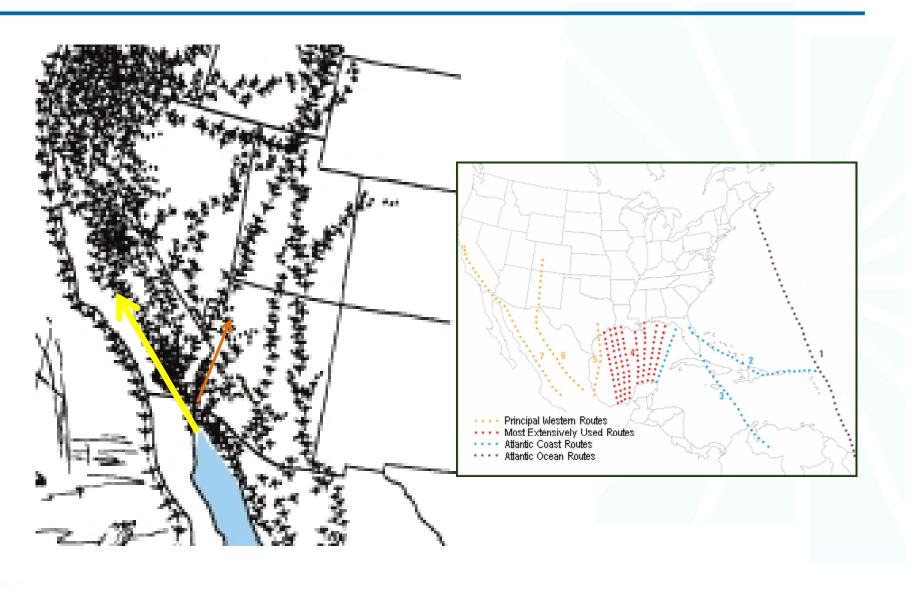


PROJECT SETTING

Rio Mesa Solar – Project Layout

Rio Mesa Solar – Relative Location

National Wildlife Refuges within 100 miles


- Havasu 70 miles
- Bill Williams 65 miles
- Imperial 18 miles
- Cibola (shown) 5.6 miles

Audubon Society Globally Important Bird Areas

Two nearest areas are shown on adjacent map and are 8+ (Cibola) and 10+ (Hall Island) miles away from closest tower of project

Rio Mesa Solar – USFWS and USGS Pacific Flyway Maps

Southern CA/Mexico – Pacific Flyway Satellite View

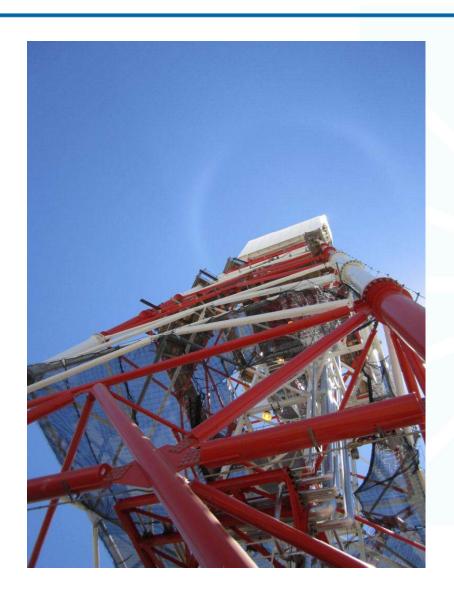
AVIAN RISK FROM POWER TOWER TECHNOLOGY

While examining our LPT technology we have identified 4 main factors that may present a risk to avian birds and raptors.

- Areas of high concentration of (light) energy flux near the SRSG surface and standby zones
- Areas of elevated ambient temperature due to convection of heat from the surface of the SRSG
- Birds collisions with the Heliostat mirrors and the Power Towers
- Environmental setting. Immediate surrounding habitat that may attract birds

 Areas of high concentration of (light) energy flux near the SRSG surface and standby zones

Solar One	SEDC	Rio Mesa
When Solar One was	Maximum flux on the receiver	Maximum flux on the receiver will
operating, common practice	is 600kW per square meter.	be 600kW per square meter.
was a maximum flux on the	Two standby points are used.	Advances in heliostat control
receiver of 500-600kW/m ² .	Improvements in the heliostat	technology permits BrightSource
Heliostat Aiming controls	control technology allows	to eliminate standby points,
were primitive by today's	reduction of the flux	replacing them with a standby
standards, so substantial use	concentration at those standby	zone that will form a ring-like
of the standby point system	points to around 1000kW/m ² .	shape around the SRSG. This will
was essential to control flux	Although no formal study has	greatly reduce flux concentration
on the boiler. Based on BSE's	been undertaken at SEDC, in	since each heliostat will be aimed
engineers' familiarity with the	over 3 years of site operations	at a slightly different point. BSE
project, flux concentration at	at the facility there were no	estimates the flux concentration in
those standby points was	observations of avian mortality.	the standby zone to be no more
estimated to be ~1500kW/m ² .		than 500kW/m ² .



Solar One – Standby Points

Coalinga – Standby Ring or Halo

 Areas of elevated ambient temperature due to convection of heat from the surface of the SRSG

Solar One	SEDC	Rio Mesa
No direct data about this factor at Solar One is available at this time. Since coatings at Solar One and SEDC are similar, we can assume, with a certain amount of confidence, that the physical mechanism was very similar to what has been modeled for our SEDC and Ivanpah facilities.	Modeling ¹ indicates that significantly elevated air temperatures around the SRSG are limited to only a few inches from the surface, at which point the temperature is only 40°c above ambient. Temperatures then drop rapidly with further distance from the SRSG.	Modeling ¹ indicates the elevated temperature area will extend less than 5 meters from the SRSG face horizontally and down-wind. Above the SRSG at 1.5 meters, the air temperature will drop to ~15°C above ambient, and will continue to dissipate rapidly such that at a distance of 20 meters (SRSG width) above the SRSG temperature is at ambient.

Note 1: Modeling was performed using a Computational Fluid Dynamics (CFD) program.

Birds collisions with the Heliostat mirrors and the Power Tower

Solar One	SEDC	Rio Mesa
Solar One used	SEDC uses mostly the	Rio Mesa will use dual mirror LH-2.3 heliostats with a
several types of	single mirror LH-1 (75 ft ²)	surface area of 204 ft ² , and a maximum height of
heliostats, most of	and some dual mirror	13.5 feet above grade.
which were large	LH-2 (150 ft ²) heliostats.	Tower Issue: A radar study at the Blythe airport
and had multiple	Both types reach about	spanning 6 years revealed that ~85% of night-time
mirrors (510 ft ²)	12-13 ft. above grade.	migration occurred at an altitude of <a> 1000 ft (R.L.
and reached as	Although no formal study	McKiernan pers. comm. 2012).
high as 26.5'	has been undertaken at	In addition, risk of collision with the RMS towers is
above grade. No	SEDC, 3+ years of	minimized by: non-reflective concrete construction,
data exists for	ground activity at the	appropriate FAA lighting, relatively small (60-80 ft.)
mortality of night-	facility has yielded no	horizontal profile, no spinning blades, and no guy-
time migratory	observations of avian	wires. The highest risk of collision from nighttime
birds at Solar One.	mortality. Gemasolar	migratory birds is during inclement foggy weather
	plant has similar results.	(seldom) and moonless nights (1-2 days/month).

Environmental setting. Immediate surrounding habitat that may attract birds

Solar One	SEDC	Rio Mesa
Solar One was	SEDC is located within	RMS's heliostat fields will be located in areas of
situated directly	the Syrian-African fault,	desert scrub approximately one mile away from
adjacent to irrigated	a major flyway for	irrigated agricultural fields. There are no
farm land and had	migratory birds in the	permanent streams, rivers, or riparian habitat on
~126 acres of un-	region. No open water	or adjacent to the site. Only 4 acres of netted
netted evaporation	or farm land is near	evaporation ponds east of the solar field are
ponds directly	SEDC. This suggests	planned. The Colorado River is about 4.5 miles
adjacent to the Solar	that Solar One's bird	away at its closest reach, and is typically 6-8
field. These factors	issues may be a site-	miles from the site. The Colorado River is a
attracted significant	specific issue related to	secondary route of the primary Pacific Flyway,
avian activity to the	the adjacent farming and	which is over 100 miles to the west, and
Solar One project	open water.	connects the Sea of Cortez with the Salton Sea
site.		and Peninsular Mountain Ranges to California
		Central Valley and Great Basin areas.

Solar One – Landscape

Ivanpah SEGS – LH-2 Heliostat (RMS slightly larger)

PROPOSED ADDITIONAL SURVEYS FOR 2012

Rio Mesa Solar – Proposed Additional Surveys

Applicant believes that the surveys conducted in 2011 are compliant with CEC requirements for biological analysis of impacts for the Rio Mesa Project.

Applicant has endeavored to address the REAT Agencies' concerns by employing highly respected avian specialists.

Dr. Pete Bloom is consulting on the Project's 2012 proposed survey effort and is the lead biologist for Phase 1 and 2 golden eagle helicopter surveys and supplemental ground surveys during the 2012 breeding season.

In addition, Dr. Pat Brown, a bat expert who has extensively studied bat populations in the project vicinity, will also be consulting on the Project.

Rio Mesa Solar – Proposed Additional Surveys

- 1. <u>Migratory Birds:</u> Additional migratory bird surveys will be conducted from February 21, 2012 through May 31, 2012, and from August 15, 2012 to November 1, 2012. The survey protocol to be used is the REAT recommended protocol dated 12/16/11 and the observation points approved in Data Request Set 1A.
- 2. <u>Raptor Migration:</u> Raptor migration surveys will be conducted from March 7, 2012 through April 30, 2012, and from September 1, 2012 to November 30, 2012. The survey protocol to be used is the REAT recommended protocol dated 12/16/11 and the observation points approved in Data Request Set 1A.
- 3. <u>Golden Eagles:</u> Phase 1 and 2 golden eagle helicopter surveys and supplemental ground surveys will be conducted during the 2012 breeding season following Pagel et al. 2010 as suggested in the REAT recommended protocol dated 12/16/11. Pete Bloom is the lead biologist for these surveys. This survey will begin on March 24, 2012.

Rio Mesa Solar – Proposed Additional Surveys

- 4. <u>Gila Woodpecker:</u> Surveys for Gila woodpecker and other breeding birds will be conducted based on the protocol described in Data Request Set 1A. First survey was completed March 7-9, 2012.
- 5. <u>Elf Owl:</u> Surveys for elf owl will be conducted based on the cactus ferruginous pygmy-owl protocol as suggested in Data Request Set 1A, if required by the Committee.
- 6. <u>Bats:</u> Bat monitoring started on February 9, 2012 and will continue for 1 full year using Anabat acoustical monitoring on the project site using the REAT recommended protocol dated 12/16/11 and the three REAT approved Anabat monitoring stations.
- 7. <u>Nocturnal Migrant Songbirds:</u> Radar technology will be utilized to monitor spring and fall nocturnal migration pulses of avifauna five nights per week from March 12, 2012 through May 31, 2012, and from September 1, 2012 to October 31, 2012.

