Panel 1 – Uncertainties in Renewable Scenarios and Renewable Calculator DOCKET

- Scenarios should consider uncertainties in:
 - a. Margin required to support load growth, RPS Goals, etc.
 - b. Resource assumptions:
 - Resources with clear information (such as executed & approved PPAs or verified participation in other approved procurement) should be preferred over those with no or very little information available.

Renewable Calculator should:

- a. Set Objectives:
 - Policies (e.g., GHG reduction, Reduced environmental impacts)
 - Planning philosophy (larger transmission upgrades with greater longevity/less need for near-term replacement vs. smaller transmission upgrades with greater likelihood of additional, future upgrades)
- b. Set Design Requirements:
 - Reduce uncertainties
 - Consider planning horizon and Lead times
 - Recognize the limitation of the simplified approach
 - Moderate changes frequent and drastic changes hurt planning efforts & investment decisions
 - Make realistic assumptions, updated information & consistent data
 - Consider future advances in technologies
 - Increase transparency include stakeholder input

12-IEP-1D DATE MAY 14 2012 RECD. MAY 16 2012

Panel 1 – Policies or goals in Renewable Scenarios

- Policies or goals to be considered in developing the scenarios:
 - a. RPS objectives (diversified fuels, cost-effective reliability, reduced emissions)
 - b. GHG reduction
 - c. Environmental impacts
 - d. Identify & address potential issues on technical feasibility (w/in planning horizon),
 - e. RPS & DG policies should consider the supporting technologies for implementation. Examples:
 - Reliability needs, including geographical and technology diversity as well as local reliability, A/S, etc.
 - Forecasting & Response- technology needed to provide visibility and control to the grid operator (which may require new technology, particularly for DG)
 - Lead time for needed new technologies, and assuring investment in new infrastructure is consistent with lead time (and/or "upgrade ready")

Panel 1 - Transmission, Project Siting and Information for Decision making

- Efficient process to identify and permit transmission:
 - a. Increased coordination between the various Agencies
 - Long-range planning needs consistent with all policy objectives (avoiding current potential for insufficient transmission to meet policy objectives)
 - Short-term implementation needs to put timely "steel in the ground"
 - b. Provide information for developers to reasonably assess capacity for potential sites
 - c. Develop "quick fix" upgrade projects with lower costs and shorter lead times to meet immediate needs, in addition to large transmission projects that can serve multiple purposes, instead of medium-term fixes that take too long, cost too much and will need expensive replacement
 - d. Once approved, implement with milestone schedules and corrective action.
- Incentives or penalties in the procurement process to encourage renewable generators to locate in desirable transmission areas
 - a. Work with development community to identify realistic development areas
 - b. Identify "desirable" areas for bid evaluation, examples:
 - improved TRCR
 - "points" for desirable generator characteristics and locations
 - c. Include mechanisms to ensure timely availability of needed infrastructure
 - d. Enforcement of milestones through corrective action
- Information needed by the stakeholders to assist in decision making:
 - a. Portfolio fit and timing of need for new resources
 - b. Value (quantitative and qualitative) the resource can provide.
 - c. Potential environmental impacts
 - d. Timing and costs of transmission upgrades

htSource