CEC IEPR Workshop

Renewable Integration in California Monday June 11, 2012

Jim Eyer On behalf of California Energy Storage Alliance (CESA)

jim@jimeyer.net 510 482 3516

DOCKET

12-IEP-1D

DATE

JUN 11 2012

RECD. JUN 12 2012

CESA – Strength Through Diversity & Collaboration

Steering Committee

General Members

Role for All Storage Technologies on the Grid

Technology Classes

Energy Storage Examples

Chemical Storage

Advanced Lead Acid Battery

- Electrical energy is stored for later use in chemical form. Existing battery technologies are being improved, and new battery technologies are becoming available.
- Example: 1.5MW Advanced Lead Acid Battery Kaheawa, Hawaii Wind Farm

Thermal Storage

Chilled Water Storage

•Combustion turbines' efficiency is dependent upon the temperature of the air taken into the turbine. Water chilled during off-peak hours can greatly increase their efficiency by pre-cooling the air before intake.

•Example: 23,700 tons of chilled water for a 1300MW Warren County, Virginia CCCT

Mechanical Storage

High Speed Flywheel

- •Flywheels convert electrical energy to kinetic energy, then back again very rapidly. Flywheels are ideal for power conditioning and short-term storage.
- Example: 3 MW Mechanical Storage for Ancillary Services NE ISO (Beacon Power)

Bulk Mechanical Storage

Below Ground Compressed Air

- •Electricity is used to compress air into small or large modular storage tanks or a large underground cavern. The compressed air is used to spin turbines when electricity is needed.
- Example: 115 MW Compressed Air Energy Storage McIntosh, Alabama

Bulk Gravitational Storage

Pumped Hydro

- •Excess electricity is used to pump water uphill into a reservoir. When power is needed, the water can run down through turbines, much like a traditional hydroelectric dam.
- •Example: 1,532 MW Pumped Hydro TVA's Raccoon Mountain

Storage for Bulk Renewable Generation Integration

- » Manage output and demand mismatch
 - ✓ capacity firming
 - especially solar, during peak
 - ✓ energy time-shift
 - especially wind generation and baseload REs, at night
 - ✓ energy balancing
- » Manage regional generation variability
 - ✓ ramping
 - avoid use of thermal or hydro generation
 - √ frequency regulation
 - much faster, more efficient than thermal generation
- » Manage RE power quality impacts

Storage for Distributed Renewable Energy Integration

- Assume that distributed renewables are mostly PV
 - i.e., expect limited distribution-level wind generation
- » Manage RE output and demand mismatch
 - energy time-shift and capacity firming
- » Manage localized ramping-related challenges
 - voltage, momentary excess production
- » Manage voltage and reactive power
- » Manage harmonics
- » Avoid current backflow (low voltage to high voltage)
- » Enable islanded/microgrid operation

32 Storage Benefits

	Benefit	Central Storage	Distributed ¹ Storage	Location- specific Storage ²
Elect	ric Supply			
1.	Time-shift	✓	✓	
2.	Supply Capacity	✓	✓	
Grid	Operations (a.k.a. Ancillary Services)			
3.	Energy Balancing	✓	✓	
4.	Load Following	✓	/	
5.	Area Regulation	✓	✓	
6.	Fast Area Regulation	✓	✓	
7.	Frequency Response	✓	✓	
8.	Ramping	✓	✓	Y
9.	Reserve Capacity	✓	✓	
10.	Voltage Support	✓	✓	√ 3
11.	Black Start	✓	✓	
Grid	Infrastructure			
12.	Transmission Support			✓
13.	Transmission Congestion Management			√ 4,5
14.	T&D Upgrade Deferral			√ ^{4,5}
15.	Substation On-site Power			✓
End l	Jser			
16.	Time-of-use Energy Cost Management			~
17.	Demand Charge Management			✓
18.	Electric Service Reliability			✓
19.	Electric Service Power Quality			✓

32 Storage Benefits

	Benefit	Central Storage	Distributed ¹ Storage	Location- specific Storage ²
Rene	ewable Integration			
20.	Renewable Energy Time-shift	✓	✓	✓
21.	Renewable Generation Capacity Firming	✓	✓	✓
22.	Variable Renewables Grid Integration			✓
	ental Benefits			
23.	Generation Dynamic Operating Benefits	✓	✓	✓
24.	Reduced Generation Fossil Fuel Use	✓	✓	
25.	Reduced Generation Air Emissions	✓	✓	
26.	Increased GT&D Asset Utilization	✓	✓	✓4
27.	Reduced T&D I ² R Energy Losses	√	✓	√ 4,5
28.	Avoided Transmission Access Charges	✓	✓	✓
29.	Reduce T&D Investment Risk	✓	✓	✓ ⁴
30.	Power Factor Correction	✓	✓	√ 5
31.	Flexibility	✓	✓	√ ⁵
32.	Real Options	✓	✓	√ 5

- 1. Deployment at a specific location is not necessary.
- 2. Location matters.
- 3. Best if located near the most troublesome loads during voltage emergencies.
- 4. Must be located (elecrically) downstream from "hot spots."
- 5. Value is somewhat to very situation-specific.

The Application Matrix – A Logical Analytical Framework

Benefit streams

Applications and applicable benefits

				Flexible									Stationary	Transportable							
Primary Benefit				Peaker (Bulk)									T&D*	T&D*					Bulk		
Secondary Benefit Q				plus								In Lieu	Deferral	Deferral	Distributed	Community			Wind	Air	
Tertiary Benefit O	 			Transmission	Bulk	Fast		Enhanced		Merchant	Transmission	of	and/or	and/or	Modular	Energy	Electric	Distributed	Generation	Conditioning	
Tertiary benefit O	Order	ig i	Bulk Flexible	Congestion	Renewables	Frequency	Flexible	Reserves	Merchant	Supply Plus	(Electrical)	Transmission	Life	Life	Flexible	Storage	Service Bill	PV	to Distributed	Load	Fast
<u>Beneft</u>	Sort	Dair	Bulk Flexible Peaker	Relief	Integration	Regulation	Ramping	Management	Supply Only	Transmission ¹	Support ¹	Capacity ¹	Extension ¹	Extension ¹	Peaker	(CES)2	Management ¹	Integration	Storage	Management	EV Charging
Frequency Regulation	1	Short	•	•			0	0	0	•		0	0	•	•	0		•	•	0	
Fast Frequency Regulation	1	Short	•	0	0	•	•	•	•	•		0	0	•	•	•		0	0	•	
Frequency Response	1	Short	•	•			•	0	•	•		0	•	•	•	•	0	•	•	0	•
Ramping	1	Short	•	0	•		•	•	•	•		0	0	•	•	0		•	•	0	
Transmission Support ¹	1	Short									•										
Electric Energy Timeshift	2	Long	•	•	•				•	•		0	0	0	•	•		•	•	•	•
Electric Supply Capacity	2	Long	•	•	•				•	•		0	•	۰	•	•		•	•	•	•
Transmission Congestion Relief/Capacity ¹	2	Long		•						•			0	•	•	•		•	•	0	0
T&D* Deferral and Life Extension1	2	Long										•	•	•	•	•		•	•	0	•
Time-of-use Energy Cost Management ¹	2	Long															•				
Demand Charge Management ¹	2	Long															•				
Spinning Reserves	3	Inter	0	0			0	•	•	0		0	0	0	•	•	0	0	•	0	0
Contingency Reserves	3	Inter	•	۰			0	•	•	•		•	۰	•	•	•	0	•	•	•	۰
Voltage Support ²	3	Inter	0	0					0	0		0	0	•	•	•	0	0	•	•	0
Black Start	3	Inter	0	0						•			0	0		0					
Local Electric Service Reliability ¹	3	Inter											0	•	•	•	0	0	0	•	
Local Electric Service Power Quality ¹	3	Inter											0	•	•	•	0	•	•	0	
Reduced T&D Energy Losses ¹	4		0	0					0	0		0	0	0	0	0	0	0	0	0	0
Increased T and/or D Asset Utilization ¹	4		0	0					0	0		0	0	0	0	0	0	0	0	•	•
Reduced Air Emissions and/or Fuel Use ³	4		0	0					0	0		0	0	0	0	0	0	0	0	0	0
Supply	5		✓	✓	✓	✓	V	✓	✓												
Transmission	5		✓	✓	✓	✓	✓	✓		✓	✓	✓	✓	✓							
Location Distribution	5						✓	✓					✓	✓	✓	✓		✓	✓	✓	
Types Behind-the-meter VER Co-located	200500				~		~	✓	✓	1					✓		·	✓		·	*
Transportable				/			✓							·	✓						
rransportable	V						000000000000000000000000000000000000000														

¹ Location is critical.

² Location matters

Per kWh. Depends on generation used to produce charging energy, avoided generation on-peak, storage round-trip efficiency.

^{*} Subtransmission and Distribution.

Possible Renewables Integration Values: Financeable Cash Flows are Key!

Value	Description
Curtailment Avoidance	Mitigating the risk of over-generation that would result in curtailment by the grid operator.
Ramping Service	Smoothing of 5-15 minute fluctuations in generation output.
Regulation Services	Management of moment-to-moment fluctuations in power that occur on timescales from milliseconds to minutes
Penalty Avoidance	Using storage to avoid grid operator-imposed penalties for intermittency, ramping rates, capacity factor, etc.
Self-Scheduling	Revenue gained from the service of giving up the right to self-schedule, thereby making the storage asset dispatchable by the grid operator for a specific application during a specific time.
Capacity Payment	Revenue earned for being fully available to provide a certain amount of energy capacity to the grid.
Resource Adequacy Payments	Revenue Earned from providing baseline energy so that the grid operator can achieve adequate resources for the grid.
Ease of Interconnection	It can be significantly easier to complete the interconnection process when a variable generation resource is coupled with storage so as to guarantee flexibility and reliability.
Time Shifting	Storing excess energy produced and discharging it later when it is needed.
Capacity Firming	The specific use of balancing the fluctuations in wind generation to maintain a constant output.
PPA Bonus	In certain situations, a bonus payment may be negotiated in a PPA for variable generation energy that is firmed or time shifted.

Ownership can also 'define' an application ...

Example: Behind the meter storage that is utility owned is very different from customer owned!

Owner	Regulatory Considerations	Technical Considerations
	"Permission" and rationale for rate basing	» Established performance track record of storage systems
Investor-owned Utility	» Guaranteed cost recovery	» Reliable control and dispatch software
		» Assessment and design standard practices (e.g. Rule 21)
	» Consistent electric service pricing "Rules" for aggregation	» Reliable control and dispatch software
Electricity End-user	» Ability to participate in A/S markets	» Reasonable interconnection and protection requirements.
	» Standard interconnection rules	
	» Long term financeable cash flows	» Financeable performance track record
Third Party	» Pay-for-performance and/or "efficient" pricing	» Reliable control and dispatch software
	» Resource-type-neutral PPA terms.	» Reasonable interconnection and protection requirements.

Conclusions

- » Storage is technically ready, comes in diverse forms and is getting better.
- » Innovation and more demonstration is still needed for effective adoption and accommodation of storage in grid applications
 - System solutions (software/optimization of dispatch)
 - Market design (structure, rules, access, long term contracting, pricing)
 - Ownership models
- » CPUC making good progress with applications-based framework & framework for Phase 2 of OIR

Possible CEC Roles

- » Key historic CEC role: risk sharing
 - Enable public interest innovation
 - System solutions that are optimized within the grid
 - Overcome immaturity of markets (no long term cash flows for storage ... yet)
 - Encouraging/ demonstrating new applications <u>and</u> business models
 - Fund demonstrations of new applications learn by doing!

Possible CEC Roles

- » Provide analytical and technical support for CPUC storage rule making
 - Benefit quantification for cost effectiveness
 - How to value flexibility of storage (portfolio, timing, geographic)
- » Recognition of storage value in decisions regarding traditional and renewable generation
- » Encourage inclusion of storage in California's resource loading order at the same level as demand response.
- » Consider following the precedent set for distributed generation, which included the creation of a inter-agency coordinating group

Questions?

Janice Lin
Co Founder & Executive Director

CESAL CALIFORNIA ENERGY STORAGE ALLIANCE

2150 Allston Way, Suite 210 Berkeley, CA 94704

O 510 665 7811 M 415 595 8301 F 888 453 0018

www.strategen.com

jlin@strategen.com

For more information about CESA membership, public filings, and other energy storage educational documents, please visit us online at:

www.storagealliance.org

Appendix

CESA's Top 2012 Policy Priorities

- » Build a Robust Market Foundation (CPUC)
 - » Implement AB 2514 Comprehensive Storage Rulemaking (CPUC): appropriate procurement targets, applications, priorities, cost-effectiveness
 - » Achieve multi-year procurement Resource Adequacy Rulemaking
- » Behind the Meter Incentives and Value Proposition (CPUC)
 - » Implement Self-Generation Incentive Program ~\$400M budget
 - » Implement Permanent Load Shifting Program ~\$32M budget
 - » Access Ancillary Services markets (with CAISO)
- » Comparable Treatment in Wholesale Markets (CAISO)
 - » Implement Pay for Performance robust implementation of FERC Order 755
 - » Various Flexible Dispatch Initiatives REM, flexible dispatch, FERC Order 745 demand response
- » Promote Energy Storage as a Mainstream Energy Resource (all): educate policymakers and stakeholders in all relevant proceedings, legislation:
 - 33% RPS implementation
 - AB32 GHG rules
 - Federal ITC*

- Calif. Loading Order
- Flexible dispatch rules
- FERC proceedings*

^{*} with ESA Advocacy Council