UCDAVIS

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

An Institute of Transportation Studies Program

Renewable H₂ Pathways for California

Prof. Joan Ogden, Dr. Chris Yang

University of California, Davis

June 29, 2012

California Energy Commission
DOCKETED
12-HYD-1

TN # 66105

JUL 02 2012

H₂ Supply Pathways

Like electricity, H2 can come from many resources

Natural Gas

Nuclear

H2 FCVs have low well to wheel GHG emissions if made from low carbon sources

Well-to-Wheels Greenhouse Gases Emissions for Future Mid-Size Car

(Grams of CO_2 -equivalent per mile)

DELIVERED H2 COST (\$/kg)

Near term Renewable H₂ Pathways

- Onsite Reformer using pipeline delivered bio-methane
- Onsite Reformer using bio-ethanol
- Onsite electrolysis (green electricity via grid)
- Onsite electrolysis (Solar PV at station)

33% Renewable H₂ Costs

- Onsite Reformer w/33% bio-methane (@\$20/MMBTU), plus 33% green electricity from the grid at 3 cent/kWh premium (California average green elec. premium).
 - Increases hydrogen cost by about \$0.5/kg vs. NG reformer
- Onsite Reformer with 100% bio-methane and 100% green electricity from the grid at 3 cent/kWh premium.
 - Increases hydrogen cost by about \$1.5/kg
- Onsite electrolysis w/33% green electricity from the grid at 3 cent/kWh premium
 - increases hydrogen cost by about \$0.5/kg
- Onsite electrolysis w/33% PV electricity @ 40 cent/kWh
 - increases hydrogen cost by about \$5/kg

Long Term Resources for H₂ Production

- Biomass (Western Governor's Association study)
 - High Biomass 1/3 of WGA supply curve (~43 million dry tonnes) enough to supply 12600 tonnes H2/day serving ~25 million highly efficient FCVs
 - Limited biomass supply: (Assume other uses of biomass take precedence: liquid fuels for aviation, HD trucks marine, etc) 1/9th of WGA supply curve (~14 million dry tonnes) enough to supply 4200 tonnes H2/day or ~ 8 million FCVs

Renewable electricity (wind, solar)

- Up to 354,000 GWh/yr of renewable electricity is available in CA, though at a significant incremental cost
- =>21500 tonnes electrolytic H2/day or ~43 million FCVs

Natural gas

- Early production from onsite SMR
- Biogas could play an early role
- Later years:NG should be abundant, but GHG footprint may limit its use

Coal w/CCS

Adequate carbon sequestration availability is assumed

High Biomass Case

 Switch to mostly central production in 2020 which is met by biomass H2 w/pipeline delivery

NG Intensive: Limited Biomass, No Coal

 Biomass is the largest H2 source; Major NG use (in both central and distributed) and carbon intensity goes up

Renewable Electrolysis Intensive: Limited Biomass, No Fossil

 NG is phased out in 2040 in order to lower H2 carbon intensity, requires lots of renewable electricity

Levelized H₂ Costs Higher for Case w/ Lots of Renewable Electrolytic H₂

