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The 2012-2013 Investment Plan Update for the Alternative and Renewable Fuel and Vehicle
Technology Program provides a broad spectrum of energy alternatives for light, medium, and
heavy duty vehicles and their supporting fuels and infrastructure. It provides solid context for the
drivers behind the plan to invest $100 million annually for the development and deployment of
lower-carbon advanced fuels and vehicle technologies. It also refers to the 2011 Integrated
Energy Policy Report, which summarizes the expected benefits of the program in terms of
petroleum reduction, carbon emissions reduction, and jobs created.

Given the importance of these metrics, we suggest that the CEC carefully examine and validate
how these quantities are measured and their uncertainties. For example, the Low Carbon Fuel
Standard (LCFS) and Life Cycle Analysis (LCA) tools draw upon other data sets for calculating
carbon emissions. The CEC should consider how to monitor and validate carbon emissions
through direct measurements and systems analysis. Moreover, the deployment projections and
potential of each technology should be considered within the overall context of the fuel and
vehicle mix. The CEC should seek out unbiased, independent assessments that examine the
market, policy, and technology factors that influence the potential deployment of advanced
technologies. The recent RFP for Evaluation, Measurement and Verification of the AB 118
Projects and Program may yield analyses that can partially address these issues. Other analyses,
such as the enclosed parametric analysis of electric (including battery electric and plug in) and
conventional vehicles in the light duty fleet," can also highlight these factors that influence
advanced technology deployment and competition with internal combustion engine (ICE)
technologies.

While the Investment Plan includes support for many advanced fuels and vehicles, the CEC
should develop target metrics and a vision for the specific market role of each technology that
will enable the CEC to prioritize investments over time. The CEC should encourage continued
improvement in ICE efficiency to support near term petroleum consumption and carbon emission
reductions, as well as to serve as a continuously improving baseline for assessing alternative
technology performance. Metrics for alternative technologies could be tailored based on the time
horizon of the technology being developed. For example, drop-in biofuels may be a relatively
near-term technology that would serve as a petroleum replacement for all-duty and long distance
transport. They could be required to meet specified cost or carbon reduction targets over time.
Battery electric vehicles and supporting charging infrastructure could be targeted to denser urban
populations for shorter-distance travel. The Investment Plan partially raises this issue,
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emphasizing the importance of providing charging access to multiunit dwellings. Range targets
and charging infrastructure could be geared toward these goals. The Investment Plan also
partially addresses these issues for hydrogen infrastructure by highlighting the work that the
CEC has done in collaboration with the auto industry, California Fuel Cell Partnership, and ARB
in identifying regions for early fuel cell vehicle deployment and recognizing the higher upfront
investment for fueling infrastructure. The combination of target metrics and specified market
roles would enable the CEC to measure potential and progress, and thus periodically re-evaluate
and allocate resources accordingly over time. The decision to reduce support for E85 fueling
infrastructure in the Investment Plan is an example of shifting priorities given the slow progress
in station development and challenge to compete with gasoline prices.

In addition to the high priority investments called out in the plan, we support the CEC decision to
reserve funds for emerging opportunities. Supporting innovative technologies, advanced fuels,
and federal cost-sharing projects can help stimulate breakthrough ideas. The Investment Plan
highlights examples of possible partnerships to produce fuels from sunlight and working with the
Air Force for PEV deployments. We suggest that the CEC seek input from a broad set of
potential partners so that it can invest in the most promising and impactful technologies.
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Abstract

A parametric analysis is used to examine the supply-demand interactions between the US
light-duty vehicle (LDV) fleet, its fuels, and the corresponding primary energy sources
through 2050. The analysis emphasizes competition between conventional internal com-
bustion engine (ICE) vehicles, including hybrids, and electric vehicles (EVs), represented
by both plug-in hybrid and battery electric vehicles. We find that EV market penetra-
tion could double relative to our baseline case with policies to extend consumers’ effective
payback period to seven years. EVs can also reduce per vehicle petroleum consumption
by up to 5% with opportunities to increase that fraction at higher adoption rates. How-
ever, EVs have limited ability to reduce LDV greenhouse gas emissions (GHG) with the
current energy source mix. Alone, EVs cannot drive compliance with the most aggressive
GHG emission reduction targets, even if the electricity grid shifts towards natural gas
powered sources. Since ICEs will dominate the LDV fleet for up to forty years, conven-
tional vehicle efficiency improvements have the greatest potential for reductions in LDV
GHG emissions and petroleum consumption over this time. Specifically, achieving fleet
average efficiencies of 72 mpg or greater can reduce average GHG emissions by 70% and
average petroleum consumption by 81%.

Keywords: Electric vehicle, Greenhouse gas, Oil consumption

1. Introduction

The transportation sector contributes a significant fraction of the total US greenhouse
gas (GHG) output and petroleum consumption. Not surprisingly, transportation is the
largest consumer of crude oil by economic sector, with 85% of every barrel of oil going to
liquid fuels, of which 43% is used by light-duty vehicle (LDV) transportation (U.S. Energy
Information Administration, 2011a). In a similar manner, the EPA estimates that in
2008, 27% of the total US GHG emissions were attributable to transportation (36% if
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vehicle manufacturing and gasoline refining are included) (U.S. Environmental Protection
Agency, 2011). Thus, improvements to LDV fuel economy, or the substitution of an
alternative energy source for petroleum, can exert tremendous leverage over US GHG
emissions and petroleum consumption. Of course, the consumption of petroleum-based
fuels for personal transportation has environmental effects beyond GHG emissions and
demand for petroleum, in general, has far-reaching economic, political, and security
effects. However, for this analysis we focus on petroleum usage and GHG emissions as
they are well-known metrics and frequently used as targets for policy or legislative action.

The prominence of environmental and security concerns over transportation energy
use comes at a time of transition for the LDV fleet. New technologies could have a
profound impact on the fleet make-up and diversify the energy sources that power ve-
hicles. The introduction of mass-market plugin-hybrid electric vehicles (PHEVs), such
as the Chevy Volt, and battery-electric vehicles (BEVs), such as the Nissan Leaf, offer
an opportunity to shift some of the vehicle miles traveled (VMT) away from petroleum-
derived energy sources. The current US administration has stated an informal mandate
to put one million electric vehicles (EVs, implying both PHEVs and BEVs) on the road
by 2015 (Obama, 2011). In this light, a number of other researchers and organizations
have published reports examining the future viability and market penetration of these
electric vehicles. The National Research Council (2010) concluded that with current
policies and technology estimates, EVs will likely be less than 5% of the fleet in 2030.
Hence, targeted policies or purchase incentives will be necessary to realize widespread
EV adoption amongst consumers. A number of other studies concurred with this finding
(Bandivadekar et al., 2008; Plotkin and Singh, 2009; Lin and Greene, 2010). Axsen et al.
(2010) noted that while EVs, particularly PHEVs, are attractive for their potential fuel
savings, battery performance is still limited in its energy storage capacity, peak power
availability, and capacity degradation over the vehicle lifetime. Consumers must also be
accepting of the higher purchase costs and lengthy recharge times. BEVs have additional
hurdles of range restrictions, again due to limited battery storage capacity, and the lack
of a sufficient recharging infrastructure. A compelling economic argument for EVs in
the absence of policy-based incentives requires sustained high gasoline prices and low
battery costs since conventional internal combustion engine (ICE) vehicles continue to
remain cost competitive with EVs (Markel and Simpson, 2007). This is especially true
as ICEs become more integrated with hybrid technology to recover energy typically lost
in driving cycles.

Although the consensus amongst researchers is that EVs have a meager future without
policy intervention, a policy-focused study at Indiana University notes that the seedlings
of intervention already exist (Indiana University, 2011). Existing policies such as tax
credits for consumers and producers or access to high occupancy vehicle lanes on high-
ways could evolve into grander policies, such as additional taxes imposed on gasoline or
carbon emissions, economic encouragement for an electric recharging infrastructure, or
additional investment in battery research. One significant obstacle to any alternative
vehicle technology is the limited payback period of consumers (i.e. the time over which
fuel savings need to recover the higher alternative vehicle purchase cost) (Eppstein et al.,
2011). While there is some disagreement over the effective payback period consumers
assume when considering alternative vehicles (Greene, 2011; Train, 1985; Calfee, 1985),
all concur that it is less than the lifetime of the vehicle.

Regardless of their market viability, EVs could offer GHG emission and fuel consump-
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tion improvements over ICEs. The benefit of vehicle electrification on GHG emissions,
however, depends on the make-up and evolution of the electricity grid energy sources. As
long as electricity production is derived from carbon intensive sources, the impact of EVs
on GHG emissions will be limited (Bandivadekar et al., 2008; National Research Council,
2010; Plotkin and Singh, 2009). In fact, Samaras and Meisterling (2008) report that the
well-to-wheel GHG emissions of a hybrid ICE could be lower than PHEVs or BEVs with
the current mix. However, if future capacity added to the grid is based on lower carbon
sources and those sources dispatch to the EV load, then EVs can realize GHG reduc-
tions of up to 50-75% compared to conventional vehicles (Samaras and Meisterling, 2008;
Greene et al., 2011). To this end, the U.S. Energy Information Administration (2011a)
optimistically assumes that most capacity additions to electric generation come from
natural gas or renewable sources, yielding significant future GHG savings from EVs.

Although the internal combustion engine and personal automobile have existed for
more than 100 years, there is still notable room for efficiency improvements (Bandi-
vadekar et al., 2008). Conventional ICE vehicles will likely be a significant fraction of the
LDV fleet through 2050, so important reductions in GHG emissions and fuel consump-
tion can be achieved by focusing technological innovations on ICE vehicles. Potential
fuel economy improvements of up to 50% over the next 20-30 years could be achieved by
addressing vehicle light-weighting, rolling resistance, aerodynamics, transmission limita-
tions, turbocharging, and combustion cycle inefficiencies (Bandivadekar et al., 2008).

This paper presents a system dynamics based model of the interactions between the
US LDV fleet, its fuels, and the corresponding raw energy sources through the year
2050. An important capability of our model is the ability to conduct parametric analy-
ses. Others have relied upon scenario-based analysis, where one discrete set of values is
assigned to the input variables and used to generate one possible realization of the future
(Bandivadekar et al., 2008; Plotkin and Singh, 2009; National Research Council, 2010;
Greene et al., 2011). In these studies, there is often a reference case, as well as perhaps
optimistic and pessimistic scenarios relative to the reference case. While these scenarios
can be illustrative of dominant trends and tradeoffs under certain circumstances, changes
in input values or assumptions can have a significant impact on results, especially when
output metrics are associated with projections far into the future. For instance, two simi-
lar models at Argonne National Laboratories arrived at significantly different predictions
of LDV oil consumption in 2050 due to the fact that one was calibrated to reference
input values published in 2007 and another was calibrated to 2008 data (Plotkin and
Singh, 2009). This type of uncertainty can be addressed by using a parametric study to
examine a range of values for the input variables, offering a richer source of data to an
analyst. It also enables a sensitivity analysis, which can reveal the underlying sources of
uncertainty in a model, as well as identify key drivers of output metrics. Additionally,
the n-dimensional shape of the trade space can be characterized to locate points of inter-
est, such as inflection or saddle points, slope changes and asymptotic features. Finally,
iso-performance contours can be traced to track the multiple sets of parameter values
that can be used to achieve performance goals.

The paper is divided into four sections. This section has introduced the work and
motivated our analysis. The following section outlines our model along with its method-
ology, assumptions, and data sources. Detailed model equations and input data are
included in Appendix A. Section 3 presents the numerical results, focusing first on a
global sensitivity analysis of the model to give greater insight into its behavior and the
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Figure 1: High-level diagram of the model components.

key drivers of uncertainty. Next is a discussion of one- and two-parameter variation stud-
ies used to understand the trade space for the impact of the US LDV fleet characteristics
and associated policies on GHG emissions and petroleum consumption. This is followed
by concluding remarks.

It is worth noting that this analysis focuses on policies that could influence vehicle
buying behavior, but not driving behavior. Population migration away from suburbs and
into urban enclaves or mass-transit improvements could decrease VMT, GHG emissions,
and petroleum consumption as well, but are not considered here.

2. Model description

This section presents an overview of the modeling approach, key assumptions, and
data sources. A more detailed discussion of the model equations and input data is
provided in Appendix A.

Our model is implemented using a system dynamics software package with an interac-
tive development environment to construct a set of interacting algebraic and differential
equations. Solutions are generated using a third-order Runge-Kutta algorithm with fixed
step size. A high-level diagram of the model components is shown in Figure 1. The model
is broken down into three modules: an energy supply sub-model, a fuel production sub-
model, and a vehicle sub-model. The sub-models exchange price and demand points
for energy supply stock and fuels. The model is initialized with an age distribution of
existing vehicles representative of the current fleet and then calculates annual vehicle
sales and scrapping to determine the evolution of the fleet composition. The sales rate
of each vehicle is determined using a choice algorithm that considers vehicle purchase
cost, fuel costs, and penalty factors (e.g. range penalties). The cost of fuels and vehicles
depends, in part, on the demand and prior sales so that there are both positive and
negative feedback effects on the vehicle sales rate. The model tracks vehicles and fuel
use in eight geographic regions, approximating the North American Electric Reliability
Council (NERC) regional entities (E.H. Pechan & Associates, Inc., 2010). Fuel demand
is negotiated with supply using raw energy supply curves at a global, national, or regional
scale, depending on the energy stock.

2.1. Vehicle modeling

The model starts in 2010 with 247 million gasoline-fueled ICE light-duty vehicles in
service in the United States. We use an age distribution as reported by the US De-
partment of Transportation (Davis et al., 2010). The composition of the vehicle fleet
is segmented by vehicle class (small car, large car, and light truck) using distributions
of current data (U.S. Department of Transportation Federal Highway Administration,
2009). The fleet is further segmented by geographic region and population density (ur-
ban, suburban, and rural) within each region (U.S. Department of Transportation Federal
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Highway Administration, 2011). The eight NERC regional entities form the basis for geo-
graphic segmentation. Finally, the vehicle fleet is segmented by binning driving intensity
(light, medium, heavy) and home recharging availability (Greene and Lin, 2010). The
ages of vehicles are tracked using binning with one-year resolution. Age-dependent an-
nual mileage factors are applied to each bin to reflect decreasing annual miles as vehicles
age (U.S. Department of Transportation National Highway Traffic Safety Administration,
2008). These factors are normalized to produce an average annual mileage per vehicle
(VMT) of 10,959 miles for small cars, 11,731 miles for large cars, and 11,792 miles for
light trucks. We assume that the VMT is constant over the course of the simulation. A
complete breakdown of vehicle segmentation is provided in Tables A.4-A.7.

We consider four potential fuel and powertrain combinations for vehicles in this work:
gasoline-fueled ICE (including gasoline-only hybrids), plug-in hybrid with 10-mile elec-
tric drive range (PHEV10), plug-in hybrid with 40-mile electric drive range (PHEV40),
and battery electric (BEV). Existing gasoline-fueled vehicles are assigned fuel efficiency
based on historical data (U.S. Environmental Protection Agency, 2009). Future gasoline
powertrain vehicle efficiencies are taken from an ANL-led study for DOE (Moawad et al.,
2011), and are assumed to achieve the regulatory targets proposed by the U.S. Envi-
ronmental Protection Agency and U.S. Department of Transportation (2011). PHEV
and BEV electric powertrain efficiencies and battery storage capacities are also taken
from the same source. The amount of electricity and gasoline used by PHEV vehicles is
determined by the electric range and driving patterns (Elgowainy et al., 2009). PHEV
vehicles are assumed to operate in a serial drive train mode with daily home recharging,
such that only on-board electricity is used when daily driving is less than the battery
range.

Vehicle purchase costs are calculated using estimates for advanced technology and
derived from the same study as the efficiency data (Moawad et al., 2011). The costs
include learning over time that captures the decline in manufacturing costs due to process
and technological maturation. The cost for electric vehicles is offset through subsidies
from the American Clean Energy and Security Act of 2009. The cost for the batteries in
electrified vehicles is calculated separately from other purchase costs so that the effect
of targeted research in this area can be explored parametrically. The cost for batteries
is extracted directly from National Research Council (2010), but allows for the user to
adjust the rate of price decline over time associated with technological development. For
vehicles that require home recharging, we include charger costs in the vehicle purchase
cost calculation. We also include penalty functions to quantify limitations of alternative
powertrains as an added cost averaged over the annual mileage. A range penalty is
included to represent the reduced utility of a vehicle with a short range and is calculated
using the value of the time spent refueling. A station availability penalty is used to
capture the lower utility of a vehicle that has limited public refueling options. The dollar
values of the penalties are taken from Greene (2001) and the growth trends of refueling
infrastructure for alternative vehicles is taken from Yeh (2007). The generalized vehicle
purchase costs, including penalties and subsidies, are amortized over a payback period of
3 years (in the baseline case) at 0% discount rate and converted to a per mile cost using
the annual vehicle miles traveled (Greene et al., 2005).

Overall sales and scrap rates are kept at a constant percent of fleet size, with sales at
6.7% and scrap rate at 5.8%. The sales rate used is the average sales rate for the period
2000-2009 (Davis et al., 2010). The overall number of vehicles increases at 0.9% per
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year, the average rate of projected population growth from 2010 through 2050, and thus
assumes no change in the number of vehicles per capita (U.S. Census Bureau, Population
Division, 2008). While the overall rate of vehicle scrapping is fixed, the scrap rate of
vehicles increases as the vehicles age, using rates derived from survival data (Davis et al.,
2010). Because only new car sales and final disposal of the vehicles are considered, used
vehicle sales are not tracked.

The sales in each time-step are assigned to segments using a logit choice of powertrain
options in each vehicle segment (Struben and Sterman, 2008). Aside from the choice of
powertrain, we do not assume the migration of consumers from one segment to another.
For the recharging availability segment, no BEVs are sold where home recharging is not
available. Based on survey data, 45% of drivers could have access to home recharging
(Axsen and Kurani, 2010).

2.2. Modeling fuel production and distribution

The fuel model calculates the cost and energy source mix of transportation fuels, given
fuel demand from the vehicle model and energy source costs from the energy source sub-
model. The fuel derived demand in each region is matched with energy sources and
allows transport of fuel between regions to satisfy extreme supply or cost imbalances.
The fuel model matches this demand with energy sources and allows transport of fuel
between regions to satisfy extreme supply or cost imbalances. Two fuels are considered
as transportation fuel for the light-duty vehicle fleet: electricity and a gasoline/ethanol
blend. The model does not currently consider other fuels such as diesel, natural gas,
or hydrogen. Diesel-fueled light-duty vehicles make up a small fraction of the current
vehicle fleet (Davis et al., 2010), and the difference between gasoline and diesel with
respect to both greenhouse gas emissions and petroleum consumption is small (Wang,
2010). Natural gas and hydrogen are potential future LDV transportation fuels, however
this study focuses on electricity, gasoline, and ethanol as those are in mass-market use
today.

The liquid-fueled portion of the fleet uses a mixture of gasoline and ethanol, with
the ethanol consumption rate programmed to meet the Renewable Fuel Standard (RFS)
(Sissine, 2007; Yacobucci and Capehart, 2008; One Hundred and Tenth Congress of the
United States of America, 2007). We assume that future liquid-fuel vehicles will be
able to use high-ethanol gasoline blends mandated by the RFS. The assumptions in the
GREET 1.8d model were used to calculate the energy input requirements for gasoline
and ethanol production as well as GHG emissions (Wang, 2010). We allow for ethanol
production from five pathways: (1) fermentation of grains, thermochemical production
from (2) forest residue or (3) woody energy crops, and biochemical production from (4)
herbaceous energy crops or (5) agricultural waste. Taxes, profit margin, production, and
delivery costs are cumulatively estimated to be $1.29/gallon for gasoline, $0.56/gallon
for grain ethanol, $1.23/gallon for thermochemical cellulosic ethanol, and $1.33/gallon
for biochemical cellulosic ethanol (Humbird et al., 2011; Urbanchuk, 2010; U.S. Energy
Information Administration, 2011b).

The model allows for transport of fuels between regions so that regions with lower
production cost can supply other regions. The cost of fuel imported from another region is
the production cost plus a transportation cost proportional to the transportation distance
between approximate region centroids. A distance-based GHG emission rate is also
calculated, with a carbon cost added if required by the scenario definition. We assume
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electricity is not transferred between regions. The fuel supply for each region is chosen
by a logit choice function of the same form as the vehicle choice function.

The energy source for electricity generated for transportation is modeled using the
marginal source, as estimated from the EPA eGRID database (E.H. Pechan & Associates,
Inc., 2010). In each region, coal, natural gas, and oil generation facilities operating
between 30-60% of capacity were considered to be the marginal producers that dispatched
to the EV load (Kromer and Heywood, 2007). The marginal capacity in each region is
allowed to evolve in time according to user input. Existing capacity is assigned a five
year mean replacement time and new capacity is added to meet the electricity demand
from the vehicle fleet. As specified by the user, this new capacity scales from the initial
marginal mix fractions to a 100% natural gas mix or to a 100% renewable (carbon-free)
mix. The rapid, five year retirement rate allows for user exploration of alternative grid
mix scenarios.

2.3. Modeling energy sources

The US Department of Energy’s Annual Energy Outlook was our source for crude
oil prices (U.S. Energy Information Administration, 2011a), which was assumed to be
a global commodity with a price unaffected by perturbations in US LDV petroleum
consumption. The price of coal and natural gas was calculated at a national level by
adapting the supply curves from the US Environmental Protection Agency’s Integrated
Planning Model (U.S. Environmental Protection Agency, 2010). Biomass supply curves
were constructed with technically available biomass data from the US Billion-Ton Update
analysis (U.S. Department of Energy, 2011). Biomass was categorized as either grain, for
fermentative ethanol production, or as foresting residue (farmed trees, herbaceous plants)
or agricultural residue (stover) for cellulosic ethanol production. The supply curves were
constructed to resemble the Billion-Ton report supply curves that included prices per
dry ton of potentially available biomass at $40, $45, $50, $55, and $60 USD per dry ton.
Biomass supply data was converted from either state or county level to represent the
NERC regions based on land area. The model treated all supply curves as look-up tables
that input energy source demand and output energy source price.

3. Numerical analysis

This section presents numerical, parametric analysis results conducted using the
model. Model parameterization and output metrics of interest are discussed. Results
are shown for both a global sensitivity analysis and more focused trade space studies,
using the metrics of GHG emissions and petroleum consumption. Parameterization and
sensitivity analysis are a useful approach to understand the impact of significant mod-
eling assumptions or uncertain input data on our results. Additionally, a sensitivity
analysis can also be leveraged for model verification, where a perturbation in one or
more parameters leads to expected changes in output metrics. Finally, parameterization
allows for trade-space exploration to identify the multiple sets of input values that can
achieve performance targets.



3.1. Model parameterization

Overall, the model parameterization spans variables that could be categorized across
multiple conceptual labels, such as inherent modeling assumptions, economic forecast-
ing, technological development, and future policy decisions. It is not feasible to inde-
pendently parameterize every single input variable in the model both due to variable
inter-dependency and also tractability of the sensitivity analysis. Instead of varying the
crude oil price in 2030 and 2031 independently, for instance, all oil prices are scaled by
a constant multiplier (keeping the initial 2010 value constant). This multiplier approach
is similarly applied to other energy source supply curves, vehicle efficiencies, conversion
efficiencies, and consumer choice penalties. Where appropriate, such as the exponent in
the logit choice function, individual variables are parameterized directly. The marginal
grid mix is parameterized by imposing a short, five-year lifetime on existing capacity
and adding new marginal capacity with a regional blending function to vary the regional
carbon intensity of the grid. A blending parameter value of 0 maintains the initial mix
throughout the simulation, 0.5 leads to a 100% natural gas marginal mix, and 1 leads to
a 100% carbon-free mix.

Uniform distributions are assumed for all parameters in all studies. For the sensi-
tivity analysis, parameter minimums, maximums, and baseline values are described in
Table 1. The carbon price parameter appends an additional cost to fuels proportional
to the emission of GHG and represents a potential carbon tax policy. For calibration,
the maximum carbon price considered, $1,000 per metric ton of COs equivalent, corre-
sponds to an additional price on gasoline of nearly $10 per gallon. Two other parameters,
the consumer payback period and the BEV penalty multiplier, could also be considered
variables subject to policy influence. The biomass, coal, natural gas, and oil price multi-
plier parameters, as well as the grid mix carbon intensity, address commodity forecasting
uncertainty. Additionally, a number of parameters included in the sensitivity analysis
characterize the uncertainty in technological development. Technological performance
uncertainty is captured by multipliers applied to gasoline powertrain efficiency, electric
powertrain efficiency, and electricity generation efficiency. Some of the efficiency multipli-
ers have truncated lower bounds so that future efficiencies do not drop below current day
capabilities (since 2010 values were held fixed). Similarly, the variation in battery cost
can be thought of as the technological maturation of battery storage and manufactur-
ing. Adjusting the battery cost in 2030 set the exponential decay rate of the associated
technological development in an intuitive manner. Finally, the remaining parameters
included in the sensitivity analysis are notable model assumptions with the potential
for influencing output metrics. These include the two logit choice exponents for vehicle
selection and fuel exchange, the overall fleet growth rate, and the overall vehicle sales
rate which, together with the fleet growth rate, also determines the overall scrap rate.

It should be noted that all of the input parameters are assumed to be independent.
While this assumption is plausible near the baseline values, it is likely less valid at some
value extremes. For instance, at high values of oil price or carbon price, consumers
would probably have longer payback periods than current estimates. Similarly, battery
costs and electric powertrain efficiency are likely coupled, as high efficiencies might be
associated with higher battery costs.



Table 1: Baseline values and uniform distribution ranges for sensitivity analysis parameters.

Parameter Baseline Min Max
Carbon price [$/MT CO; equivalent] 0 0 1000
Consumer payback period [years] 3 248 10.38
BEV penalty multiplier 1 0 1
Battery cost in 2030 [$/kWh] 360 50 500
Gasoline powertrain eff multiplier 1 0.9 2
Electric powertrain eff multiplier 1 0.9 2
Electricity generation eff multiplier 1 0.5 2
Grid mix blending parameter 0 0 1
Vehicle choice logit exponent 14.9 1 20
Fuel transport logit exponent 18 1 20
Fleet growth rate 0.9% 0.5% 2.0%
Vehicle sales rate 6.7% 5% 9%
Oil price multiplier 1 0.5 3
Coal price multiplier 1 0.5 3
Natural gas price multiplier 1 0.5 3
Biomass price multiplier 1 0.5 3

8.2. Output metrics of interest

The first metric of interest is LDV fleet fractions of ICEs and EVs, where EVs are
defined as the sum of PHEVs and BEVs. In his 2011 State of the Union address, President
Barack Obama promulgated a national goal to have one million EVs on the roads in the
US by 2015 (Obama, 2011). Since 1 million vehicles represent less than 1% of the total
fleet, small changes in parameter values can have a significant impact on meeting this
target. As will be seen below, the fleet fractions are indeed sensitive to variations in key
parameters.

To address the environmental perspective of transportation energy, we examine the
relationship between the LDV fleet and GHG emissions. The model is capable of track-
ing GHG emissions, specifically the quantity of carbon dioxide equivalent emissions re-
leased into the atmosphere either through direct LDV fleet tailpipe emissions or indi-
rectly through gasoline refinement and electricity production. A number of organizations,
states, and countries have set out ambitious GHG reduction goals for 2050. The State
of California and the European Commission, for instance, have both targeted an 80%
reduction in COs below 1990 emissions levels by 2050 (Schwarzenegger, 2005; European
Commission, 2011). A recent study by Grimes-Casey et al. (2009) distributed the IPCC-
recommended global carbon reduction targets to individual countries and sectors based
on population and economic modeling. They determined that the average US LDV well-
to-wheel GHG emissions must be reduced 88% in 2050 over 2002 levels. Despite these
mandates, COy emissions have nevertheless increased from 1990 to 2010 (Butler, 2011).
We consider GHG reductions per vehicle using a 2010 reference point.

To address the security context of energy use, we examine the total petroleum con-
sumption from the LDV transportation sector, and its corresponding relationship to
imported crude oil. According to the latest projections from the U.S. Energy Informa-
tion Administration (2011a), in 2010 the US produced 37% of its crude oil needs, with
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Table 2: Spearman rank correlation coefficients for outputs (columns) with respect to inputs (rows).
Output metrics are measured at simulation end, 2050.

Petrol ICE BEV

GHG consump- fleet fleet
Parameter emissions  tion fraction fraction
Carbon price -0.04 -0.05 -0.14 0.13
Consumer payback period -0.13 -0.17 -0.44 0.24
BEV penalty mult 0.01 0.01 0.00 -0.14
Battery cost in 2030 0.07 0.10 0.28 -0.47
Gasoline powertrain eff mult -0.71 -0.69 0.11 -0.14
Electric powertrain eff mult -0.05 -0.02 -0.04 0.09
Electricity generation eff mult -0.06 -0.02 -0.04 0.07
Grid mix blending parameter -0.07 -0.01 -0.02 0.03
Vehicle choice logit exponent 0.14 0.21 0.72 -0.68
Fuel transport logit exponent 0.00 0.00 0.01 -0.01
Fleet growth rate 0.61 0.58 0.02 -0.01
Vehicle sales rate -0.04 -0.04 -0.08 0.07
Oil price mult -0.03 -0.03 -0.09 0.11
Coal price mult 0.00 0.01 0.01 -0.01
Natural gas price mult 0.00 0.00 0.00 -0.02
Biomass price mult -0.04 0.00 0.01 -0.01

another 22% coming from Canada and Mexico, leaving 41% for OPEC and other coun-
tries. Thus, reducing petroleum consumption by these same margins could potentially
enhance US energy security by mitigating crude oil dependency on foreign sources.

3.3. Sensitivity analysis

A sensitivity analysis was performed to verify expected model behavior and to reveal
the most significant drivers of variability in output metrics of interest. A non-parametric,
non-linear global sensitivity analysis was desired. The approach undertaken was crafted
to account for complex variable interactions, as well as large changes to non-normalized
input and output variables. Specifically, a Monte Carlo simulation allowed 16 uncertain
input parameters to vary, where the tabulation of these 16 parameters is found in Table
1. Spearman rank correlation coefficients were then computed between the output met-
rics of interest and the 16 uncertain input parameters. The magnitude of the correlation
coefficient relates the degree to which a given input parameter variance is statistically
associated with an output variance. A coefficient value of 1 or —1 represents a per-
fect positive or negative correlation, respectively. A Monte Carlo simulation with 5,000
model evaluations and Latin hypercube sampling generated the sensitivity analysis sam-
ple data. A follow-on Monte Carlo simulation with 10,000 model evaluations produced
identical correlation coefficients and confirmed convergence of the results. The sensitivity
analysis results are described in Table 2 where each value represents the Spearman rank
correlation coefficient of an output metric, listed in columns, with respect to an input
parameter, listed by rows.

The sensitivity analysis for total LDV GHG emissions in 2050 shows that gasoline
powertrain efficiency and fleet growth rate are the most influential parameters. Con-
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sumer payback period and the vehicle choice exponent only show minor influence. It is
worth noting which parameters had little impact on LDV GHG emissions. Grid carbon
intensity, electric powertrain efficiency, oil price, and carbon price have little correlation
with LDV GHG emissions, which prompted deeper inspection. The grid carbon intensity
and electric powertrain efficiency have little influence due to the limited market penetra-
tion of EVs. Oil price and carbon price both serve to dissuade consumers from buying
inefficient vehicles in general, but do not directly impact average trip length, VMT, or
vehicle efficiencies in this analysis. These relationships will continue to be explored in
later sections.

Table 2 also lists the sensitivity analysis results for total LDV petroleum consumption
in 2050. The results largely mirror those for LDV GHG emissions with slightly stronger
correlations for consumer payback period, battery cost, and the vehicle choice exponent
as those can augment the market penetration of EVs and reduce overall petroleum con-
sumption. The oil price multiplier again shows little correlation. Even at extreme values
of the oil price range considered, three times EIA projections, ICEs are still cheaper than
EVs at the baseline consumer payback period. The oil price would have to be nearly five
times as high as baseline projections for ICEs to be more expensive. It should be noted
that consumer payback periods would likely be longer than current baseline values in
such an extreme oil price environment.

A sensitivity analysis result for the final fleet fractions of ICE vehicles is similarly
detailed in Table 2. Since only ICEs and EVs were considered in the model, final ICE
fractions are sensitive to parameters that encourage or discourage either of those pow-
ertrains. This includes chiefly the vehicle choice exponent, consumer payback period,
carbon price, and battery cost. To a lesser extent, gasoline powertrain efficiency and
carbon price are also correlated. It is interesting to note that consumer payback period
rises above all other parameters except the vehicle choice exponent.

Although the sensitivity analysis results for the total EV fleet fraction are identical to
the ICE results, the BEV fleet fraction in 2050 is extracted and shown in Table 2. In this
case, a few additional parameters, in addition to those correlated with ICE fleet fractions,
show signs of influence. These include consumer penalties, electric powertrain efficiency,
and the price of oil. This larger suite of parameters perhaps reflects that a potential
BEV customer must both choose not to purchase an ICE, and also to single out BEVs
from the PHEVs. One conclusion that could be drawn from this sensitivity analysis is
that there are many factors that contribute to the adoption of BEVs, and EVs in gen-
eral. Technology improvements or policy initiatives in isolation cannot effect widespread
change. Only through the combination of improvements in multiple technologies with
broad policy incentives will EVs play a significant role in the LDV fleet.

3.4. Trade space analysis

8.4.1. Baseline predictions and metrics of interest

Before presenting the parametric analysis, it is helpful to understand the baseline
model state about which variations are taken. As stated above and illustrated in Figure
2a, the average LDV fleet efficiency is projected to improve markedly from 2010 to 2050,
with a more than 30% increase in electric powertrain efficiencies and more than 60%
increase in gasoline powertrain efficiencies. Concurrently, battery costs are expected to
decrease by more than 60%, shown in Figure 2b, due to technological maturation. Similar
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to the sensitivity analysis, these cost and efficiency values are scaled parametrically
through the multiplier approach to explore their dynamics, critical points, and tradeoffs.

The baseline model outputs are also shown in Figure 2. For the baseline model state,
fleet breakdown by vehicle powertrain over time is drawn in Figure 2c. In this projection,
ICEs are more than 70% of the LDV fleet in 2050, with most of the other vehicles being
PHEV10s; PHEV40 and BEV fleet fractions in 2050 are negligible. This pace of EV
growth is nevertheless sufficient to meet Obama’s EV target in 2015, shown in Figure
2d.

As a fraction of 2010 quantities, baseline GHG emissions reductions are shown in
Figure 2e. Since the sensitivity analysis showed total GHG emissions to be heavily
dependent on fleet growth rate, we normalize by number of vehicles to examine the
annual GHG output per LDV in the model. For this quantity, the model projects a
baseline reduction of more than 50% by 2050. Similar to the GHG case, petroleum
consumption from the LDV is also normalized by number of vehicles and framed as a
relative reduction from 2010 levels. As shown in Figure 2f, the baseline scenario projects
a reduction in petroleum consumption per vehicle of 55% by 2050.

3.4.2. Electric vehicle adoption targets

More detailed parametric studies, beyond the sensitivity analysis, were conducted to
understand the penetration of electric vehicles into the LDV fleet. Figure 3a depicts
the impact of two market-based adjustments that might be available to policy makers
to influence the fleet fraction of EVs in 2050. The consumer payback period can be
influenced by media campaigns, consumer education, and even direct incentives. In fact,
adjusting consumers’ perceived payback period from 3 to 7 years can more than double
the EV fleet fraction. Carbon price, as a disincentive for fossil fuel consumption, can
change the EV fleet fraction by approximately 25 percentage points for the range of
values considered, a slightly less influential parameter in this respect than the payback
period.

It is interesting to compare the competing influences of electric powertrain efficiency
and the cost of batteries upon the adoption rates of EVs, which is displayed in Figure 3b.
As mentioned above, these two parameters are likely not independent since higher electric
powertrain efficiency will likely coincide with more expensive batteries. Surprisingly,
the contour lines are almost chiefly aligned with the battery cost-axis. Even if electric
powertrain efficiency is twice baseline projections, our model predicts that the impact on
EV sales rates will be negligible. Essentially, the difference in price between traditional
ICE vehicles and EVs stems from the batteries themselves, immature manufacturing
processes, and perceived range and infrastructure penalties for BEVs. Improving electric
powertrain efficiency, without concurrently altering the payback period, only addresses
the BEV range penalty component of the cost differential since we assumed that the total
battery pack capacity remained constant. In contrast, significant reductions to battery
costs make all EVs much more competitive with ICEs. This message is reiterated in the
comparison of battery cost and gasoline powertrain efficiency, shown in Figure 3c. While
increased gasoline powertrain efficiency decreases the EV fleet fraction, since EVs become
less attractive, the cost of batteries is a more influential parameter. Increasing gasoline
powertrain efficiency, perhaps contrary to common opinion, is not entirely antithetical
to increased EV adoption as gasoline powertrain efficiency gains benefit PHEVs as well.
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As one would expect, and shown in Figure 3d, large EV adoption rates occur when
reduction in battery costs is coupled with adjustments to consumers’ payback period. At
extreme values of these parameters, the fleet fraction of EVs can reach nearly 80%. While
these tradeoffs can guide decision makers to encourage EV sales, one must also question
if EV fleet penetration is a worthy goal in its own right, or if environmental or security
objectives should be targeted directly. To that end, our model can simulate a future
with and without EVs by effectively turning them on or off. This comparison uncovers
the benefit of EVs upon other metrics of interest. Figure 4 shows the reduction in GHG
emissions and LDV petroleum consumption per vehicle for this tradeoff versus variations
in gasoline powertrain efficiency and grid carbon intensity. The first observation from
these plots is that the value of EVs is somewhat subject to the performance uncertainty
of ICEs, but nearly independent of the grid mix. If unanticipated technological leaps
are made in gasoline powertrain efficiency, then EVs will indeed have limited utility.
Second, EVs indeed have limited capacity to impact GHG emissions or LDV petroleum
consumption per vehicle. There is only a 0-5% reduction in GHG emissions per vehicle
and a 0-7% reduction in LDV petroleum consumption across the entire range of gasoline
powertrain efficiencies and grid carbon intensities considered. While not captured by
the range of values considered here, it is possible for the lines in Figure 4a to cross; at
extreme gasoline powertrain efficiencies EVs produce more GHG emissions than ICEs
(with the current electricity generation mix).

3.4.3. Reduction in greenhouse gas emissions per vehicle

The model baseline already projects a GHG per vehicle reduction of more than 50%
below 2010 values by 2050, but the LDV segment must do more if the 80% reduction
targets below 1990 levels are to be achieved. If policy makers relied upon market-based
influences only, as shown in Figure 5a, then little benefit beyond the baseline scenario
can be expected. Both carbon price and consumer payback period have little leverage
over GHG reductions per vehicle, as both parameters primarily incentivize EV adoption,
but do not impact vehicle efficiencies directly. Even broad adjustments to EV efficiency
projections, shown in Figure 5b, have little impact on GHG emissions. Noteworthy
reductions in GHG reductions in this case only occur when extreme values of electric
powertrain efficiency are combined with extreme values for consumer payback period.
Similar levels of reduction can also be seen in Figure 5c, but also only at extreme values
of carbon price and grid carbon intensity.

The impacts of gasoline powertrain efficiency and battery cost changes are shown in
Figure 5d. As one would expect, the contour lines are nearly aligned with the gasoline
powertrain efficiency axis. This suggests that meeting the most ambitious GHG reduction
targets requires, chiefly, improvement in gasoline powertrain efficiencies and that battery
costs have little impact on GHG emissions. Additionally, the 80% reduction target falls
at gasoline powertrain efficiencies beyond 80 mpg for small cars (71.6 mpg fleet average),
almost double the baseline projection. Thus, meeting the most aggressive targets might
be dependent upon realizing technological leaps or currently unforeseen advances, rather
than incremental changes. At these efficiencies, while the per vehicle GHG emission
reduction is 80%, the absolute reduction across the LDV fleet is 70%.

Under our baseline assumptions, significant gasoline powertrain efficiency improve-
ments are indispensable to meeting GHG reduction targets due to the small proportion
of EVs in the LDV fleet. To examine the conditions where the gasoline powertrain ef-
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ficiency parameter might be less important, we explore parameter ranges that would
result in a higher prevalence of EVs. We consider a world that is ideal for the purchase
of EVs: consumer payback periods are doubled, batteries are free, consumer range and
infrastructure penalties for BEVs are eliminated, and a high vehicle turnover rate ensures
that the oldest, least efficient vehicles are replaced with higher efficiency models quickly.
Furthermore, this ideal environment rapidly retires the coal intensive sources of electric-
ity in favor of natural gas, consistent with some projections (U.S. Energy Information
Administration, 2011a). In this setting, depicted in Figure 6, ICEs still remain 14% of
the fleet in 2050, and the EVs are dominated by PHEV10s and BEVs since PHEV40s
are the most expensive powertrain. Additionally, of all of the vehicle-miles traveled, 40%
of them are still powered by gasoline due to the prevalence of PHEV10s. Therefore,
the GHG per vehicle reduction in 2050 is only 70% over 2010 values, still short of the
available improvement offered by the range of gasoline powertrain efficiencies considered.
Thus, to meet the most aggressive GHG reduction targets, gasoline powertrain efficiency
improvements beyond current projections are critical even for a fleet that consists of
nearly 85% EVs. Only by recharging the EVs with carbon free sources, such as wind or
solar, can the 80% GHG reduction target per vehicle be achieved using default projec-
tions for gasoline powertrain efficiency. In short, many unlikely parameter values must
be realized for EVs to have a significant impact on GHG emissions.

3.4.4. Reduction in petroleum consumption

The model baseline projects a 55% reduction in petroleum consumption per vehicle
in 2050 over 2010 levels, due to improved vehicle efficiencies and electrification of the
fleet. The parametric variations that further increase either vehicle efficiency or EV sales
will therefore result in even lower petroleum consumption. For instance, market-based
influences such as consumer payback period and carbon price both serve to encourage
vehicle electrification and reduce petroleum consumption. As depicted in Figure 7a, at
the extreme values of consumer payback period and carbon price, petroleum consumption
reduction per vehicle can reach nearly 70%.

Technological influences upon LDV petroleum consumption are shown in Figure 7b.
As one would expect, gasoline powertrain efficiency improvements offer significant op-
portunity for reducing petroleum consumption, but unlike the GHG reduction case, the
contour lines are not wholly aligned with the gasoline powertrain efficiency-axis. In this
case, lower battery costs also augment EV sales rates, especially at lower values of gaso-
line powertrain efficiency, and therefore reduce average vehicle petroleum consumption.
Thus, the US can meet aggressive petroleum consumption reduction targets without re-
lying chiefly on improvements to gasoline powertrain efficiency. This is underscored in
Figure 7c where consumer payback period incentives are combined with battery tech-
nology improvements. At low battery costs and long consumer payback periods, 2050
average vehicle petroleum consumption is reduced by 68% over 2010, corresponding to
a 54% reduction in absolute consumption, a significant improvement over the baseline
value, and in-line with US energy independence objectives. For reference, the 71.6 mpg
fleet average efficiency mentioned above to meet GHG reduction targets yields an 73%
reduction in absolute petroleum consumption.
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4. Conclusions

The parametric analysis capability of the model presented here is new to this appli-
cation space. This capability has enabled a comprehensive sensitivity analysis and trade
space exploration, with emphasis on factors that influence the adoption rates of EVs, the
reduction of GHG emissions, and the reduction of petroleum consumption within the US
LDV fleet.

Many factors contribute to the adoption rates of EVs. These include the pace of
technological development for the electric powertrain, battery performance, as well as
gasoline powertrain efficiency. Policy initiatives can also have a dramatic impact on the
degree of EV adoption. The consumer payback period, in particular, can more than
double the EV fleet fraction if extended beyond seven years. Widespread EV adoption
can have noticeable impact on petroleum consumption by the LDV fleet and can assist in
reducing US reliance on imported crude oil. However, widespread EV adoption has little
impact on GHG emissions, especially if the electricity grid continues to rely on fossil fuel
based power. Even if all of the coal in the current electric mix were replaced by natural
gas, GHG emissions reduction would fall short of stated targets.

The conventional gasoline vehicle will remain the core of the LDV fleet for many
years to come. This conclusion seems robust even if global oil prices rise to two to three
times current projections. Thus, investment in improving the internal combustion en-
gine might be the cheapest, lowest risk avenue towards meeting ambitious GHG emission
and petroleum consumption reduction targets out to 2050. Vehicle efficiency improve-
ments, however, will have to be negotiated with historical consumer and manufacturer
preferences for large, powerful cars with many energy-hungry cabin features.
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Appendix A. Detailed model description

This section contains an expanded description of our modeling approach, the mathe-
matical equations, and the input data used. This section should be read as a supplement
rather than a replacement to Section 2, which outlines the general approach, key as-
sumptions, and data sources. The notation and variables used in this model description
are listed in Table A.3.

Appendiz A.1. Vehicle modeling

The initial vehicle fleet is segmented by age, vehicle class (small car, large car, and
light truck), vehicle powertrain (ICE, PHEV10, PHEV40, and BEV), geographic region
(eight NERC regions), population density (urban, suburban, and rural), home recharging
availability, and driving intensity (light, medium, heavy). The driving intensity relates to
an average daily trip distance expressed by a gamma distribution, which has a cumulative
distribution function of the form,

k
’V(xa 5)
F(z;k,0) = ——=,
where «(-) is the lower, incomplete gamma function, I'(-) is the gamma function, k is
the shape parameter, and 6 is the scale parameter. The detailed segmentation fraction
breakdowns are presented in Tables A.4-A.6, as well as the age-dependent annual mileage
in Table A.7.
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Table A.3: Symbol guide for model equations.

Demand variables

Price variables

DE
]D)F
DF”

Energy source demand
Fuel use demand

Fuel production demand

Vehicle cost variables

]PE
PF
IP;C

Energy source price

Fuel price

Price for carbon emissions

Vehicle fleet variables

CG
CF

Generalized vehicle ownership cost
Vehicle fuel costs

Electric vehicle battery capital cost

Electric vehicle charger cost
Penalty costs

Vehicle capital cost minus battery
Electric vehicle subsidy

Dollar cost constant
Amortization function

Logit choice variables

Z/{V
uF
B
Co
Po

Vehicle logit choice utility
Fuel region logit choice utility
Logit choice exponent

Reference cost
Reference price

Subscript segmentation

S A" »n I %o Q

Subscript for vehicle age
Subscript for energy source
Subscript for fuel

Subscript for geographic region
Subscript for vehicle size class
Subscript for population density
Subscript for driving intensity
Subscript for vehicle powertrain

7 o3I TALEIITu<

Number of vehicles
Overall vehicle sales rate
Overall vehicle scrap rate
Segment sales fraction
Segment scrap fraction
Battery energy capacity
Vehicle range

Annual VMT

Vehicle fuel economy
Vehicle fuel use rate
Recharging availability fraction

Market availability fraction

Fuel production variables
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Energy source to fuel conversion rate
CO2. GHG emissions

GHG emission rate for fuel use

GHG emission rate for fuel conversion

Marginal electricity grid capacity
Marginal grid mix blending parameter
Regional fuel exchange matrix

Fuel economy for tanker transport
Regional fuel exchange distance
Taxes, fees, and profit margin

Gamma distribution variables

r()
()
k
0

Gamma function

Lower incomplete gamma function
Shape parameter

Scale parameter



Table A.4: Initial number of vehicles and population density in 2010 by geographic region (NERC
regional entities): Florida Reliability Coordinating Council (FRCC), Midwest Reliability Organization
(MRO), Northeast Power Coordinating Council (NPCC) Reliability First Corporation (RFC), SERC
Reliability Corporation (SERC), Southwest Power Pool (SPP), Texas Reliability Entity (TRE), Western
Electricity Coordinating Council (WECC). Source, U.S. Department of Transportation Federal Highway
Administration (2009)

Vehicle size Population density
Region Small cars Large cars Light trucks Urban Suburban Rural
RFC 24586590 18622043 7240337 24% 55% 22%
TRE 5747139 4909310 3517145 46% 34% 19%
MRO 7401322 5725430 3662847 26% 40% 34%
NPCC 12582536 7260541 2038209 40% 43% 18%
FRCC 5825576 4930174 1934916 22% 67% 11%
SERC 25133312 18851264 11413276 26% 42% 33%
SPP 3672440 3145111 2738557 35% 36% 29%
WECC 25392229 19087251 9395291 37% 51% 12%

Table A.5: Distribution of vehicle size in population density segments (U.S. Department of Transporta-
tion Federal Highway Administration, 2011).

Vehicle size
Population density Small car Large car Light trucks

Urban 56% 29% 15%
Suburban 49% 27% 24%
Rural 43% 28% 29%

Table A.6: Segmentation of driving intensity in each population density segment and the associated
gamma distribution of daily driving distance (Greene and Lin, 2010).

Driving Population density Gamma distribution
intensity Urban Suburban Rural k 0

Short 40% 37% 27% 1.68 14.11
Average 34% 31% 33% 1.90 23.20
Long 26% 31% 40% 1.80 43.05
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Table A.7: Vehicle lifetime and annual per vehicle mileage as a function of age (U.S. Department of
Transportation National Highway Traffic Safety Administration, 2008).

Vehicle age  Average Annual Miles Driven Fraction Surviving to Age
[years] Small car Large car  Light truck Small car Large car  Light truck
1 12885 14255 15229 0.995 0.995 0.995
2 12641 13874 14688 0.990 0.978 0.974
3 12377 13495 14157 0.983 0.966 0.960
4 12094 13117 13637 0.973 0.950 0.942
5 11796 12743 13128 0.959 0.929 0.919
6 11484 12371 12630 0.941 0.903 0.891
7 11160 12003 12146 0.919 0.874 0.859
8 10825 11638 11674 0.892 0.840 0.823
9 10483 11278 11216 0.860 0.802 0.783
10 10135 10923 10772 0.825 0.761 0.740
11 9783 10574 10344 0.787 0.718 0.696
12 9429 10230 9930 0.717 0.666 0.650
13 9075 9893 9533 0.613 0.606 0.640
14 8722 9563 9153 0.509 0.542 0.552
15 8374 9241 8789 0.414 0.480 0.501
16 8032 8927 8444 0.331 0.423 0.452
17 7698 8622 8117 0.260 0.371 0.406
18 7374 8326 7809 0.203 0.324 0.363
19 7061 8040 7521 0.157 0.283 0.324
20 6763 7765 7253 0.120 0.246 0.287
21 6481 7500 7006 0.092 0.215 0.254
22 6217 7248 6781 0.070 0.187 0.224
23 5972 7007 6577 0.053 0.163 0.198
24 5750 6780 6396 0.040 0.141 0.174
25 5551 6566 6239 0.030 0.122 0.152
26 5379 6366 6105 0.023 0.106 0.133
27 5379 6215 5996 0 0.089 0.117
28 5379 6073 5912 0 0.077 0.102
29 5379 5938 5853 0 0.067 0.089
30 5379 5813 5821 0 0.058 0.077
31 5379 5813 5821 0 0.051 0.067
32 5379 5813 5821 0 0.045 0.059
33 5379 5813 5821 0 0.039 0.051
34 5379 5813 5821 0 0.033 0.044
35 5379 5813 5821 0 0.030 0.039
36 5379 5813 5821 0 0.025 0.033
37 5379 5813 5821 0 0.022 0.029

38 5379 5813 5821 0 0 0
All years 10964 11788 11804 0 0 0
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Distributions of vehicles, V, are tracked according to the above segmentation. The
evolution of each vehicle segment is given by,

dvrspdn

dt = Erspdnvrspd - § wsavrspdav

a

where @ is the segment sales rate and @ is the vehicle class scrap rate as a function
of age. The subscripts, which will be used throughout the model description, denote
segmentation by r region, s vehicle class, p population density, d driving intensity, n
powertrain, and a age.

The sales and scrap rates are scaled such that overall fleet growth is constant,

Erspdn = Sarspdna Wsq = staa

where S is the overall sales rate, W is the overall scrap rate, o is the consumer sales
fraction by powertrain for each vehicle segment (described below), and w is the scrap
fraction taken from survival data (Table A.7). An overall sales rate of 6.7% is used, the
average value for the 2000-2009 period, along with an overall scrap rate of 5.8% (Davis
et al., 2010).

The segment sales fractions in each time-step, o, are assigned using a logit function
(Struben and Sterman, 2008),

Uy . bnk c&
rspdnrnivn 1% rspdn
Orspdn = =< _ «, 3 Z/{rs dn — €XP -B—c | (Al)
’ Zuxwdn(b”ﬁ" " < cg
1 0, ICE é 0.45, BEV
Kn = ; n = ; n =
14 mye=0-35¢ 1000, else 1, else

where ¢ is the recharging availability fraction, & is the market availability fraction, UV is
the utility, 3 is the logit exponent, C¢ is the total cost, and C§ is a reference cost taken as
the 2010 small car ICE cost. The baseline logit exponent value of 5 = 14.9 is calibrated to
give a price elasticity of —9 (a 9% drop in demand for a 1% increase in price) at a market
share of 50% (Greene, 2001). Based on survey data, 45% of drivers could have access to
home recharging (Axsen and Kurani, 2010). The market availability fraction represents
a growth curve tracking the availability of a given powertrain in vehicle manufacturers’
fleets.

The generalized vehicle purchase costs are expressed in dollars per annual VMT
(Greene et al., 2005),

A2
rspdn Msd Msd ) ( )

P F
(CG - A <(Ci‘3n + (CTIL_I + (C;/n - C§n> + (Crspdn + (CTsdn
where C? is the penalty costs, C? is the battery cost, C is the charger cost, CV is the
vehicle capital cost, CY is the subsidy value, C¥ is the fuel cost, and M is the VMT. The
function, A(-), amortizes the cost to the consumer over a payback period of 3 years (in
the baseline case) at a 0% discount rate. The individual cost components are discussed
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in the following paragraphs.

Vehicle purchase costs, CV, are calculated using estimates for advanced technology
(Moawad et al., 2011). The costs, which are listed in Table A.8, include learning over
time that captures the decline in manufacturing costs due to process and technological
maturation. The cost for electric vehicles is offset through subsidies, C¥, from the
American Clean Energy and Security Act of 2009. The cost for the batteries in electrified
vehicles, CP, is calculated separately from other purchase costs so that the effect of
targeted research in this area can be explored parametrically. The cost for batteries is
extracted directly from National Research Council (2010) and is given by,

Can = an [103553 (1 — 670'17t) + 9056*0.1% o 30]7

where 67 is the battery price in 2030 ($/kWh), ¢ is the years since 2010, and Q is the
battery capacity (kWh). The 2030 price point parameter allowed for adjustment of the
price decline over time associated with technological development in an intuitive manner.
The battery capacity as a function of vehicle size and time is detailed in Table A.8. For
vehicles that require home recharging, we include a charger cost applied to the rate of
new EV sales in the fleet,

L av $0, ICE
clh =gy — d—t"; 6H = {$878, PHEV10 :
n=Evs """ $2146, PHEV40, BEV

which assumes a Level 1 charger for PHEV10s and a Level 2 charger for PHEV40s and
BEVs. Note that we do not explicitly track repeat EV purchases and charger re-use.

Penalty costs, CP, are also included to quantify limitations of alternative powertrains.
A range penalty represents the reduced utility of a vehicle with a short range and is calcu-
lated using the value of the time spent refueling per daily mileage. A station availability
penalty captures the lower utility of a vehicle that has limited public refueling options.
The penalties are expressed as,

1 2
(CrP;pdn = Cfdn + (Cfpn
CPI _5P1 Ma ] 5131 _ $798, BEV R 100mi, BEV
sdn — Yn ’ n - .
365R., $814, else 350mi, else
Z V’r‘pn
cP? _ §P? | n=EV 2015, sP% _ $7500, BEV
T Y Ve o $0, else

where CP" is the range penalty, CP” is the refueling penalty, and R is the vehicle range.
The cost constant dollar values of the penalties, 67" and §7", are taken from Greene
(2001) and the exponential growth trends of refueling infrastructure for alternative vehi-

cles is taken from Yeh (2007). The fuel cost per mile, C¥', is simply the ratio of the fuel
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Table A.8: Vehicle efficiency, cost and batter capacity parameters. Capital costs are relative to a baseline
of $0 for each size class and do not include battery costs.

Year Parameter Vehicle Size ICE PHEV10 PHEV40 BEV

Efficiency Small car 27 41 31 0
(gas.) Large car 22 31 22 0
[MPG] Light truck 17 24 17 0
Efficiency Small car 0 122 97 100
(elec.) Large car 0 102 71 72
2010 [MPGe] Light truck 0 80 55 0
Battery Small car 0 3 17 24
capacity Large car 0 4 22 32
[kWh] Light truck 0 5 29 0
Relative Small car -39 3573 8332 5586
costs [$] Large car -5 4240 9712 7024
Light truck -63 5918 12149 0

Efficiency Small car 27 46 36 0
(gas.) Large car 24 35 26 0
[MPG] Light truck 18 27 20 0
Efficiency Small car 0 131 109 113
(elec.) Large car 0 111 81 83
2015 [MPGe] Light truck 0 91 62 0
Battery Small car 0 3 16 23
capacity Large car 0 4 21 31
[kWh] Light truck 0 5 27 0
Relative Small car 787 2904 6107 3641
costs [$] Large car 1048 2974 6646 4224
Light truck 823 3775 8037 0

Efficiency Small car 39 50 40 0
(gas.) Large car 36 38 30 0
[MPG] Light truck 24 29 22 0
Efficiency Small car 0 140 119 130
(elec.) Large car 0 115 89 94
2030 [MPGe] Light truck 0 106 67 0
Battery Small car 0 3 13 17
capacity Large car 0 4 17 23
[kWh] Light truck 0 4 21 0
Relative Small car 1797 2739 5337 2566
costs [$] Large car 2071 2601 5606 2772
Light truck 1844 3085 6674 0

Efficiency Small car 41 52 42 0
(gas.) Large car 38 39 31 0
[MPG] Light truck 24 30 23 0
Efficiency Small car 0 145 124 136
(elec.) Large car 0 118 92 99
2045 [MPGe] Light truck 0 108 69 0
Battery Small car 0 2 12 15
capacity Large car 0 3 15 20
[kWh] Light truck 0 4 19 0
Relative Small car 1780 2662 4986 2137
costs [$] Large car 1942 2531 5135 2160
Light truck 1732 3081 6117 0
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Table A.9: Fraction of miles driven on gasoline or electricity (fuel use rates). Note that serial drive train
mode is assumed for PHEVs (vehicles use electricity up to the electric powertrain range limit and then
gasoline only).

Driving PHEV10 PHEV40
intensity Gasoline Electricity = Gasoline Electricity
Short 62% 38% 11% 89%
Average 78% 22% 32% 68%
Long 87% 13% 55% 45%

price and fuel economy of a vehicle,

Chap =Y
rsdn - nsdnf7

where P is the price of fuel, 7 is the fuel economy, and the subscript, f, denotes type of
fuel. Gasoline and electric powertrain efficiency are drawn from the same source as the
cost data and similarly listed in Table A.8.

As shown in Figure 1, the vehicle sub-model outputs the total fuel use demand, D"
This is computed by an accounting of the total mileage covered by the fleet, the fuel use
rates, p (listed in Table A.9), and the fuel economy,

DFf _ Z VrspdnaMsnapdnf
" Nsdnfa

spdna

Appendiz A.2. Modeling fuel production and distribution

The model allows for transport of fuels between regions so that regions with lower
production cost can supply other regions. We assume electricity is not transferred be-
tween regions. The fuel supply for each region is chosen by a logit choice function of the
same form as Equation A.1, with an exponent value of 5 = 18,

F P
e Unriy . ur, . — Prr/f. PEY — pF Jrer’ (]P;F +POAF )
rr!/ f — L{F ) rel f = PO ) rr'f = Lrf nF r,gas gas)»
> Uiy
T/

where 7 is the inter-region fuel exchange matrix from production region, r, to demand
region, 1/, PF " is the fuel price after regional exchange is accounted for, X is the distance
between region centroids, n¥" is the fuel economy of the transport mode (taken to be the
average of tanker trucks and rail), P¢ is the carbon price, and ¥ is the GHG production
rate from fuel use (GHG bookkeeping is described below). The total fuel production
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P . . . .
demand, D", after accounting for inter-region exchange is,

P ’
ngas Z TT’T’fDr .gas + Z 7’7‘ Drf ’

where the gasoline production demand is listed separately due to the additional demand
stemming from the inter-region fuel exchange.

The fuel production sub-model translates the regional fuel production demand to
regional energy source demand via the relationship,

ZQefDrf )

where DF is the energy source demand and €. f is a matrix relating quantities of energy
source, e, required to produce one unit of fuel, f.

As alluded to above, the fuel production sub-model also does an accounting of the
GHG emissions due to fuel use and production, G,

P P
Gy = AfDf; + ) A2y

where A is the COs-equivalent emissions rate for fuel use and A€ is the emissions rate
for fuel production processes. The first term captures the emissions from fuel use by
the fleet and the second term represents emissions from fuel production processes. Note
that this is not a life-cycle GHG accounting as contributions from vehicle manufacturing
and energy source production are not included. Lastly, the fuel production sub-model
outputs the price of fuel in each region. This is calculated as,

P
Py = Z]P’ QesDry +POGs + 6y,

where P is the energy source price, PC is a user-specified price on GHG emissions, and
€ is the total accumulation of taxes, fees, and profit margin.

The initial marginal power mix is summarized in Table A.10. The marginal capacity
in each region, ), is allowed to evolve in time according to user input. Existing capacity
is assigned a five year mean replacement time and new capacity is added to meet the
electricity demand from the vehicle fleet,

dyre yre

_wre relec Zyre - 5

where 1 is a user input parameter that blends the initial marginal mix fraction with
other bounding cases, such as a 100% natural gas mix or a 100% renewable (carbon-free)
mix.
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Table A.10: Electricity generation source mix by NERC region (E.H. Pechan & Associates, Inc., 2010).

Regions OQil Coal Natural gas

RFC 0% 84% 16%
TRE 0% 13% 87%
MRO 3% 87% 10%
NPCC ™% 17% 76%
FRCC 11% 12% 7%
SERC 0% 5% 25%
SPP 0% 53% 47%
WECC 0% 15% 85%
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