of HBEP. The CL rates presented in Table DR23-1 were compiled based on information contained in the *Effects of Nitrogen Deposition and Empirical Nitrogen Critical Loads for Ecoregions of the United States* paper (Pardo et al., 2011), *Regional and Global Concerns over Wetlands and Water Quality* (Verhoeven et al., 2006), and *Empirical Nitrogen Critical Loads for Natural and Semi-natural Ecosystems: 2002 Update* (Bobbink et al., 2003). The CL is defined as "the deposition of a pollutant below which no detrimental ecological effect occurs over the long term according to present knowledge" and is reported as a flux with the following units, kg ha<sup>-1</sup> yr<sup>-1</sup> (Pardo et al., 2011).

| Habitat Type <sup>a</sup> | CL for<br>N deposition<br>(kg N ha <sup>-1</sup> yr <sup>-1</sup> ) <sup>b,c,d</sup> | Sensitive Natural<br>Communities<br>and Critical Habitat <sup>e</sup> | Wetlands and Protected Areas <sup>f</sup>                                                                                                                                                                                           |
|---------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chaparral                 | 4–10 <sup>b</sup>                                                                    | _                                                                     | Laguna Coast Wilderness Park                                                                                                                                                                                                        |
| Coastal sage scrub        | 7.8–10 <sup>b</sup>                                                                  | Coastal California<br>gnatcatcher                                     | Bommer Canyon Open Space Preserve, Laguna Coast<br>Wilderness Park, San Joaquin Freshwater Marsh<br>Reserve, Talbert Nature Preserve, USACE Salt Marsh<br>Restoration                                                               |
| Coastal dunes             | 10-20 <sup>e</sup>                                                                   | Southern foredunes, southern dune scrub                               | Bolsa Chica Ecological Reserve, Huntington Beach<br>Wetlands Conservancy, Talbert Nature Preserve                                                                                                                                   |
| Freshwater marsh/wetland  | 2.7–13 <sup>b</sup>                                                                  | _                                                                     | San Joaquin Freshwater Marsh Reserve                                                                                                                                                                                                |
| Intertidal salt marshes   | 63–400 <sup>b</sup>                                                                  | Southern coastal marsh;<br>Western snowy plover                       | Seal Beach National Wildlife Refuge                                                                                                                                                                                                 |
| Intertidal wetlands       | 50–100 <sup>b</sup>                                                                  | Southern coastal marsh                                                | Bolsa Chica Ecological Reserve, Huntington Beach<br>Wetlands Conservancy, Talbert Nature Preserve, Seal<br>Beach National Wildlife Refuge, USACE Salt Marsh<br>Restoration, Upper Newport Bay Ecological<br>Reserve/Nature Preserve |
| Oak woodlands             | 4–10 <sup>b</sup>                                                                    | _                                                                     | Bommer Canyon Open Space Preserve, Laguna Coast<br>Wilderness Park                                                                                                                                                                  |
| Serpentine grassland      | 6 <sup>b</sup>                                                                       | _                                                                     | Bommer Canyon Open Space Preserve, Laguna Coast<br>Wilderness Park, Talbert Nature Preserve                                                                                                                                         |

#### TABLE DR23-1

Critical Loads of Nitrogen for the California Mediterranean Ecoregion and Wetlands

<sup>&</sup>lt;sup>2</sup> California Energy Commission. 2006. Impacts of Nitrogen Deposition on California Ecosystem and Biodiversity. CEC-500-2005-165.

| Critical Loads of Nitrogen for the California Mediterranean Ecoregion and Wetlands |                                                                                      |                                                                       |                                           |  |  |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------|--|--|
| Habitat Type <sup>a</sup>                                                          | CL for<br>N deposition<br>(kg N ha <sup>-1</sup> yr <sup>-1</sup> ) <sup>b,c,d</sup> | Sensitive Natural<br>Communities<br>and Critical Habitat <sup>e</sup> | Wetlands and Protected Areas <sup>f</sup> |  |  |
| Riparian forest                                                                    | 20-155 <sup>c</sup>                                                                  | Southern cottonwood willow riparian forest <sup>g</sup>               | Laguna Coast Wilderness Park              |  |  |

# TABLE DR23-1 Critical Loads of Nitrogen for the California Mediterranean Ecoregion and Wetlands

<sup>a</sup>Habitat types listed in this column were obtained from literature.

<sup>b</sup>Pardo L. H., M. E. Fenn, C. L. Goodale, L. H. Geiser, and C. T. Driscoll. 2011. Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States. *Ecological Applications* 21:3049-3082 and references therein unless noted otherwise. The freshwater wetlands CL are from wetlands in northeastern U.S. and Canada.

<sup>c</sup>Verhoeven, J. T. A., B. Arheimer, Y. Chengquing, and M. M. Hefting. 2006. Regional and global concerns over wetlands and water quality. *TRENDS in Ecology and Evolution* 21(2):96-103.

<sup>d</sup>Bobbink, R., M. Ashmore, S. Braun, W. Flückiger, and I. J. J. Van den Wyngaert. 2003. Empirical nitrogen critical loads for natural and semi-natural ecosystems: 2002 update. In: B. Achermann and R. Bobbink (Eds.), *Empirical Critical Loads For Nitrogen - Proceedings SAEFL*. Berne, pp. 43-171.

<sup>e</sup>Corresponding sensitive natural communities and critical habitat found within 10 miles of the HBEP.

<sup>f</sup>Corresponding significant regional wetlands, protected areas, sensitive natural communities and critical habitat that were identified within 10 miles of the HBEP.

<sup>g</sup>The Southern Cottonwood Willow Riparian Forest habitat that was listed in Figure 5.2-2 of the AFC was not included in this analysis because the data were obtained from a historical record and this riparian community has been extirpated (CDFG, 2012a; reference is listed in the AFC).

## DATA REQUEST

24. Please use AERMOD or an equivalent model to provide an analysis of impacts due to total nitrogen deposition from operation of the HBEP. The analysis should specify the amount of total nitrogen deposition in kg/ha/yr at the Huntington Beach Wetlands Conservancy's Coastal Marsh Restoration Complex, the U.S. Army Corps of Engineers (USACE) Salt Marsh Restoration project, the Talbert Nature Preserve, the Bolsa Chica Ecological Reserve, and the Seal Beach National Wildlife Refuge and any other special status habitats, vegetation types, and critical habitat for wet and dry deposition. Please provide the complete citation for references used in determining this number

**Response:** The wet and dry nitrogen deposition resulting directly from depositional nitrogen emissions from the six combustion turbines at the proposed HBEP were evaluated using AERMOD (version 12060). AERMOD is considered a conservative model for this analysis as it is a steady-state Gaussian plume dispersion model and does not calculate the complex chemical transformations and equilibria associated with nitrogen deposition.

Several additional conservative assumptions were used in the modeling with regard to nitrogen formation and deposition:

- 100 percent conversion of nitrogen oxides (NO<sub>x</sub>) and ammonia (NH<sub>3</sub>) into atmospherically derived nitrogen (ADN) within the turbine stacks rather than allowing for the conversion of NO<sub>x</sub> and NH<sub>3</sub> to occur over distance and time within the atmosphere, which would be more realistic.
- Depositional rates and parameters were based upon nitric acid (HNO<sub>3</sub>) which, of all the depositing species, has the highest affinity for impacts to soils and vegetation and tendency to stick to what it is deposited on.
- Maximum settling velocities were selected to produce conservative deposition rates
- Maximum potential emissions for the HBEP facility were assumed to occur each year.

The approach assumes no net benefit from the discontinuation of the existing boilers at the Huntington Beach Generating Station. Huntington Beach Generating Station Units 3 and 4 were recently shut down and Units 1 and 2 will be shutdown prior to completion of the project.

### Emissions

Emissions of depositional nitrogen were conservatively calculated as a complete conversion of in-stack NO<sub>x</sub> and ammonia (NH<sub>3</sub>) from each of the six combustion turbines. This was done by multiplying the nitrogen mass fraction of each of the pollutants by the respective average annual emissions. For example, the mass fraction of nitrogen (14 g/mol) in NO<sub>x</sub> (as NO<sub>2</sub>, 46 g/mol) is 0.304, while the mass fraction of nitrogen in NH<sub>3</sub> (17 g/mol) is 0.824.<sup>3</sup> Table DR24-1 presents the emissions for each combustion turbine.

TABLE DR24-1

| HBEP Average Annual Depositional Nitrogen Emissions (per turbine) |                                              |                                                                  |                                                     |                                      |  |
|-------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------|--|
| NO <sub>x</sub> Emissions<br>(tpy)                                | NH <sub>3</sub> Emissions (tpy) <sup>a</sup> | Depositional Nitrogen<br>from NO <sub>x</sub> (tpy) <sup>b</sup> | Depositional Nitrogen<br>from NH <sub>3</sub> (tpy) | Total Depositional<br>Nitrogen (tpy) |  |
| 40.4                                                              | 16.0                                         | 12.3                                                             | 13.2                                                | 25.6                                 |  |

<sup>a</sup>Average annual NH<sub>3</sub> assumed to be 2.5 ppmv (see footnote below).

. . . . .

<sup>b</sup>Molecular weight of NO<sub>v</sub> calculated as NO<sub>2</sub>.

### Model Setup

The AERMOD model setup for the nitrogen deposition modeling was based on the same source locations and stack parameters identified for the annual NO<sub>2</sub> modeling included in HBEP AFC Appendix 5.1C (12-AFC-02). Receptor grids were developed for each of the wetland areas identified in Data Request 24, with receptors located at 25-meter increments along the perimeter of each of the wetland areas and Cartesian-grid receptors spaced at 100-meter increments within the wetland areas.

AERMOD also requires additional depositional parameters in order to model wet and dry deposition, which are discussed below.

#### **Deposition Parameters:**

The dry deposition algorithms in AERMOD include land use characteristics and some dry gas deposition resistance terms based on five seasonal categories and nine land use categories. The seasonal categories used for each month of modeling are as follows:

- Midsummer: April, May, June, and July
- Autumn: August, September, and October
- Late Autumn/Winter without snow: November, December, and January
- Transitional Spring: February and March

Land use categories are used within AERMOD to calculate dry deposition of the emitted nitrogen compounds. For example, in areas of lush vegetation, the gaseous nitrogen compounds would have a higher uptake and, therefore, dry deposition would be higher at these areas than in bodies of water or urban areas with fewer trees. The land use categories used in the analysis were determined for each 10 degree increment within a 3-kilometerradius area surrounding HBEP, with 0 degrees representing due north, and are as follows:

- Suburban areas, grassy: Sectors 1–14 and 30–36
- Bodies of water: Sectors 15-29

<sup>&</sup>lt;sup>3</sup> The Applicant has requested a maximum allowable ammonia emission concentration of 5 parts per million by volume but the ammonia emissions are expected to be significantly lower than the allowable limit as the catalyst will be in a new, clean condition and catalyst efficiency will be at its highest. However, as the selective catalyst reduction (SCR) system degrades, the ammonia emissions will increase to a point where catalyst replacement is required. The SCR degradation is measured periodically and the rate of degradation can be predicted so that catalyst replacement can be scheduled to avoid exceeding the allowable NOx or ammonia emission limitations. As a result, the replacement of the catalyst occurs well before the ammonia emissions reach the maximum allowable concentration. Therefore, a median point in the range of ammonia emissions was assumed to estimate the annual nitrogen deposition due to the ammonia emissions.

AERMOD also requires the input of wet and dry depositional parameters based on the nitrogen-containing species being emitted. For this analysis, it was conservatively assumed that all nitrogen emitted was in the form of nitric acid because nitric acid is the most depositionally aggressive species. The depositional parameters are as follows:

- Diffusivity in Air: 0.1628 cm<sup>2</sup>/s
- Diffusivity in Water: 2.98 x 10<sup>-5</sup> cm<sup>2</sup>/s •
- Cuticular Resistance Term: 1.0 x 10<sup>5</sup> s/cm •
- Henry's Law Coefficient: 8.0 x 10<sup>-8</sup> Pa m<sup>3</sup>/mol

Lastly, AERMOD requires hourly inputs of precipitation code, precipitation amount, relative humidity, and surface pressure that were not included in the preprocessed AERMET meteorological data available from the SCAQMD. Therefore, supplemental AERMET data were required to complete the analysis. The John Wayne Airport station is the nearest National Weather Service surface station with data available for the same time period as the SCAQMD Costa Mesa AERMET meteorological data used in HBEP's air dispersion modeling assessment. Furthermore, the John Wayne Airport is located approximately 5 kilometers west of the Costa Mesa meteorological station the SCAQMD used to prepare the Costa Mesa AERMET data set. The proximity of these two meteorological stations provides representative hourly meteorological conditions needed for use in the nitrogen deposition modeling assessment. The parameters from the John Wayne Airport surface station were then inserted into the SCAQMD AERMET dataset.

## Model Results

The maximum modeled annual deposition over 3 years was combined with a conservative estimated background deposition rate of 2 kg N·ha<sup>-1</sup> yr<sup>-1</sup> and compared to the CL for nitrogen deposition for each of the habitat types present in the wetland areas. As previously noted in Table DR23-1, the Southern Cottonwood Willow Riparian Forest habitat that were listed in Figure 5.2-2 of the AFC was not included in this analysis because the data was obtained from a historical record and this riparian community has been extirpated (CDFG, 2012a; reference is listed in the AFC).

The results of the deposition modeling are shown in Table DR24-2. In each case the maximum predicted nitrogen deposition was less than the CL deposition. Therefore, even with the use of the conservative methodology for estimating nitrogen deposition noted previously, any contribution of nitrogen deposition from HBEP would have a less-than-significant impact on sensitive species habitat located near the project site.

The dispersion modeling files, which include input and output files used in the analysis, have been submitted herewith on CD. The maximum predicted nitrogen deposition and location within each of the sensitive areas are also identified in the following data response (Figure DR25-1 and Figure DR25-2).

| Ecoregion and Wetlands      |                                                                                           |                                                                                 |                                                                                          |                                                                     |                                                                                                |  |
|-----------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|
| Habitat type                | Maximum<br>Predicted<br>N Deposition<br>Rate<br>(kg N·ha <sup>-1</sup> yr <sup>-1</sup> ) | Background<br>N Deposition<br>Rate<br>(kg N∙ha <sup>-1</sup> yr <sup>-1</sup> ) | Total<br>Predicted N<br>Deposition<br>Rate*<br>(kg N∙ha <sup>-1</sup> yr <sup>-1</sup> ) | CL for<br>N Deposition<br>(kg N∙ha <sup>-1</sup> yr <sup>-1</sup> ) | Location of<br>Maximum Predicted Deposition<br>(i.e. Name of Wetland and/or<br>Protected Area) |  |
| Chaparral                   | 0.2                                                                                       | 2                                                                               | 2.2                                                                                      | 4–10                                                                | Laguna Coast Wilderness Park                                                                   |  |
| Coastal sage scrub          | 1.4                                                                                       | 2                                                                               | 3.4                                                                                      | 7.8–10                                                              | Talbert Nature Preserve                                                                        |  |
| Coastal dunes               | 3.0                                                                                       | 2                                                                               | 5.0                                                                                      | 10–20                                                               | Huntington Beach Wetlands<br>Conservancy                                                       |  |
| Freshwater<br>marsh/wetland | 0.4                                                                                       | 2                                                                               | 2.4                                                                                      | 2.7–13                                                              | San Joaquin Freshwater Marsh<br>Reserve                                                        |  |
| Intertidal salt marshes     | 0.2                                                                                       | 2                                                                               | 2.2                                                                                      | 63–400                                                              | Seal Beach National Wildlife Refuge                                                            |  |

#### TABLE DR24-2

Comparison of the Predicted HBEP N Deposition Flux to the Critical Loads of Nitrogen for the California Mediterranean

|                      | Maximum<br>Predicted<br>N Deposition              | Background<br>N Deposition                        | Total<br>Predicted N<br>Deposition                 | CL for                                                    | Location of<br>Maximum Predicted Deposition     |
|----------------------|---------------------------------------------------|---------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------|
| Habitat type         | Rate<br>(kg N∙ha <sup>-1</sup> yr <sup>-1</sup> ) | Rate<br>(kg N∙ha <sup>-1</sup> yr <sup>-1</sup> ) | Rate*<br>(kg N∙ha <sup>-1</sup> yr <sup>-1</sup> ) | N Deposition<br>(kg N∙ha <sup>-1</sup> yr <sup>-1</sup> ) | (i.e. Name of Wetland and/or<br>Protected Area) |
| Intertidal wetlands  | 3.0                                               | 2                                                 | 5.0                                                | 50–100                                                    | Huntington Beach Wetlands<br>Conservancy        |
| Oak woodlands        | 0.2                                               | 2                                                 | 2.2                                                | 4–10                                                      | Bommer Canyon Open Space<br>Preserve            |
| Serpentine grassland | 1.4                                               | 2                                                 | 3.4                                                | 6                                                         | Talbert Nature Preserve                         |
| Riparian forest      | 0.2                                               | 2                                                 | 2.2                                                | 20-155                                                    | Laguna Coast Wilderness Park                    |

#### TABLE DR24-2 Comparison of the Predicted HBEP N Deposition Flux to the Critical Loads of Nitrogen for the California Mediterranean Ecoregion and Wetlands

\*The total predicted N deposition is the sum of the estimated background deposition rate of 2 kg N·ha<sup>-1</sup> yr<sup>-1</sup> plus the maximum predicted deposition rate.

## DATA REQUEST

25. Please provide an isopleth graphic over USGS 7.5-minute maps (or equally detailed map) of the direct nitrogen deposition rates caused by the project. This will be a graphical depiction of the projects' nitrogen deposition.

**Response:** The predicted nitrogen deposition flux isopleths are included in Figures DR25-1 and DR25-2.

## DATA REQUEST

26. Please provide a comprehensive cumulative impact analysis for the direct nitrogen deposition in kg/ha/yr caused by HBEP. Provide an isopleths graphic over USGS 7.5-minute maps of the direct nitrogen deposition values in the cumulative analysis and specify the cumulative nitrogen deposition rate in kg/ha/yr at any affected special status habitat, vegetation type, or critical habitat. The geographical extent of the cumulative nitrogen deposition mapping should be directed by the results, i.e. extend geographically to where the deposition is considered below any stated threshold of significance.

**Response:** The sources included in the cumulative nitrogen deposition analysis are the same NOx emitting sources identified in the response to Data Request 11. Similar to the HBEP sources, emissions of depositional nitrogen were conservatively calculated as a complete conversion of in-stack NO<sub>x</sub> from each source. Emissions of ammonia from the cumulative sources were considered negligible and therefore were not considered as a source of depositional nitrogen. Emissions from each source are shown in Table DR26-1.

TABLE DR26-1

| Cumulative Source Depositional Nitrogen Emissions |                                 |                                                   |  |  |  |
|---------------------------------------------------|---------------------------------|---------------------------------------------------|--|--|--|
| Source Description                                | NO <sub>x</sub> Emissions (tpy) | Depositional Nitrogen from NO <sub>x</sub> (tpy)* |  |  |  |
| Orange County Sanitation District (Fa             | acility ID 17301)               |                                                   |  |  |  |
| Boiler                                            | 1.60                            | 0.49                                              |  |  |  |
| Digester Gas ICEs (3)                             | 67.2                            | 20.4                                              |  |  |  |
| Orange County Sanitation District (Fa             | acility ID 29110)               |                                                   |  |  |  |
| Emergency Diesel ICEs (8)                         | 5.38                            | 1.64                                              |  |  |  |
| *Molecular weight of NOv calculated               |                                 |                                                   |  |  |  |

\*Molecular weight of NOx calculated as NO2.

### **Model Setup**

The cumulative nitrogen deposition analysis was performed using the same model settings and receptor grid outlined in the response to Data Request 24. Stack parameters for the cumulative sources are included in the response to Data Request 11.

#### **Model Results**

The maximum modeled annual deposition over 3 years was combined with an estimated background deposition rate of 2 kg N·ha<sup>-1</sup> yr<sup>-1</sup> and compared to the CL for nitrogen deposition for each of the habitat types present in the sensitive areas. The results of the deposition modeling are shown in Table DR26-2. In each case the maximum predicted nitrogen deposition was less than the critical load deposition. Therefore, it is concluded that even with the use of the conservative methodology for estimating nitrogen deposition noted previously, the cumulative impacts would not contribute to the significant degradation of sensitive species habitat located near the project site.

The dispersion modeling files, which include input and output files used in the analysis, have been submitted on CD. The predicted nitrogen deposition flux isopleths, which include the maximum predicted nitrogen deposition flux and the location within each of the sensitive areas, are included in Figures DR26-1 and DR26-2.

#### TABLE DR26-2

| Comparison of the Predicted Cumulative Sources and HBEP N Deposition Flux to the Critical Loads of Nitrogen for the |
|---------------------------------------------------------------------------------------------------------------------|
| California Mediterranean Ecoregion and Wetlands                                                                     |

| Habitat type                | Maximum<br>Predicted<br>N Deposition<br>Rate<br>(kg N·ha <sup>-1</sup> yr <sup>-1</sup> ) | Background<br>N Deposition<br>Rate<br>(kg N·ha <sup>-1</sup> yr <sup>-1</sup> ) | Total<br>Predicted N<br>Deposition<br>Rate*<br>(kg N·ha <sup>-1</sup> yr <sup>-1</sup> ) | CL for<br>N Deposition<br>(kg N·ha <sup>-1</sup> yr <sup>-1</sup> ) | Location of<br>Maximum Predicted Deposition<br>(i.e. Name of Wetland and/or<br>Protected Area) |
|-----------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Chaparral                   | 0.2                                                                                       | 2                                                                               | 2.2                                                                                      | 4–10                                                                | Laguna Coast Wilderness Park                                                                   |
| Coastal sage scrub          | 1.5                                                                                       | 2                                                                               | 3.5                                                                                      | 7.8–10                                                              | Talbert Nature Preserve                                                                        |
| Coastal dunes               | 3.1                                                                                       | 2                                                                               | 5.1                                                                                      | 10–20                                                               | Huntington Beach Wetlands<br>Conservancy                                                       |
| Freshwater<br>marsh/wetland | 0.4                                                                                       | 2                                                                               | 2.4                                                                                      | 2.7–13                                                              | San Joaquin Freshwater Marsh<br>Reserve                                                        |
| Intertidal salt marshes     | 0.2                                                                                       | 2                                                                               | 2.2                                                                                      | 63–400                                                              | Seal Beach National Wildlife Refuge                                                            |
| Intertidal wetlands         | 3.1                                                                                       | 2                                                                               | 5.1                                                                                      | 50-100                                                              | Huntington Beach Wetlands<br>Conservancy                                                       |
| Oak woodlands               | 0.2                                                                                       | 2                                                                               | 2.2                                                                                      | 4–10                                                                | Bommer Canyon Open Space<br>Preserve                                                           |
| Serpentine grassland        | 1.5                                                                                       | 2                                                                               | 3.5                                                                                      | 6                                                                   | Talbert Nature Preserve                                                                        |
| Riparian forest             | 0.2                                                                                       | 2                                                                               | 2.2                                                                                      | 20–155                                                              | Laguna Coast Wilderness Park                                                                   |

\*The total predicted N deposition is the sum of the estimated background deposition rate of 2 kg N·ha<sup>-1</sup> yr<sup>-1</sup> plus the maximum predicted deposition rate.

## Figure DR25-1: HBEP Total Nitrogen Deposition on Surrounding Habitats



# Figure DR25-2: HBEP Total Nitrogen Deposition on Surrounding Habitats



## Figure DR26-1: HBEP Cumulative Nitrogen Deposition on Surrounding Habitats



UTM X NAD83 (m)

## Figure DR26-2: HBEP Cumulative Nitrogen Deposition on Surrounding Habitats



From: Sent: To: Subject: Attachments: Jerry.Salamy@CH2M.com Thursday, January 24, 2013 11:16 AM CPerri@aqmd.gov RE: HBEP commissioning emissions SCAQMD\_Request\_AES\_HB\_Fuel-Based\_Emissions\_1\_24\_2013.xlsx

Chris,

See attached for an excel format ready to print.

Did you receive the cumulative air quality impact assessment modeling report and CD and do I need to send the cumulative air quality impact assessment directly to Jillian Baker?

Thanks,

Jerry Salamy Principal Project Manager CH2M HILL/Sacramento Phone 916-286-0207 Fax 916-614-3407 Cell Phone 916-769-8919

From: Chris Perri [mailto:CPerri@aqmd.gov] Sent: Thursday, January 24, 2013 10:59 AM To: Salamy, Jerry/SAC Subject: RE: HBEP commissioning emissions

Thanks, Jerry.

Do you have the Unit 1 and 2 past actual emission data (Table 5.1B.8) in excel or word format?

Chris Perri Air Quality Engineer South Coast Air Quality Management District (909) 396-2696

From: Jerry.Salamy@CH2M.com [mailto:Jerry.Salamy@CH2M.com]
Sent: Wednesday, January 23, 2013 12:40 PM
To: Chris Perri; stephen.okane@AES.com
Cc: Gerry.Bemis@energy.ca.gov; Felicia.Miller@energy.ca.gov; Tao.Jiang@energy.ca.gov; John Yee;
Robert.Mason@CH2M.com
Subject: RE: HBEP commissioning emissions

An assumed NOx concentration of 9 parts per million by volume dry and an exhaust gas flow rate is 651913.46 standard dry cubic feet per minute were used to estimate the 100% load uncontrolled NOx emission rate of 41.95 lb/hr.

Chris,

Jerry Salamy Principal Project Manager CH2M HILL/Sacramento Phone 916-286-0207 Fax 916-614-3407 Cell Phone 916-769-8919

From: Chris Perri [mailto:CPerri@aqmd.gov]
Sent: Wednesday, January 23, 2013 11:22 AM
To: stephen.okane@AES.com
Cc: Bemis, Gerry@Energy; Miller, Felicia@Energy; Jiang, Tao@Energy; Salamy, Jerry/SAC; John Yee
Subject: HBEP comissioning emissions

Hi Stephen,

I'm looking over the commissioning emissions estimates provided in Table 5.1B.1. It looks like the NOx emission rate for the 100% load activities, with the SCR efficiency at 75% is about 10.49 lbs/hr. Could you provide the data used to calculate that number (i.e., assumed NOx concentration and exhaust flow)?

Thanks

Chris Perri Air Quality Engineer South Coast Air Quality Management District (909) 396-2696
From: Sent: To: Subject: Attachments: Jerry.Salamy@CH2M.com Thursday, January 24, 2013 11:16 AM CPerri@aqmd.gov RE: HBEP commissioning emissions SCAQMD\_Request\_AES\_HB\_Fuel-Based\_Emissions\_1\_24\_2013.xlsx

Chris,

See attached for an excel format ready to print.

Did you receive the cumulative air quality impact assessment modeling report and CD and do I need to send the cumulative air quality impact assessment directly to Jillian Baker?

Thanks,

Jerry Salamy Principal Project Manager CH2M HILL/Sacramento Phone 916-286-0207 Fax 916-614-3407 Cell Phone 916-769-8919

From: Chris Perri [mailto:CPerri@aqmd.gov] Sent: Thursday, January 24, 2013 10:59 AM To: Salamy, Jerry/SAC Subject: RE: HBEP commissioning emissions

Thanks, Jerry.

Do you have the Unit 1 and 2 past actual emission data (Table 5.1B.8) in excel or word format?

Chris Perri Air Quality Engineer South Coast Air Quality Management District (909) 396-2696

From: Jerry.Salamy@CH2M.com [mailto:Jerry.Salamy@CH2M.com]
Sent: Wednesday, January 23, 2013 12:40 PM
To: Chris Perri; stephen.okane@AES.com
Cc: Gerry.Bemis@energy.ca.gov; Felicia.Miller@energy.ca.gov; Tao.Jiang@energy.ca.gov; John Yee; Robert.Mason@CH2M.com
Subject: RE: HBEP commissioning emissions

An assumed NOx concentration of 9 parts per million by volume dry and an exhaust gas flow rate is 651913.46 standard dry cubic feet per minute were used to estimate the 100% load uncontrolled NOx emission rate of 41.95 lb/hr.

Chris,

Jerry Salamy Principal Project Manager CH2M HILL/Sacramento Phone 916-286-0207 Fax 916-614-3407 Cell Phone 916-769-8919

From: Chris Perri [mailto:CPerri@aqmd.gov]
Sent: Wednesday, January 23, 2013 11:22 AM
To: stephen.okane@AES.com
Cc: Bemis, Gerry@Energy; Miller, Felicia@Energy; Jiang, Tao@Energy; Salamy, Jerry/SAC; John Yee
Subject: HBEP comissioning emissions

Hi Stephen,

I'm looking over the commissioning emissions estimates provided in Table 5.1B.1. It looks like the NOx emission rate for the 100% load activities, with the SCR efficiency at 75% is about 10.49 lbs/hr. Could you provide the data used to calculate that number (i.e., assumed NOx concentration and exhaust flow)?

Thanks

Chris Perri Air Quality Engineer South Coast Air Quality Management District (909) 396-2696

ibaker@agmd.gov Thursday, January 24, 2013 4:31 PM Benjamin.Beattie@CH2M.com Jerry.Salamy@CH2M.com; Elyse.Engel@ch2m.com; Keith.McGregor@CH2M.com; tchico@aqmd.gov; CPerri@aqmd.gov Subject: RE: AERMET Meteorological Data Request

Hi Ben,

From:

Sent:

To:

Cc:

Attached is the csta5.pfl file for use in AERMOD. It has been updated with the latest version of AERSURFACE, AERMET, and is ready for use in AERMOD v12345. You should have already received the .sfc and ozone files for Costa Mesa and with this you have all the files you requested. While performing the revised analysis for this project, if you are going to do anything that deviates from the modeling protocol, we suggest that you submit an updated protocol with the changes.

Please let me know if you have any further guestions.

Jillian Baker, Ph.D. South Coast AQMD 21865 Copley Drive, Diamond Bar, CA 91765 Direct: 909.396.3176

From: Benjamin.Beattie@CH2M.com [mailto:Benjamin.Beattie@CH2M.com] Sent: Friday, January 18, 2013 3:21 PM To: Jillian Baker Cc: Jerry.Salamy@CH2M.com; Elyse.Engel@ch2m.com; Keith.McGregor@CH2M.com Subject: RE: AERMET Meteorological Data Request

We will be using the latest released version of AERMOD (12345).

**Benjamin Beattie** Engineer



2485 Natomas Park Drive, Suite 600 Sacramento, CA 95833 (916) 572-0679

From: Jillian Baker [mailto:jbaker@agmd.gov] Sent: Friday, January 18, 2013 3:17 PM To: Beattie, Benjamin/SAC Cc: Salamy, Jerry/SAC; Engel, Elyse/SJC; McGregor, Keith/SAC Subject: RE: AERMET Meteorological Data Request

Hi Ben,

For the 5-year meteorological data, which version of AERMOD do you intend to use? This will determine which dataset I send you.

Jillian Baker, Ph.D. South Coast AQMD 21865 Copley Drive, Diamond Bar, CA 91765 Direct: 909.396.3176

From: <u>Benjamin.Beattie@CH2M.com</u> [mailto:Benjamin.Beattie@CH2M.com]
Sent: Friday, January 18, 2013 12:33 PM
To: Jillian Baker
Cc: <u>Jerry.Salamy@CH2M.com</u>; <u>Elyse.Engel@ch2m.com</u>; <u>Keith.McGregor@CH2M.com</u>
Subject: AERMET Meteorological Data Request

Hi Jillian,

Thank you for the advice and information you gave us regarding the federal 1-hr NO2 standard cumulative assessment. If you have it available, could you please send me the five-year AERMET dataset for the Costa Mesa station and the accompanying hourly background ozone files? Thank you,

Benjamin Beattie Engineer



2485 Natomas Park Drive, Suite 600 Sacramento, CA 95833 (916) 572-0679

ibaker@agmd.gov Thursday, January 24, 2013 4:31 PM Benjamin.Beattie@CH2M.com Jerry.Salamy@CH2M.com; Elyse.Engel@ch2m.com; Keith.McGregor@CH2M.com; tchico@aqmd.gov; CPerri@aqmd.gov Subject: RE: AERMET Meteorological Data Request

Hi Ben,

From:

Sent:

To:

Cc:

Attached is the csta5.pfl file for use in AERMOD. It has been updated with the latest version of AERSURFACE, AERMET, and is ready for use in AERMOD v12345. You should have already received the .sfc and ozone files for Costa Mesa and with this you have all the files you requested. While performing the revised analysis for this project, if you are going to do anything that deviates from the modeling protocol, we suggest that you submit an updated protocol with the changes.

Please let me know if you have any further guestions.

Jillian Baker, Ph.D. South Coast AQMD 21865 Copley Drive, Diamond Bar, CA 91765 Direct: 909.396.3176

From: Benjamin.Beattie@CH2M.com [mailto:Benjamin.Beattie@CH2M.com] Sent: Friday, January 18, 2013 3:21 PM To: Jillian Baker Cc: Jerry.Salamy@CH2M.com; Elyse.Engel@ch2m.com; Keith.McGregor@CH2M.com Subject: RE: AERMET Meteorological Data Request

We will be using the latest released version of AERMOD (12345).

**Benjamin Beattie** Engineer



2485 Natomas Park Drive, Suite 600 Sacramento, CA 95833 (916) 572-0679

From: Jillian Baker [mailto:jbaker@agmd.gov] Sent: Friday, January 18, 2013 3:17 PM To: Beattie, Benjamin/SAC Cc: Salamy, Jerry/SAC; Engel, Elyse/SJC; McGregor, Keith/SAC Subject: RE: AERMET Meteorological Data Request

Hi Ben,

For the 5-year meteorological data, which version of AERMOD do you intend to use? This will determine which dataset I send you.

Jillian Baker, Ph.D. South Coast AQMD 21865 Copley Drive, Diamond Bar, CA 91765 Direct: 909.396.3176

From: <u>Benjamin.Beattie@CH2M.com</u> [mailto:Benjamin.Beattie@CH2M.com]
Sent: Friday, January 18, 2013 12:33 PM
To: Jillian Baker
Cc: <u>Jerry.Salamy@CH2M.com</u>; <u>Elyse.Engel@ch2m.com</u>; <u>Keith.McGregor@CH2M.com</u>
Subject: AERMET Meteorological Data Request

Hi Jillian,

Thank you for the advice and information you gave us regarding the federal 1-hr NO2 standard cumulative assessment. If you have it available, could you please send me the five-year AERMET dataset for the Costa Mesa station and the accompanying hourly background ozone files? Thank you,

Benjamin Beattie Engineer



2485 Natomas Park Drive, Suite 600 Sacramento, CA 95833 (916) 572-0679 From: Sent: To: Cc: Subject: jbaker@aqmd.gov Thursday, January 24, 2013 4:17 PM Benjamin.Beattie@CH2M.com Jerry.Salamy@CH2M.com; Elyse.Engel@ch2m.com; Keith.McGregor@CH2M.com RE: AERMET Meteorological Data Request

Hi Ben,

Attached is the csta5.sfc file for use in AERMOD. It has been updated with the latest version of AERSURFACE, AERMET, and is ready for use in AERMOD v12345.

Jillian Baker, Ph.D. South Coast AQMD 21865 Copley Drive, Diamond Bar, CA 91765 Direct: 909.396.3176

From: <u>Benjamin.Beattie@CH2M.com</u> [mailto:Benjamin.Beattie@CH2M.com]
Sent: Friday, January 18, 2013 3:21 PM
To: Jillian Baker
Cc: <u>Jerry.Salamy@CH2M.com</u>; <u>Elyse.Engel@ch2m.com</u>; <u>Keith.McGregor@CH2M.com</u>
Subject: RE: AERMET Meteorological Data Request

We will be using the latest released version of AERMOD (12345).

Benjamin Beattie Engineer



2485 Natomas Park Drive, Suite 600 Sacramento, CA 95833 (916) 572-0679

From: Jillian Baker [mailto:jbaker@aqmd.gov]
Sent: Friday, January 18, 2013 3:17 PM
To: Beattie, Benjamin/SAC
Cc: Salamy, Jerry/SAC; Engel, Elyse/SJC; McGregor, Keith/SAC
Subject: RE: AERMET Meteorological Data Request

Hi Ben,

For the 5-year meteorological data, which version of AERMOD do you intend to use? This will determine which dataset I send you.

Jillian Baker, Ph.D. South Coast AQMD 21865 Copley Drive, Diamond Bar, CA 91765 Direct: 909.396.3176

From: <u>Benjamin.Beattie@CH2M.com</u> [mailto:Benjamin.Beattie@CH2M.com]
Sent: Friday, January 18, 2013 12:33 PM
To: Jillian Baker
Cc: Jerry.Salamy@CH2M.com; Elyse.Engel@ch2m.com; Keith.McGregor@CH2M.com
Subject: AERMET Meteorological Data Request

Hi Jillian,

Thank you for the advice and information you gave us regarding the federal 1-hr NO2 standard cumulative assessment. If you have it available, could you please send me the five-year AERMET dataset for the Costa Mesa station and the accompanying hourly background ozone files? Thank you,

Benjamin Beattie Engineer



2485 Natomas Park Drive, Suite 600 Sacramento, CA 95833 (916) 572-0679

# Case 1

Case 1 Heat Balance Number 1a Three Combustion Turbines Operating at Maximum Heat Input without Evaporative Cooling Site Average Annual Temperature (SAAT), Dry Bulb 65.8 F, Wet Bulb 56.8 F, Relative Humidity 57%



Case 1 Heat Balance Number 1a Three Combustion Turbines Operating at Maximum Heat Input without Evaporative Cooling Site Average Annual Temperature (SAAT), Dry Bulb 65.8 F, Wet Bulb 56.8 F, Relative Humidity 57%



FIGURE 2.1-3a Heat Balance AES Huntington Beach Energy Project

Huntington Beach, California



## Case 9

Case 9 Heat Balance Number 3b(1) Two Combustion Turbines Operating at Maximum Heat Input with Evaporative Cooling and Duct Burner Site Monthly Maximum Average Ambient Temperature (SMMAAT) is 85 °F (Dry Bulb) and 69.7 °F (Wet Bulb) and relative humidity (RH) of 45.75%)



Case 9 Heat Balance Number 3b(1) Two Combustion Turbines Operating at Maximum Heat Input with Evaporative Cooling and Duct Burner Site Monthly Maximum Average Ambient Temperature (SMMAAT) is 85 °F (Dry Bulb) and 69.7 °F (Wet Bulb) and relative humidity (RH) of 45.75%)

PEC

Page 12 Of 20

January 2012

From: Jerry.Salamy@CH2M.com [mailto:Jerry.Salamy@CH2M.com]
Sent: Tuesday, January 29, 2013 3:53 PM
To: Tao.Jiang@energy.ca.gov; CPerri@aqmd.gov; stephen.okane@AES.com
Cc: Robert.Mason@CH2M.com; Foster, Melissa A.; Felicia.Miller@energy.ca.gov; Gerry.Bemis@energy.ca.gov; Keith.McGregor@CH2M.com; Elyse.Engel@ch2m.com
Subject: RE: HBEP start/stop emissions and GHG performance

Tao,

Below is our response to your GHG performance data request. Please let me know if you have any additional questions.

Can you fill in the following table and provide the detailed calculations? I assume the GHG emission of 3,141,167 tons/year reported in CEC data response DR-12 represents the total CO2E, not just CO2. I still need the data for each GHG, which included in original AFC. Please also indicate the operation scenarios (heat rates, power outputs, etc) to derive the GHG emissions.

*Response:* Our response to CEC Data Request 12 represented a maximum GHG emission case and assumed that the turbines and duct burner are fired at their maximum rate at an ambient temperature of 32 F, which is not feasible for 5900 hours. Below is a more realistic estimate of the GHG and electrical production based on one of the two power blocks consisting of 3 combustion turbines and 1 steam turbine.

### **Heat Input Estimate**

Unfired Operation: 3 on 1 operation at maximum heat input for an ambient condition of 65.8 F.

- Turbine hourly heat input (per turbine) = 1210.139 MMBtu/hr LHV or 1331.153 MMBtu/hr HHV (refer to AFC Figure 2.1-3a [included as the attached heat and mass balance Case 1].
   HHV to LHV ratio is 1.1)
- Turbine annual heat input (3 turbines) = 1331.153 MMBtu/hr HHV \* 5900 hours/year \* 3 turbines = 23,561,406 MMBtu/year HHV

Fired Operation: The HBEP steam cycle is not sized to accept steam production from more than two HRSGs at the maximum duct burner firing rate, so the duct fired heat inputs are based on a 2 on 1 configuration at an ambient air temperature of 85 F.

- Turbine hourly heat input for duct fired case (per turbine) = 1192.05 MMBtu/hr LHV or 1311.255 MMBtu/hr HHV (refer to the attached heat and mass balance Case 9)
- Turbine annual heat input for duct fired case (2 turbines) = 1311.255 MMBtu/hr HHV \* 470 hours/year \* 2 turbines = 1,232,580 MMBtu/year HHV
- Duct burner hourly heat input (per turbine) = 382.559 MMBtu/hr LHV or 420.815 MMBtu/hr HHV (refer to the attached heat and mass balance Case 9)
- Duct burner annual heat input (2 turbines) = 420.815 MMBtu/hr HHV \* 470 hours/year \* 2 turbines = 395,566 MMBtu/year HHV

Start/Stop: Fuel used during start up and shutdowns is estimated from turbine vendor data (refer to the attached MSPA start up and shutdown emissions).

- Start up fuel use = (2.3 klb/start \* 1000 lb/1 klb \* 23263 Btu-HHV/lb) \* 1 MMBtu/1000000 Btu
   = 53.505 MMBtu/start \* 624 starts/year = 33,387 MMBtu/year
- Shutdown fuel use = (0.4 klb/stop \* 1000 lb/1 klb \* 23263 Btu-HHV/lb) \* 1 MMBtu/1000000
   Btu = 9.305 MMBtu/stop \* 624 stops/year = 5,806 MMBtu/year

Total Heat Input:

Total expected annual heat input (sum of unfired, fired, and start/stop operations) = 25,228,745 MMBtu/year HHV

## GHG Estimate

Using the annual heat rate calculated above, we estimate the expected GHG emissions to be 1,343,905 MT CO2E/year. The following table presents the supporting calculation based on an annual heat input of 25,228,745 MMBtu/year HHV.

|                | Emission   | Emission   |     |           |              |
|----------------|------------|------------|-----|-----------|--------------|
|                | Factor     | Factor     |     |           |              |
| GHG            | (kg/MMBtu) | (MT/MMBtu) | GWP | MT/Year   | MT CO2E/Year |
| CO2            | 52.91      | 0.05291    | 1   | 1,334,853 | 1,334,853    |
| CH4            | 0.0038     | 0.000038   | 21  | 95.87     | 2,013        |
| N2O            | 0.0009     | 0.0000009  | 310 | 22.71     | 7,039        |
| CO2 Equivalent |            |            |     |           |              |
| (Total)        | NA         | NA         | NA  | NA        | 1,343,905    |

### **Estimate of Annual Megawatt-Hours**

The estimated annual megawatt-hours (MWH) are based on the same conditions used to estimate the heat inputs above.

- Unfired annual MWH = ((118.449 MWs \* 3 turbines) + 150.37 MWs for the steam turbine) \* 5900 hours/year = 2,983,730 MWH/year
- Fired annual MWH = ((115.667 MWs \* 2 turbines) + 137.5 MWs for the steam turbine) \* 470 hours/year = 173,352 MWH/year
- Start up annual MWH = 2.3 MWH \* 624 starts/year = 1,435 MWH/year
- Stop annual MWH = 0.5 MWH \* 624 starts/year = 312 MWH/year
- Total annual HBEP MWH = 2,983,730 MWH/year + 173,352 MWH/year + 1,435 MWH/year + 312 MWH/year = 3,158,829 MWH/year

With the above GHG emissions and megawatt-hours per year, the annualized GHG performance is 0.425 MT CO2E/MWH.

| Emissions Source                                            | Operational GHG Emissions<br>(MTCO2E/yr) <sup>a</sup> |
|-------------------------------------------------------------|-------------------------------------------------------|
| CTGs CO <sub>2</sub>                                        | 1,334,853                                             |
| CTGs CH <sub>4</sub>                                        | 96                                                    |
| CTGs N <sub>2</sub> O                                       | 23                                                    |
| Total Project GHG Emissions (MTCO2E/yr)                     | 1,343,905                                             |
| Estimated Annual Energy Output (MWh/yr)                     | 3,158,829                                             |
| <b>Estimated Annualized GHG Performance</b><br>(MTCO2E/MWh) | 0.425                                                 |

*In this case, the total operation hours are 4910 hrs* + *93.6 hrs* + *98.8 hrs* =*5102.4, not 5900 hours shown in CEC data response DR-12. Can you explain the difference?* 

*Response:* The GHG data presented to the SCAQMD represents AES's prediction of how HBEP may operate in the future and not what is being requested as a permit limitation.

Jerry Salamy Principal Project Manager CH2M HILL/Sacramento Phone 916-286-0207 Fax 916-614-3407 Cell Phone 916-769-8919

From: Jiang, Tao@Energy [mailto:Tao.Jiang@energy.ca.gov]
Sent: Monday, January 14, 2013 12:38 PM
To: Salamy, Jerry/SAC; <u>CPerri@aqmd.gov</u>; <u>stephen.okane@AES.com</u>
Cc: Mason, Robert/SCO; <u>JAMCKINSEY@stoel.com</u>; <u>mafoster@stoel.com</u>; Miller, Felicia@Energy; Bemis, Gerry@Energy;

McGregor, Keith/SAC; Engel, Elyse/SJC **Subject:** RE: HBEP start/stop emissions and GHG performance

Jerry,

I checked your response regarding to GHG performance submitted in last month but cannot find the data I need. Can you fill in the following table and provide the detailed calculations (you can just revise AFC appendix table 5.1B7)? I assume the GHG emission of 3,141,167 tons/year reported in CEC data response DR-12 represents the total CO2E, not just CO2. I still need the data for each GHG, which included in original AFC. Please also indicate the operation scenarios (heat rates, power outputs, etc) to derive the GHG emissions.

|                                                               | <b>Operational GHG Emissions</b> |
|---------------------------------------------------------------|----------------------------------|
| Emissions Source                                              | (MTCO2E/yr) <sup>a</sup>         |
| CTGs CO <sub>2</sub>                                          |                                  |
| CTGs CH <sub>4</sub>                                          |                                  |
| CTGs N <sub>2</sub> O                                         |                                  |
| Total Project GHG Emissions (MTCO2E/yr)                       | 3,141,167                        |
| Estimated Annual Energy Output (MWh/yr)                       |                                  |
| Estimated Annualized GHG Performance (MTCO <sub>2</sub> /MWh) |                                  |

In addition, in your GHG response to the district, the annual average heat rate is calculated as: <u>State 1 - 250 hrs \* 7564</u> <u>btu/kWh + State 2 - 3200 hrs \* 7353 btu/kWh + State 3 - 1460 hrs \* 7350 btu/kWh + Start Up93.6 hrs \*18267 btu/kWh + Stop -</u>

<u>98.8 hrs \* 16520 btu/kWh)/(4910 hrs + 93.6 hrs + 98.8 hrs)</u> =7740 btu/kWh Gross: I this case, the total operation hours are 4910 hrs + 93.6 hrs + 98.8 hrs=5102.4, not 5900 hours shown in CEC data response DR-12. Can you explain the difference? Thanks.

Tao Jiang, Ph.D., P.E. Air Resources Engineer Siting, Transmission and Environmental Protection Division California Energy Commission 1516 Ninth Street, MS 46 Sacramento, CA 95814-5504 Phone: (916) 654-3852

From: Jerry.Salamy@CH2M.com [mailto:Jerry.Salamy@CH2M.com]
Sent: Wednesday, December 12, 2012 12:39 PM
To: <u>CPerri@aqmd.gov</u>; <u>stephen.okane@AES.com</u>
Cc: <u>Robert.Mason@CH2M.com</u>; <u>JAMCKINSEY@stoel.com</u>; <u>mafoster@stoel.com</u>; Miller, Felicia@Energy; Jiang, Tao@Energy; Bemis, Gerry@Energy; <u>Keith.McGregor@CH2M.com</u>; <u>Elyse.Engel@ch2m.com</u>
Subject: RE: HBEP start/stop emissions and GHG performance

### Chris,

The design engineers estimated that within 12.5 minutes of fuel initiation, the SCR would be reach the minimum operating temperature for ammonia injection to commence for either a hot, warm, or cold start. Therefore, the NOx removal efficiency is 0 percent for the first 12.5 minutes after fuel combustion is initiated and 70 percent thereafter. For a hot or warm start, the oxidation catalyst system is functional at the initiation of combustion with an average CO and VOC removal efficiencies of 72 percent and 28 percent, respectively. For a cold start, the oxidation catalyst system reaches the minimum operating temperature at 4 minutes of initiating combustion and is fully functional by minute 9. The an average CO and VOC removal efficiencies during the 9 minute period are 31 percent and 9 percent, respectively.

For shutdowns, the SCR and oxidation catalyst systems are functional over the entire shutdown period with an average NOx, CO, and VOC removal efficiencies of 30 percent, 80 percent, and 30 percent, respectively.

Thanks,

Jerry Salamy Principal Project Manager CH2M HILL/Sacramento Phone 916-286-0207 Fax 916-614-3407 Cell Phone 916-769-8919

From: Chris Perri [mailto:CPerri@aqmd.gov]
Sent: Wednesday, December 12, 2012 9:58 AM
To: Stephen O'Kane
Cc: Mason, Robert/SCO; McKinsey, John A.; Foster, Melissa A.; Salamy, Jerry/SAC; Miller, Felicia@Energy; 'Tao.Jiang@energy.ca.gov'; 'Gerry.Bemis@energy.ca.gov'
Subject: RE: HBEP start/stop emissions and GHG performance

Stephen,

Thanks. A follow up question on the start ups - at what point after start up would the SCR become functional?

Chris Perri Air Quality Engineer South Coast Air Quality Management District (909) 396-2696

From: Stephen O'Kane [mailto:stephen.okane@AES.com]
Sent: Friday, December 07, 2012 4:34 PM
To: Chris Perri
Cc: Robert.Mason@CH2M.com; McKinsey, John A.; Foster, Melissa A.; Jerry.Salamy@CH2M.com; Miller, Felicia@Energy; 'Tao.Jiang@energy.ca.gov'; 'Gerry.Bemis@energy.ca.gov'
Subject: HBEP start/stop emissions and GHG performance

Chris,

In response to your questions regarding detail on the estimated start/stop emissions for the Huntington Beach Energy Project turbines and the assumptions that went in to our calculation of GHG emissions per MW-hr, please see the attached letter and accompanying data. If you require further information or explanation for any of our assertions please don't hesitate to ask.

Thanks



This communication is for use by the intended recipient and contains information that may be privileged, confidential or copyrighted under law. If you are not the intended recipient, you are hereby formally notified that any use, copying or distribution of this e-Mail, in whole or in part, is strictly prohibited. Please notify the sender by return e-Mail and delete this e-Mail from your system. Unless explicitly and conspicuously stated in the subject matter of the above e-Mail, this e-Mail does not constitute a contract offer, a contract amendment, or an acceptance of a contract offer. This e-Mail does not constitute consent to the use of sender's contact information for direct marketing purposes or for transfers of data to third parties.

Customer AES Project: M501D5

#### Combined Cycle Startup Emissions

#### Notes

Using : MPS preliminary M501DA Fast Start curve

Total Emissions Per Event (Combined Cycle) at site conditions

#### CTG/Stack 1

|           | Duration(1) | NOX  | CO    | VOC  | PM10 | GT Net MW | Fuel Gas |
|-----------|-------------|------|-------|------|------|-----------|----------|
|           | minutes     | lb   | lb    | lb   | lb   | MWh       | klb      |
| Hot Start | 9           | 8.5  | 142.0 | 25.6 | 0.8  | 2.6       | 2.3      |
|           |             |      |       |      |      |           |          |
| Shutdown  | 9.5         | 11.7 | 206.0 | 40.2 | 1.1  | 0.5       | 0.4      |

Notes

(1) Duration is the total time for the gas turbine between GT ignition and 70% load during Start-Up and Shut-Down.

(2) Calculations are performed for a New and Clean Gas turbine.

(3) Calculations were performed at 71°F dry bulb and 60% RH.

(4) Values are given at the GT Exhaust flange, without duct firing and without Catalyst effects.

(5) Since calculations may be based on some assumed values, Purchaser shall confirm with MPSA prior to using these values for permitting purposes.

(6) Shut down FSNL hold time based on 5 minutes.

## ATTACHMENT 2 HBEP Start Up Emissions

198-AESinCA-DA-Gas-71F\_STARTUP-20120320(Reduction)DMr1.xls, Customer

AES Huntington Beach Energy Project Huntington Beach, California



| From:    | Elyse.Engel@ch2m.com                                                                              |
|----------|---------------------------------------------------------------------------------------------------|
| Sent:    | Wednesday, February 06, 2013 7:49 AM                                                              |
| То:      | jbaker@aqmd.gov                                                                                   |
| Cc:      | John.Frohning@CH2M.com; Benjamin.Beattie@CH2M.com; Jerry.Salamy@CH2M.com; Keith McGregor@CH2M.com |
| Subject: | Costa Mesa Meteorological Data Questions                                                          |

#### Hi Jillian,

Thank you for your time yesterday to discuss the revised 5-year Costa Mesa meteorological dataset processed with the updated version of AERMET (version 12345). We just wanted to follow-up on our observations from comparing the revised dataset to the original 3-year dataset. As discussed, we also reviewed the revised Ozone data and had a question about the inconsistencies between the previous 3-year dataset and the new 5-year dataset. We understand that many of the questions about the differences could be accounted for by using the new version of AERSURFACE; however, they are repeated below for verification.

Please review the following questions / comments and let us know if you would like to discuss in more detail:

- 1. SFC Files: The revised 5-year dataset processed with version 12345 has a coordinate inconsistent with the Costa Mesa station location. The coordinate included appears to be for the Crestline station. Please verify that Stages 1 and 3 of AERMET were preprocessed with the correct station location for Costa Mesa.
- 2. SFC Files: The surface roughness length is not consistent between the old and new datasets. We understand this may be an artifact of using the updated version of AERSURFACE, but please confirm. Please also confirm that the correct coordinate for the Costa Mesa station was used in AERSURFACE.
- 3. SFC Files, Albedo: The albedo between the old and new datasets do not match for many hours. Again, this may be an artifact of using the updated version of AERSURFACE, but please confirm.
- 4. SFC/PFL Files, Wind Direction: It appears that the updated dataset rounded wind direction to the nearest degree. Why was AERMET version 12345 run with different raw surface data? Please note, however, that not all wind directions appear to be rounded to the nearest degree as there are some cases when there is a value after the decimal point (example: January 5, 2005, hour 4).
- 5. SFC/PFL Files, Wind Speed: Again, it appears that there has been some rounding to the nearest tenth of a m/sec; however, there are some cases where the wind speed differences between the old and new datasets differ by more than a tenth of a m/sec. Why was the valid raw data input into AERMET different for the new dataset?
- 6. Wind Speed/Wind Direction: What are the starting thresholds for both the wind speed and wind direction sensor? Based on our conversation, many of the previously identified 'calms' were now modified to a wind speed of 0.28 m/sec. Please confirm this value is the greater of the wind direction or wind speed sensor starting thresholds.
- 7. SFC File, Missing Data Inconsistencies: In contrast to comment 6, there are now some instances when data previously identified as valid are now considered missing/invalid (example: January 11, 2005, hours 12, 13, 14, and 15). Please confirm.
- 8. SFC File, Pressure: The pressure values between the old and new datasets vary greatly. Please verify the difference.
- 9. SFC File, Cloud Cover: The cloud cover varies greatly between the old and new datasets. Please verify the difference.
- 10. Ozone Data: It appears that missing data in the new dataset was filled in differently compared to the old dataset. Please provide the guidance followed to fill in the missing data and the justification to change methodologies compared to data previously obtained through the SCAQMD website.

We look forward to hearing from you.

### Thanks, Elyse and John

Elyse Engel Staff Engineer Environmental Services Business Group

CH2M HILL 1737 North First Street, Suite 300 San Jose, California 95112 Direct 408.436.4936 x37432 Fax 408.436.4829 elyse.engel@ch2m.com

| From:<br>Sent:<br>To:<br>Cc: | jbaker@aqmd.gov<br>Tuesday, February 12, 2013 3:15 PM<br>Elyse.Engel@ch2m.com<br>John.Frohning@CH2M.com; Benjamin.Beattie@CH2M.com; Jerry.Salamy@CH2M.com;<br>Keith.McGregor@CH2M.com: tchico@agmd.gov; CPerri@agmd.gov |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Subject:<br>Attachments:     | RE: Costa Mesa Meteorological Data Questions                                                                                                                                                                            |

#### Hi Elyse,

I believe that I have answered all your questions on the phone last week. The only outstanding response is how the missing data in the ozone file was calculated, which is described below. I am also attaching the csta5.sfc file for your use. This file is the same file as the one which was previously provided to you, with a change in the station location, which does not affect the modeled results. You should already have the csta5.pfl file to use.

#### Response to #10.

As you are aware, the 3 years of met data and ozone data posted on our website was sufficient for use in non-PSD permitting projects. As indicated on our website, we request that applicants contact us for the most recent and updated met data plus ozone or NO2 data for all PSD projects. The method used for filling-in missing ozone data for purposes of Tier 3 NO2 modeling was updated in response to the new federal 1-hour NO2 standard and has been used on previous PSD projects within the District. The procedure is as follows:

#### **1 to 3 Consecutive Hours of Missing Data**

1, 2, or 3 consecutive hours of missing ozone data was filled in by linear interpolation between non-missing ozone data on either side of the missing period.

#### More than 3 consecutive Hours of Missing Data

Ambient ozone in southern California exhibits a strong and distinct diurnal and seasonal pattern. That is, ambient ozone concentrations are highest in the spring and summer months and during the mid-day hours. Filling-in missing ozone data with the highest hourly concentration is overly and unreasonably conservative. For instance, it is unreasonable to use the peak hourly ozone concentration for the modeling period to fill-in missing hours at nighttime when ozone concentrations approach zero.

Instead, we extracted the maximum value for each hour of the day and month of the year. Thus, there were 12 sets (representing each month of the year) of 24 hourly (representing the 24 hours in the day) ozone values. In this manner, the diurnal and seasonal ambient ozone patterns are preserved. So missing ozone at 1 a.m. in December would be filled in with the maximum 1 a.m. ozone concentration for all the Decembers in the modeling period. Similarly missing ozone at 2 p.m. in July would be filled in with the maximum 2 p.m. ozone concentration for all the Julys in the modeling period.

Please let me know if you have further questions.

Jillian Baker, Ph.D. South Coast AQMD 21865 Copley Drive, Diamond Bar, CA 91765 Direct: 909.396.3176

#### To: Jillian Baker

**Cc:** John.Frohning@CH2M.com; Benjamin.Beattie@CH2M.com; Jerry.Salamy@CH2M.com; Keith.McGregor@CH2M.com **Subject:** Costa Mesa Meteorological Data Questions

Hi Jillian,

Thank you for your time yesterday to discuss the revised 5-year Costa Mesa meteorological dataset processed with the updated version of AERMET (version 12345). We just wanted to follow-up on our observations from comparing the revised dataset to the original 3-year dataset. As discussed, we also reviewed the revised Ozone data and had a question about the inconsistencies between the previous 3-year dataset and the new 5-year dataset. We understand that many of the questions about the differences could be accounted for by using the new version of AERSURFACE; however, they are repeated below for verification.

Please review the following questions / comments and let us know if you would like to discuss in more detail:

- 1. SFC Files: The revised 5-year dataset processed with version 12345 has a coordinate inconsistent with the Costa Mesa station location. The coordinate included appears to be for the Crestline station. Please verify that Stages 1 and 3 of AERMET were preprocessed with the correct station location for Costa Mesa.
- 2. SFC Files: The surface roughness length is not consistent between the old and new datasets. We understand this may be an artifact of using the updated version of AERSURFACE, but please confirm. Please also confirm that the correct coordinate for the Costa Mesa station was used in AERSURFACE.
- 3. SFC Files, Albedo: The albedo between the old and new datasets do not match for many hours. Again, this may be an artifact of using the updated version of AERSURFACE, but please confirm.
- 4. SFC/PFL Files, Wind Direction: It appears that the updated dataset rounded wind direction to the nearest degree. Why was AERMET version 12345 run with different raw surface data? Please note, however, that not all wind directions appear to be rounded to the nearest degree as there are some cases when there is a value after the decimal point (example: January 5, 2005, hour 4).
- 5. SFC/PFL Files, Wind Speed: Again, it appears that there has been some rounding to the nearest tenth of a m/sec; however, there are some cases where the wind speed differences between the old and new datasets differ by more than a tenth of a m/sec. Why was the valid raw data input into AERMET different for the new dataset?
- 6. Wind Speed/Wind Direction: What are the starting thresholds for both the wind speed and wind direction sensor? Based on our conversation, many of the previously identified 'calms' were now modified to a wind speed of 0.28 m/sec. Please confirm this value is the greater of the wind direction or wind speed sensor starting thresholds.
- 7. SFC File, Missing Data Inconsistencies: In contrast to comment 6, there are now some instances when data previously identified as valid are now considered missing/invalid (example: January 11, 2005, hours 12, 13, 14, and 15). Please confirm.
- 8. SFC File, Pressure: The pressure values between the old and new datasets vary greatly. Please verify the difference.
- 9. SFC File, Cloud Cover: The cloud cover varies greatly between the old and new datasets. Please verify the difference.
- 10. Ozone Data: It appears that missing data in the new dataset was filled in differently compared to the old dataset. Please provide the guidance followed to fill in the missing data and the justification to change methodologies compared to data previously obtained through the SCAQMD website.

We look forward to hearing from you.

Thanks, Elyse and John

Elyse Engel Staff Engineer Environmental Services Business Group CH2M HILL 1737 North First Street, Suite 300 San Jose, California 95112 Direct 408.436.4936 x37432 Fax 408.436.4829 elyse.engel@ch2m.com

| From:<br>Sent:<br>To:<br>Cc: | jbaker@aqmd.gov<br>Tuesday, February 19, 2013 8:57 AM<br>Elyse.Engel@ch2m.com<br>John.Frohning@CH2M.com; Benjamin.Beattie@CH2M.com; Jerry.Salamy@CH2M.com;<br>Keith.McGregor@CH2M.com; tchico@aqmd.gov; CPerri@aqmd.gov; slee@aqmd.gov |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Subject:                     | RE: Costa Mesa Meteorological Data Questions                                                                                                                                                                                           |
| Attachments:                 | CostaMesa_for_Consultant.zip                                                                                                                                                                                                           |

\*\* WARNING \*\* This email contains a compressed file (e.g., ZIP), which is a file type often used to package & deliver viruses. Be VERY suspicious of ALL file attachments--ESPECIALLY if you do not know the sender. If you're in doubt about the legitimacy of this email, then DO NOT open the file attachment(s) before verifying with the sender.

Report suspicious emails to TAC, or your Regional IT Helpdesk if not supported by TAC.

File Name(s): CostaMesa\_for\_Consultant.zip File Type(s): compressed/zip

The original message text is below.

Hi Elyse,

Attached are the files you requested.

Jillian Baker, Ph.D. South Coast AQMD 21865 Copley Drive, Diamond Bar, CA 91765 Direct: 909.396.3176

From: Elyse.Engel@ch2m.com [mailto:Elyse.Engel@ch2m.com]
Sent: Wednesday, February 13, 2013 9:22 PM
To: Jillian Baker
Cc: John.Frohning@CH2M.com; Benjamin.Beattie@CH2M.com; Jerry.Salamy@CH2M.com; Keith.McGregor@CH2M.com; Tom Chico; Chris Perri
Subject: RE: Costa Mesa Meteorological Data Questions

Hi Jillian,

Thank you for providing the revised 5-year dataset and clarification on the ozone data. To verify the responses to comments 2 through 9 below, based on our phone call last week, could you please provide the following additional data:

- Input and output files for AERMET Stage 1 through Stage 3
- Raw data used for AERMET Stage 1 processing

Please let me know if you have any questions about this additional request.

Thanks, Elyse From: Jillian Baker [mailto:jbaker@aqmd.gov]
Sent: Tuesday, February 12, 2013 3:15 PM
To: Engel, Elyse/SJC
Cc: Frohning, John/SEA; Beattie, Benjamin/SAC; Salamy, Jerry/SAC; McGregor, Keith/SAC; Tom Chico; Chris Perri
Subject: RE: Costa Mesa Meteorological Data Questions

Hi Elyse,

I believe that I have answered all your questions on the phone last week. The only outstanding response is how the missing data in the ozone file was calculated, which is described below. I am also attaching the csta5.sfc file for your use. This file is the same file as the one which was previously provided to you, with a change in the station location, which does not affect the modeled results. You should already have the csta5.pfl file to use.

### Response to #10.

As you are aware, the 3 years of met data and ozone data posted on our website was sufficient for use in non-PSD permitting projects. As indicated on our website, we request that applicants contact us for the most recent and updated met data plus ozone or NO2 data for all PSD projects. The method used for filling-in missing ozone data for purposes of Tier 3 NO2 modeling was updated in response to the new federal 1-hour NO2 standard and has been used on previous PSD projects within the District. The procedure is as follows:

### **1 to 3 Consecutive Hours of Missing Data**

1, 2, or 3 consecutive hours of missing ozone data was filled in by linear interpolation between non-missing ozone data on either side of the missing period.

### More than 3 consecutive Hours of Missing Data

Ambient ozone in southern California exhibits a strong and distinct diurnal and seasonal pattern. That is, ambient ozone concentrations are highest in the spring and summer months and during the mid-day hours. Filling-in missing ozone data with the highest hourly concentration is overly and unreasonably conservative. For instance, it is unreasonable to use the peak hourly ozone concentration for the modeling period to fill-in missing hours at nighttime when ozone concentrations approach zero.

Instead, we extracted the maximum value for each hour of the day and month of the year. Thus, there were 12 sets (representing each month of the year) of 24 hourly (representing the 24 hours in the day) ozone values. In this manner, the diurnal and seasonal ambient ozone patterns are preserved. So missing ozone at 1 a.m. in December would be filled in with the maximum 1 a.m. ozone concentration for all the Decembers in the modeling period. Similarly missing ozone at 2 p.m. in July would be filled in with the maximum 2 p.m. ozone concentration for all the Julys in the modeling period.

Please let me know if you have further questions.

Jillian Baker, Ph.D. South Coast AQMD 21865 Copley Drive, Diamond Bar, CA 91765 Direct: 909.396.3176

From: Elyse.Engel@ch2m.com [mailto:Elyse.Engel@ch2m.com]
Sent: Wednesday, February 06, 2013 7:49 AM
To: Jillian Baker
Cc: John.Frohning@CH2M.com; Benjamin.Beattie@CH2M.com; Jerry.Salamy@CH2M.com; Keith.McGregor@CH2M.com
Subject: Costa Mesa Meteorological Data Questions

Hi Jillian,

Thank you for your time yesterday to discuss the revised 5-year Costa Mesa meteorological dataset processed with the updated version of AERMET (version 12345). We just wanted to follow-up on our observations from comparing the revised dataset to the original 3-year dataset. As discussed, we also reviewed the revised Ozone data and had a question about the inconsistencies between the previous 3-year dataset and the new 5-year dataset. We understand that many of the questions about the differences could be accounted for by using the new version of AERSURFACE; however, they are repeated below for verification.

Please review the following questions / comments and let us know if you would like to discuss in more detail:

- SFC Files: The revised 5-year dataset processed with version 12345 has a coordinate inconsistent with the Costa Mesa station location. The coordinate included appears to be for the Crestline station. Please verify that Stages 1 and 3 of AERMET were preprocessed with the correct station location for Costa Mesa.
- 2. SFC Files: The surface roughness length is not consistent between the old and new datasets. We understand this may be an artifact of using the updated version of AERSURFACE, but please confirm. Please also confirm that the correct coordinate for the Costa Mesa station was used in AERSURFACE.
- 3. SFC Files, Albedo: The albedo between the old and new datasets do not match for many hours. Again, this may be an artifact of using the updated version of AERSURFACE, but please confirm.
- 4. SFC/PFL Files, Wind Direction: It appears that the updated dataset rounded wind direction to the nearest degree. Why was AERMET version 12345 run with different raw surface data? Please note, however, that not all wind directions appear to be rounded to the nearest degree as there are some cases when there is a value after the decimal point (example: January 5, 2005, hour 4).
- 5. SFC/PFL Files, Wind Speed: Again, it appears that there has been some rounding to the nearest tenth of a m/sec; however, there are some cases where the wind speed differences between the old and new datasets differ by more than a tenth of a m/sec. Why was the valid raw data input into AERMET different for the new dataset?
- 6. Wind Speed/Wind Direction: What are the starting thresholds for both the wind speed and wind direction sensor? Based on our conversation, many of the previously identified 'calms' were now modified to a wind speed of 0.28 m/sec. Please confirm this value is the greater of the wind direction or wind speed sensor starting thresholds.
- 7. SFC File, Missing Data Inconsistencies: In contrast to comment 6, there are now some instances when data previously identified as valid are now considered missing/invalid (example: January 11, 2005, hours 12, 13, 14, and 15). Please confirm.
- 8. SFC File, Pressure: The pressure values between the old and new datasets vary greatly. Please verify the difference.
- 9. SFC File, Cloud Cover: The cloud cover varies greatly between the old and new datasets. Please verify the difference.
- 10. Ozone Data: It appears that missing data in the new dataset was filled in differently compared to the old dataset. Please provide the guidance followed to fill in the missing data and the justification to change methodologies compared to data previously obtained through the SCAQMD website.

We look forward to hearing from you.

#### Thanks, Elyse and John

Elyse Engel Staff Engineer Environmental Services Business Group

CH2M HILL 1737 North First Street, Suite 300 San Jose, California 95112 Direct 408.436.4936 x37432 Fax 408.436.4829 elyse.engel@ch2m.com

| From:<br>Sent: | John.Frohning@CH2M.com<br>Tuesday, February 26, 2013 5:54 PM |
|----------------|--------------------------------------------------------------|
| То:            | jbaker@aqmd.gov                                              |
| Cc:            | Elyse.Engel@ch2m.com; Jerry.Salamy@CH2M.com; slee@aqmd.gov;  |
|                | Benjamin.Beattie@CH2M.com                                    |
| Subject:       | RE: Costa Mesa Meteorological Data Questions                 |

Hi Jillian,

I am just following up on our conversation on Tuesday (2/19) of last week and checking on the status of the revised Costa Mesa AERMET files (including the Costa Mesa raw input data for Stage 1 of AERMET). Let me know if you have any questions. Thanks, John Frohning Air Quality Specialist CH2M Hill 425-292-3087 1100 112th Ave. NE

1100 112th Ave. NE Suite 400 Bellevue, WA 98004

From: Jillian Baker [mailto:jbaker@aqmd.gov]
Sent: Tuesday, February 19, 2013 8:57 AM
To: Engel, Elyse/SJC
Cc: Frohning, John/SEA; Beattie, Benjamin/SAC; Salamy, Jerry/SAC; McGregor, Keith/SAC; Tom Chico; Chris Perri; Sang-Mi Lee
Subject: RE: Costa Mesa Meteorological Data Questions

\*\* WARNING \*\* This email contains a compressed file (e.g., ZIP), which is a file type often used to package & deliver viruses. Be VERY suspicious of ALL file attachments--ESPECIALLY if you do not know the sender. If you're in doubt about the legitimacy of this email, then DO NOT open the file attachment(s) before verifying with the sender.

Report suspicious emails to TAC, or your Regional IT Helpdesk if not supported by TAC.

File Name(s): CostaMesa\_for\_Consultant.zip File Type(s): compressed/zip

The original message text is below.

Hi Elyse,

Attached are the files you requested.

Jillian Baker, Ph.D. South Coast AQMD 21865 Copley Drive, Diamond Bar, CA 91765 Direct: 909.396.3176 From: Elyse.Engel@ch2m.com [mailto:Elyse.Engel@ch2m.com]
Sent: Wednesday, February 13, 2013 9:22 PM
To: Jillian Baker
Cc: John.Frohning@CH2M.com; Benjamin.Beattie@CH2M.com; Jerry.Salamy@CH2M.com; Keith.McGregor@CH2M.com; Tom Chico; Chris Perri
Subject: RE: Costa Mesa Meteorological Data Questions

Hi Jillian,

Thank you for providing the revised 5-year dataset and clarification on the ozone data. To verify the responses to comments 2 through 9 below, based on our phone call last week, could you please provide the following additional data:

- Input and output files for AERMET Stage 1 through Stage 3
- Raw data used for AERMET Stage 1 processing

Please let me know if you have any questions about this additional request.

Thanks, Elyse

From: Jillian Baker [mailto:jbaker@aqmd.gov]
Sent: Tuesday, February 12, 2013 3:15 PM
To: Engel, Elyse/SJC
Cc: Frohning, John/SEA; Beattie, Benjamin/SAC; Salamy, Jerry/SAC; McGregor, Keith/SAC; Tom Chico; Chris Perri
Subject: RE: Costa Mesa Meteorological Data Questions

Hi Elyse,

I believe that I have answered all your questions on the phone last week. The only outstanding response is how the missing data in the ozone file was calculated, which is described below. I am also attaching the csta5.sfc file for your use. This file is the same file as the one which was previously provided to you, with a change in the station location, which does not affect the modeled results. You should already have the csta5.pfl file to use.

#### Response to #10.

As you are aware, the 3 years of met data and ozone data posted on our website was sufficient for use in non-PSD permitting projects. As indicated on our website, we request that applicants contact us for the most recent and updated met data plus ozone or NO2 data for all PSD projects. The method used for filling-in missing ozone data for purposes of Tier 3 NO2 modeling was updated in response to the new federal 1-hour NO2 standard and has been used on previous PSD projects within the District. The procedure is as follows:

#### **1 to 3 Consecutive Hours of Missing Data**

1, 2, or 3 consecutive hours of missing ozone data was filled in by linear interpolation between non-missing ozone data on either side of the missing period.

#### More than 3 consecutive Hours of Missing Data

Ambient ozone in southern California exhibits a strong and distinct diurnal and seasonal pattern. That is, ambient ozone concentrations are highest in the spring and summer months and during the mid-day hours. Filling-in missing ozone data with the highest hourly concentration is overly and unreasonably conservative. For instance, it is unreasonable to use the peak hourly ozone concentration for the modeling period to fill-in missing hours at nighttime when ozone concentrations approach zero.

Instead, we extracted the maximum value for each hour of the day and month of the year. Thus, there were 12 sets (representing each month of the year) of 24 hourly (representing the 24 hours in the day) ozone values. In this manner, the diurnal and seasonal ambient ozone patterns are preserved. So missing ozone at 1 a.m. in December would be filled in with the maximum 1 a.m. ozone concentration for all the Decembers in the modeling period. Similarly missing ozone at 2 p.m. in July would be filled in with the maximum 2 p.m. ozone concentration for all the Julys in the modeling period.

Please let me know if you have further questions.

Jillian Baker, Ph.D. South Coast AQMD 21865 Copley Drive, Diamond Bar, CA 91765 Direct: 909.396.3176

From: Elyse.Engel@ch2m.com [mailto:Elyse.Engel@ch2m.com]
Sent: Wednesday, February 06, 2013 7:49 AM
To: Jillian Baker
Cc: John.Frohning@CH2M.com; Benjamin.Beattie@CH2M.com; Jerry.Salamy@CH2M.com; Keith.McGregor@CH2M.com
Subject: Costa Mesa Meteorological Data Questions

Hi Jillian,

Thank you for your time yesterday to discuss the revised 5-year Costa Mesa meteorological dataset processed with the updated version of AERMET (version 12345). We just wanted to follow-up on our observations from comparing the revised dataset to the original 3-year dataset. As discussed, we also reviewed the revised Ozone data and had a question about the inconsistencies between the previous 3-year dataset and the new 5-year dataset. We understand that many of the questions about the differences could be accounted for by using the new version of AERSURFACE; however, they are repeated below for verification.

Please review the following questions / comments and let us know if you would like to discuss in more detail:

- SFC Files: The revised 5-year dataset processed with version 12345 has a coordinate inconsistent with the Costa Mesa station location. The coordinate included appears to be for the Crestline station. Please verify that Stages 1 and 3 of AERMET were preprocessed with the correct station location for Costa Mesa.
- 2. SFC Files: The surface roughness length is not consistent between the old and new datasets. We understand this may be an artifact of using the updated version of AERSURFACE, but please confirm. Please also confirm that the correct coordinate for the Costa Mesa station was used in AERSURFACE.
- 3. SFC Files, Albedo: The albedo between the old and new datasets do not match for many hours. Again, this may be an artifact of using the updated version of AERSURFACE, but please confirm.
- 4. SFC/PFL Files, Wind Direction: It appears that the updated dataset rounded wind direction to the nearest degree. Why was AERMET version 12345 run with different raw surface data? Please note, however, that not all wind directions appear to be rounded to the nearest degree as there are some cases when there is a value after the decimal point (example: January 5, 2005, hour 4).
- 5. SFC/PFL Files, Wind Speed: Again, it appears that there has been some rounding to the nearest tenth of a m/sec; however, there are some cases where the wind speed differences between the old and new datasets differ by more than a tenth of a m/sec. Why was the valid raw data input into AERMET different for the new dataset?
- 6. Wind Speed/Wind Direction: What are the starting thresholds for both the wind speed and wind direction sensor? Based on our conversation, many of the previously identified 'calms' were now modified to a wind speed of 0.28 m/sec. Please confirm this value is the greater of the wind direction or wind speed sensor starting thresholds.
- SFC File, Missing Data Inconsistencies: In contrast to comment 6, there are now some instances when data previously identified as valid are now considered missing/invalid (example: January 11, 2005, hours 12, 13, 14, and 15). Please confirm.

- 8. SFC File, Pressure: The pressure values between the old and new datasets vary greatly. Please verify the difference.
- 9. SFC File, Cloud Cover: The cloud cover varies greatly between the old and new datasets. Please verify the difference.
- 10. Ozone Data: It appears that missing data in the new dataset was filled in differently compared to the old dataset. Please provide the guidance followed to fill in the missing data and the justification to change methodologies compared to data previously obtained through the SCAQMD website.

We look forward to hearing from you.

Thanks, Elyse and John

Elyse Engel Staff Engineer Environmental Services Business Group

CH2M HILL 1737 North First Street, Suite 300 San Jose, California 95112 Direct 408.436.4936 x37432 Fax 408.436.4829 elyse.engel@ch2m.com