
Energy Storage at CPUC

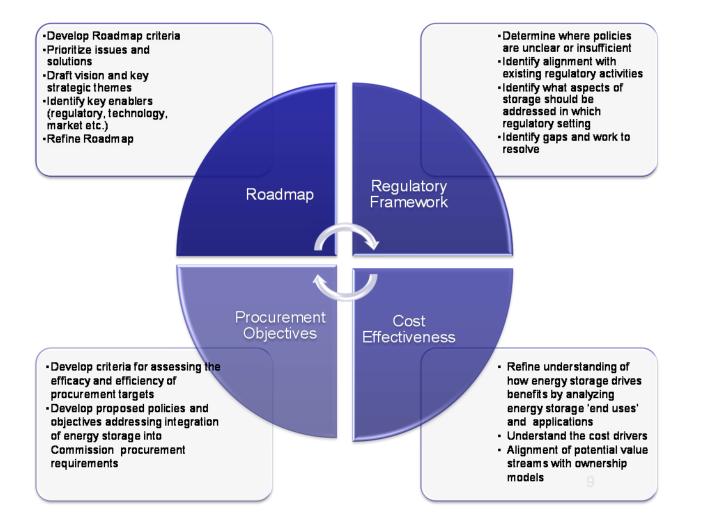
California Energy Commission IEPR Workshop

June 11, 2012

Arthur O'Donnell Senior Regulatory Analyst Energy Division Grid Planning & Reliability

Summary of AB 2514

- 1. Required the Commission to open a proceeding to determine appropriate targets, if any, for each load-serving entity to procure viable and cost-effective energy storage systems.
- 2. By October 1, 2013, to adopt an energy storage procurement target, *if determined to be appropriate,* to be achieved by each Load Serving Entity (LSE) by December 31, 2015, and a 2nd target to be achieved by December 31, 2020.
- 3. Consider a variety of possible policies to encourage the cost-effective deployment of energy storage systems, including refinement of existing procurement methods to properly value energy storage systems.
- 4. The Commission shall reevaluate the determinations made pursuant to this subdivision not less than once every three years.


Storage Rulemaking Timeline

Phase 1	2010	July	White Paper
		Sept	Assembly Bill 2514
		Dec	Order Instituting Rulemaking 10-12-007
	2011	March	Workshop
		April	Pre-hearing conference
		May	Scoping memo
		June/July	Workshops: 1) Systems; 2) Barriers
		Dec	Staff proposal
	2012	Jan/Feb	Parties' comments, reply comments
		March 30	Final staff proposal
		2 nd Quarter	Decision
Phase 2	2013	Oct	Decision
	2015	Dec	Proposed 1 st procurement target
	2020	Dec	Proposed 2 nd procurement target

Energy Storage Analysis

Regulatory Framework

- Resource Adequacy Flexible capacity needs
- Long-Term Power Procurement SoCal OTC in 2017 and beyond
- Self-Generation Incentive Program 147 applications in 2011, many Li-Ion with PV systems, up to \$2/watt incentive
- Demand Response Programs \$32 million for Permanent Load Shifting = 49 MW by 2014
- RPS Evaluations PPA between SoCal Edison and BrightSource
- Rate Design (TOU rates)
- CAISO Markets Frequency Regulation
- FERC Rulemakings Order No. 755

Summary of Staff Proposal

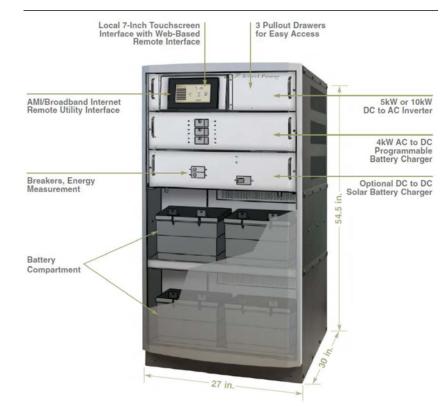
Revised Staff Report also identified several priorities for evaluating end-use applications:

- Storage to support renewable energy integration
- Storage to avoid/defer distribution system upgrades
- Storage to provide demand-side management (behind the meter) services
- Storage to provide ancillary services

Prioritized Use Cases

<u>Use Case</u>

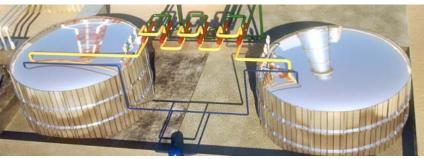
Primary Benefit


 Distribution Deferral 	Avoids upgrades
 Community Energy Storage 	Local service reliability
 Distributed Peaker 	Energy cycling to meet peak
Variable Energy Resource-sited	Renewables integration
 Bulk Generation 	Electricity/Capacity
 Demand-Side Management 	End-use bill management
	(utility/3 rd party owned)

Use Case: Community Energy Storage

Purpose	Improve local reliability; integrate distributed renewable generation; provide voltage control
Location	Adjacent to load, on utility or customer property
Technology	Batteries: >25 kW, 2 hours
Example	SMUD "Smart Solar" in Anatolia neighborhood. Li-ion batteries: 15 units, 8.7 kW/8.8 kWh (residential) 3 units, 30 kW/kWh (pad- mount transformers, distribution feeders)

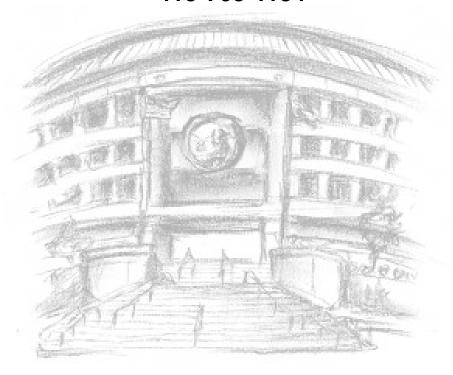
Residential Energy Storage http://www.advancedenergy.org



Use Case: Variable Energy Resource-Sited

Purpose	On-site firming or shaping variable energy; ramping; voltage support		
Location	With or near renewable energy generation, or elsewhere		
Technology	Centralized Solar Power w/molten salt or other; generation sited thermal storage; batteries: >25 MW, >5 hours		
Example	AES Laurel Mountain Li-ion battery: 32 MW (to back up 98 MW wind farm)		
	BrightSource CSP with molten salt, 3 units, 200 MW, 6 hours		

http://www.brightsourceenergy.com/energy-storage


Next Steps

- ALJ Yip-Kikugawa will prepare a Proposed Decision for Commission consideration this summer.
- Phase 2 Ruling will set out issues and timelines
- Workshops will refine Use Case analysis and issues -- cost-effectiveness, market needs, interaction with other proceedings
- Staff will identify potential for specified targets
- Develop Roadmap for long-term action

Thank you! For further information related to R10-12-007 please contact : Arthur O'Donnell <u>ao1@cpuc.ca.gov</u> 415-703-1184

