

National Renewable Energy Laboratory: Activities Related to Jobs Impacts

California Energy Commission
IEPR Lead Commissioner Workshop
Jobs and Renewable Energy in California

Lynn Billman
Senior Research Analyst/Supervisor

May 30, 2012

DOCKET

12-IEP-1D

DATE MAY 30 2012

RECD. MAY 31 2012

NREL Jobs Activities Highlights

- Jobs Analysis Tools
- Jobs Analyses
- Workforce Development Data and Analysis
- Manufacturing Cost Analysis

The Jobs And Economic Development Impacts (JEDI) Model Suite

http://www.nrel.gov/analysis/jedi/about_jedi.html

JEDI Model Availability

Current public JEDI models

- Utility-scale wind
- Natural gas (combined cycle)
- Coal (IGCC)
- Marine and hydrokinetic
- Concentrating solar power
- Ethanol (dry mill corn and cellulosic)
- Photovoltaic (four scales)

• JEDI models under development

- Hydropower (conventional, small)
- Offshore wind
- Small wind
- Transmission
- Geothermal
- o Biopower
- Petroleum

New Jobs Analysis Tools in Process

Energy Input-Output Calculator (IOCalc)

- Forecasts jobs, earnings, output for 2010-2035
- Several electric sector technologies in one tool
- Allows differing assumptions about manufacturing costs over the next 25 years

PV Project JEDI (beta testing at https://jedi.nrel.gov/)

New web-based version to replace spreadsheet-based version of JEDI for PV

PV Scenario JEDI

- Models state or regional-level jobs and economic impacts over a multi-year target period for an entire policy or market size.
- Offers links to useful resources on solar projections by state from SEIA/GTM; solar carve-out capacity by state, map of manufacturing facilities, etc.

Wyoming Economic Development Proposal

JEDI results show total employment projections in Wyoming from new infrastructure development in power sector

Lantz, E. <u>(2011)</u>. Economic Development from Gigawatt-Scale Wind Deployment in Wyoming (Presentation). NREL (National Renewable Energy Laboratory). 21 pp.; NREL Report No. PR-6A20-51572.

Treasury Grant 1603 Program Impacts

Summary Estimates of the Direct and Indirect Jobs, Earnings, and Output Supported								
	Average Jobs per year (FTE/year)	Total Earnings (Billions \$)	Total Economic Output (Billions \$)					
During Construction Period (2009-2011)								
Large Wind	44,000-66,000	\$7.7-\$12.0	\$23.0-\$39.0					
Photovoltaic	8,300-9,700	\$1.5-\$1.8	\$3.5-\$4.7					
Total Direct + Indirect	52,000-75,000	\$9.2-\$14.0	\$26.0-\$44.0					
During Operational Period (annual for system lifetime)								
Large Wind	4,500-4,900	\$0.26-\$0.29	\$1.60-\$1.70					
Photovoltaic	610-630	\$0.04	\$0.09					
Total Direct + Indirect	5,100-5,500	\$0.3-\$0.3	\$1.7-\$1.8					

Steinberg, D.; Porro, G.; Goldberg, M. (2012). Preliminary Analysis of the Jobs and Economic Impacts of Renewable Energy Projects Supported by the Section 1603 Treasury Grant Program. 33 pp.; NREL Report No. TP-6A20-52739.

Solar Instructor Training Network

With 2010 Labor Market Analysis Survey Data of Solar Installers

Solar Labor Market Analysis

What is important to solar installers for hiring employees?

Source: Friedman, Jordan, Carrese. (December 2011), "Solar Installation Labor Market Analysis," TR NREL/TP-6A20-49339,

http://www.nrel.gov/docs/fy12osti/4 9339.pdf.

Wind Workforce Roadmap and Analysis

Baring-Gould, I. (2011). Wind Energy Workforce Development: A Roadmap to a Wind Energy Educational Infrastructure (Presentation). NREL (National Renewable Energy Laboratory). 16 pp.; NREL Report No. PR-7A20-51599.

Solar Jobs and Mfg Costs in China and U.S.

Illustration of a silicon cell line from the SCHMID Group | Gebr. SCHMID GmbH

- Direct labor content varies from <1.0 job/MWP DC to 4.0 jobs/MWP DC
 - Suntech automation strategy (~1.4 jobs/MWP DC) reflects inflation risk, not cost benefits
- Relative to low cost labor regions, automation requires:
 - 80% less direct labor content, 33% additional investment (automation)

500 MW _{PDC} c-Si Cell & Module Facility	US		China			
	Cells	Modules	Total	Cells	Modules	Total
No. of Direct Laborers (all shifts)	296	104	400	1492	508	2,000
Unskilled Labor rate (\$ per hour)	\$13.33		\$2.13			
Manufacturing Engineer (\$ per year)	\$75,110		\$8,171			
Total facility Capex (\$/W _p)	\$0.49	\$0.19	\$0.68	\$0.35	\$0.16	\$0.51

Goodrich, A.; James, T.; Woodhouse, M. (2011). Solar PV Manufacturing Cost Analysis: U.S. Competitiveness in a Global Industry (Presentation). NREL (National Renewable Energy Laboratory). 45 pp.; NREL Report No. PR-6A20-53938.

Thank you!

1905 XIG

Lynn Billman

Senior Research Analyst/Supervisor Strategic Energy Analysis Center National Renewable Energy Laboratory http://www.nrel.gov/analysis/Lynn.Billman@nrel.gov/analysis/303-275-3048

Support for this work has been provided by the U.S. Department of Energy

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.