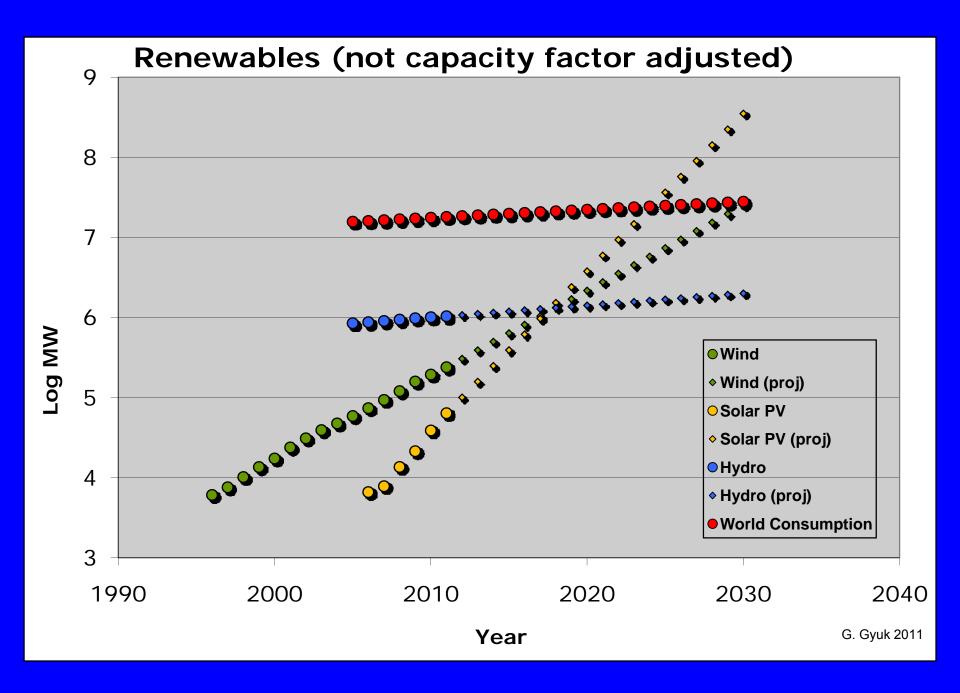
DOCKET

12-IEP-1D

DATE MAY 30 2012

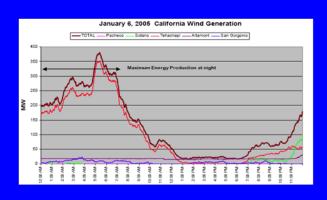
RECD. JUN 12 2012

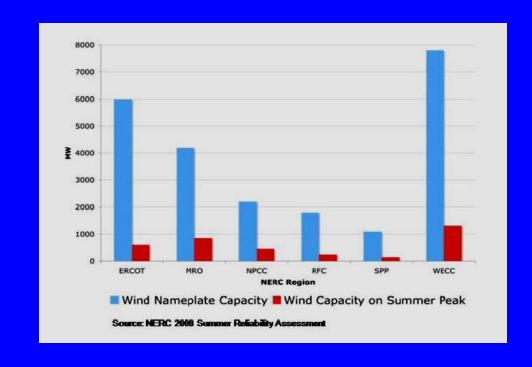
Progress in Grid Energy Storage


IMRE GYUK, PROGRAM MANAGER ENERGY STORAGE RESEARCH, DOE

Energy Storage provides Energy

when it is needed


just as Transmission provides Energy


where it is needed

29 U.S. States have Renewable Portfolio Standards (RPS) Requiring 10-40% Renewables

On Peak Wind - the Reality!

Cost effective Energy Storage yields better Asset Utilization

Some Large Energy Storage Projects:

27MW / 7MWh 34MW / 245MWh 20MW / 5MWh 32MW / 8MWh 14MW / 63 MWh 8MW / 32MWh 25MW / 75MWh 1995 Fairbanks, AL
2008 Rokkasho. Japan
2011 Stephentown, NY
2011 Laurel Mountain, WV
2011 Hebei, China
2012 Tehachapi, CA
2013 Modesto, CA

Worldwide – CNESA

2011 May 370MW 2011 Aug. 455MW 2011 Nov. 545MW 2012 Feb. 580MW 2012 Apr. 590MW

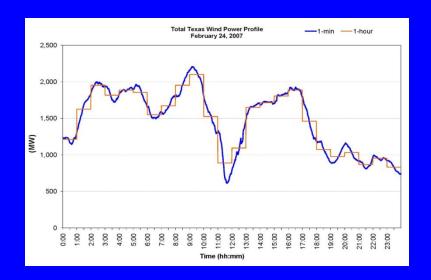
Annual new Deployment

2011: 121MW

→ 2021: 2,353MW

(Pike Research)


ARRA Stimulus Funding for Storage Demonstration Projects (\$185M)


A ten-fold Increase in Power Scale!

Large Battery System (3 projects,53MW)
Compressed Air (2 projects, 450MW)
Frequency Regulation (20MW)
Distributed Projects (5 projects,9MW)
Technology Development (5 projects)

533MW - \$585M Costshare!

Large Batteries for Wind Integration

Coincident BPA Wind Ramps


Feb. 24, 2007: 500MW / 2.5hr; 30x Spotprices NREL: Δ = 25% @ 2days, Δ = 50% @ 1 week

3 Large Battery + Wind Projects = 53MW in Stimulus Package!

ARRA – Primus Power

Installing a 25 MW / 3hr battery plant for the Modesto Irrigation District in CA, providing equivalent flex capacity to 50 MW of natural gas engines costing \$73M

Fully self-contained, hermetically sealed flow battery modules

250kW/750kWh EnergyPods™

ARRA - Southern California Edison / A123 - Li-Ion:

8 MW / 4 hr battery plant for wind integration at Tehachapi, CA.

A Tehachapi Wind Field

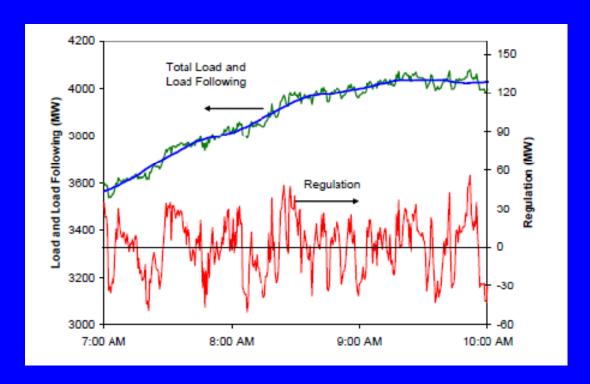
8MW Storage Plant under Construction

ARRA – Duke Energy / Xtreme Power 36MW / 40 min battery plant

Ramp control, wind smoothing

Linked to 153MW Wind farm at No-Trees, TX

Xtreme Power, Kahuku Wind Project


Largest North American Installation with Wind

Location	Oahu, HI
Application	Wind
DPR™	15 MW / 10 MWh
COD	Q1 2011
Services	Ramp Control, Voltage Regulation

This DPR™ will operate on a 30 MW wind farm on the island of Oahu to meet PPA ramp control and smoothing requirements.

Grid Frequency Regulation with Fast Storage: 1 project 20MW

Kirby 2004

Current method to balance constantly shifting load fluctuation is to vary the frequency and periodically adjust generation in response to an ISO signal. Fast storage can respond instantaneously!

Key Outcomes (PNNL Study, 2012)

- When additional renewables are planned, a certain amount of storage or fastramping generation is also needed to firm the variable renewable power.
 - For every unit of wind capacity power, approximately 0.08 to 0.15 units of intra-hour balancing (minute-to-minute variability) need to be added.

Intra-hour balancing power requirements caused by wind variability only							
	MW storage	as a percentage of average demand	•	as a percentage of installed wind capacity			
AZ-NM- SNV	174.08	1.0	0.5	12.8			
CA-MX	943.65	2.5	1.4	14.4			
NWPP	1,071.26	2.1	1.5	11.0			
RMPA	504.89	5.6	3.6	8.0			

FREQUENCY REGULATION

DOE Loan Guarantee – Beacon: 20MW Flywheel Storage for Frequency Regulation in NY-ISO 20MW commissioned July 2011

DOE Loan Guarantee – AES / A123: 20MW Lithium Ion Battery for Frequency Regulation in NY-ISO 8MW on Line!

AES, Laurel Mountain, WV - 32 MW Storage less than 1 acre, no emissions Integrated with 98MW Wind Farm

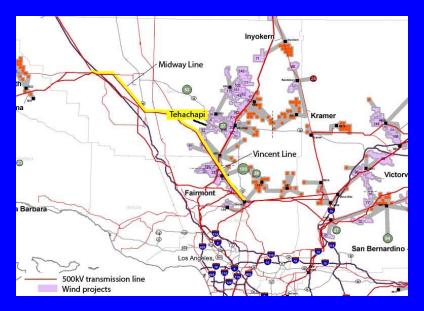
Compressed Air Energy Storage 2 CAES Projects

Inexpensive Off-Peak Power to Compress Air for Storage in Aquifers, Salt Domes, Caverns, or abandoned Gas Wells. On-Peak, Compressed Air is used as Input for Gas Turbine Compressor, increasing Efficiency

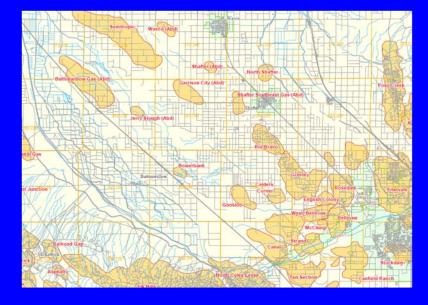
McIntosh, Alabama, 1991, 110 MW

Huntdorf, Germany, 1978, 290 MW

ARRA - PG&E:


300 MW / 10hr Compressed Air Energy Storage Facility in Tehachapi, CA

Depleted Gas Wells


Gas Pipe Line

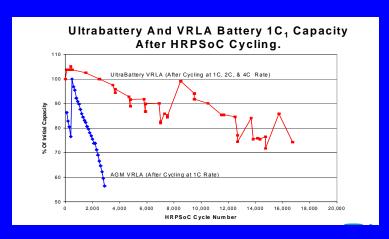
Existing 500kV Transmission Line

4 500 MW New Wind in 4-5 Years

Location of Wind Resources

Location of Depleted Gas Fields

ARRA – Public Service NM:


500kW, 2.5MWh for smoothing of 500kW PV installation; Using EastPenn Lead-Carbon Technology

Commissioned Sep. 24, 2011

Integrator: Ecoult

Commissioning June 2012

PbC Testing at Sandia

ARRA – EastPenn, PA: 3MW Frequency Reg for PJM 1MW 1-4hrs Load Management during Peak Periods

Detroit Edison, ARRA Community Energy Storage Project

Monrovia County
Community College

20 Units
each 25kW / 2hr
Coupled with 500kW PV
and 500kW / 30min Storage

Dow Kokam Battery

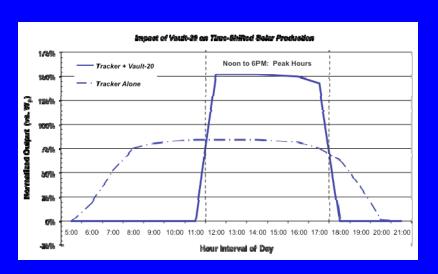
S&C Inverter

ARRA - Enervault:

250kW/4hr Fe-Cr Flow Battery for PV

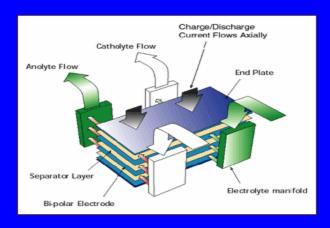
PV: 300 kW

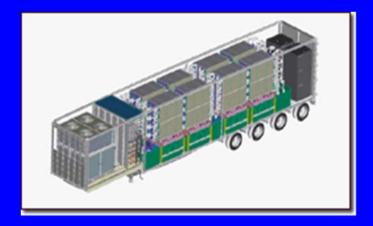
Storage: 250 KW


Peak output: 450kW Storage Cost: +16% Storage Value: +84%

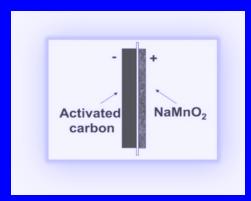
Flow Battery Prototype

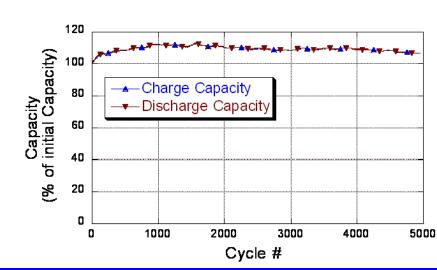
Tracking PV in Almond Grove


Leveraging PV with Storage


ARRA DistributedProject:

Installation of 5 Transflow 2000 500kW ZnBr Battery Systems at locations within SMUD and National Grid Utility Districts:


- 2 units at a substation in Syracuse
- 1 unit at Syracuse University
- 1 unit at SMUD HQ microgrid
- 1 unit at SMUD Solar Smart Homes Project


ARRA - Aquion Energy: Aqueous Sodium Ion Battery

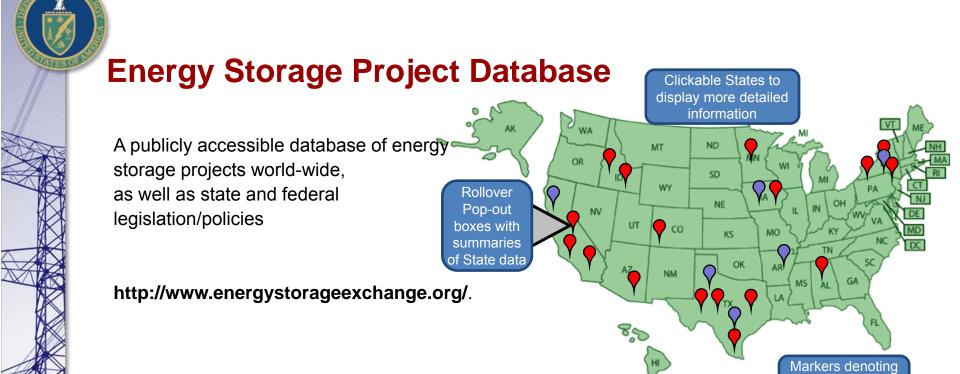
Winner, 2010
World Technology Award

- Cost Goal: <\$200/kWh
- Lifetime cost: <\$0.10/kWh
- Ubiquitous, low cost precursors
- Inexpensive manufacture
- Roundtrip Efficiency >85%
- 5000 cycles demonstrated

ARRA - SustainX: Totally green Isothermal CAES

Awards: GE Ecomagination, Clean Tech 100 in 2010 / 11

A site-anywhere solution – eliminates lengthy siting and risk associated with geologic storage


Superior thermodynamics – eliminates reliance on natural gas

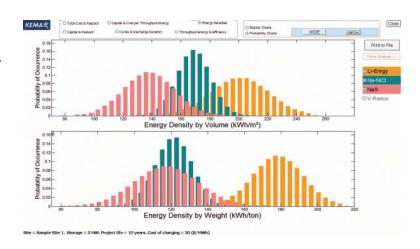
Isothermal efficiency of 95% compared with 54% for adiabatic technique

Higher pressure and efficiency make pipe-type storage cost effective

A patented and demonstrated, low-cost, long lifetime *energy* storage solution

DOE/EPRI Energy Storage Handbook

Partnership with EPRI and NRECA to develop a definitive energy storage handbook:


projects and points of interest

- Details the current state of commercially available energy storage technologies.
- Matches applications to technologies
- · Info on sizing, siting, interconnecting
- Includes a cost database

ES-Select: Energy Storage Selection Tool

- A tool for high-level decision makers to facilitate planning for ESS infrastructure:
 - High-level technical and economic review of storage technologies
 - Determine and size applicable energy storage resources
 - Develop a preliminary business case
- Educate potential owners, electric system stakeholders and the general public on energy storage technologies
- Developed by KEMA
- http://www.sandia.gov/ess/esselect.html

Storage Guidebook for Regulatory Officials

- Inform regulators about Storage benefits
- Provide information on technical aspects of Energy Storage Systems
- Identify regulatory challenges to increased Storage System deployment
- Suggest possible responses/solutions to challenges
- Develop model PUC submissions requesting approval of rate base addition
- Advisory Committee comprised of industry and government experts

Development of a Protocol to Measure and Report Performance of Energy Storage technology

- We need a common language for technology providers and prospective users
- No uniform acceptable criteria exist for comparable statements of performance
- This causes confusion in the market and adversely affects technology acceptance
- DOE is leading an effort to develop an initial protocol (pre-standard)
 - Formation of representative stakeholder group
 - Clarification of anticipated application and use of the protocol by industry
 - Develop a pre-standard with reasonable consensus
 - Ongoing support as technology evolves

Collaboration with Clean Energy States Alliance

- Webinar Series on Policy Issues related to Energy Storage
- Provide information on technical aspects of Energy Storage Systems
- Identify regulatory challenges to increased Storage System deployment
- Suggest possible responses/solutions to challenges
- Develop model PUC submissions requesting approval of rate base addition
- Advisory Committee comprised of industry and government experts

SNL Energy Storage System Analysis Laboratory

Reliable, independent, third party testing and verification of advanced energy technologies from cell to MW scale systems

Expertise to design test plans for technologies and their potential applications

Cell, Battery and Module Testing

- Testers to accommodate a wide range of testing applications including:
 - 14 channels from 36 V, 25 A to 72 V,
 1000 A for battery to module-scale tests
 - Over 125 channels; 0 V to 10 V, 3 A to 100+ A for cell tests

72 V 1000 A Bitrode (2 Parallel Channels)

Energy Storage Test Pad (ESTP)

System Testing

- Scalable from 5 KW to 1 MW, 480 VAC, 3 phase
- 1 MW/1 MVAR load bank for either parallel microgrid, or series UPS operations
- Subcycle metering in feeder breakers for system identification and transient analysis
- Can test for both power and energy use cases

Summer Ferreira srferre@sandia.gov

David Rose dmrose@sandia.gov

DOE Energy Storage Program

Aggressively Furthers

Market Pull and Technology Push:

Demonstrations and Research