

DOCKET 11-AFC-3 DATE MAR 07 2012 RECD. MAR 07 2012

March 7, 2012

Mr. Eric Solorio California Energy Commission Docket No. 11-AFC-3 1516 9<sup>th</sup> St. Sacramento, CA 95814

# Cogentrix Quail Brush Generation Project - Docket Number 11-AFC-3, Plume Vertical Velocity Assessment

Docket Clerk:

Pursuant to the provisions of Title 20, California Code of Regulation, and on behalf of Quail Brush Genco, LLC, a wholly owned subsidiary of Cogentrix Energy, LLC, Tetra Tech hereby submits the *Plume Vertical Velocity Assessment for the Quail Brush Generation Project.* The Quail Brush generation Project is a 100 megawatt natural gas fired electric generation peaking facility to be located in the City of San Diego, California.

This Assessment was prepared to determine the potential for the reciprocating engine exhaust plumes to impact flight operations directly over the proposed project in accordance with the request from the California Energy Commission (CEC) at the December 2, 2011 public workshop. The vertical plume analysis is based on the guidelines for aviation safety set out by the Australian Civil Aviation Safety Authority (CASA) and presented in "*Guidelines for conducting plume rise assessments (CASA, 2004)*".

If you have any questions regarding this submittal, please contact Rick Neff at (704) 525-3800 or me at (303) 980.3653.

Sincerely,

Constance C. Fain

Constance E. Farmer Project Manager/Tetra Tech

### Plume Vertical Velocity Assessment for the Quail Brush Generation Project

### **Prepared By**



Atmospheric Dynamics, Inc. Carmel-by-the-Sea, CA. 93921

February 2012

### Background

The proposed Quail Brush Generation Project (QBGP) will be a nominal 100 MW facility intermediate peaking load utilizing eleven (11) Wartsila 20V34SG-C2 natural gas-fired internal reciprocating engines. Each engine has a 100 foot tall stack. The facility will be located on Sycamore Landfill Road in the City of San Diego, west of the City of Santee, California at UTM (NAD27) coordinates of 497321 meters East and 3634766 meters North. The facility elevation is 465 feet above mean sea level. Terrain around the project site varies in elevation from 600 feet up to 1200 feet (and higher) above mean sea level. Gillespie Field lies 3.08 miles southeast of the project site and the Sycamore landfill area are not within the normal air traffic patterns of Gillespie Field. In order to understand the topography and terrain in the regional area surrounding the site, we recommend that the reader refer to the Visual Resources section of the AFC, i.e., Section 4.5, Figures 4.5-1 through 4.5-10.

An analysis of the potential for the reciprocating engine exhaust plumes to impact flight operations directly over the proposed project was made in accordance with a request from the California Energy Commission (CEC). Atmospheric Dynamics, Inc. has prepared a vertical plume velocity assessment for QBGP which utilizes the methods outlined in the Aviation Safety and Buoyant Plumes (Best et al 2003) paper. The analysis also includes a modified approach to the Best paper which has been utilized by the CEC on past Energy Commission Projects.

The vertical plume analysis is based on the guidelines for aviation safety set out by the Australian Civil Aviation Safety Authority (CASA) and presented in "*Guidelines for conducting plume rise assessments (CASA, 2004)*". The aim of this assessment is to determine the height at which the *average* vertical plume velocity emitted from the power station natural gas reciprocating engines achieves the critical value of 4.3 m/s. (CASA Advisory Circular Sections 8.4) The CEC has used the 4.3 m/s velocity as a significance criteria on past power plant projects.

### Vertical plume velocity guidelines

The assessment will conservatively determine the potential for turbulence generated by the plume-averaged vertical velocity of QBGP's exhaust plumes. The method uses worst-case assumptions of calm winds and neutral atmospheric conditions for the entire vertical extent of the plume to determine the worst-case impacts.

Since the development of a simple-cycle gas turbine power station at the end of a runway in Australia in the mid 1990s<sup>a</sup>, the Australian Civil Aviation Safety Authority (CASA) has taken an active role in the review of the siting of facilities with the potential to affect aviation activities. Potential hazards that could affect the safety of aircraft include tall visible or invisible obstructions. Visible obstructions include structures such as tall stacks or communication towers. Invisible obstructions include industrial exhausts that generate significant turbulence due to high velocity and buoyancy. CASA has issued an Advisory Circular, (CASA 2004) that specifies the requirements and methodologies to be used to assess whether a new industrial plume is likely to have adverse implications for aviation safety.

The general CASA requirement is to determine the height at which the plume (or plumes) could generate atmospheric turbulence and to determine the dimensions of the plume in these circumstances. The frequency of in-plume vertical velocities at the lowest height an aircraft may travel over the site, and at other heights are also required. For large plumes that are remote from

<sup>&</sup>lt;sup>a</sup>It should be noted that this project consists of reciprocating internal-combustion engines (RICE) that have plume exhausts with much smaller volumetric flows and buoyancy fluxes than the turbine projects that elicited the initial interest of CASA.

airports, CASA requires an assessment that determines the size of a hazard zone to alert pilots to the potential hazard. Normally this analysis uses a sophisticated air dispersion model that determines plume vertical velocities and lateral/vertical extents based on wind fields generated from actual meteorological data. Rather than use such a refined technique, a conservative screening analysis based on calm wind field assumptions was used for this project.

For this assessment, the plume-averaged vertical velocities were calculated as a function of height under calm conditions. While the calculation output is provided in plume average velocity, there are some sections of the plume where the peak velocity could be up to two times higher than the average. It has been CASA's experience that these peak vertical velocities do not assess aviation safety risk appropriately. Past discussions between Katestone Environmental, who developed the vertical plume methodology used in this study and CASA have concluded that analysis of the average plume height and downwind distance is appropriate for these assessments (i.e., the use of plume-averaged vertical velocities is recommended by CASA). The established CASA significance criteria is for a averaged plume velocity to equal or exceed 4.3 m/s at altitudes where aircraft can operate.

### Emission characteristics

The stack characteristics of the proposed QBGP engines are presented in Table 1. These stack parameters have relatively low buoyancy and volumetric flowrates as compared to turbine projects.

| Stack/Parameters    | QB           | GP                      |
|---------------------|--------------|-------------------------|
|                     | English      | Metric                  |
| Wartsila 20V34SG-C2 |              |                         |
| Height              | 100 feet     | 30.48 meters            |
| Flowrate            | 36,530 ACFM  | 17.24 m <sup>3</sup> /s |
| Velocity            | 48.46 ft/sec | 14.771 m/s              |
| Temperature         | 822ºF        | 712.04 Kelvin           |
| Diameter            | 4.0 feet     | 1.212 meters            |

Table 1: Stack characteristics for the proposed power station.

The eleven stacks are arranged in a straight line (6 in one set and 5 in another set), with a separation of 17.75 feet between adjacent stack centers. For this assessment, an ambient temperature of 52°F (284.26K) was used, which represents the 10<sup>th</sup> percentile worst-case (coldest) temperature in the three years of meteorological data used in the AERMOD air quality modeling analyses.

### Methodology

Katestone Environmental has developed a conservative method that uses worst-case calm wind conditions to assess the average plume vertical velocity as a function of height. The Katestone methodology is described in detail in Best et al 2003. Katestone Environmental has used this methodology throughout Australia.

The methodology used in this assessment has been based on well-verified laboratory and theoretical treatments of the rise and spread of a buoyant jet, both into a still ambient environment and into a light crosswind. This treatment (developed by Dr Kevin Spillane) covers in detail the initial dynamics of the plume as it exits the stack and the entrainment of ambient air into the plume as it rises directly above the stack. This method also considers the enhancement of vertical velocities that may occur if the plumes from multiple stacks merge and form a higher buoyancy combined plume.

The vertical plume assessment will involve several stages of development:

- (a) In the first stage very close to the stack exit, the high plume momentum will result in a short section in which the conditions at the center of the plume are relatively unaffected by ambient and plume buoyancy conditions. This jet phase extends from the stack exit to approximately a distance of 6.25 D above the stack (where D is the stack diameter) in calm conditions. At the end of this stage, the plume-averaged vertical velocity has decreased to half of the stack exit velocity, with a corresponding increase in effective plume diameter.
- (b) In the second stage, the plume responds to differences between ambient and plume buoyancy conditions, with much cooler and less turbulent ambient air being entrained into the plume from the outside regions of the plume towards the plume centerline. The momentum and buoyancy of the plume significantly influences plume rise and subsequently the dilution of the stack exhaust to decrease plume vertical velocities. This dilution is very sensitive to ambient wind speed, so the calm wind conditions considered here are conservative.

In the second stage for multiple stacks, there are three phases. The first phase extends from the end of the jet phase until plumes from adjacent stacks are touching (determined from the stack separation). This phase is governed by the equations given for a single stack. In the second phase, the plumes continue to merge from the height at which the plumes first touch until the height at which the plumes from the stacks on each end completely extends over the lateral extent of all the stacks. At this completely merged plume height, the methodology applies an enhancement factor to the plume vertical velocities and plume diameter. Plume velocities and diameters are linearly interpolated by height from the results obtained at the touching and fully merged heights. In the third phase, for heights above the fully merged plume height, the merged plume continues to expand (with reductions in plume-averaged vertical velocities) at the same rates as expected for an individual plume.

(c) In the third stage of plume development, plume rise is due entirely to the buoyancy of the plume and continues from some distance until there is an equalization of turbulence conditions within and outside the plume. This final rise is often only achieved at considerable heights/distances from the stack where the effective average vertical velocity is then close to zero. Since there is very little turbulence and near-zero vertical velocities, this stage of plume development is usually not considered for this type of analysis.

The CEC has modified this approach for multiple equivalent stacks by using a simplified method where the multiple stack combined plume velocity is based on the single stack plume velocity multiplied by the number of stacks raised to the 0.25 power. Staff notes that this methodology can predict somewhat lower velocity values than the full Spillane approach methodology presented in the Best paper (Best 2003). The single plume methodologies are identical.

### Worst-case calm wind scenario

The equations governing the growth of an isolated plume and merged plumes under calm wind conditions in a neutral environment are given in the paper in Appendix A. An assessment assuming calm winds for the entire height of the plume is presented here to represent the worst-case. Results of the plume vertical velocities at various heights are presented in Appendix B and summarized in Table 2 based both the Spillane methodology and the CEC methodology.

CASA requires that the proponent of a facility with an exhaust plume that has a plume-averaged vertical velocity exceeding the limiting value of 4.3 m/s at the Obstacle Limitation Surface (or 110 meters above ground level anywhere else) to utilize more sophisticated methods to further

assess the potential hazard posed by the plume to aircraft operations. For this conservative calm-wind analysis, both single plume and merged plumes velocities were evaluated at an elevation of 1000' above ground level since minimum flight altitudes in the vicinity of the site (due to the nearby landfill, the elevations of the hills, plus transmission tower obstructions) are 1050 to 1380 ft above ground level to the east and northeast of the site and 1125 to 1460 ft above ground level to the west and northwest of the site.

| Heights       | Average vertical plume velocities<br>Spillane Methodology | Average vertical plume velocities<br>CEC Methodology |
|---------------|-----------------------------------------------------------|------------------------------------------------------|
| 1000 Feet AGL | 1.52 m/s (single plume)                                   | 1.52 m/s (single plume)                              |
| 1000 Feet AGL | 2.94 m/s (merged plume)                                   | 2.76 m/s (merged plume)                              |

| Table 2: Summary | y of vertical velocit | y at height for worst-case | e calm wind scenario |
|------------------|-----------------------|----------------------------|----------------------|
|                  |                       |                            |                      |

### Table 3: Summary of height for 4.3 m/s Screening Threshold

| Plume-averaged<br>Vertical Velocity | Height (feet) above ground level<br>Spillane Methodology | Height (feet) above ground level<br>CEC Methodology |
|-------------------------------------|----------------------------------------------------------|-----------------------------------------------------|
| 4.3 m/s                             | 154 feet (single plume)                                  | 154 feet (single plume)                             |
| 4.3 m/s                             | 154 feet (merged plume)                                  | 347 feet (merged plume)                             |

The plume-average vertical velocity at 1000 feet above grade for both single and merged plumes are much less than the CASA screening threshold of 4.3 m/s. Using the Spillane methodology, the plume-averaged vertical velocities drops below the CASA screening threshold of 4.3 m/s occurs at 54 feet above the top of the 100 foot stack (or 154 feet above ground level). Using the CEC methodology, the plume velocity drops below the 4.3 m/s screening threshold at 247 feet above the top of the stack (or 347 feet above ground level).

In reality, even light wind speeds can dramatically decrease the predicted plume-averaged vertical velocities so the above results are very conservative indications of adverse conditions. The important factor for a given location is the appropriateness of available information for estimating true wind and temperature profiles throughout a typical year. Theoretical calculations, as shown in Table 2 and Table 3, are likely to overestimate the expected vertical velocities, for the following reasons:

- The wind profile is assumed constant with height with no occurrence of wind-shear. In reality, there is a considerable variation with height, especially in light winds;
- Worst-case scenarios are based on very light-wind, near-neutral atmospheric conditions with maximum loading.

Appendix B presents the detailed calculation results for the single plume and merged plume conditions using both approaches.

### Conclusion

The results of these modeling analyses demonstrate that the plume velocity drops below the 4.3 m/s significance criteria at an altitude of 154 or 347 feet above ground level. To encounter this velocity, a fixed or rotary wing aircraft would need to fly within 54 or 247 feet of the top of the exhaust stacks. These altitudes are well below the obstacle limitation heights in the area. Thus, the project is not expected to impact flight operations in the region.

## Appendix A Calculation Methodology

Clean Air Conference, Newcastle, New South Wales, Australia, 2003

### AVIATION SAFETY AND BUOYANT PLUMES

Peter Best<sup>1</sup>, Lena Jackson<sup>1</sup>, Christine Killip<sup>1</sup>, Mark Kanowski<sup>1</sup> and Kevin Spillane<sup>2</sup> <sup>1</sup>Katestone Environmental, PO Box 2184, Toowong, Queensland, Australia 4066 <sup>2</sup>20 Bancroft Street, Bendigo, Victoria, Australia 3550

#### Summary

Very buoyant plumes generally experience good dispersion but can, in some circumstances, affect aviation safety. Large in-plume vertical velocities can occur in calm conditions with minimal wind shear. Recent civil aviation guidelines seek to restrict the horizontal or vertical extent where average in-plume vertical velocities exceed a threshold that can threaten aircraft performance or structural stability. Key plume calculation procedures require adequate predictions or measurements of vertical profiles of wind and turbulence parameters. The TAPM scheme proves useful but requires additional features for complex source geometry. A hybrid approach overcomes most of these limitations, whilst treating the initial plume development in more detail. Design issues for typical stack configurations are discussed.

Keywords: Plume velocities, stacks, cooling towers, flares, safety

#### 1. Introduction

Over the past 25 years, considerable laboratory, field and theoretical work has been undertaken on the dispersion of very buoyant plumes from industrial sources. Such sources have traditionally included single or multi-flue stacks for major power stations, cooling towers and gas turbine generating plants where large volume flows, together with high exit temperatures, produce some of the highest buoyancy fluxes for normal power station configurations. With the increasing emphasis on gas and similar alternatives for power generation and the recent consideration of stack-in-tower configurations for locations where dry cooling is preferred, highly buoyant plumes are becoming the rule. In addition, industrial flares or unintended releases from pressurised pipelines can yield plumes with large momentum and/or buoyancy fluxes and may have structures approximating line or area sources. Recent dispersion analyses (Weil et al 2001) have shown that very buoyant plumes can readily interact with the overlying inversion and have plume spread dominated by buoyancy for most of the near-field. Plume rise and spread descriptions may need to be revisited.

High buoyancy plumes can, however, give rise to other problems that may require addressing in environmental impact assessments. High buoyancy plumes rise quickly and have significant in-plume vertical velocities. Should the facility be close to local airfields or aviation transport routes, any aircraft encountering the buoyant plumes may experience sufficient vertical uplift and turbulence to cause some temporary disruption to the manoeuvrability of aircraft, especially light commercial (rather than jet) aircraft.

There are no publicly-available field studies that document the decline of in-plume velocities with plume travel time for a variety of conditions necessary to produce validated modelling schemes. Various experimental and theoretical work was conducted around open-cycle and combined-cycle gas turbines at Kuala Lumpur, with field measurements taken for stack-top windspeeds in the range 2-8 m/s (but not for calm conditions). The Cessna aircraft used (Flinders Institute for Atmospheric and Marine Sciences) was fitted out to measure turbulence and air quality parameters as well as aircraft variables. The unpublished results showed a strong decrease of inplume vertical velocities with windspeed and height, core vertical velocities a factor of approximately 2 greater than plume-averaged values and significant influences on aircraft handling for near-instantaneous (~ 1 sec) exposures to strong plume velocities, especially if encountered by surprise.

The importance of vertical motion in causing aviation problems is better documented by the number of light aircraft incidents reported during strong convection in Australia (Spillane and Hess 1988). During extreme events, naturally-occurring vertical velocities can reach 8 m/s.

The current studies were conducted for an environmental impact assessment of a 700 MW open cycle gas-fired turbine near an army aviation centre at Oakey in southern Queensland. Previous studies by Spillane (1980) on moist plumes were adapted to treat buoyant plumes from closely located sources in calm and low windspeed neutral conditions (Katestone Scientific 1997). At the time, there was no model recommended by the Civil Aviation Safety Authority of Australia (CASA) and, indeed, very little guidance internationally as to the manner in which available velocity thresholds should be interpreted. Representations were made and generally accepted that the threshold vertical velocity of 4.3 m/s recommended by Australia and New Zealand authorities should be viewed as a plume-average rather than plume centreline criterion.

Critical (but extreme) aviation conditions are expected to be very light winds and neutral stability to heights of 500 m or more. For most assessment sites, there is unlikely to be a substantial database of nearsurface and upper-level wind and temperature information to estimate the frequency of occurrence of such rare cases. Recognising this, CASA recently recommended the use of the CSIRO TAPM model for producing long-term databases of such profiles at any location within Australia and for providing a publiclyavailable method of calculating plume vertical velocities in the near-field of a single plume source (CASA 2003). The TAPM treatment of plume rise (Hurley and Manins 1995) uses coupled non-linear first-order differential equations for the plume volume G, buoyancy F and momentum M fluxes that are generalisations of the original Briggs (1975) plume rise formulation, based on the work of Glendening et al (1984) for stable atmospheres with complex structures. The TAPM scheme does not include any influence of source-altered flow fields or moisture content. It is also strictly valid only for single sources, with multiple sources being treated only via use of a plume enhancement factor, a relatively coarse device for describing near-field plume dynamics. For cooling tower sources, moisture emissions, the confluence of adjacent plumes and the influence of suction occurring due to tower bypass flow can be important (Rezacova and Sokol, 2000). This paper restricts attention to essentially dry plumes with no interactions with distorted flow fields.

Aviation safety risk assessments require the evaluation of concurrence of adverse vertical velocities with the presence of aircraft in the vicinity of the plume and a spectrum of aircraft types and pilot skill. Ideally, a generalised scheme should facilitate the prediction of likely pilot response to such events but publicly-available schemes are not yet available. As for many air quality problems, the main difficulties are assessing the relevance of traditional techniques to the forecasting of extreme conditions and determining the reliability of such assessments based on existing knowledge.

The present paper outlines the available plume calculation methodologies for the Spillane and TAPM approaches, addresses the modifications necessary for multiple sources and assesses the utility of the various schemes for dispersion and meteorological modelling in providing initial and detailed assessments. The high buoyancy of the plumes diminishes the utility of various design alternatives such as increasing stack separation, reducing exit velocity and changing the orientation of discharge. Practical measures are discussed.

#### 2. General considerations

For the generic stack problem, we choose the case of multiple but identical sources of high initial exit velocity and temperature but low enough water vapour content to neglect latent heat considerations. In light winds, influences of the aerodynamic wakes or other effects of stack or cooling tower structures can be neglected. The initial stage (exit conditions) is assumed to be a plume emanating from a stack of height hs and diameter D, with plume exit velocity either uniform over the cross-section (with a value Vexit) or, more likely, a non-uniform velocity profile with plume average velocity Vexit. The exit virtual potential temperature  $\theta_s$ , volume flow  $\pi D^2 V_{exit}/4$  and initial buoyancy flux  $F_0 = gV_{exit} D^2 (1 - \theta_a/\theta_s) / 4$  are readily calculated, with  $\theta_a$  denoting ambient conditions. The ambient airspeed at stack top is denoted ue with Ko = Vexit/ue being the initial plume to ambient velocity ratio.

An outline is given in the following sections of the Spillane and TAPM plume dynamics modules for single plumes (retaining their respective notations). The physical interpretation of the processes is outlined in Section 3 with the additional considerations needed for multiple plumes.

#### 2.1 Spillane methodology

The plume radius a, orientation  $\phi$  and velocity V are followed along the plume trajectory. Five equations are solved numerically for the normalised vertical velocity  $K = V/u_e$ :

Radial growth of a forced-plume bending in a wind:

$$\frac{da}{ds} = \beta_n \cos\phi / K + \beta_e \left| 1 - \frac{\sin\phi}{K} \right|$$
(1)

Rate of entrainment, E, into the plume:

$$2E/V = \left(\frac{da}{ds} + (\lambda^2 \cos\phi)/2F_r^2\right)/(1 - \sin\phi/2K)$$
(2)

Momentum flux, Va, (longitudinal)

$$\frac{d(Va)}{ds} = 2E - V \frac{da}{ds}$$
(3)

Trajectory curvature; transverse momentum flux  $d\phi = (2 F)$ 

$$\frac{i\phi}{ds} = \left(2 Ea u_e \cos\phi - (F \sin\phi)/2.25V\right)/(Va)^2$$
(4)

Flux of heat:

$$\frac{d[Va^2\Delta\theta/\theta]}{ds} = 0, \text{ in a neutral environment}$$
(5)

where the notation is as follows:

a = plume top-hat radius;

s = distance along plume trajectory;

 $\phi$  = angle of plume centre line to vertical;

 $K = V/u_e;$ 

V = plume-averaged speed.

 $\beta_n = 0.40; \beta_e = 0.16; \lambda = 1.11;$ 

 $F_r^2 =$  Froude No = V<sup>2</sup>/(ag $\Delta\theta/\theta$ )

 $F = \text{ flux of buoyancy} = \lambda^2 a^2 Vg \ \Delta \theta / \theta_{\text{r}} \ \Delta \theta = \theta_{\text{p}} - \theta_{\text{e}}$ and suffices p and e for plume and environment.  $\theta = \text{ virtual potential temperature.}$ 

Initial conditions for  $\phi$ , V, a and z are set for the end of the momentum rise stage (for a single plume) or at the end of the merged plume stage (for multiple plumes). An along-plume distance step of  $\Delta s = 20$  m is used, and the appropriate value of  $u_e(z)$  adopted for non-uniform profiles.

For the case of calm conditions, analytic solutions are possible, one for the product Va at any height, the other a linear increase of  $a = 0.16 (z - z_v)$  where the virtual source height (above stacktop)  $z_v = 6.25 \text{ D} [1 - (\theta_e / \theta_s)^{1/2}]$ . For  $z > 6.25 \text{ D} > z_v$  we have:

#### 2.2 CSIRO TAPM methodology

The TAPM mean plume rise estimation takes the Glendening et al (1984) approach but assumes that the horizontal plume velocity instantaneously takes up the ambient horizontal velocity at stack height. Cartesian co-ordinates are adopted. The differential equation for plume volume flux G:

$$\frac{dG}{dt} = 2R w_p \left( \alpha w_p + \beta u_e \right) \tag{7}$$

neglects a third term due to ambient turbulence  $dz_p$ .

entrainment.  $w_p = \frac{dz_p}{dt}$  is the plume vertical velocity,  $\alpha = 0.1$  and  $\beta = 0.6$  are vertical and bent-over

entrainment coefficients and R is the plume radius. For the buoyancy flux F, it assumes:

$$\frac{dF}{dt} = -\frac{sM}{u_p} \left( A u_a + w_p \right) \tag{8}$$

where  $s^2 = \frac{g}{\theta_a} \frac{\partial \theta_a}{\partial z}$  gives the ambient buoyancy

frequency (s = 0 in neutral conditions),  $u_p^2 = u_e^2 + w_p^2$ , A = 1/2.25 and M is determined by

 $\frac{dM}{dt} = F (= F_o \text{ in neutral conditions}).$  By definition,

$$G = \frac{\theta_e}{\theta_p} u_p R^2, F = g u_p R^2 \frac{\Delta \theta}{\theta_p}, u_p R^2 = G + F / g,$$

$$w = M/G$$
(0)

$$W_p = M/G \tag{9}$$

Initial conditions are set with G, F and M evaluated with  $w_p = V_{exit}$ ,  $R = R_s = D/2$  but with the initial integration having

$$R = R_o = R_s \left( V_{exit} / \left( u_a^2 + V_{exit}^2 \right)^{1/2} \right)^{1/2}$$
(10)

The plume rise height is terminated when F = 0 and plume and ambient dissipation rates are equal. The plume dimensions are based on R = 0.4 (z - h<sub>s</sub>) or equivalent prescriptions.

#### 3. Treatment of multiple plumes

For N multiple, identical sources with stack separation d, Table 1 summarises the expected multi-stage plume development as well as Figure 1. The first stage is the rapid (almost vertical) rise of the individual plumes due to their momentum. The external surface of the plume entrains air as it rises (and the vertical velocities are reduced). The end of the momentum-dominated phase occurs when this entrainment reaches the plume core, the plume centreline has a vertical velocity equal to  $V_{exit}$  and the velocity profile will be essentially Gaussian. The peak (core) vertical velocity is therefore  $V_{exit}$  but the plume average value is 0.5  $V_{exit}$ . Conservation of momentum therefore requires the plume width to have effectively doubled from its initial value  $a_o$ .

In this first phase, the plume travels a height of 6.25 D in calm conditions and 0.4  $K_o a_o$  for  $K_o$  reasonably large (based on laboratory experiments). Davidson (1994) has also shown that an analytic form for plume rise in a uniform wind has an initial component of 6.2 D exp (-3.3/K<sub>o</sub>).

In the second stage, the plume dynamics and trajectories respond to ambient conditions, with much cooler air being entrained into the stack plume. The buoyancy of the plumes has significant influences on the rise as this air mixes into the plume and provides dilution of the exhaust. This dilution is very sensitive to ambient wind speed. For multiple plumes from closely-spaced stacks, this leads almost immediately to a height at which two plumes first touch each other (and plume merging commences) when the effective plume radius is equal to half the stack separation (this is exact in calm winds and approximately correct for light winds). Total merging is assumed to occur when the single plume radius equals stack separation. Conservation of buoyancy flux and Froude number (a reasonable assumption for coherent plumes) leads to a conclusion that the plume radius and vertical velocity will be increased overall by a factor of  $2^{0.25} = 1.189$  by the merging of 2 adjacent plumes.

For more than two stacks, the situation is more complex. In calm conditions, the combined plumes from pairs of stacks will coalesce shortly after to form a coherent plume, assumed to be complete before the single plume radius,  $a^{sp}$ , is ½ d (N-1) At this height, the combined plume velocity  $V_m$  and radius  $a_m$  are N<sup>0.25</sup>

greater than for a single plume. For non-calm conditions, a simplified treatment shows that total merging is likely to occur soon after the merging of two adjacent plumes, for winds at right angles to the line of separation of the stack. For winds at smaller angles  $\omega$  to the line of stacks, the process is more sequential and the effective stack separation can be reduced by a factor proportional to cos  $\omega$ .

In the third stage of plume development, plume rise is due entirely to the buoyancy of the (merged) plume and continues until there is an equalisation of turbulent conditions within and outside the plume. The effective average vertical velocity is then close to zero. The third stage of plume development can then be treated as that of a single merged plume (with different initial conditions for a, V and  $\phi$ ) passing through different atmospheric layers with varying horizontal velocity u<sub>e</sub>. The Katestone software uses a simple successive substitution method to determine a, E (the entrainment), V and  $\phi$  in that order. These equations are valid up to a critical value of  $\phi_e$  ( $\phi_c < \pi/2$ ) at which either the assumptions become invalid or plume rise should be effectively terminated.

These equations can be used in the second stage prior to plume touching and in the third stage once merging has been completed. Plume height is calculated by aggregating  $\Delta s \cos \phi$ , centreline displacement by aggregating  $\Delta s \sin \phi$ . For each  $\Delta s$ , the appropriate ambient windspeed is determined by linear interpolation (or power law curve fitting of available meteorological profile measurements or predictions).

A fourth stage can occur if the coherent plume reaches the base of the overlying inversion (height  $Z_i$ ). Some of the plume will punch through the inversion base, albeit with reduced vertical velocity. The remainder will be effectively trapped within the inversion layer with essentially zero vertical velocity. Weil et al (2001) show that the penetration in convective conditions depends on  $F_*^{2/3}$  where  $F_*=F/(u_*w_*^2Z_i)$  and  $w_*$  is the convective velocity scale. There is as yet little guidance on plume dimensions and vertical velocity for the penetrative component.

Table 1: Key parameters for the various stages of development for merging plumes.

| Stage                 | Average               | e plume velocity           | Plume    | Plume       | Plume       | Comments                                                     |
|-----------------------|-----------------------|----------------------------|----------|-------------|-------------|--------------------------------------------------------------|
|                       | Vertical              | Horizontal                 | width    | height      | angle       |                                                              |
| Stack exit            | V <sub>exit</sub> *   | 0                          | ao       | hs          | 0°          |                                                              |
| End of jet phase      | 0.5 V <sub>exit</sub> | $u_e(z) + V \sin \phi_o$   | 2ao      | $h_s + z_o$ | <b>\$</b> 0 | $z_0 = K_0 a_0 < 6.25D$                                      |
| Plumes first touch    | $V_t \cos \phi_t$     | $u_e(z) + V_t \sin \phi_t$ | at       | Zt          | <b>b</b> ,  | $V_t < 0.5 V_{exit}$                                         |
| End of plume merging  | $V_m \cos \phi_m$     | $u_e(z) + V_m \sin \phi_m$ | am       | Zm          | фm          | $a_m \approx N^{1/4} a^{sp}$<br>$V_m \approx N^{1/4} V^{sp}$ |
| Coherent merged plume | V cos $\phi$          | $u_e(z) + V \sin \phi$     | a        | Z           | ø           | $V < V_m a > a_m$                                            |
| Maximum plume rise    | 0                     | $u_e(z) + V \sin \phi$     | ac       | Zc          | 0.          | $\phi_c < 90^\circ$                                          |
| Inversion interaction | Low                   | Shear-affected             | Enhanced | > Z;        | Variable    | (Weil et al 2001)                                            |

Inversion interaction

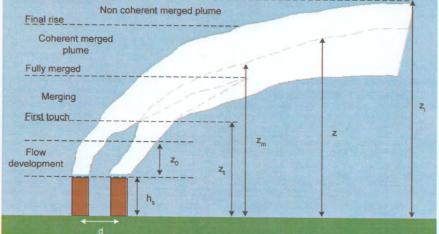



Figure 1: Schematic of plumes merging.

#### 4. Illustrative examples

The simplest cases assume identical sources with stack separation d operating in a neutral and unbounded atmosphere with uniform conditions. For the Spillane approach, Table 2 gives the resulting plume-average vertical velocities for the cases with  $V_{exit} = 38.9$  m/s, h<sub>s</sub>

= 35 m, F = 2300 m<sup>4</sup>/s<sup>3</sup> and N = 1 and separately N = 2 with d = 25 m.

The heights experiencing threshold exceedances are dramatically reduced going from calm to light winds. The TAPM approach for single plumes gives similar results if some allowance is made for an initial displacement offset  $z_0$  (Figure 2).

Table 2: Plume average vertical velocities (m/s) for uniform calm and light wind conditions in a neutral atmosphere

| Height | Calm   |        | Calm $u_e = 1.5 \text{ m/s}$ |        | $u_e = 3 m/s$ |        |  |
|--------|--------|--------|------------------------------|--------|---------------|--------|--|
|        | Single | Double | Single                       | Double | Single        | Double |  |
| 100    | 12.2   | 12.2   | 9.0                          | 9.3    | 6.9           | 8.3    |  |
| 200    | 7.8    | 9.2    | 5.5                          | 7.0    | 3.6           | 5.1    |  |
| 300    | 6.5    | 8.0    | 4.4                          | 5.8    | 2.6           | 3.9    |  |
| 500    | 5.3    | 6.6    | 3.2                          | 4.5    |               | 2.8    |  |
| 700    | 4.8    | 6.0    | 2.6                          | 3.7    |               | 2.2    |  |
| 1000   | 4.1    | 5.2    |                              |        |               |        |  |

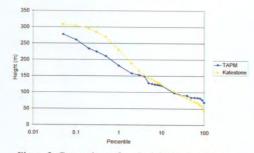
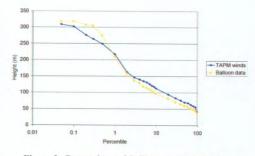


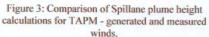

Figure 2: Comparison of methodologies for plume height calculations for a 5 year period.

#### 5. Meteorological modelling

Meteorological inputs are critical for a reasonable treatment of risk, especially for near-calm conditions at stack-top and above. Unfortunately, it is these very conditions under which near-surface measurements (together with stability-dependent profile laws) or TAPM-like prediction methodologies are likely to be poor indicators of actual conditions, at least for inland sites (Jackson et al 2003). Presumably this quandary lead CASA to recommend the TAPM approach. If measurements are available from a nearby 30-100 m tower, we would recommend their use unless TAPM results are carefully tuned to the appropriate surface conditions.

Recent project work near Williamtown Airport gave a comparison of five years of hourly TAPM results with available balloon and 30 m tower measurements. The main conclusions were:


- Moderate interannual variability in the actual and predicted occurrence of light winds at 30 m and above.
- TAPM tends to underpredict the frequency of occurrence of very light winds (< 1 m/s) compared</li>


to tower observations (typically 1.2 - 3.5% compared to 5.7 - 14.9%).

- For available balloon profiles, TAPM overpredicted the frequency of very light winds at 600 m and 900 m agl.
- Very few measurements are available in the crucial 100-500 m height range.

#### 6. Synthetic approaches

The Spillane approach has been adapted to take in the TAPM wind profile conditions. Figure 3 compares the cumulative probability distributions for critical heights (where the in-plume average velocity drops below 4.3 m/s) obtained by using either the TAPM wind predictions or the interpolated measured winds, for the case of two 35 m high, 54 m separated combined-cycle units of total capacity over 800 MW. Close agreement is obtained.





#### 7. Design options

Decreasing the exit velocity will reduce the initial flow development length but plume buoyancy is the key factor in the magnitude of the vertical velocity. Similarly any reduction in stack height gives little benefit to aviation safety concerns and may risk poor plume dispersion in high-wind conditions (due to building wake influences). Increasing the stack separation does delay the time when plumes merge but with little overall practical benefit (Figure 4). Horizontally-pointing stack exits will reduce initial momentum but again buoyancy is dominant.

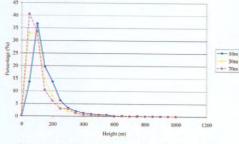



Figure 4: Frequency of critical height for varying stack configurations.

The reduction of plume buoyancy by using heat recovery results in a very significant reduction of critical heights but open-cycle operation usually has to be considered in any risk assessment. For critical cases, it appears better to take advantage of the relatively small zone of influence on vertical velocities and the usual requirement of CASA to identify stack locations for low-flying aircraft. A notice to aircrew together with real-time indication of site operations may be effective in most situations.

#### 8. Conclusions

Methodologies now exist for major point sources and point to the dominating role of initial plume buoyancy. Detailed measurements are required for light-wind conditions and are readily taken by experienced research aircrews. TAPM methodologies are reasonable for single plumes but inappropriate for multiple plumes. For key sites, remote sensing equipment is required to gather reliable wind statistics in the critical 100-500 m range. Theoretical advances are needed to treat inversion penetration in very lightwind conditions and to extend the methods to moist plumes and different source geometrics.

#### 9. References:

Briggs G.A. 1975, 'Plume rise predictions', Lectures on Air Pollution and Environmental impact analyses', American Meteorological Society, 59-111

- Civil Aviation Safety Authority Australia 2003, 'Guidelines for plume rise assessments', Civil Aviation Advisory Publication Draft only CAAP 89Z1(0).
- Davidson G.A. 1994, 'Dimensionless correlations for buoyant plume behaviour in crossflows and scaling criteria for physical modelling of dispersion processes', Journal of Wind Engineering and Industrial Aerodynamics, 51: 135.
- Glendening J.W. Businger J.A. & Farber R.J. 1984, 'Improving plume rise prediction accuracy for stable atmospheres with complex vertical structure', J. Air Pollut. Control Ass. 34:1128-1133
- Hurley P.J. & Manins P.C. 1995, 'Plume rise and enhanced dispersion in LADM', CSIRO Division of Atmospheric Research, ECRU Technical Note No. 4.
- Jackson L, Leishman N, Killip C & Best P. 2003, 'Windfield prediction and verification for a variety of sites across Australia', to be presented at the 2003 Clean Air Conference in Newcastle, New South Wales, Australia.
- Katestone Scientific 1997, 'The influence of power station operations on aviation activity', *Report from Katestone Scientific to Environmental Licensing Professionals Pty. Ltd, included in the EIS.*
- Rezacova D. & Sokol Z. 2000, 'On the influence of cooling towers on weather and climate' *Research Report from Institute of Atmospheric Physics of the Academy of Science of the Czech Republic to Czech Hydrometeorological Institute*
- Spillane K.T. 1980, 'The rise of wet plumes conservation equations and entrainment assumptions', Rep. No. 50/80/10, R&D Dept. S.E.C. Vic.
- Spillane K.T. & Hess G.D. 1988, 'Fair weather convection and light aircraft, helicopter and glider accidents', J. of Aircraft, Amer. Inst. Aero and Astro. 20:56-61
- Weil J.C. Snyder W.H. Lawson R.E. & Shipman M.S. 2001, 'Experiments on buoyant plume dispersion in a laboratory convection tank', *Boundary Layer Meteorology*, **102**:367-414.

Appendix B Results

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | "Aviation Sa                                                                                                                                                                                                                                             | fety and Buo                                                                                                                                                                                                                                                                          | vant Plumes                                                                                                                                                                                                                                 | ." Peter Be                                                                                                                                                                                                                                                                                                                                      | st. et. al.                                                                                               |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                       |                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                           | ditions at V                                                                                                                                                    | arious Heights in the Plume                                                                                                                                                                                                                                                                                                           | 9                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                                                                                                                                 | Australia," Dr. K.T. Spilla                                                                                                                                                                                                                                                                                                           |                                                                                      |
| mbient Conditions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                          | nom a Gas                                                                                                                                                                                                                                                                             | i di bille i oli                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                         |                                                                                                                                                                 | eutral conditions (dθ/dz=0 or )                                                                                                                                                                                                                                                                                                       |                                                                                      |
| 10th percentile Ambient Potential Temp θ <sub>a</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 284.26                                                                                                                                                                                                                                                   | Kelvins                                                                                                                                                                                                                                                                               | 52.0                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                  | constants.                                                                                                |                                                                                                                                                                 | meters/feet                                                                                                                                                                                                                                                                                                                           | va-ve/                                                                               |
| lume Exit Conditions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 204.20                                                                                                                                                                                                                                                   | Reivins                                                                                                                                                                                                                                                                               | 32.0                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                  | Cravity a                                                                                                 |                                                                                                                                                                 | m/s <sup>2</sup>                                                                                                                                                                                                                                                                                                                      |                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20.40                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                       | 400.0                                                                                                                                                                                                                                       | e .                                                                                                                                                                                                                                                                                                                                              | Gravity g                                                                                                 |                                                                                                                                                                 | m/s <sup>-</sup>                                                                                                                                                                                                                                                                                                                      |                                                                                      |
| Stack Height h₅                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                          | meters                                                                                                                                                                                                                                                                                | 100.0                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                  | λ                                                                                                         | 1.11                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                       |                                                                                      |
| Stack Diameter D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                          | meters                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                             | feet                                                                                                                                                                                                                                                                                                                                             | λο                                                                                                        | ~1.0                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                       |                                                                                      |
| Stack Velocity V <sub>exit</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.771                                                                                                                                                                                                                                                   | m/s                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                             | ft/sec                                                                                                                                                                                                                                                                                                                                           |                                                                                                           |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                       |                                                                                      |
| Volumetric Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17.24                                                                                                                                                                                                                                                    | cu.m/sec                                                                                                                                                                                                                                                                              | 36,530                                                                                                                                                                                                                                      | ACFM                                                                                                                                                                                                                                                                                                                                             | πV <sub>exit</sub> D <sup>2</sup> /4                                                                      |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                       | Sect.2/¶1                                                                            |
| Stack Potential Temp θ₅                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 712.039                                                                                                                                                                                                                                                  | Kelvins                                                                                                                                                                                                                                                                               | 822                                                                                                                                                                                                                                         | °F                                                                                                                                                                                                                                                                                                                                               |                                                                                                           |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                       |                                                                                      |
| Initial Stack Buoyancy Flux F <sub>o</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32.35                                                                                                                                                                                                                                                    | m <sup>4</sup> /s <sup>3</sup>                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                  | gV <sub>exit</sub> D <sup>2</sup> (1-6                                                                    | $\theta_a/\theta_s)/4 = V_0$                                                                                                                                    | ol.Flow(g/π)(1-θ <sub>a</sub> /θ <sub>s</sub> )                                                                                                                                                                                                                                                                                       | Sect.2/¶1                                                                            |
| Plume Buoyancy Flux F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                                                                                                                                                                                                                                      | m <sup>4</sup> /s <sup>3</sup>                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                  | $\lambda^2 g V a^2 (1-\theta)$                                                                            | <sub>a</sub> /θ <sub>p</sub> ) for a,V                                                                                                                          | ,θ <sub>p</sub> at plume height (see belo                                                                                                                                                                                                                                                                                             | w)                                                                                   |
| Conditions at End (Top) of Jet Phase:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                           |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                       |                                                                                      |
| Height above Stack z <sub>iet</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.620                                                                                                                                                                                                                                                    | meters*                                                                                                                                                                                                                                                                               | 25.0                                                                                                                                                                                                                                        | feet*                                                                                                                                                                                                                                                                                                                                            | z <sub>iet</sub> = 6.250                                                                                  | ). meters*=i                                                                                                                                                    | meters above stack top                                                                                                                                                                                                                                                                                                                | Sect.3/¶1                                                                            |
| Height above Ground z <sub>iet</sub> +h <sub>s</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                          | meters                                                                                                                                                                                                                                                                                | 125.0                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                  | -jet -tet                                                                                                 | ,                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                       |                                                                                      |
| - · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                             | ft/sec                                                                                                                                                                                                                                                                                                                                           | V <sub>jet</sub> = 0.5V                                                                                   | - 1/ /2                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                       |                                                                                      |
| Vertical Velocity V <sub>jet</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                           | exit <sup>—</sup> Vexit/∠                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                     |                                                                                      |
| Plume Top-Hat Diameter 2a <sub>jet</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.438                                                                                                                                                                                                                                                    | meters                                                                                                                                                                                                                                                                                | ö.U                                                                                                                                                                                                                                         | feet                                                                                                                                                                                                                                                                                                                                             | 2a <sub>jet</sub> = 2D                                                                                    |                                                                                                                                                                 | Conservation of momentum                                                                                                                                                                                                                                                                                                              |                                                                                      |
| Spillane Methodology - Analytical Solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | for Calm Con                                                                                                                                                                                                                                             | ditions for PI                                                                                                                                                                                                                                                                        | lume Height                                                                                                                                                                                                                                 | s above Je                                                                                                                                                                                                                                                                                                                                       | t Phase                                                                                                   |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                       |                                                                                      |
| Single Plume-averaged Vertical Velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V given by A                                                                                                                                                                                                                                             | nalytical Sol                                                                                                                                                                                                                                                                         | ution in Pap                                                                                                                                                                                                                                | er where P                                                                                                                                                                                                                                                                                                                                       | roduct Va                                                                                                 | given by e                                                                                                                                                      | quations below:                                                                                                                                                                                                                                                                                                                       |                                                                                      |
| Plume Top-Hat Radius a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S                                                                                                                                                                                                                                                        | olutions in T                                                                                                                                                                                                                                                                         | able Below                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                           |                                                                                                                                                                 | rease with height                                                                                                                                                                                                                                                                                                                     | Sect.2/Eq.6                                                                          |
| Virtual Source Height z <sub>v</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.805                                                                                                                                                                                                                                                    | meters*                                                                                                                                                                                                                                                                               | 9.2                                                                                                                                                                                                                                         | feet*                                                                                                                                                                                                                                                                                                                                            | 6.25D[1-(θe                                                                                               | /θ <sub>s</sub> ) <sup>1/2</sup> ], mete                                                                                                                        | ers*=meters above stack top                                                                                                                                                                                                                                                                                                           | Sect.2/Eq.6                                                                          |
| Height above Ground z <sub>v</sub> +h₅                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33.285                                                                                                                                                                                                                                                   | meters                                                                                                                                                                                                                                                                                | 109.2                                                                                                                                                                                                                                       | feet                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |                                                                                                                                                                 | where $(\theta_a/\theta_s)^{1/2} = (\theta_e/\theta_s)^{1/2} =$                                                                                                                                                                                                                                                                       | 0.6318                                                                               |
| Vertical Velocity V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S                                                                                                                                                                                                                                                        | olutions in T                                                                                                                                                                                                                                                                         | able Below                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                  | $\{(Va)_{a}^{3} + 0\}$                                                                                    | 12F。[ (z-z,                                                                                                                                                     | $(1)^{2} - (6.25D-z_{y})^{2}]^{(1/3)} / a$                                                                                                                                                                                                                                                                                            | Sect.2.1(6                                                                           |
| Product (Va)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                  | V <sub>exit</sub> D/2(θ <sub>e</sub> /                                                                    |                                                                                                                                                                 | // (                                                                                                                                                                                                                                                                                                                                  |                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                  | · exit= · = (- e                                                                                          | - =/                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                       |                                                                                      |
| Solve for plume-averaged vertical velo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | city at height                                                                                                                                                                                                                                           | 1,000.0                                                                                                                                                                                                                                                                               | foot                                                                                                                                                                                                                                        | 304.8                                                                                                                                                                                                                                                                                                                                            | meters abo                                                                                                | ve ground (                                                                                                                                                     | z'+b )                                                                                                                                                                                                                                                                                                                                |                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                  | meters abo                                                                                                | ve ground (a                                                                                                                                                    | 2 +11 <sub>5</sub> )                                                                                                                                                                                                                                                                                                                  |                                                                                      |
| Gives the following Height above Stack z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                          | meters*                                                                                                                                                                                                                                                                               | 900.0                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                  | 0.1.010.40                                                                                                |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                       | 0                                                                                    |
| Plume Top-Hat Diameter 2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                          | meters                                                                                                                                                                                                                                                                                | 285.1                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                  | 2a'=2*0.16(                                                                                               |                                                                                                                                                                 | .2                                                                                                                                                                                                                                                                                                                                    | Sect.2/Eq.6                                                                          |
| Vertical Velocity V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.517                                                                                                                                                                                                                                                    | m/e                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                           | 0 12F [/7-7                                                                                                                                                     | $(1/3)^{2} - (6.25D - z_{y})^{2}$                                                                                                                                                                                                                                                                                                     | Sect.2/Eq.6                                                                          |
| Fondear Colorly V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.511                                                                                                                                                                                                                                                    | 11/3                                                                                                                                                                                                                                                                                  | 4.30                                                                                                                                                                                                                                        | ft/sec                                                                                                                                                                                                                                                                                                                                           | v-{(va) <sub>0</sub> +                                                                                    | 0.1210[(2-2)                                                                                                                                                    | () (                                                                                                                                                                                                                                                                                                                                  |                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                           |                                                                                                                                                                 | , ()                                                                                                                                                                                                                                                                                                                                  |                                                                                      |
| Solve for Height of CASC critical vertica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | l velocity V <sub>crit</sub>                                                                                                                                                                                                                             | 4.30                                                                                                                                                                                                                                                                                  | m/s plume-a                                                                                                                                                                                                                                 | averaged v                                                                                                                                                                                                                                                                                                                                       | ertical velo                                                                                              | ocity                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                       |                                                                                      |
| Solve for Height of CASC critical vertica<br>Find Height above Stack z <sub>orit</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | l velocity V <sub>erit</sub><br>16.311                                                                                                                                                                                                                   | 4.30<br>meters                                                                                                                                                                                                                                                                        | m/s plume-a<br>53.5                                                                                                                                                                                                                         | averaged v<br>feet                                                                                                                                                                                                                                                                                                                               | ertical velo<br>Solve for x=                                                                              | ocity<br>=(z-z <sub>v</sub> ) simu                                                                                                                              | Itaneously in both eqs. (i.e.,                                                                                                                                                                                                                                                                                                        | Va and a)                                                                            |
| Solve for Height of CASC critical vertica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | l velocity V <sub>erit</sub><br>16.311                                                                                                                                                                                                                   | 4.30                                                                                                                                                                                                                                                                                  | m/s plume-a                                                                                                                                                                                                                                 | averaged v<br>feet                                                                                                                                                                                                                                                                                                                               | ertical velo<br>Solve for x=                                                                              | oc <b>ity</b><br>=(z-z <sub>v</sub> ) simu                                                                                                                      | Iltaneously in both eqs. (i.e.,<br>e cubic equation ax <sup>3</sup> +bx <sup>2</sup> +cx                                                                                                                                                                                                                                              | Va and a)<br>+d=0, whei                                                              |
| Solve for Height of CASC critical vertica<br>Find Height above Stack z <sub>orit</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | l velocity V <sub>erit</sub><br>16.311                                                                                                                                                                                                                   | 4.30<br>meters                                                                                                                                                                                                                                                                        | m/s plume-a<br>53.5                                                                                                                                                                                                                         | averaged v<br>feet                                                                                                                                                                                                                                                                                                                               | ertical velo<br>Solve for x=<br>for V=4.3 n                                                               | city<br>=(z-z <sub>v</sub> ) simu<br>n/s using th<br>a=1, c=0,                                                                                                  | Iltaneously in both eqs. (i.e.,<br>e cubic equation $ax^3+bx^2+cx$<br>and b=-(0.12F <sub>0</sub> )/(4.3 <sup>3</sup> 0.16 <sup>3</sup> )=                                                                                                                                                                                             | Va and a)<br>+d=0, wher                                                              |
| Solve for Height of CASC critical vertica<br>Find Height above Stack z <sub>orit</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | l velocity V <sub>erit</sub><br>16.311                                                                                                                                                                                                                   | 4.30<br>meters                                                                                                                                                                                                                                                                        | m/s plume-a<br>53.5                                                                                                                                                                                                                         | averaged v<br>feet                                                                                                                                                                                                                                                                                                                               | ertical velo<br>Solve for x=<br>for V=4.3 n                                                               | city<br>=(z-z <sub>v</sub> ) simu<br>n/s using th<br>a=1, c=0,                                                                                                  | Iltaneously in both eqs. (i.e.,<br>e cubic equation ax <sup>3</sup> +bx <sup>2</sup> +cx                                                                                                                                                                                                                                              | Va and a)                                                                            |
| Solve for Height of CASC critical vertica<br>Find Height above Stack z <sub>orit</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | l velocity V <sub>erit</sub><br>16.311                                                                                                                                                                                                                   | 4.30<br>meters                                                                                                                                                                                                                                                                        | m/s plume-a<br>53.5                                                                                                                                                                                                                         | averaged v<br>feet                                                                                                                                                                                                                                                                                                                               | ertical velo<br>Solve for x=<br>for V=4.3 n                                                               | city<br>=(z-z <sub>v</sub> ) simu<br>n/s using th<br>a=1, c=0,                                                                                                  | Iltaneously in both eqs. (i.e.,<br>e cubic equation $ax^3+bx^2+cx$<br>and b=-(0.12F <sub>0</sub> )/(4.3 <sup>3</sup> 0.16 <sup>3</sup> )=                                                                                                                                                                                             | Va and a)<br>+d=0, wher<br>-11.92<br>-289                                            |
| Solve for Height of CASC critical vertica<br>Find Height above Stack z <sub>orit</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | l velocity V <sub>erit</sub><br>16.311                                                                                                                                                                                                                   | 4.30<br>meters                                                                                                                                                                                                                                                                        | m/s plume-a<br>53.5                                                                                                                                                                                                                         | averaged v<br>feet                                                                                                                                                                                                                                                                                                                               | ertical velo<br>Solve for x=<br>for V=4.3 n                                                               | city<br>=(z-z <sub>v</sub> ) simu<br>n/s using th<br>a=1, c=0,<br>=[0.12F <sub>o</sub> (6.                                                                      | Itaneously in both eqs. (i.e.,<br>e cubic equation $ax^3+bx^2+cx$<br>and b=-(0.12F <sub>0</sub> )/(4.3 <sup>3</sup> 0.16 <sup>3</sup> )=<br>25D-z <sub>v</sub> ) <sup>2</sup> -(Va) <sub>0</sub> <sup>3</sup> ]/(4.3 <sup>3</sup> 0.16 <sup>3</sup> )=                                                                                | Va and a)<br>+d=0, wher<br>-11.92<br>-289<br><u>Quad3Deg.ht</u>                      |
| Solve for Height of CASC critical vertica<br>Find Height above Stack z <sub>orit</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | l velocity V <sub>erit</sub><br>16.311                                                                                                                                                                                                                   | 4.30<br>meters                                                                                                                                                                                                                                                                        | m/s plume-a<br>53.5                                                                                                                                                                                                                         | averaged v<br>feet                                                                                                                                                                                                                                                                                                                               | ertical velo<br>Solve for x=<br>for V=4.3 n                                                               | city<br>=(z-z <sub>v</sub> ) simu<br>n/s using th<br>a=1, c=0,<br>=[0.12F <sub>o</sub> (6.                                                                      | Itaneously in both eqs. (i.e.,<br>e cubic equation $ax^3+bx^2+cx$<br>and b=-(0.12F <sub>0</sub> )/(4.3 <sup>3</sup> 0.16 <sup>3</sup> )=<br>25D-z <sub>v</sub> ) <sup>2</sup> -(Va) <sub>0</sub> <sup>3</sup> ]/(4.3 <sup>3</sup> 0.16 <sup>3</sup> )=<br><u>http://www.akiti.ca/</u>                                                 | Va and a)<br>+d=0, wher<br>-11.92<br>-289<br>Quad3Deg.ht<br>13.5                     |
| Solve for Height of CASC critical vertica<br>Find Height above Stack z <sub>erit</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | l velocity V <sub>erit</sub><br>16.311                                                                                                                                                                                                                   | 4.30<br>meters                                                                                                                                                                                                                                                                        | m/s plume-a<br>53.5                                                                                                                                                                                                                         | averaged v<br>feet                                                                                                                                                                                                                                                                                                                               | ertical velo<br>Solve for x=<br>for V=4.3 n                                                               | city<br>=(z-z <sub>v</sub> ) simu<br>n/s using th<br>a=1, c=0,<br>=[0.12F <sub>o</sub> (6.                                                                      | Iltaneously in both eqs. (i.e.,<br>e cubic equation $ax^3+bx^2+cx$<br>and b=-(0.12F <sub>0</sub> )/(4.3 <sup>3</sup> 0.16 <sup>3</sup> )=<br>25D-z <sub>v</sub> ) <sup>2</sup> -(Va) <sub>o</sub> <sup>3</sup> ]/(4.3 <sup>3</sup> 0.16 <sup>3</sup> )=<br><u>http://www.aktit.ca/</u><br>s the real solution x = z-zv =<br>or z(m) = | Va and a)<br>+d=0, wher<br>-11.92<br>-289<br>Quad3Deg.ht<br>13.5<br>16.3             |
| Solve for Height of CASC critical vertica<br>Find Height above Stack z <sub>orit</sub><br>Height above Ground z <sub>orit</sub> +h <sub>s</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | velocity V <sub>crit</sub><br>16.311<br>46.791                                                                                                                                                                                                           | 4.30<br>meters<br>meters                                                                                                                                                                                                                                                              | m/s plume-a<br>53.5<br>153.5                                                                                                                                                                                                                | averaged v<br>feet<br>feet                                                                                                                                                                                                                                                                                                                       | ertical velo<br>Solve for x=<br>for V=4.3 n<br>and c                                                      | city<br>=(z-z <sub>v</sub> ) simu<br>a/s using th<br>a=1, c=0,<br>l=[0.12F <sub>o</sub> (6.<br>give                                                             | Itaneously in both eqs. (i.e.,<br>e cubic equation $ax^3+bx^2+cx$<br>and b=-(0.12F <sub>0</sub> )/(4.3 <sup>3</sup> 0.16 <sup>3</sup> )=<br>25D-z <sub>v</sub> ) <sup>2</sup> -(Va) <sub>o</sub> <sup>3</sup> ]/(4.3 <sup>3</sup> 0.16 <sup>3</sup> )=<br><u>http://www.akiti.ca/</u><br>s the real solution x = z-zv =               | Va and a)<br>+d=0, wher<br>-11.92<br>-289<br>Quad3Deg.ht<br>13.5                     |
| Solve for Height of CASC critical vertica<br>Find Height above Stack z <sub>orit</sub><br>Height above Ground z <sub>orit</sub> +h <sub>s</sub><br>Table of Plume Top-Hat Diameters (2a) and I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | velocity V <sub>crit</sub><br>16.311<br>46.791<br>Plume-averag                                                                                                                                                                                           | 4.30<br>meters<br>meters                                                                                                                                                                                                                                                              | m/s plume-<br>53.5<br>153.5<br>/elocities sta                                                                                                                                                                                               | averaged v<br>feet<br>feet                                                                                                                                                                                                                                                                                                                       | ertical velo<br>Solve for x=<br>for V=4.3 n<br>and c                                                      | city<br>=(z-z <sub>v</sub> ) simu<br>a/s using th<br>a=1, c=0,<br>l=[0.12F <sub>o</sub> (6.<br>give                                                             | Iltaneously in both eqs. (i.e.,<br>e cubic equation $ax^3+bx^2+cx$<br>and b=-(0.12F <sub>0</sub> )/(4.3 <sup>3</sup> 0.16 <sup>3</sup> )=<br>25D-z <sub>v</sub> ) <sup>2</sup> -(Va) <sub>o</sub> <sup>3</sup> ]/(4.3 <sup>3</sup> 0.16 <sup>3</sup> )=<br><u>http://www.aktit.ca/</u><br>s the real solution x = z-zv =<br>or z(m) = | Va and a)<br>+d=0, wher<br>-11.92<br>-289<br>Quad3Deg.ht<br>13.5<br>16.3             |
| Solve for Height of CASC critical vertica<br>Find Height above Stack z <sub>orit</sub><br>Height above Ground z <sub>orit</sub> +h <sub>s</sub><br>Table of Plume Top-Hat Diameters (2a) and I<br>Height (feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I velocity V <sub>crit</sub><br>16.311<br>46.791<br>Plume-averag<br>(meters)                                                                                                                                                                             | 4.30<br>meters<br>meters<br>ed Vertical V<br>Plume                                                                                                                                                                                                                                    | m/s plume-<br>53.5<br>153.5<br>/elocities sta<br>Vert.                                                                                                                                                                                      | averaged v<br>feet<br>feet<br>arting at en<br>Plume                                                                                                                                                                                                                                                                                              | ertical velo<br>Solve for x=<br>for V=4.3 m<br>and c<br>and of jet pho<br>Elev                            | city<br>=(z-z <sub>v</sub> ) simu<br>n/s using th<br>a=1, c=0,<br>l=[0.12F <sub>o</sub> (6.<br>give                                                             | Iltaneously in both eqs. (i.e.,<br>e cubic equation $ax^3+bx^2+cx$<br>and b=-(0.12F <sub>0</sub> )/(4.3 <sup>3</sup> 0.16 <sup>3</sup> )=<br>25D-z <sub>v</sub> ) <sup>2</sup> -(Va) <sub>o</sub> <sup>3</sup> ]/(4.3 <sup>3</sup> 0.16 <sup>3</sup> )=<br><u>http://www.aktit.ca/</u><br>s the real solution x = z-zv =<br>or z(m) = | Va and a)<br>+d=0, wher<br>-11.92<br>-289<br>Quad3Deg hi<br>13.5<br>16.3             |
| Solve for Height of CASC critical vertica<br>Find Height above Stack z <sub>ont</sub><br>Height above Ground z <sub>ont</sub> +h <sub>s</sub><br>Table of Plume Top-Hat Diameters (2a) and I<br>Height (feet)<br>above ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | l velocity V <sub>crit</sub><br>16.311<br>46.791<br>Plume-averag<br>(meters)<br>above stack                                                                                                                                                              | 4.30<br>meters<br>meters<br>ed Vertical V<br>Plume<br>Radius(m)                                                                                                                                                                                                                       | m/s plume-<br>53.5<br>153.5<br>/elocities sta<br>Vert.<br>Vel(m/s)                                                                                                                                                                          | averaged v<br>feet<br>feet<br>arting at en<br>Plume<br>Temp(K)                                                                                                                                                                                                                                                                                   | ertical velo<br>Solve for x=<br>for V=4.3 n<br>and c                                                      | city<br>=(z-z <sub>v</sub> ) simu<br>n/s using th<br>a=1, c=0,<br>l=[0.12F <sub>o</sub> (6.<br>give                                                             | Iltaneously in both eqs. (i.e.,<br>e cubic equation $ax^3+bx^2+cx$<br>and b=-(0.12F <sub>0</sub> )/(4.3 <sup>3</sup> 0.16 <sup>3</sup> )=<br>25D-z <sub>v</sub> ) <sup>2</sup> -(Va) <sub>o</sub> <sup>3</sup> ]/(4.3 <sup>3</sup> 0.16 <sup>3</sup> )=<br><u>http://www.aktit.ca/</u><br>s the real solution x = z-zv =<br>or z(m) = | Va and a)<br>+d=0, wher<br>-11.92<br>-289<br>Quad3Deg hi<br>13.5<br>16.3             |
| Solve for Height of CASC critical vertica<br>Find Height above Stack z <sub>ont</sub><br>Height above Ground z <sub>ont</sub> +h <sub>s</sub><br>Table of Plume Top-Hat Diameters (2a) and I<br>Height (feet)<br>above ground<br>Top of jet = 125.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Velocity V <sub>crit</sub><br>16.311<br>46.791<br>Plume-averag<br>(meters)<br>above stack<br>7.62                                                                                                                                                        | 4.30<br>meters<br>meters<br>ed Vertical V<br>Plume<br>Radius(m)<br>1.219                                                                                                                                                                                                              | m/s plume-<br>53.5<br>153.5<br>/elocities sta<br>Vert.<br>Vel(m/s)<br>7.39                                                                                                                                                                  | averaged v<br>feet<br>feet<br>arting at en<br>Plume<br>Temp(K)                                                                                                                                                                                                                                                                                   | ertical velo<br>Solve for x=<br>for V=4.3 n<br>and c<br>and of jet ph<br>Elev<br>Incremen                 | city<br>:(z-z <sub>v</sub> ) simu<br>/s using th<br>a=1, c=0,<br>=[0.12F <sub>o</sub> (6.<br>give<br>ase:<br>ase:                                               | Itaneously in both eqs. (i.e.,<br>e cubic equation $ax^3+bx^2+cx$<br>and $b=-(0.12F_o)/(4.3^30.16^3)=$<br>$25D-z_v)^2-(Va)_o^3/(4.3^30.16^3)=$<br><u>http://www.akiti.cz</u><br>s the real solution $x = z-zv =$<br>or $z(m) =$<br>z(ft) =                                                                                            | Va and a)<br>+d=0, wher<br>-11.92<br>-289<br>Quad3Deg hi<br>13.5<br>16.3             |
| Solve for Height of CASC critical vertica<br>Find Height above Stack z <sub>ont</sub><br>Height above Ground z <sub>ont</sub> +h <sub>s</sub><br>Table of Plume Top-Hat Diameters (2a) and I<br>Height (feet)<br>above ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Velocity V <sub>crit</sub><br>16.311<br>46.791<br>Plume-averag<br>(meters)<br>above stack<br>7.62                                                                                                                                                        | 4.30<br>meters<br>meters<br>ed Vertical V<br>Plume<br>Radius(m)<br>1.219                                                                                                                                                                                                              | m/s plume-<br>53.5<br>153.5<br>/elocities sta<br>Vert.<br>Vel(m/s)                                                                                                                                                                          | averaged v<br>feet<br>feet<br>arting at en<br>Plume<br>Temp(K)                                                                                                                                                                                                                                                                                   | ertical velo<br>Solve for x=<br>for V=4.3 n<br>and c<br>and of jet ph<br>Elev<br>Incremen                 | city<br>:(z-z <sub>v</sub> ) simu<br>/s using th<br>a=1, c=0,<br>=[0.12F <sub>o</sub> (6.<br>give<br>ase:<br>ase:                                               | Iltaneously in both eqs. (i.e.,<br>e cubic equation $ax^3+bx^2+cx$<br>and b=-(0.12F <sub>0</sub> )/(4.3 <sup>3</sup> 0.16 <sup>3</sup> )=<br>25D-z <sub>v</sub> ) <sup>2</sup> -(Va) <sub>o</sub> <sup>3</sup> ]/(4.3 <sup>3</sup> 0.16 <sup>3</sup> )=<br><u>http://www.aktit.ca/</u><br>s the real solution x = z-zv =<br>or z(m) = | Va and a)<br>+d=0, when<br>-11.92<br>-28:<br>Quad3Deg.h<br>13.5<br>16.3              |
| Solve for Height of CASC critical vertica<br>Find Height above Stack z <sub>crit</sub><br>Height above Ground z <sub>crit</sub> +h <sub>s</sub><br>Table of Plume Top-Hat Diameters (2a) and I<br>Height (feet)<br>above ground<br><i>Top of jet = 125.0</i><br>130.0<br>140.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Plume-averag<br>(meters)<br>above stack<br>7.62<br>9.14                                                                                                                                                                                                  | 4.30<br>meters<br>meters<br>ed Vertical V<br>Plume<br>Radius(m)<br>1.219<br>1.014<br>1.502                                                                                                                                                                                            | m/s plume-<br>53.5<br>153.5<br>/elocities sta<br>Vert.<br>Vel(m/s)<br>7.39                                                                                                                                                                  | averaged v<br>feet<br>feet<br>arting at en<br>Plume<br>Temp(K)<br>403.33<br>351.06                                                                                                                                                                                                                                                               | ertical velo<br>Solve for x=<br>for V=4.3 n<br>and of<br>and of jet ph<br>Elev<br>Incremen<br>10.0        | city<br>:(z-z <sub>v</sub> ) simu<br>/s using th<br>a=1, c=0,<br>=[0.12F <sub>o</sub> (6.<br>give<br>ase:<br>nts(m)<br>V <sub>pume</sub> ={(Va),<br>a = 0.16(z- | Itaneously in both eqs. (i.e.,<br>e cubic equation $ax^3+bx^2+cx$<br>and $b=-(0.12F_o)/(4.3^30.16^3)=$<br>25D- $z_v)^2-(Va)_o^3/(4.3^30.16^3)=$<br>http://www.akiti.ca/<br>s the real solution $x = z - zv =$<br>or $z(m) =$<br>z(ft) =<br>$^3+0.12F_o[(z-z_v)^2-(6.25D-z_v)^2])^{1/3} / a$<br>$z_v)$                                 | Va and a)<br>+d=0, when<br>-11.92<br>-28:<br><i>Qued3Deg h</i><br>13.£<br>16.3<br>5: |
| Solve for Height of CASC critical vertica<br>Find Height above Stack z <sub>ent</sub><br>Height above Ground z <sub>ent</sub> +h <sub>s</sub><br>Table of Plume Top-Hat Diameters (2a) and I<br>Height (feet)<br>above ground<br><i>Top of jet = 125.0</i><br>130.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Plume-averag<br>(meters)<br>above stack<br>7.62<br>9.14                                                                                                                                                                                                  | 4.30<br>meters<br>meters<br>ed Vertical V<br>Plume<br>Radius(m)<br>1.219<br>1.014<br>1.502                                                                                                                                                                                            | m/s plume-<br>53.5<br>153.5<br>/elocities sta<br>Vert.<br>Vel(m/s)<br>7.39<br>6.21                                                                                                                                                          | averaged v<br>feet<br>feet<br>arting at en<br>Plume<br>Temp(K)<br>403.33<br>351.06                                                                                                                                                                                                                                                               | ertical velo<br>Solve for x=<br>for V=4.3 n<br>and of<br>and of jet ph<br>Elev<br>Incremen<br>10.0        | city<br>:(z-z <sub>v</sub> ) simu<br>/s using th<br>a=1, c=0,<br>=[0.12F <sub>o</sub> (6.<br>give<br>ase:<br>nts(m)<br>V <sub>pume</sub> ={(Va),<br>a = 0.16(z- | Itaneously in both eqs. (i.e.,<br>e cubic equation $ax^3+bx^2+cx$<br>and $b=-(0.12F_o)(4.3^30.16^3)=$<br>25D- $z_v)^2-(Va)_o^5]/(4.3^30.16^3)=$<br>http://www.akiii.ca/<br>s the real solution $x = z-zv =$<br>or $z(m) =$<br>z(ft) =<br>$^3+0.12F_o[(z-z_v)^2-(6.25D-z_v)^2])^{1/3} / a$                                             | Va and a)<br>+d=0, when<br>-11.92<br>-28:<br><i>Qued3Deg h</i><br>13.£<br>16.3<br>5: |
| Solve for Height of CASC critical vertica<br>Find Height above Stack z <sub>crit</sub><br>Height above Ground z <sub>crit</sub> +h <sub>s</sub><br>Table of Plume Top-Hat Diameters (2a) and I<br>Height (feet)<br>above ground<br><i>Top of jet = 125.0</i><br>130.0<br>140.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Plume-averag<br>(meters)<br>above stack<br>7.62<br>9.14<br>12.19<br>15.24                                                                                                                                                                                | 4.30<br>meters<br>meters<br>ed Vertical V<br>Plume<br>Radius(m)<br>1.219<br>1.014<br>1.502<br>1.990                                                                                                                                                                                   | m/s plume-<br>53.5<br>153.5<br>/elocities sta<br>Vert.<br>Vel(m/s)<br>7.39<br>6.21<br>5.05                                                                                                                                                  | averaged v<br>feet<br>feet<br>arting at en<br>Plume<br>Temp(K)<br>403.33<br>351.06<br>327.45                                                                                                                                                                                                                                                     | ertical velo<br>Solve for x=<br>for V=4.3 n<br>and c<br>and of jet ph<br>Elev<br>Incremen<br>10.0         | city<br>:(z-z <sub>v</sub> ) simu<br>/s using th<br>a=1, c=0,<br>=[0.12F <sub>o</sub> (6.<br>give<br>ase:<br>nts(m)<br>V <sub>pume</sub> ={(Va),<br>a = 0.16(z- | Itaneously in both eqs. (i.e.,<br>e cubic equation $ax^3+bx^2+cx$<br>and $b=-(0.12F_o)/(4.3^30.16^3)=$<br>25D- $z_v)^2-(Va)_o^3/(4.3^30.16^3)=$<br>http://www.akiti.ca/<br>s the real solution $x = z - zv =$<br>or $z(m) =$<br>z(ft) =<br>$^3+0.12F_o[(z-z_v)^2-(6.25D-z_v)^2])^{1/3} / a$<br>$z_v)$                                 | Va and a)<br>+d=0, when<br>-11.92<br>-28:<br><i>Qued3Deg h</i><br>13.£<br>16.3<br>5: |
| Solve for Height of CASC critical vertica<br>Find Height above Stack z <sub>orit</sub><br>Height above Ground z <sub>orit</sub> +h <sub>s</sub><br>Table of Plume Top-Hat Diameters (2a) and I<br>Height (feet)<br>above ground<br><i>Top of jet</i> = 125.0<br>130.0<br>140.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Plume-averag<br>(meters)<br>above stack<br>7.62<br>9.14<br>12.19<br>15.24                                                                                                                                                                                | 4.30<br>meters<br>meters<br>ed Vertical V<br>Plume<br>Radius(m)<br>1.219<br>1.014<br>1.502<br>1.990                                                                                                                                                                                   | m/s plume-<br>53.5<br>153.5<br>/elocities sta<br>Vert.<br>Vel(m/s)<br>7.39<br>6.21<br>5.05<br>4.45                                                                                                                                          | averaged v<br>feet<br>feet<br>arting at en<br>Plume<br>Temp(K)<br>403.33<br>351.06<br>327.45<br>314.72                                                                                                                                                                                                                                           | ertical velo<br>Solve for x=<br>for V=4.3 n<br>and c<br>d of jet ph<br>Elev<br>Incremen<br>10.0           | city<br>:(z-z <sub>v</sub> ) simu<br>/s using th<br>a=1, c=0,<br>=[0.12F <sub>o</sub> (6.<br>give<br>ase:<br>nts(m)<br>V <sub>pume</sub> ={(Va),<br>a = 0.16(z- | Itaneously in both eqs. (i.e.,<br>e cubic equation $ax^3+bx^2+cx$<br>and $b=-(0.12F_o)/(4.3^30.16^3)=$<br>25D- $z_v)^2-(Va)_o^3/(4.3^30.16^3)=$<br>http://www.akiti.ca/<br>s the real solution $x = z - zv =$<br>or $z(m) =$<br>z(ft) =<br>$^3+0.12F_o[(z-z_v)^2-(6.25D-z_v)^2])^{1/3} / a$<br>$z_v)$                                 | Va and a)<br>+d=0, whe<br>-11.92<br>-28<br>Qued3Deg h<br>13.6<br>16.3<br>5           |
| Solve for Height of CASC critical vertica<br>Find Height above Stack z <sub>orit</sub><br>Height above Ground z <sub>orit</sub> +h <sub>s</sub><br>Table of Plume Top-Hat Diameters (2a) and I<br>Height (feet)<br>above ground<br><i>Top of jet</i> = 125.0<br>130.0<br>140.0<br>150.0<br>Begin Merging (touch) = 164.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Plume-averag<br>(meters)<br>above stack<br>7.62<br>9.14<br>12.19<br>15.24<br>18.29<br>19.71                                                                                                                                                              | 4.30<br>meters<br>meters<br>ded Vertical V<br>Plume<br>Radius(m)<br>1.219<br>1.014<br>1.502<br>1.990<br>2.477<br>2.705                                                                                                                                                                | m/s plume-4<br>53.5<br>153.5<br>/elocities sta<br>Vert.<br>Vel(m/s)<br>6.21<br>5.05<br>4.45<br>4.07<br>3.93                                                                                                                                 | averaged v<br>feet<br>feet<br>Plume<br>Temp(K)<br>403.33<br>351.06<br>327.45<br>314.72<br>310.70                                                                                                                                                                                                                                                 | ertical velo<br>Solve for x=<br>for V=4.3 n<br>and of<br>and of jet phi<br>Elev<br>Incremen<br>10.0       | city<br>:(z-z <sub>v</sub> ) simu<br>/s using th<br>a=1, c=0,<br>=[0.12F <sub>o</sub> (6.<br>give<br>ase:<br>nts(m)<br>V <sub>pume</sub> ={(Va),<br>a = 0.16(z- | Itaneously in both eqs. (i.e.,<br>e cubic equation $ax^3+bx^2+cx$<br>and $b=-(0.12F_o)/(4.3^30.16^3)=$<br>25D- $z_v)^2-(Va)_o^3/(4.3^30.16^3)=$<br>http://www.akiti.ca/<br>s the real solution $x = z - zv =$<br>or $z(m) =$<br>z(ft) =<br>$^3+0.12F_o[(z-z_v)^2-(6.25D-z_v)^2])^{1/3} / a$<br>$z_v)$                                 | Va and a)<br>+d=0, whe<br>-11.92<br>-28<br>Qued3Deg h<br>13.6<br>16.3<br>5           |
| Solve for Height of CASC critical vertica<br>Find Height above Stack z <sub>orit</sub><br>Height above Ground z <sub>orit</sub> +h <sub>s</sub><br>Fable of Plume Top-Hat Diameters (2a) and I<br>Height (feet)<br>above ground<br><i>Top of jet</i> = 125.0<br>130.0<br>140.0<br>150.0<br>160.0<br>Begin Merging (touch) = 164.7<br>200.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Plume-averag<br>(meters)<br>above stack<br>7.62<br>9.14<br>12.19<br>15.24<br>18.29<br>19.71<br>30.48                                                                                                                                                     | 4.30<br>meters<br>meters<br>ded Vertical V<br>Plume<br>Radius(m)<br>1.219<br>1.014<br>1.502<br>1.990<br>2.477<br>2.705<br>4.428                                                                                                                                                       | m/s plume-4<br>53.5<br>153.5<br>/elocities sta<br>Vert.<br>Vel(m/s)<br>6.21<br>5.05<br>4.45<br>4.07<br>3.93<br>3.28                                                                                                                         | averaged v<br>feet<br>feet<br>Temp(K)<br>403.33<br>351.06<br>327.45<br>314.72<br>310.70<br>296.09                                                                                                                                                                                                                                                | ertical velo<br>Solve for x=<br>for V=4.3 n<br>and of<br>et of jet phi<br>Elev<br>Incremen<br>10.0        | city<br>:(z-z <sub>v</sub> ) simu<br>/s using th<br>a=1, c=0,<br>=[0.12F <sub>o</sub> (6.<br>give<br>ase:<br>nts(m)<br>V <sub>pume</sub> ={(Va),<br>a = 0.16(z- | Itaneously in both eqs. (i.e.,<br>e cubic equation $ax^3+bx^2+cx$<br>and $b=-(0.12F_o)/(4.3^30.16^3)=$<br>25D- $z_v)^2-(Va)_o^3/(4.3^30.16^3)=$<br>http://www.akiti.ca/<br>s the real solution $x = z - zv =$<br>or $z(m) =$<br>z(ft) =<br>$^3+0.12F_o[(z-z_v)^2-(6.25D-z_v)^2])^{1/3} / a$<br>$z_v)$                                 | Va and a)<br>+d=0, whe<br>-11.92<br>-28<br>Qued3Deg h<br>13.6<br>16.3<br>5           |
| Solve for Height of CASC critical vertica<br>Find Height above Stack z <sub>orit</sub><br>Height above Ground z <sub>orit</sub> +h <sub>s</sub><br>Fable of Plume Top-Hat Diameters (2a) and I<br>Height (feet)<br>above ground<br><i>Top of jet</i> = 125.0<br>130.0<br>140.0<br>150.0<br>160.0<br><i>Begin Merging (touch)</i> = 164.7<br>200.0<br>300.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Plume-averag<br>(meters)<br>above stack<br>7.62<br>9.14<br>12.19<br>15.24<br>18.29<br>19.71<br>30.48<br>60.96                                                                                                                                            | 4.30<br>meters<br>meters<br>meters<br>Plume<br>Radius(m)<br>1.219<br>1.014<br>1.502<br>1.990<br>2.477<br>2.705<br>4.428<br>9.305                                                                                                                                                      | m/s plume -<br>53.5<br>153.5<br>/elocities sta<br>Vert.<br>Vel(m/s)<br>6.21<br>5.05<br>4.45<br>4.07<br>3.93<br>3.28<br>2.54                                                                                                                 | averaged v<br>feet<br>feet<br>feet<br>Temp(K)<br>403.33<br>351.06<br>327.45<br>314.72<br>310.70<br>296.09<br>287.72                                                                                                                                                                                                                              | ertical velo<br>Solve for x=<br>for V=4.3 n<br>and of<br>et phi<br>Elev<br>Incremen<br>10.0               | city<br>:(z-z <sub>v</sub> ) simu<br>/s using th<br>a=1, c=0,<br>=[0.12F <sub>o</sub> (6.<br>give<br>ase:<br>nts(m)<br>V <sub>pume</sub> ={(Va),<br>a = 0.16(z- | Itaneously in both eqs. (i.e.,<br>e cubic equation $ax^3+bx^2+cx$<br>and $b=-(0.12F_o)/(4.3^30.16^3)=$<br>25D- $z_v)^2-(Va)_o^3/(4.3^30.16^3)=$<br>http://www.akiti.ca/<br>s the real solution $x = z - zv =$<br>or $z(m) =$<br>z(ft) =<br>$^3+0.12F_o[(z-z_v)^2-(6.25D-z_v)^2])^{1/3} / a$<br>$z_v)$                                 | Va and a)<br>+d=0, whe<br>-11.92<br>-28<br>Qued3Deg h<br>13.6<br>16.3<br>5           |
| Solve for Height of CASC critical vertica<br>Find Height above Stack z <sub>ont</sub><br>Height above Ground z <sub>ont</sub> +h <sub>s</sub><br>Fable of Plume Top-Hat Diameters (2a) and I<br>Height (feet)<br>above ground<br><i>Top of jet</i> = 125.0<br>130.0<br>140.0<br><i>Begin Merging (touch)</i> = 164.7<br>200.0<br>300.0<br>400.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Plume-averag<br>(meters)<br>above stack<br>7.62<br>9.14<br>12.19<br>15.24<br>18.29<br>19.71<br>30.48<br>60.96<br>91.44                                                                                                                                   | 4.30<br>meters<br>meters<br>meters<br>ed Vertical V<br>Plume<br>Radius(m)<br>1.219<br>1.014<br>1.502<br>1.990<br>2.477<br>2.705<br>4.428<br>9.305<br>14.182                                                                                                                           | m/s plume -<br>53.5<br>153.5<br>/elocities sta<br>Vert.<br>Vel(m/s)<br>7.39<br>6.21<br>5.05<br>4.45<br>4.07<br>3.93<br>3.28<br>2.54<br>2.21                                                                                                 | averaged v<br>feet<br>feet<br>feet<br>Plume<br>Temp(K)<br>403.33<br>351.06<br>327.45<br>314.72<br>310.70<br>296.09<br>287.72<br>285.98                                                                                                                                                                                                           | ertical velo<br>Solve for x=<br>for V=4.3 n<br>and of<br>jet phi<br>Elev<br>Incremen<br>10.0              | city<br>:(z-z <sub>v</sub> ) simu<br>/s using th<br>a=1, c=0,<br>=[0.12F <sub>o</sub> (6.<br>give<br>ase:<br>nts(m)<br>V <sub>pume</sub> ={(Va),<br>a = 0.16(z- | Itaneously in both eqs. (i.e.,<br>e cubic equation $ax^3+bx^2+cx$<br>and $b=-(0.12F_o)/(4.3^30.16^3)=$<br>25D- $z_v)^2-(Va)_o^3/(4.3^30.16^3)=$<br>http://www.akiti.ca/<br>s the real solution $x = z - zv =$<br>or $z(m) =$<br>z(ft) =<br>$^3+0.12F_o[(z-z_v)^2-(6.25D-z_v)^2])^{1/3} / a$<br>$z_v)$                                 | Va and a)<br>+d=0, whe<br>-11.92<br>-28<br>Qued3Deg h<br>13.6<br>16.3<br>5           |
| Solve for Height of CASC critical vertica<br>Find Height above Stack z <sub>ont</sub><br>Height above Ground z <sub>ont</sub> +h <sub>s</sub><br>Table of Plume Top-Hat Diameters (2a) and I<br>Height (feet)<br>above ground<br><i>Top of jet</i> = 125.0<br>130.0<br>140.0<br>150.0<br>160.0<br><i>Begin Merging (touch)</i> = 164.7<br>200.0<br>300.0<br>400.0<br>500.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Plume-averag<br>(meters)<br>above stack<br>7.62<br>9.14<br>12.19<br>15.24<br>18.29<br>19.71<br>30.48<br>60.96<br>91.44<br>121.92                                                                                                                         | 4.30<br>meters<br>meters<br>meters<br>ed Vertical V<br>Plume<br>Radius(m)<br>1.219<br>1.014<br>1.502<br>1.990<br>2.477<br>2.705<br>4.428<br>9.305<br>14.182<br>19.058                                                                                                                 | m/s plume<br>53.5<br>153.5<br>/elocities sta<br>Vel(m/s)<br>7.39<br>6.21<br>5.05<br>4.45<br>4.07<br>3.93<br>3.28<br>2.54<br>2.21<br>2.00                                                                                                    | averaged v<br>feet<br>feet<br>feet<br>Plume<br>Temp(K)<br>403.33<br>351.06<br>327.45<br>314.72<br>310.70<br>296.09<br>287.72<br>285.98<br>285.31                                                                                                                                                                                                 | ertical velo<br>Solve for x=<br>for V=4.3 n<br>and of<br>jet ph<br>Elev<br>Incremen<br>10.0               | city<br>:(z-z <sub>v</sub> ) simu<br>/s using th<br>a=1, c=0,<br>=[0.12F <sub>o</sub> (6.<br>give<br>ase:<br>nts(m)<br>V <sub>pume</sub> ={(Va),<br>a = 0.16(z- | Itaneously in both eqs. (i.e.,<br>e cubic equation $ax^3+bx^2+cx$<br>and $b=-(0.12F_o)/(4.3^30.16^3)=$<br>25D- $z_v)^2-(Va)_o^3/(4.3^30.16^3)=$<br>http://www.akiti.ca/<br>s the real solution $x = z - zv =$<br>or $z(m) =$<br>z(ft) =<br>$^3+0.12F_o[(z-z_v)^2-(6.25D-z_v)^2])^{1/3} / a$<br>$z_v)$                                 | Va and a)<br>+d=0, whe<br>-11.92<br>-28<br>Qued3Deg h<br>13.6<br>16.3<br>5           |
| Solve for Height of CASC critical vertica<br>Find Height above Stack z <sub>ont</sub><br>Height above Ground z <sub>ont</sub> +h <sub>s</sub><br>Table of Plume Top-Hat Diameters (2a) and I<br>Height (feet)<br>above ground<br>Top of jet = 125.0<br>130.0<br>140.0<br>150.0<br>160.0<br>Begin Merging (touch) = 164.7<br>200.0<br>3000.0<br>400.0<br>500.0<br>600.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Plume-averag<br>(meters)<br>above stack<br>7.62<br>9.14<br>12.19<br>15.24<br>18.29<br>19.71<br>30.48<br>60.96<br>91.44<br>121.92<br>152.40                                                                                                               | 4.30<br>meters<br>meters<br>ed Vertical V<br>Plume<br>Radius(m)<br>1.219<br>1.014<br>1.502<br>1.990<br>2.477<br>2.705<br>4.428<br>9.305<br>14.182<br>19.058<br>23.935                                                                                                                 | m/s plume<br>53.5<br>153.5<br>/elocities sta<br>Vert.<br>Vel(m/s)<br>7.39<br>6.21<br>5.05<br>4.45<br>4.07<br>3.93<br>3.28<br>2.54<br>2.21<br>2.00<br>1.85                                                                                   | averaged v<br>feet<br>feet<br>feet<br>Temp(K)<br>403.33<br>351.06<br>327.45<br>310.70<br>296.09<br>287.72<br>285.98<br>285.31<br>284.98                                                                                                                                                                                                          | ertical velo<br>Solve for x=<br>for V=4.3 n<br>and c<br>and of jet ph<br>Elev<br>Incremen<br>10.0         | city<br>:(z-z <sub>v</sub> ) simu<br>/s using th<br>a=1, c=0,<br>=[0.12F <sub>o</sub> (6.<br>give<br>ase:<br>nts(m)<br>V <sub>pume</sub> ={(Va),<br>a = 0.16(z- | Itaneously in both eqs. (i.e.,<br>e cubic equation $ax^3+bx^2+cx$<br>and $b=-(0.12F_o)/(4.3^30.16^3)=$<br>25D- $z_v)^2-(Va)_o^3/(4.3^30.16^3)=$<br>http://www.akiti.ca/<br>s the real solution $x = z - zv =$<br>or $z(m) =$<br>z(ft) =<br>$^3+0.12F_o[(z-z_v)^2-(6.25D-z_v)^2])^{1/3} / a$<br>$z_v)$                                 | Va and a)<br>+d=0, whe<br>-11.92<br>-28<br>Qued3Dea h<br>13.6<br>16.5<br>5           |
| Solve for Height of CASC critical vertica<br>Find Height above Stack z <sub>ont</sub><br>Height above Ground z <sub>ont</sub> +h <sub>s</sub><br>Table of Plume Top-Hat Diameters (2a) and I<br>Height (feet)<br>above ground<br>Top of jet = 125.0<br>130.0<br>140.0<br>150.0<br>160.0<br>Begin Merging (touch) = 164.7<br>200.0<br>300.0<br>400.0<br>500.0<br>600.0<br>End Merging (full/mp) = 663.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Plume-average<br>(meters)<br>above stack<br>7.62<br>9.14<br>12.19<br>15.24<br>18.29<br>19.71<br>30.48<br>60.96<br>91.44<br>121.92<br>152.40<br>171.88                                                                                                    | 4.30<br>meters<br>meters<br>ed Vertical V<br>Plume<br>Radius(m)<br>1.219<br>1.014<br>1.502<br>1.990<br>2.477<br>2.705<br>4.428<br>9.305<br>14.182<br>19.058<br>23.935<br>27.051                                                                                                       | m/s plume-4<br>53.5<br>153.5<br>/elocities sta<br>Vert.<br>Vel(m/s)<br>7.39<br>6.21<br>5.05<br>4.45<br>4.07<br>3.93<br>3.28<br>2.54<br>2.21<br>2.00<br>1.85<br>1.78                                                                         | averaged v<br>feet<br>feet<br>feet<br>Plume<br>Temp(K)<br>403.33<br>351.06<br>327.45<br>314.72<br>310.70<br>296.09<br>287.72<br>285.98<br>285.31<br>284.98<br>284.85                                                                                                                                                                             | ertical velo<br>Solve for x=<br>for V=4.3 n<br>and c<br>and of jet ph<br>Elev<br>Incremen<br>10.0         | city<br>:(z-z <sub>v</sub> ) simu<br>/s using th<br>a=1, c=0,<br>=[0.12F <sub>o</sub> (6.<br>give<br>ase:<br>nts(m)<br>V <sub>pume</sub> ={(Va),<br>a = 0.16(z- | Itaneously in both eqs. (i.e.,<br>e cubic equation $ax^3+bx^2+cx$<br>and $b=-(0.12F_o)/(4.3^30.16^3)=$<br>25D- $z_v)^2-(Va)_o^3/(4.3^30.16^3)=$<br>http://www.akiti.ca/<br>s the real solution $x = z - zv =$<br>or $z(m) =$<br>z(ft) =<br>$^3+0.12F_o[(z-z_v)^2-(6.25D-z_v)^2])^{1/3} / a$<br>$z_v)$                                 | Va and a)<br>+d=0, whe<br>-11.92<br>-28<br>Qued3Deg h<br>13.6<br>16.3<br>5           |
| Solve for Height of CASC critical vertica<br>Find Height above Stack Zent<br>Height above Ground Zent+hs<br>Table of Plume Top-Hat Diameters (2a) and I<br>Height (feet)<br>above ground<br>Top of jet = 125.0<br>130.0<br>140.0<br>150.0<br>160.0<br>Begin Merging (touch) = 164.7<br>200.0<br>300.0<br>400.0<br>500.0<br>600.0<br>End Merging (full/mp) = 663.9<br>800.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Plume-averag<br>(meters)<br>above stack<br>7.62<br>9.14<br>12.19<br>15.24<br>18.29<br>19.71<br>30.48<br>60.96<br>91.44<br>121.92<br>152.40<br>171.88<br>213.36                                                                                           | 4.30<br>meters<br>meters<br>ed Vertical V<br>Plume<br>Radius(m)<br>1.219<br>1.014<br>1.502<br>1.990<br>2.477<br>2.705<br>4.428<br>9.305<br>14.182<br>19.058<br>23.935<br>27.051<br>33.689                                                                                             | m/s plume-<br>53.5<br>153.5<br>/elocities sta<br>Vert.<br>Vel(m/s)<br>7.39<br>6.21<br>5.05<br>4.45<br>4.07<br>3.93<br>3.28<br>2.54<br>2.21<br>2.00<br>1.85<br>1.78<br>1.65                                                                  | averaged v<br>feet<br>feet<br>feet<br>Plume<br>Temp(K)<br>403.33<br>351.06<br>327.45<br>314.72<br>310.70<br>296.09<br>287.72<br>285.98<br>285.31<br>284.98<br>285.31<br>284.96                                                                                                                                                                   | ertical velo<br>Solve for x=<br>for V=4.3 n<br>and c<br>and c<br>for jet ph<br>Elev<br>Incremen<br>10.0   | city<br>:(z-z <sub>v</sub> ) simu<br>/s using th<br>a=1, c=0,<br>=[0.12F <sub>o</sub> (6.<br>give<br>ase:<br>nts(m)<br>V <sub>pume</sub> ={(Va),<br>a = 0.16(z- | Itaneously in both eqs. (i.e.,<br>e cubic equation $ax^3+bx^2+cx$<br>and $b=-(0.12F_o)/(4.3^30.16^3)=$<br>25D- $z_v)^2-(Va)_o^3/(4.3^30.16^3)=$<br>http://www.akiti.ca/<br>s the real solution $x = z - zv =$<br>or $z(m) =$<br>z(ft) =<br>$^3+0.12F_o[(z-z_v)^2-(6.25D-z_v)^2])^{1/3} / a$<br>$z_v)$                                 | Va and a)<br>+d=0, whe<br>-11.92<br>-28<br>Qued3Dea h<br>13.6<br>16.5<br>5           |
| Solve for Height of CASC critical vertica<br>Find Height above Stack z <sub>ont</sub><br>Height above Ground z <sub>ont</sub> +h <sub>s</sub><br>Table of Plume Top-Hat Diameters (2a) and I<br>Height (feet)<br>above ground<br>Top of jet = 125.0<br>130.0<br>140.0<br>150.0<br>160.0<br>Begin Merging (touch) = 164.7<br>200.0<br>300.0<br>400.0<br>500.0<br>600.0<br>End Merging (full/mp) = 663.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Plume-averag<br>(meters)<br>above stack<br>7.62<br>9.14<br>12.19<br>15.24<br>18.29<br>19.71<br>30.48<br>60.96<br>91.44<br>121.92<br>152.40<br>171.88<br>213.36                                                                                           | 4.30<br>meters<br>meters<br>ed Vertical V<br>Plume<br>Radius(m)<br>1.219<br>1.014<br>1.502<br>1.990<br>2.477<br>2.705<br>4.428<br>9.305<br>14.182<br>19.058<br>23.935<br>27.051<br>33.689                                                                                             | m/s plume-4<br>53.5<br>153.5<br>/elocities sta<br>Vert.<br>Vel(m/s)<br>7.39<br>6.21<br>5.05<br>4.45<br>4.07<br>3.93<br>3.28<br>2.54<br>2.21<br>2.00<br>1.85<br>1.78                                                                         | averaged v<br>feet<br>feet<br>feet<br>Plume<br>Temp(K)<br>403.33<br>351.06<br>327.45<br>314.72<br>310.70<br>296.09<br>287.72<br>285.98<br>285.31<br>284.98<br>285.31<br>284.96                                                                                                                                                                   | ertical velo<br>Solve for x=<br>for V=4.3 n<br>and c<br>and c<br>for jet ph<br>Elev<br>Incremen<br>10.0   | city<br>:(z-z <sub>v</sub> ) simu<br>/s using th<br>a=1, c=0,<br>=[0.12F <sub>o</sub> (6.<br>give<br>ase:<br>nts(m)<br>V <sub>pume</sub> ={(Va),<br>a = 0.16(z- | Itaneously in both eqs. (i.e.,<br>e cubic equation $ax^3+bx^2+cx$<br>and $b=-(0.12F_o)/(4.3^30.16^3)=$<br>25D- $z_v)^2-(Va)_o^3/(4.3^30.16^3)=$<br>http://www.akiti.ca/<br>s the real solution $x = z - zv =$<br>or $z(m) =$<br>z(ft) =<br>$^3+0.12F_o[(z-z_v)^2-(6.25D-z_v)^2])^{1/3} / a$<br>$z_v)$                                 | Va and a)<br>+d=0, whe<br>-11.92<br>-28<br>Qued3Deg h<br>13.6<br>16.3<br>5           |
| Solve for Height of CASC critical vertica<br>Find Height above Stack z <sub>ont</sub><br>Height above Ground z <sub>ont</sub> +h <sub>s</sub><br>Table of Plume Top-Hat Diameters (2a) and I<br>Height (feet)<br>above ground<br>Top of jet = 125.0<br>130.0<br>140.0<br>150.0<br>160.0<br>Begin Merging (touch) = 164.7<br>200.0<br>300.0<br>400.0<br>500.0<br>600.0<br>End Merging (full/mp) = 663.9<br>800.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Plume-averag<br>(meters)<br>above stack<br>7.62<br>9.14<br>12.19<br>15.24<br>18.29<br>19.71<br>30.48<br>60.96<br>91.44<br>121.92<br>152.40<br>171.88<br>213.36<br>274.32                                                                                 | 4.30<br>meters<br>meters<br>ed Vertical V<br>Plume<br>Radius(m)<br>1.219<br>1.014<br>1.502<br>1.990<br>2.477<br>2.705<br>4.428<br>9.305<br>14.182<br>19.058<br>23.935<br>27.051<br>33.689<br>43.442                                                                                   | m/s plume-<br>53.5<br>153.5<br>/elocities sta<br>Vert.<br>Vel(m/s)<br>7.39<br>6.21<br>5.05<br>4.45<br>4.07<br>3.93<br>3.28<br>2.54<br>2.21<br>2.00<br>1.85<br>1.78<br>1.65                                                                  | averaged v<br>feet<br>feet<br>feet<br>Temp(K)<br>403.33<br>351.06<br>327.45<br>314.72<br>310.70<br>296.09<br>287.72<br>285.93<br>284.98<br>284.98<br>284.85<br>284.67<br>284.53                                                                                                                                                                  | ertical velo<br>Solve for x=<br>for V=4.3 n<br>and c<br>d of jet ph<br>Elev<br>Incremen<br>10.0<br>100.0  | city<br>:(z-z <sub>v</sub> ) simu<br>/s using th<br>a=1, c=0,<br>=[0.12F <sub>o</sub> (6.<br>give<br>ase:<br>nts(m)<br>V <sub>pume</sub> ={(Va),<br>a = 0.16(z- | Itaneously in both eqs. (i.e.,<br>e cubic equation $ax^3+bx^2+cx$<br>and $b=-(0.12F_o)/(4.3^30.16^3)=$<br>25D- $z_v)^2-(Va)_o^3/(4.3^30.16^3)=$<br>http://www.akiti.ca/<br>s the real solution $x = z - zv =$<br>or $z(m) =$<br>z(ft) =<br>$^3+0.12F_o[(z-z_v)^2-(6.25D-z_v)^2])^{1/3} / a$<br>$z_v)$                                 | Va and a)<br>+d=0, whe<br>-11.92<br>-28<br>Qued3Deg h<br>13.6<br>16.3<br>5           |
| Solve for Height of CASC critical vertica<br>Find Height above Stack Z <sub>ont</sub><br>Height above Ground Z <sub>ont</sub> +h <sub>s</sub><br>Table of Plume Top-Hat Diameters (2a) and I<br>Height (feet)<br>above ground<br>Top of jet = 125.0<br>130.0<br>140.0<br>150.0<br>160.0<br>Begin Merging (touch) = 164.7<br>200.0<br>300.0<br>600.0<br>End Merging (full/mp) = 663.9<br>800.0<br>1000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Plume-averag<br>(meters)<br>above stack<br>7.62<br>9.14<br>12.19<br>15.24<br>18.29<br>19.71<br>30.48<br>60.96<br>91.44<br>121.92<br>152.40<br>171.88<br>213.36<br>274.32                                                                                 | 4.30<br>meters<br>meters<br>ed Vertical V<br>Plume<br>Radius(m)<br>1.219<br>1.014<br>1.502<br>1.990<br>2.477<br>2.705<br>4.428<br>9.305<br>14.182<br>19.058<br>23.935<br>27.051<br>33.689<br>43.442<br>53.196                                                                         | m/s plume-4<br>53.5<br>153.5<br>/elocities sta<br>Vert.<br>Vel(m/s)<br>7.39<br>6.21<br>5.05<br>4.45<br>4.07<br>3.28<br>2.54<br>2.21<br>2.00<br>1.85<br>1.78<br>1.65<br>1.52                                                                 | averaged v<br>feet<br>feet<br>feet<br>Temp(K)<br>403.33<br>351.06<br>327.45<br>314.72<br>310.70<br>296.09<br>287.72<br>285.98<br>285.31<br>284.98<br>284.67<br>284.53<br>284.45                                                                                                                                                                  | ertical velo<br>Solve for x=<br>for V=4.3 n<br>and c<br>d of jet ph<br>Elev<br>Incremen<br>10.0           | city<br>:(z-z <sub>v</sub> ) simu<br>/s using th<br>a=1, c=0,<br>=[0.12F <sub>o</sub> (6.<br>give<br>ase:<br>nts(m)<br>V <sub>pume</sub> ={(Va),<br>a = 0.16(z- | Itaneously in both eqs. (i.e.,<br>e cubic equation $ax^3+bx^2+cx$<br>and $b=-(0.12F_o)/(4.3^30.16^3)=$<br>25D- $z_v)^2-(Va)_o^3/(4.3^30.16^3)=$<br>http://www.akiti.ca/<br>s the real solution $x = z - zv =$<br>or $z(m) =$<br>z(ft) =<br>$^3+0.12F_o[(z-z_v)^2-(6.25D-z_v)^2])^{1/3} / a$<br>$z_v)$                                 | Va and a)<br>+d=0, whe<br>-11.92<br>-28<br>Qued3Deg h<br>13.6<br>16.3<br>5           |
| Solve for Height of CASC critical vertica<br>Find Height above Stack Z <sub>orit</sub><br>Height above Ground Z <sub>orit</sub> +h <sub>s</sub><br>fable of Plume Top-Hat Diameters (2a) and I<br>Height (feet)<br>above ground<br>Top of jet = 125.0<br>130.0<br>140.0<br>150.0<br>160.0<br>Begin Merging (touch) = 164.7<br>200.0<br>300.0<br>400.0<br>500.0<br>600.0<br>End Merging (full/mp) = 663.9<br>800.0<br>1200.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Plume-average<br>(meters)<br>above stack<br>7.62<br>9.14<br>12.19<br>15.24<br>18.29<br>19.71<br>30.48<br>60.96<br>91.44<br>121.92<br>152.40<br>1717.88<br>213.36<br>274.32<br>335.28<br>396.24                                                           | 4.30<br>meters<br>meters<br>ed Vertical V<br>Plume<br>Radius(m)<br>1.219<br>1.014<br>1.502<br>1.990<br>2.477<br>2.705<br>4.428<br>9.305<br>14.182<br>19.058<br>23.935<br>27.051<br>33.689<br>43.442<br>53.196<br>62.950                                                               | m/s plume-<br>53.5<br>153.5<br>/elocities sta<br>Vert.<br>Vel(m/s)<br>7.39<br>6.21<br>5.05<br>4.45<br>4.07<br>3.93<br>3.28<br>2.54<br>2.21<br>2.00<br>1.85<br>1.78<br>1.65<br>1.52<br>1.42<br>1.34                                          | averaged v<br>feet<br>feet<br>feet<br>Temp(K)<br>403.33<br>351.06<br>327.45<br>314.72<br>310.70<br>296.09<br>287.72<br>285.98<br>284.53<br>284.85<br>284.67<br>284.53<br>284.45<br>284.45                                                                                                                                                        | ertical velo<br>Solve for x=<br>for V=4.3 n<br>and c<br>d of jet ph<br>Elev<br>Incremen<br>10.0<br>200.0  | city<br>:(z-z <sub>v</sub> ) simu<br>/s using th<br>a=1, c=0,<br>=[0.12F <sub>o</sub> (6.<br>give<br>ase:<br>nts(m)<br>V <sub>pume</sub> ={(Va),<br>a = 0.16(z- | Itaneously in both eqs. (i.e.,<br>e cubic equation $ax^3+bx^2+cx$<br>and $b=-(0.12F_o)/(4.3^30.16^3)=$<br>25D- $z_v)^2-(Va)_o^3/(4.3^30.16^3)=$<br>http://www.akiti.ca/<br>s the real solution $x = z - zv =$<br>or $z(m) =$<br>z(ft) =<br>$^3+0.12F_o[(z-z_v)^2-(6.25D-z_v)^2])^{1/3} / a$<br>$z_v)$                                 | Va and a)<br>+d=0, whe<br>-11.92<br>-28<br>Qued3Dea h<br>13.6<br>16.5<br>5           |
| Solve for Height of CASC critical vertica<br>Find Height above Stack Z <sub>orit</sub><br>Height above Ground Z <sub>orit</sub> +h <sub>s</sub><br>Table of Plume Top-Hat Diameters (2a) and I<br>Height (feet)<br>above ground<br>Top of jet = 125.0<br>130.0<br>140.0<br>150.0<br>160.0<br>Begin Merging (touch) = 164.7<br>200.0<br>300.0<br>400.0<br>600.0<br>End Merging (full/mp) = 663.9<br>800.0<br>1000.0<br>1200.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Plume-averag<br>(meters)<br>above stack<br>7.62<br>9.14<br>12.19<br>15.24<br>18.29<br>19.71<br>30.48<br>60.96<br>91.44<br>121.92<br>152.40<br>171.88<br>213.36<br>274.32<br>335.28<br>396.24<br>457.20                                                   | 4.30<br>meters<br>meters<br>ed Vertical V<br>Plume<br>Radius(m)<br>1.219<br>1.014<br>1.502<br>1.990<br>2.477<br>2.705<br>4.428<br>9.305<br>14.182<br>19.058<br>23.935<br>27.051<br>33.689<br>43.442<br>53.196<br>62.950<br>72.703                                                     | m/s plume-<br>53.5<br>153.5<br>/elocities sta<br>Vert.<br>Vel(m/s)<br>7.39<br>6.21<br>5.05<br>4.45<br>4.07<br>3.93<br>3.28<br>2.54<br>2.21<br>2.00<br>1.85<br>1.78<br>1.65<br>1.52<br>1.42<br>1.34<br>1.28                                  | averaged v<br>feet<br>feet<br>feet<br>Temp(K)<br>403.33<br>351.06<br>327.45<br>314.72<br>310.70<br>296.09<br>287.72<br>285.98<br>285.31<br>284.98<br>284.95<br>284.67<br>284.53<br>284.45<br>284.40<br>284.37                                                                                                                                    | ertical velo<br>Solve for x=<br>for V=4.3 n<br>and c<br>d of jet ph<br>Elev<br>Incremen<br>10.0<br>200.0  | city<br>:(z-z <sub>v</sub> ) simu<br>/s using th<br>a=1, c=0,<br>=[0.12F <sub>o</sub> (6.<br>give<br>ase:<br>nts(m)<br>V <sub>pume</sub> ={(Va),<br>a = 0.16(z- | Itaneously in both eqs. (i.e.,<br>e cubic equation $ax^3+bx^2+cx$<br>and $b=-(0.12F_o)/(4.3^30.16^3)=$<br>25D- $z_v)^2-(Va)_o^3/(4.3^30.16^3)=$<br>http://www.akiti.ca/<br>s the real solution $x = z - zv =$<br>or $z(m) =$<br>z(ft) =<br>$^3+0.12F_o[(z-z_v)^2-(6.25D-z_v)^2])^{1/3} / a$<br>$z_v)$                                 | Va and a)<br>+d=0, whe<br>-11.9;<br>-28<br>Qued3Deg t<br>13.<br>16.<br>5             |
| Solve for Height of CASC critical vertical           Find Height above Stack Z <sub>ort</sub> Height above Ground Z <sub>ort</sub> +h <sub>s</sub> Table of Plume Top-Hat Diameters (2a) and I           Height (feet)           above ground           Top of jet = 125.0           130.0           140.0           150.0           160.0           Begin Merging (touch) = 164.7           200.0           300.0           400.0           500.0           600.0           End Merging (full/mp) = 663.9           1000.0           1200.0           1200.0           1200.0           1200.0           1200.0           1200.0                                                                                                                                                                                                                                                                                                  | Plume-average<br>(meters)<br>above stack<br>7.62<br>9.14<br>12.19<br>15.24<br>18.29<br>19.71<br>30.48<br>60.96<br>91.44<br>121.92<br>152.40<br>171.88<br>213.36<br>274.32<br>335.28<br>396.24<br>457.20<br>518.16                                        | 4.30<br>meters<br>meters<br>meters<br>ed Vertical V<br>Plume<br>Radius(m)<br>1.219<br>1.014<br>1.502<br>1.990<br>2.477<br>2.705<br>4.428<br>9.305<br>14.182<br>19.058<br>23.935<br>27.051<br>133.689<br>43.442<br>53.196<br>62.950<br>72.703<br>82.457                                | m/s plume-<br>53.5<br>153.5<br>/elocities sta<br>Vert.<br>Vel(m/s)<br>7.39<br>6.21<br>5.05<br>4.45<br>4.07<br>3.93<br>3.28<br>2.54<br>2.21<br>2.00<br>1.85<br>1.78<br>1.65<br>1.52<br>1.42<br>1.34<br>1.28                                  | averaged v<br>feet<br>feet<br>feet<br>Temp(K)<br>403.33<br>351.06<br>327.45<br>314.72<br>310.70<br>296.09<br>287.72<br>285.96<br>285.31<br>284.98<br>284.65<br>284.45<br>284.45<br>284.45<br>284.43                                                                                                                                              | ertical velo<br>Solve for x=<br>for V=4.3 n<br>and c<br>d of jet ph<br>Elev<br>Incremen<br>10.0           | city<br>:(z-z <sub>v</sub> ) simu<br>/s using th<br>a=1, c=0,<br>=[0.12F <sub>o</sub> (6.<br>give<br>ase:<br>nts(m)<br>V <sub>pume</sub> ={(Va),<br>a = 0.16(z- | Itaneously in both eqs. (i.e.,<br>e cubic equation $ax^3+bx^2+cx$<br>and $b=-(0.12F_o)/(4.3^30.16^3)=$<br>25D- $z_v)^2-(Va)_o^3/(4.3^30.16^3)=$<br>http://www.akiti.ca/<br>s the real solution $x = z - zv =$<br>or $z(m) =$<br>z(ft) =<br>$^3+0.12F_o[(z-z_v)^2-(6.25D-z_v)^2])^{1/3} / a$<br>$z_v)$                                 | Va and a)<br>+d=0, whe<br>-11.92<br>-28<br>Qued3Dea h<br>13.6<br>16.5<br>5           |
| Solve for Height of CASC critical vertical           Find Height above Stack Z <sub>ort</sub> Height above Ground Z <sub>ort</sub> +h <sub>s</sub> Table of Plume Top-Hat Diameters (2a) and I           Height (feet)           above ground           Top of jet = 125.0           130.0           140.0           150.0           160.0           Begin Merging (touch) = 164.7           200.0           300.0           400.0           500.0           600.0           End Merging (full/mp) = 663.9           800.0           1200.0           1400.0           200.0           200.0                                                                                                                                                                                                                                                                                                                                       | Plume-averag<br>(meters)<br>above stack<br>7.62<br>9.14<br>12.19<br>15.24<br>18.29<br>19.71<br>30.48<br>60.96<br>91.44<br>121.92<br>152.40<br>171.88<br>213.36<br>274.32<br>335.28<br>336.24<br>457.20<br>518.16<br>579.12                               | 4.30<br>meters<br>meters<br>meters<br>ed Vertical V<br>Plume<br>Radius(m)<br>1.219<br>1.014<br>1.502<br>1.990<br>2.477<br>2.705<br>4.428<br>9.305<br>14.182<br>19.058<br>23.935<br>27.051<br>33.689<br>43.442<br>53.196<br>62.950<br>72.703<br>82.457<br>92.210                       | m/s plume-4<br>53.5<br>153.5<br>/elocities sta<br>Vert.<br>Vel(m/s)<br>6.21<br>5.05<br>4.45<br>4.07<br>3.93<br>3.28<br>2.54<br>2.21<br>2.00<br>1.85<br>1.78<br>1.65<br>1.52<br>1.42<br>1.34<br>1.28<br>1.23<br>1.18                         | averaged v<br>feet<br>feet<br>feet<br>Temp(K)<br>403.33<br>351.06<br>327.45<br>314.72<br>310.70<br>296.09<br>287.72<br>285.98<br>285.31<br>284.98<br>284.63<br>284.45<br>284.45<br>284.40<br>284.35<br>284.43                                                                                                                                    | ertical velo<br>Solve for x=<br>for V=4.3 n<br>and c<br>d of jet ph<br>Elev<br>Incremen<br>10.0<br>200.0  | city<br>:(z-z <sub>v</sub> ) simu<br>/s using th<br>a=1, c=0,<br>=[0.12F <sub>o</sub> (6.<br>give<br>ase:<br>nts(m)<br>V <sub>pume</sub> ={(Va),<br>a = 0.16(z- | Itaneously in both eqs. (i.e.,<br>e cubic equation $ax^3+bx^2+cx$<br>and $b=-(0.12F_o)/(4.3^30.16^3)=$<br>25D- $z_v)^2-(Va)_o^3/(4.3^30.16^3)=$<br>http://www.akiti.ca/<br>s the real solution $x = z - zv =$<br>or $z(m) =$<br>z(ft) =<br>$^3+0.12F_o[(z-z_v)^2-(6.25D-z_v)^2])^{1/3} / a$<br>$z_v)$                                 | Va and a)<br>+d=0, whe<br>-11.92<br>-28<br>Qued3Dea h<br>13.6<br>16.5<br>5           |
| Solve for Height of CASC critical vertical           Find Height above Stack Z <sub>ort</sub> Height above Ground Z <sub>ort</sub> +h <sub>s</sub> Fable of Plume Top-Hat Diameters (2a) and I           Height (feet)           above ground           Top of jet = 125.0           130.0           140.0           150.0           160.0           Begin Merging (touch) = 164.7           200.0           300.0           400.0           500.0           600.0           End Merging (full/mp) = 663.9           800.0           12000.0           1400.0           2000.0           2000.0           2000.0           2000.0           2000.0           2000.0           2000.0           2000.0           2000.0           2000.0           2000.0           2000.0           2000.0                                                                                                                                         | Plume-average<br>(meters)<br>above stack<br>7.62<br>9.14<br>12.19<br>15.24<br>18.29<br>19.71<br>30.48<br>60.96<br>91.44<br>121.92<br>152.40<br>171.88<br>213.36<br>213.36<br>213.35.28<br>3396.24<br>457.20<br>518.16<br>579.12<br>640.08                | 4.30<br>meters<br>meters<br>meters<br>dued Vertical V<br>Plume<br>Radius(m)<br>1.219<br>1.014<br>1.502<br>1.990<br>2.477<br>2.705<br>4.428<br>9.305<br>14.182<br>19.058<br>23.935<br>27.051<br>33.689<br>43.442<br>53.196<br>62.950<br>72.703<br>82.457<br>92.210<br>101.964          | m/s plume-4<br>53.5<br>153.5<br>/elocities sta<br>Vert.<br>Vel(m/s)<br>6.21<br>5.05<br>4.45<br>4.07<br>3.93<br>3.28<br>2.54<br>2.21<br>2.00<br>1.85<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.5                          | averaged v<br>feet<br>feet<br>feet<br>Temp(K)<br>403.33<br>351.06<br>327.45<br>314.72<br>310.70<br>296.09<br>287.72<br>285.98<br>285.31<br>284.98<br>284.85<br>284.45<br>284.45<br>284.43<br>284.45<br>284.43                                                                                                                                    | ertical velo<br>Solve for x=<br>for V=4.3 n<br>and c<br>d of jet phi<br>Elev<br>Incremen<br>10.0<br>200.0 | city<br>:(z-z <sub>v</sub> ) simu<br>/s using th<br>a=1, c=0,<br>=[0.12F <sub>o</sub> (6.<br>give<br>ase:<br>nts(m)<br>V <sub>pume</sub> ={(Va),<br>a = 0.16(z- | Itaneously in both eqs. (i.e.,<br>e cubic equation $ax^3+bx^2+cx$<br>and $b=-(0.12F_o)/(4.3^30.16^3)=$<br>25D- $z_v)^2-(Va)_o^3/(4.3^30.16^3)=$<br>http://www.akiti.ca/<br>s the real solution $x = z - zv =$<br>or $z(m) =$<br>z(ft) =<br>$^3+0.12F_o[(z-z_v)^2-(6.25D-z_v)^2])^{1/3} / a$<br>$z_v)$                                 | Va and a)<br>+d=0, whe<br>-11.92<br>-28<br>Qued3Deg h<br>13.6<br>16.3<br>5           |
| Solve for Height of CASC critical vertical           Find Height above Stack Zom           Height above Ground Zom+hs           Table of Plume Top-Hat Diameters (2a) and I           Height (feet)           above ground           Top of jet = 125.0           130.0           140.0           150.0           160.0           Begin Merging (touch) = 164.7           2000.0           300.0           600.0           End Merging (full/mp) = 663.9           800.0           1000.0           1200.0           1400.0           1200.0           1200.0           1200.0           1200.0           1200.0           1200.0           1200.0           1200.0           1200.0           1200.0           1200.0           1200.0           1200.0           1200.0           1200.0           1200.0           1200.0           1200.0           1200.0           1200.0           1200.0           1200.0           1200.0 | Plume-averag<br>(meters)<br>above stack<br>7.62<br>9.14<br>12.19<br>15.24<br>18.29<br>19.71<br>30.48<br>60.96<br>91.44<br>121.92<br>152.40<br>171.88<br>213.36<br>274.32<br>335.28<br>336.24<br>457.20<br>518.16<br>579.12<br>640.08<br>701.04           | 4.30<br>meters<br>meters<br>meters<br>ed Vertical V<br>Plume<br>Radius(m)<br>1.219<br>1.014<br>1.502<br>1.900<br>2.477<br>2.705<br>4.428<br>9.305<br>14.182<br>19.058<br>23.935<br>27.051<br>33.689<br>43.442<br>53.196<br>62.950<br>72.703<br>82.457<br>92.210<br>101.964<br>111.718 | m/s plume -<br>53.5<br>153.5<br>/elocities sta<br>Vert.<br>Vel(m/s)<br>7.39<br>6.21<br>5.05<br>4.45<br>4.07<br>3.93<br>3.28<br>2.54<br>2.21<br>2.00<br>1.85<br>1.78<br>1.65<br>1.52<br>1.42<br>1.34<br>1.28<br>1.23<br>1.18<br>1.23<br>1.18 | averaged v<br>feet<br>feet<br>feet<br>Temp(K)<br>403.33<br>351.06<br>327.45<br>310.70<br>296.09<br>287.72<br>285.96<br>285.31<br>284.98<br>284.67<br>284.53<br>284.45<br>284.45<br>284.45<br>284.45<br>284.45<br>284.45<br>284.45<br>284.45<br>284.45<br>284.45<br>284.32<br>284.35<br>284.34                                                    | ertical velo<br>Solve for x=<br>for V=4.3 n<br>and c<br>and c<br>Elev<br>Incremen<br>10.0<br>200.0        | city<br>:(z-z <sub>v</sub> ) simu<br>/s using th<br>a=1, c=0,<br>=[0.12F <sub>o</sub> (6.<br>give<br>ase:<br>nts(m)<br>V <sub>pume</sub> ={(Va),<br>a = 0.16(z- | Itaneously in both eqs. (i.e.,<br>e cubic equation $ax^3+bx^2+cx$<br>and $b=-(0.12F_o)/(4.3^30.16^3)=$<br>25D- $z_v)^2-(Va)_o^3/(4.3^30.16^3)=$<br>http://www.akiti.ca/<br>s the real solution $x = z - zv =$<br>or $z(m) =$<br>z(ft) =<br>$^3+0.12F_o[(z-z_v)^2-(6.25D-z_v)^2])^{1/3} / a$<br>$z_v)$                                 | Va and a)<br>+d=0, when<br>-11.92<br>-28:<br><i>Qued3Deg h</i><br>13.£<br>16.3<br>5: |
| Solve for Height of CASC critical vertical           Find Height above Stack Zont           Height above Ground Zont+hs           Table of Plume Top-Hat Diameters (2a) and I           Height (feet)           above ground           Top of jet = 125.0           130.0           140.0           150.0           160.0           Begin Merging (touch) = 164.7           2000.0           3000.0           600.0           End Merging (full/mp) = 663.9           1000.0           1200.0           1400.0           1200.0           200.0           200.0           200.0           200.0           200.0           200.0           200.0           200.0           200.0           200.0           200.0           200.0           200.0           200.0           200.0           200.0           200.0           200.0           200.0           200.0           200.0           200.0           200.0           200.0    | Plume-averag<br>(meters)<br>above stack<br>7.62<br>9.14<br>12.19<br>15.24<br>18.29<br>19.71<br>30.48<br>60.96<br>91.44<br>121.92<br>152.40<br>171.88<br>213.36<br>274.32<br>335.28<br>396.24<br>457.20<br>518.16<br>579.12<br>640.08<br>701.04<br>762.00 | 4.30<br>meters<br>meters<br>meters<br>ed Vertical V<br>Plume<br>Radius(m)<br>1.219<br>1.014<br>1.502<br>1.990<br>2.477<br>2.705<br>4.428<br>9.305<br>14.182<br>19.058<br>23.935<br>27.051<br>33.689<br>43.442<br>53.196<br>62.950<br>72.703<br>82.457<br>92.210<br>101.964<br>111.718 | m/s plume<br>53.5<br>153.5<br>/elocities sta<br>Vert.<br>Vel(m/s)<br>7.39<br>6.21<br>5.05<br>4.45<br>4.07<br>3.93<br>3.28<br>2.54<br>2.21<br>2.00<br>1.85<br>1.78<br>1.65<br>1.52<br>1.42<br>1.34<br>1.23<br>1.14<br>1.23<br>1.18           | averaged v<br>feet<br>feet<br>feet<br>Temp(K)<br>403.33<br>351.06<br>327.45<br>310.70<br>296.09<br>287.72<br>285.98<br>285.31<br>284.98<br>284.65<br>3284.45<br>284.45<br>284.45<br>284.45<br>284.45<br>284.45<br>284.45<br>284.45<br>284.45<br>284.45<br>284.45<br>284.45<br>284.45<br>284.45<br>284.45<br>284.45<br>284.45<br>284.45<br>284.31 | ertical velc<br>Solve for x=<br>for V=4.3 n<br>and c<br>and c<br>Elev<br>Incremen<br>10.0<br>200.0        | city<br>:(z-z <sub>v</sub> ) simu<br>/s using th<br>a=1, c=0,<br>=[0.12F <sub>o</sub> (6.<br>give<br>ase:<br>nts(m)<br>V <sub>pume</sub> ={(Va),<br>a = 0.16(z- | Itaneously in both eqs. (i.e.,<br>e cubic equation $ax^3+bx^2+cx$<br>and $b=-(0.12F_o)/(4.3^30.16^3)=$<br>25D- $z_v)^2-(Va)_o^3/(4.3^30.16^3)=$<br>http://www.akiti.ca/<br>s the real solution $x = z - zv =$<br>or $z(m) =$<br>z(ft) =<br>$^3+0.12F_o[(z-z_v)^2-(6.25D-z_v)^2])^{1/3} / a$<br>$z_v)$                                 | Va and a)<br>+d=0, when<br>-11.92<br>-28:<br><i>Qued3Deg h</i><br>13.£<br>16.3<br>5: |
| Solve for Height of CASC critical vertical           Find Height above Stack Zom           Height above Ground Zom+hs           Table of Plume Top-Hat Diameters (2a) and I           Height (feet)           above ground           Top of jet = 125.0           130.0           140.0           150.0           160.0           Begin Merging (touch) = 164.7           2000.0           300.0           600.0           End Merging (full/mp) = 663.9           800.0           1000.0           1200.0           1400.0           1200.0           1200.0           1200.0           1200.0           1200.0           1200.0           1200.0           1200.0           1200.0           1200.0           1200.0           1200.0           1200.0           1200.0           1200.0           1200.0           1200.0           1200.0           1200.0           1200.0           1200.0           1200.0           1200.0 | Plume-averag<br>(meters)<br>above stack<br>7.62<br>9.14<br>12.19<br>15.24<br>18.29<br>19.71<br>30.48<br>60.96<br>91.44<br>121.92<br>152.40<br>171.88<br>213.36<br>274.32<br>335.28<br>396.24<br>457.20<br>518.16<br>579.12<br>640.08<br>701.04<br>762.00 | 4.30<br>meters<br>meters<br>meters<br>ed Vertical V<br>Plume<br>Radius(m)<br>1.219<br>1.014<br>1.502<br>1.990<br>2.477<br>2.705<br>4.428<br>9.305<br>14.182<br>19.058<br>23.935<br>27.051<br>33.689<br>43.442<br>53.196<br>62.950<br>72.703<br>82.457<br>92.210<br>101.964<br>111.718 | m/s plume -<br>53.5<br>153.5<br>/elocities sta<br>Vert.<br>Vel(m/s)<br>7.39<br>6.21<br>5.05<br>4.45<br>4.07<br>3.93<br>3.28<br>2.54<br>2.21<br>2.00<br>1.85<br>1.78<br>1.65<br>1.52<br>1.42<br>1.34<br>1.28<br>1.23<br>1.18<br>1.23<br>1.18 | averaged v<br>feet<br>feet<br>feet<br>Temp(K)<br>403.33<br>351.06<br>327.45<br>310.70<br>296.09<br>287.72<br>285.98<br>285.31<br>284.98<br>284.65<br>3284.45<br>284.45<br>284.45<br>284.45<br>284.45<br>284.45<br>284.45<br>284.45<br>284.45<br>284.45<br>284.45<br>284.45<br>284.45<br>284.45<br>284.45<br>284.45<br>284.45<br>284.45<br>284.31 | ertical velc<br>Solve for x=<br>for V=4.3 n<br>and c<br>and c<br>Elev<br>Incremen<br>10.0<br>200.0        | city<br>:(z-z <sub>v</sub> ) simu<br>/s using th<br>a=1, c=0,<br>=[0.12F <sub>o</sub> (6.<br>give<br>ase:<br>nts(m)<br>V <sub>pume</sub> ={(Va),<br>a = 0.16(z- | Itaneously in both eqs. (i.e.,<br>e cubic equation $ax^3+bx^2+cx$<br>and $b=-(0.12F_o)/(4.3^30.16^3)=$<br>25D- $z_v)^2-(Va)_o^3/(4.3^30.16^3)=$<br>http://www.akiti.ca/<br>s the real solution $x = z - zv =$<br>or $z(m) =$<br>z(ft) =<br>$^3+0.12F_o[(z-z_v)^2-(6.25D-z_v)^2])^{1/3} / a$<br>$z_v)$                                 | Va and a)<br>+d=0, when<br>-11.92<br>-28:<br><i>Qued3Deg h</i><br>13.£<br>16.3<br>5: |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                | s for Merge<br>fety and Eu                                                                                                                                                                                                                                          | oyant Plumes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                     | the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ditions at V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | arious Heights in the Merg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ed                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | veensland, Australia," Dr. H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                             |
| Ambient Conditions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | eutral conditions (de/dz=0 or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                             |
| 10th percentle Ambient Potential Temp θ <sub>a</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 284.26                                                                                                                                                                                                                                                         | Kelvins                                                                                                                                                                                                                                                             | 52.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ۴F                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.3048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | meters/feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                             |
| Plume Exit Conditions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                 | Gravity g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m/s <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |
| Stack Height h <sub>s</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30.48                                                                                                                                                                                                                                                          | meters                                                                                                                                                                                                                                                              | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | feet                                                                                                                                                                                                                                                                                                                                            | λ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |
| Stack Diameter D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.2192                                                                                                                                                                                                                                                         | meters                                                                                                                                                                                                                                                              | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | feet                                                                                                                                                                                                                                                                                                                                            | λο                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ~1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |
| Number of Stacks N (23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                     | ok                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                 | Base calcs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | on multiple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | plume treatment in Peter Bes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t Faper                                                     |
| Stack Separation d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.41                                                                                                                                                                                                                                                           | meters                                                                                                                                                                                                                                                              | 17.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | feet                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | plume velo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cities/diameters increased by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N <sup>4.25</sup>                                           |
| Stack Velocity V <sub>pot</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14.771                                                                                                                                                                                                                                                         | m/s                                                                                                                                                                                                                                                                 | 48.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft/sec                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |
| Volumetric Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17.24                                                                                                                                                                                                                                                          | cu m/sec                                                                                                                                                                                                                                                            | 36,530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ACFM                                                                                                                                                                                                                                                                                                                                            | $\pi V_{exct} D^2/4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sect 2/¶1                                                   |
| Stack Potential Temp θ <sub>s</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 712.039                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                     | 822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ۴F                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |
| Initial Stack Buoyancy Flux Fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                | m4/s3                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | of Flow(g/ $\pi$ )(1- $\theta_s/\theta_s$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sect 2/¶1                                                   |
| Plume Buoyancy Flux F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N/A                                                                                                                                                                                                                                                            | m <sup>4</sup> /s <sup>3</sup>                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                 | $\lambda^2 g V a^2 (1-\theta_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $(\theta_p)$ for a V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\theta_p$ at plume height (see belo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | w)                                                          |
| Conditions at End (Top) of Jet Phase:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |
| Height above Stack z <sub>jet</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                | meters*                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | feet*                                                                                                                                                                                                                                                                                                                                           | z <sub>jet</sub> = 6.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | , meters*=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | meters above stack top                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sect.3/¶1                                                   |
| Height above Ground z <sub>jet</sub> +h <sub>s</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                | meters                                                                                                                                                                                                                                                              | 125.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                           |
| Vertical Velocity V <sub>jet</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.386                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ft/sec                                                                                                                                                                                                                                                                                                                                          | V <sub>jet</sub> = 0.5V,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $xit = V_{exit}/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                           |
| Plume Top-Hat Diameter 2a <sub>jet</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.438                                                                                                                                                                                                                                                          | meters                                                                                                                                                                                                                                                              | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | feet                                                                                                                                                                                                                                                                                                                                            | 2a <sub>jet</sub> = 2D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Conservation of momentum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                             |
| aller Maked to a Architect California                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tes Calm Cas                                                                                                                                                                                                                                                   | distant a fee                                                                                                                                                                                                                                                       | Diama Halaba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a share h                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |
| Spillane Methodology - Analytical Solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |
| Single Plume-averaged Vertical Velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                     | Solution in Pa<br>Merging Onl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sect 2/Eq.6                                                 |
| Single Plume Values: Plume Top-Hat Radius a<br>Virtual Source Height z <sub>v</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                | meters"                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | feet"                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | r increase with height<br>, meters above stack top                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                             |
| Height above Ground z, +ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                | meters                                                                                                                                                                                                                                                              | 9.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                 | Ey = 0.20D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (veros) -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | where $(\theta_3/\theta_3)^{1/2} = (\theta_0/\theta_3)^{1/2} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                     | Merging On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                 | 10/21 3 . 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12E 1/2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | where $(\theta_3/\theta_3)^{-1} = (\theta_0/\theta_3)^{-1} $ |                                                             |
| Single Plume Values: Vertical Velocity V<br>Product (Va)。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.689                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                     | anerging On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .,                                                                                                                                                                                                                                                                                                                                              | ((Va)o" + 0<br>Vect(D/2)(8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 -(a.200-24/1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sect 2 1(6                                                  |
| Product (Va)o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.669                                                                                                                                                                                                                                                          | 1175                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                 | * exct(U/2)(8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |
| Diumo Maraina, Davad an Cinala Diumo da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cast Dates                                                  |
| Plume Merging - Based on Single Plume Cal<br>Begin Merging Plume Top-Hat Diameter 2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                | meters                                                                                                                                                                                                                                                              | 17.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | fant                                                                                                                                                                                                                                                                                                                                            | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | or a sedi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sect.3/¶3                                                   |
| Begin Merging Plume Top-Hat Diameter Zatovsh<br>Height above Stack Zsovsh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                | meters*                                                                                                                                                                                                                                                             | 64.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                 | 2atouch=d, (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ∠}<br>meters"=meters above stack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ten                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                 | Ztouch = Zy*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d/(2°0.16),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | meters -meters above stack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | top                                                         |
| Height above Ground z <sub>touch</sub> +hs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.933                                                                                                                                                                                                                                                          | meters.                                                                                                                                                                                                                                                             | 164.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ft/sec                                                                                                                                                                                                                                                                                                                                          | V = 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | =. [ (z-z_v) <sup>2</sup> - (6.25D-z_v) <sup>2</sup> ]) <sup>(1/3)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                             |
| Vertical Velocity V <sub>touch</sub><br>Total Merging Plume Top-Hat Diameter 2a <sub>full</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                | meters                                                                                                                                                                                                                                                              | 12.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 a                                                         |
| Total Merging Flume Top-Hat Diameter 2a <sub>full</sub><br>Height above Stack z <sub>full</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                | meters"                                                                                                                                                                                                                                                             | 563.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                 | 2atur=2d(N-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 202.348                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                     | 663.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                 | 2101 - 2072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | u/(2 0.10), 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | meters*=meters above stack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100                                                         |
| Height above Ground z <sub>run</sub> +h <sub>a</sub><br>Vertical Velocity V <sub>run</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.777                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                 | V = 10/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 . 0 495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [ (2/ul-Zy) <sup>2</sup> - (6.25D-Zy) <sup>2</sup> ]) <sup>(1/3)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                     | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ft/sec                                                                                                                                                                                                                                                                                                                                          | viul - ((va)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 + 0.12Fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ( (times) - (0.500-54) 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | / Afull                                                     |
| Product (V <sup>3</sup> a) <sub>full</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                | m4/s3                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |
| Conditions at End (Top) of Merging Phase - D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                     | the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ed Plume c                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |
| Merged Plume Values: Plume Diameter 2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                     | Table Below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.4                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tuil), or linear increase with I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | neight                                                      |
| Revised Merged Plume Radius am                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                | meters                                                                                                                                                                                                                                                              | 161.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | here Total Merging Occurs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             |
| Revised Merged Plume Velocity Vm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.236                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ft/sec                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | here Total Merging Occurs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             |
| Revised Virtual Source Height zrut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                | meters"                                                                                                                                                                                                                                                             | 563.9<br>Tables Below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ere Total Merging Occurs (sh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                             |
| Revised Vertical Velocity V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                                                                                                                                                                                              | olutions in                                                                                                                                                                                                                                                         | Tables below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | eights above total merging el                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | evation                                                     |
| United a Diverse Coloridations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                 | V=Vtouch+(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (m*Vsouch)"(4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | z-z <sub>touch</sub> )/(z <sub>full</sub> -z <sub>touch</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | an stariation                                               |
| Multiple Plume Calculations<br>Solve for plume-averaged vertical veloc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | the at halabs                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 201.0                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | for heights below total mergi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ng elevation                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                | 1,000.0<br>meters"                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                 | meters abo<br>REGULAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | z+nj)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                             |
| Gives the following Height above Stack z<br>Plume Top-Hat Radius a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                | meters                                                                                                                                                                                                                                                              | 900.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                 | a=a_+0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |
| Vertical Velocity V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.941                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ft/sec                                                                                                                                                                                                                                                                                                                                          | V={N(V3a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |
| venical velocity v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.041                                                                                                                                                                                                                                                          | nus                                                                                                                                                                                                                                                                 | 3.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (10) II L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                 | and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 31 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                 | V=Vtouch+(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Z'-Zbuch)/(Zfull-Zbuch) if Ztouch4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A CHEVIL                                                    |
| Solve for Height of CASC critical vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | velocity V                                                                                                                                                                                                                                                     | 4 30                                                                                                                                                                                                                                                                | mile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                 | V=V <sub>touch</sub> +(<br>V=single p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lume values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | if z <ztouch< td=""><td></td></ztouch<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                             |
| Solve for Height of CASC critical vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                 | V=V <sub>touch</sub> +(<br>V=single p<br>BEFORE T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lume values<br>OUCHING-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | if 1 <ztouch<br>USE SINGLE PLUME VALUE</ztouch<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ES                                                          |
| Find Height above Stack zorit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16.311                                                                                                                                                                                                                                                         | meters                                                                                                                                                                                                                                                              | 53.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | feet                                                                                                                                                                                                                                                                                                                                            | V=V <sub>touch</sub> +(<br>V=single p<br>BEFORE T<br>z <sub>ort</sub> = z <sub>full</sub> +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lume values<br>OUCHING-I<br>· {[N(V <sup>3</sup> a) <sub>ful</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | if 1 <ztouch<br>USE SINGLE PLUME VALUE<br/>/(V<sub>ott</sub>)<sup>3</sup>]-a<sub>m</sub>]/0.16 if V<sub>otti</sub><v<sub>m</v<sub></ztouch<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ES<br>(after merged)                                        |
| and the second secon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16.311                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | feet                                                                                                                                                                                                                                                                                                                                            | V=V <sub>touch</sub> +(<br>V=single p<br>BEFORE T<br>z <sub>ont</sub> = z <sub>ful</sub> +<br>z <sub>ont</sub> =z <sub>touch</sub> +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lume values<br>OUCHING-I<br>([N(V <sup>3</sup> a) <sub>ful</sub><br>(z <sub>full</sub> -z <sub>touch</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i if 1 <ztouch<br>USE SINGLE PLUME VALUE<br/>/(V<sub>011</sub>)<sup>3</sup>]·a<sub>m</sub>]/0.16 if V<sub>orit</sub><v<sub>m<br/>*(V<sub>011</sub>-V<sub>1000</sub>h)/(V<sub>m</sub>-V<sub>1000</sub>h) if V<sub>m</sub></v<sub></ztouch<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ES<br>(after merged)<br><verit<vtoue< td=""></verit<vtoue<> |
| Find Height above Stack z <sub>ort</sub><br>Height above Ground z <sub>ort</sub> +h <sub>s</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16.311<br>46.791                                                                                                                                                                                                                                               | meters                                                                                                                                                                                                                                                              | 53.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | feet<br>feet                                                                                                                                                                                                                                                                                                                                    | V=V <sub>touch</sub> +(<br>V=single p<br>BEFORE T<br>z <sub>ont</sub> =z <sub>ful</sub> +<br>z <sub>ont</sub> =z <sub>touch</sub> +<br>z <sub>ont</sub> =single                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lume values<br>OUCHING-I<br>([N(V <sup>3</sup> a) <sub>ful</sub><br>(z <sub>full</sub> -z <sub>touch</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | if 1 <ztouch<br>USE SINGLE PLUME VALUE<br/>/(V<sub>ott</sub>)<sup>3</sup>]-a<sub>m</sub>]/0.16 if V<sub>otti</sub><v<sub>m</v<sub></ztouch<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ES<br>(after merged)<br><verit<vtoue< td=""></verit<vtoue<> |
| Find Height above Stack z <sub>ore</sub><br>Height above Ground z <sub>ore</sub> th <sub>a</sub><br>Table of Plume-averaged Vertical Velocities:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16.311<br>46.791                                                                                                                                                                                                                                               | meters                                                                                                                                                                                                                                                              | 53.5<br>153.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | feet<br>feet<br>CEC Staff                                                                                                                                                                                                                                                                                                                       | V=V <sub>touch</sub> +(<br>V=single p<br>BEFORE T<br>z <sub>ont</sub> =z <sub>ful</sub> +<br>z <sub>ont</sub> =z <sub>touch</sub> +<br>z <sub>ont</sub> =single                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lume values<br>OUCHING-I<br>([N(V <sup>3</sup> a) <sub>ful</sub><br>(z <sub>full</sub> -z <sub>touch</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i if 1 <ztouch<br>USE SINGLE PLUME VALUE<br/>/(V<sub>011</sub>)<sup>3</sup>]·a<sub>m</sub>]/0.16 if V<sub>orit</sub><v<sub>m<br/>*(V<sub>011</sub>-V<sub>1000</sub>h)/(V<sub>m</sub>-V<sub>1000</sub>h) if V<sub>m</sub></v<sub></ztouch<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ES<br>(after merged)<br><verit<vtoue< td=""></verit<vtoue<> |
| Find Height above Stack z <sub>ott</sub><br>Height above Ground z <sub>ott</sub> +h <sub>s</sub><br>Table of Plume-averaged Vertical Velocities<br>Height (fect)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16.311<br>46.791<br>(meters)                                                                                                                                                                                                                                   | meters<br>meters<br>Plume                                                                                                                                                                                                                                           | 53.5<br>153.5<br>Vert.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | feet<br>feet<br>CEC Staff<br>Calc(m/s)                                                                                                                                                                                                                                                                                                          | V=V <sub>touch</sub> +(<br>V=single p<br>BEFORE T<br>z <sub>ont</sub> =z <sub>ful</sub> +<br>z <sub>ont</sub> =z <sub>touch</sub> +<br>z <sub>ont</sub> =single                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lume values<br>OUCHING-I<br>([N(V <sup>3</sup> a) <sub>ful</sub><br>(z <sub>full</sub> -z <sub>touch</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i if 1 <ztouch<br>USE SINGLE PLUME VALUE<br/>/(V<sub>011</sub>)<sup>3</sup>]·a<sub>m</sub>]/0.16 if V<sub>orit</sub><v<sub>m<br/>*(V<sub>011</sub>-V<sub>1000</sub>h)/(V<sub>m</sub>-V<sub>1000</sub>h) if V<sub>m</sub></v<sub></ztouch<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ES<br>(after merged)<br><vcrit<vtour< td=""></vcrit<vtour<> |
| Find Height above Stack z <sub>ont</sub><br>Height above Ground z <sub>ont</sub> +h <sub>s</sub><br>Table of Plume-averaged Vertical Velocities:<br>Height (fect)<br>above ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16.311<br>46.791<br>(meters)<br>above stack                                                                                                                                                                                                                    | meters<br>meters<br>Plume<br>Radius(m)                                                                                                                                                                                                                              | 53.5<br>153.5<br>Vert.<br>Vel(m/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | feet<br>feet<br>CEC Staff                                                                                                                                                                                                                                                                                                                       | V=V <sub>touch</sub> +(<br>V=single p<br>BEFORE T<br>z <sub>crit</sub> = z <sub>full</sub> +<br>z <sub>crit</sub> =z <sub>fouch</sub> +<br>z <sub>crit</sub> =single                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lume values<br>OUCHING-<br>· {[N(V <sup>3</sup> a) <sub>ful</sub><br>(Z <sub>1ul</sub> -Z <sub>1000</sub> )<br>plume so[n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | i if 1 <ztouch<br>USE SINGLE PLUME VALUE<br/>/(V<sub>011</sub>)<sup>3</sup>]·a<sub>m</sub>]/0.16 if V<sub>orit</sub><v<sub>m<br/>*(V<sub>011</sub>-V<sub>1000</sub>h)/(V<sub>m</sub>-V<sub>1000</sub>h) if V<sub>m</sub></v<sub></ztouch<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ES<br>(after merged)<br><vcrit<vtour< td=""></vcrit<vtour<> |
| Find Height above Stack z <sub>ott</sub><br>Height above Ground z <sub>ote</sub> th <sub>a</sub><br>fable of Plume-averaged Vertical Velocities:<br>Height (feet)<br>above ground<br>Top of jet = 125.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16.311<br>46.791<br>(meters)<br>above stack<br>7.62                                                                                                                                                                                                            | meters<br>meters<br>Plume<br>Radius(m)<br>1.219                                                                                                                                                                                                                     | 53.5<br>153.5<br>Vert.<br>Vel(m/s)<br>7.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | feet<br>feet<br>CEC Staff<br>Calc(m/s)<br>V <sub>mp</sub> =N <sup>2 2b</sup> V <sub>at</sub>                                                                                                                                                                                                                                                    | $V=V_{touch}+(V=single p)$<br>BEFORE T<br>$z_{crit} = z_{full} + z_{crit} = z_{touch} + z_{crit} = single$<br>Single Plum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Iume values<br>OUCHING-I<br>([N(V <sup>3</sup> a) <sub>ful</sub><br>(z <sub>1ul</sub> -z <sub>1ouch</sub> )<br>plume sofn<br>ne Eqns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\label{eq:starting} \begin{array}{l} \text{if } i < z_{\text{touch}} \\ \text{USE SINGLE PLUME VALU\\} \\ (V_{ort})^3] \cdot a_m ] (0.16 \ \text{if } V_{ort} < V_m \\ (V_{ort} \cdot V_{ouch}) (V_m \cdot V_{ouch}) \text{if } V_m \\ \text{if } V_{ort} > V_{ouch} (\text{before merge}) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ES<br>(after merged)<br><verit<vtour< td=""></verit<vtour<> |
| Find Height above Stack z <sub>ott</sub><br>Height above Ground z <sub>ott</sub> th <sub>a</sub><br>Table of Plume-averaged Vertical Velocities:<br>Height (fect)<br>above ground<br><i>Top of jet = 125.0</i><br>130 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16.311<br>46.791<br>(meters)<br>above stack<br>7.62<br>9.14                                                                                                                                                                                                    | meters<br>meters<br>Plume<br>Radius(m)<br>1.219<br>1.014                                                                                                                                                                                                            | 53.5<br>153.5<br>Vert.<br>Vel(m/s)<br>7.39<br>6.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | feet<br>feet<br>CEC Staff<br>Calc(m/s)<br>V <sub>ms</sub> =N <sup>220</sup> V <sub>a</sub> ,<br>11.31                                                                                                                                                                                                                                           | $\begin{split} & V=V_{touch}+(\\ & V=single p \\ & BEFORE T \\ & z_{cnt}=z_{full}+z_{cnt}=z_{touch}+z_{cnt}=single \\ & z_{cnt}=single \\ & Single Plum \\ & V_{avore}*((Va)_c \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Iume values<br>OUCHING-I<br>([N(V <sup>2</sup> a) <sub>ful</sub><br>(z <sub>1ul</sub> -z <sub>1000h</sub> )<br>plume soln<br>ne Eqns<br>*+0.12F <sub>0</sub> (z-z,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | i if 1 <ztouch<br>USE SINGLE PLUME VALUE<br/>/(V<sub>011</sub>)<sup>3</sup>]·a<sub>m</sub>]/0.16 if V<sub>orit</sub><v<sub>m<br/>*(V<sub>011</sub>-V<sub>1000</sub>h)/(V<sub>m</sub>-V<sub>1000</sub>h) if V<sub>m</sub></v<sub></ztouch<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ES<br>(after merged)<br><verit<vtour< td=""></verit<vtour<> |
| Find Height above Stack z <sub>ort</sub><br>Height above Ground z <sub>ort</sub> +h <sub>s</sub><br>Table of Plume-averaged Vertical Velocities.<br>Height (feet)<br>above ground<br><i>Top of jet</i> = 125.0<br>130.0<br>144.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16.311<br>46.791<br>(meters)<br>above stack<br>7.62<br>9.14<br>12.19                                                                                                                                                                                           | meters<br>meters<br>Plume<br>Radius(m)<br>1.219<br>1.014<br>1.502                                                                                                                                                                                                   | 53.5<br>153.5<br>Vert.<br>Vel(m/s)<br>7.39<br>6.21<br>5.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | feet<br>feet<br>CEC Staff<br>Calc(m/s)<br>V <sub>me</sub> =N <sup>2 3b</sup> V <sub>m</sub><br>11.31<br>9.20                                                                                                                                                                                                                                    | $\begin{split} & \nabla = V_{\text{souch}} + ( \\ & \nabla = \text{single } p \\ & \text{BEFORE T} \\ & z_{\text{ort}} = z_{\text{full}} + \\ & z_{\text{ort}} = z_{\text{souch}} + \\ & z_{\text{ort}} = \text{single} \\ & z_{\text{ort}} = \text{single} \\ & \text{Single Plun} \\ & V_{\text{soure}} * ((Va)_{c} \\ & a = 0.16(z) \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Iume values<br>OUCHING-I<br>([N(V <sup>2</sup> a) <sub>ful</sub><br>(z <sub>1ul</sub> -z <sub>1000h</sub> )<br>plume sofn<br>ne Eqns<br><sup>0</sup> =0.12F <sub>0</sub> {(z-z,<br>z <sub>v</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\label{eq:constraint} \begin{split} & \text{if } z < z_{\text{bouch}} \\ & \text{USE SINGLE PLUME VALU} \\ & \text{USE SINGLE PLUME VALU} \\ & \text{(V}_{ort}^{1})^{1}, a_{m} ]^{0}. 16 \text{ if } V_{era} < V_{m} \\ & \text{(V}_{ort}^{1}, v_{bouch}) (V_{m}^{-1}, v_{bouch}) \text{ if } V_{m} \\ & \text{if } V_{era} > V_{bouch} (before merge) \\ & \text{if } V_{era} > V_{bouch} (before merge) \\ & \text{if } V_{era} > V_{bouch} (before merge) \\ & \text{if } V_{era} > V_{bouch} (before merge) \\ & \text{if } V_{era} > V_{bouch} (before merge) \\ & \text{if } V_{era} > V_{bouch} (before merge) \\ & \text{if } V_{era} > V_{bouch} (before merge) \\ & \text{if } V_{era} > V_{bouch} (before merge) \\ & \text{if } V_{era} > V_{bouch} (before merge) \\ & \text{if } V_{era} > V_{bouch} (before merge) \\ & \text{if } V_{era} > V_{bouch} (before merge) \\ & \text{if } V_{era} > V_{bouch} (before merge) \\ & \text{if } V_{era} > V_{bouch} (before merge) \\ & \text{if } V_{era} > V_{bouch} (before merge) \\ & \text{if } V_{era} > V_{bouch} (before merge) \\ & \text{if } V_{era} > V_{bouch} (before merge) \\ & \text{if } V_{era} > V_{bouch} (before merge) \\ & \text{if } V_{era} > V_{bouch} (before merge) \\ & \text{if } V_{era} > V_{bouch} (before merge) \\ & \text{if } V_{era} > V_{bouch} (before merge) \\ & \text{if } V_{era} > V_{bouch} (before merge) \\ & \text{if } V_{era} > V_{bouch} (before merge) \\ & \text{if } V_{era} > V_{bouch} (before merge) \\ & \text{if } V_{era} > V_{bouch} (before merge) \\ & \text{if } V_{era} > V_{bouch} (before merge) \\ & \text{if } V_{era} > V_{bouch} (before merge) \\ & \text{if } V_{era} > V_{bouch} (before merge) \\ & \text{if } V_{era} > V_{bouch} (before merge) \\ & \text{if } V_{era} > V_{bouch} (before merge) \\ & \text{if } V_{era} > V_{bouch} (before merge) \\ & \text{if } V_{era} > V_{bouch} (before merge) \\ & \text{if } V_{era} > V_{bouch} (before merge) \\ & \text{if } V_{era} > V_{bouch} (before merge) \\ & \text{if } V_{era} > V_{bouch} (before merge) \\ & \text{if } V_{era} > V_{bouch} (before merge) \\ & \text{if } V_{era} > V_{bouch} (before merge) \\ & \text{if } V_{era} > V_{bouch} (before merge) \\ & \text{if } V_{era} > V_{bouch} (before merge) \\ & \text{if } V_{era} > V_{bouch} (before merge) \\ & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ES<br>(after merged)<br><vcrit<vtour< td=""></vcrit<vtour<> |
| Find Height above Stack z <sub>ort</sub><br>Height above Ground z <sub>ort</sub> +h <sub>s</sub><br>Table of Plume-averaged Vertical Velocities:<br>Height (fect)<br>above ground<br><i>Top of jet =</i> 125.0<br>130:0<br>140.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16.311<br>46.791<br>(meters)<br>above stack<br>7.62<br>9.14<br>12.19<br>15.24                                                                                                                                                                                  | meters<br>meters<br>Plume<br>Radius(m)<br>1.219<br>1.014<br>1.502<br>1.990                                                                                                                                                                                          | 53.5<br>153.5<br>Vert.<br>Vel(m/s)<br>7.39<br>6.21<br>5.05<br>4.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | feet<br>feet<br>CEC Staff<br>Catc(m/s)<br>V <sub>me</sub> eN <sup>e EN</sup> V <sub>s</sub><br>11.31<br>9.20<br>8.11                                                                                                                                                                                                                            | $\begin{split} & \nabla = V_{\text{souch}} + ( \\ & \nabla = \text{single } p \\ & \text{BEFORE T} \\ & z_{\text{ort}} = z_{\text{full}} + \\ & z_{\text{ort}} = z_{\text{souch}} + \\ & z_{\text{ort}} = \text{single} \\ & z_{\text{ort}} = \text{single} \\ & \text{Single Plun} \\ & V_{\text{soure}} * ((Va)_{c} \\ & a = 0.16(z) \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Iume values<br>OUCHING-I<br>([N(V <sup>2</sup> a) <sub>ful</sub><br>(z <sub>1ul</sub> -z <sub>1000h</sub> )<br>plume sofn<br>ne Eqns<br><sup>0</sup> =0.12F <sub>0</sub> {(z-z,<br>z <sub>v</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\label{eq:starting} \begin{array}{l} \text{if } i < z_{\text{touch}} \\ \text{USE SINGLE PLUME VALU\\} \\ (V_{ort})^3] \cdot a_m ] (0.16 \ \text{if } V_{ort} < V_m \\ (V_{ort} \cdot V_{ouch}) (V_m \cdot V_{ouch}) \text{if } V_m \\ \text{if } V_{ort} > V_{ouch} (\text{before merge}) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ES<br>(after merged)<br><vcrit<vtour< td=""></vcrit<vtour<> |
| Find Height above Stack z <sub>ont</sub><br>Height above Ground z <sub>ont</sub> +h <sub>a</sub><br>Table of Plume-averaged Vertical Velocities:<br>Height (feet)<br>above ground<br><i>Top of jet = 125.0</i><br>130.0<br>140.0<br>150.0<br>160.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.311<br>46.791<br>(meters)<br>above stack<br>7.62<br>9.14<br>12.19<br>15.24<br>18.29                                                                                                                                                                         | meters<br>meters<br>Plume<br>Radius(m)<br>1.219<br>1.014<br>1.502<br>1.990<br>2.477                                                                                                                                                                                 | 53.5<br>153.5<br>Vert.<br>Vel(m/s)<br>7.39<br>6.21<br>5.05<br>4.45<br>4.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | feet<br>feet<br>Cetc Staff<br>V <sub>rec</sub> sN <sup>2</sup> <sup>25</sup> V <sub>er</sub><br>111.31<br>9.20<br>8.11<br>7.41                                                                                                                                                                                                                  | $\begin{split} & V = V_{15000} + (\\ & V = single \ p \\ & BEFORE \ T \\ & z_{ont} = z_{ful} + \\ & z_{ont} = z_{ful} + \\ & z_{ont} = single \\ & \\ & Single \ Plum \\ & v_{\mu um} * (va)_n \\ & a = 0.16(z; \theta_p = \theta_a(1 + (1 + 1))) \\ & \theta_p = \theta_a(1 + (1 + 1))) \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lume values<br>OUCHING-<br>- $([N(V^3a)_{rulin}Z_{1000h})$<br>plume solin<br>he Eqns<br>h=0.12F <sub>0</sub> (z-z,<br>z <sub>v</sub> )<br>$(\theta_0/\theta_s))^*(V_e$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{split} &\text{if } i \neq_{\text{clouch}} \\ &\text{USE SINGLE PLUME VALU} \\ &\text{USE SINGLE PLUME VALU} \\ &(Vort-Vouch) (Vort-Vouch) if Vort(Vort-Vouch) if Vort(Vort-Vouch) (Vort-Vouch) if Vort(Vort-Vouch) if Vort(Vort-Vouch) (Vort-Vouch) if Vort(Vort-Vouch) if Vort(Vort(Vort-Vouch) if Vort(Vort(Vort-Vouch) if Vort(Vort(Vort-Vouch) if Vort(Vort(Vort-Vouch) if Vort(Vort(Vort-Vouch) if Vort(Vort(Vort-Vouch) if Vort(Vort-Vouch) if Vort(Vort(Vort-Vouch) if Vort(Vort(Vort-Vouch) if Vort(Vort(Vort-Vouch) if Vort(Vort(Vort-Vouch) if Vort(Vort(Vort-Vouch) if Vort(Vort(Vort(Vort(Vort(Vort(Vort(Vort($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ES<br>(after merged)<br><verit<vtour< td=""></verit<vtour<> |
| Find Height above Stack z <sub>ort</sub><br>Height above Ground z <sub>ort</sub> +h <sub>a</sub><br>fable of Plume-averaged Vertical Velocities:<br>Height (fect)<br>above ground<br><i>Top of jet</i> = 125.0<br>130<br>140.0<br>150.0<br><i>Begin Merging (touch)</i> = 164.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16.311<br>46.791<br>(meters)<br>above stack<br>7.62<br>9.14<br>12.19<br>15.24<br>18.29<br>19.71                                                                                                                                                                | meters<br>meters<br>Plume<br>Radius(m)<br>1.219<br>1.014<br>1.502<br>1.990<br>2.477<br>2.705                                                                                                                                                                        | 53.5<br>153.5<br>Vert.<br>Vel(m/s)<br>7.39<br>6.21<br>5.05<br>4.45<br>4.45<br>4.07<br>3.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | feet<br>feet<br>CetC Staff<br>Catc(m/s)<br>V <sub>me=N<sup>0</sup></sub> <sup>cat</sup> V <sub>st</sub><br>11:31<br>9:20<br>8:11<br>7:41<br>7:16                                                                                                                                                                                                | $\begin{split} & V = V_{souch} + ( \\ & V = single p \\ & BEFORE T \\ & z_{chl} = z_{full} = z \\ & z_{chl} = z_{shuth} + z \\ & z_{chl} = z_{shuth} + z \\ & z_{chl} = single \\ & \\ & Single Plum \\ & V_{\mu u e w} + (Va)_{e} \\ & a = 0.16(z - b_{\mu} = \theta_{w}(1 + (1 - t_{\mu}) - t_{\mu})) \\ & how = 0.16(z - t_{\mu}) \\ & how = 0.16(z$                                                                                                                                                                                                                                                                                                                                           | tume values<br>OUCHING-I<br>$\cdot [[N(V^2a)_{ray}, v_{ray}, v_{r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\label{eq:constraints} \begin{split} & \text{if } i < z_{\text{fourh}} \\ & \text{USE SINGLE PLUME VALU} \\ & \text{USE CNUCLE PLUME VALU} \\ & (V_{01}^{-1})^2_{-1} a_{-1}^{-1} (0.16 \text{ if } V_{orts} < V_{m}) \\ & (V_{01}^{-1} V_{0100}) (V_{m}^{-1} V_{0100}) \text{ if } V_{m} \\ & \text{if } V_{orts}^{-1} V_{01000} (V_{m}^{-1} V_{01000}) \\ & \text{if } V_{orts}^{-1} V_{01000} (V_{m}^{-1} V_{01000}) \\ & \text{if } V_{orts}^{-1} (V_{01000}^{-1} a_{-1}^{-1} A_{-1}^{-1}) \\ & \text{if } V_{orts}^{-1} (V_{01000}^{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ES<br>(after merged)<br><verit<vtour< td=""></verit<vtour<> |
| Find Height above Stack z <sub>ort</sub><br>Height above Ground z <sub>ort</sub> +h <sub>s</sub><br>Table of Plume-averaged Vertical Velocities.<br>Height (feet)<br>above ground<br><i>Top of jet = 125.0</i><br>130 0<br>140 0<br>155 0<br><i>Begin Merging (touch) = 161.7</i><br>200 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16.311<br>46.791<br>above stack<br>7.62<br>9.14<br>12.19<br>15.24<br>18.29<br>19.71<br>30.48                                                                                                                                                                   | meters<br>meters<br>Plume<br>Radius(m)<br>1.219<br>1.014<br>1.502<br>1.990<br>2.477<br>2.705<br>#N/A                                                                                                                                                                | 53.5<br>153.5<br>Vert.<br>Vel(m/s)<br>7.39<br>6.21<br>5.05<br>4.45<br>4.07<br>3.93<br>3.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | feet<br>feet<br>CEC Staff<br>Calc(m/s)<br>V <sub>me</sub> =N <sup>p = DV</sup> s<br>11.31<br>9.20<br>8.11<br>7.41<br>7.16<br>5.98                                                                                                                                                                                                               | $\begin{split} & V = V_{souch} + ( \\ & V = single p \\ & BEFORE T \\ & z_{chl} = z_{full} = z \\ & z_{chl} = z_{shuth} + z \\ & z_{chl} = z_{shuth} + z \\ & z_{chl} = single \\ & \\ & Single Plum \\ & V_{\mu u e w} + (Va)_{e} \\ & a = 0.16(z - b_{\mu} = \theta_{w}(1 + (1 - t_{\mu}) - t_{\mu})) \\ & how = 0.16(z - t_{\mu}) \\ & how = 0.16(z$                                                                                                                                                                                                                                                                                                                                           | tume values<br>OUCHING-I<br>$\cdot [[N(V^2a)_{ray}, v_{ray}, v_{r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{split} &\text{if } i \neq_{\text{clouch}} \\ &\text{USE SINGLE PLUME VALU} \\ &\text{USE SINGLE PLUME VALU} \\ &(Vort-Vouch) (Vort-Vouch) if Vort(Vort-Vouch) if Vort(Vort-Vouch) (Vort-Vouch) if Vort(Vort-Vouch) if Vort(Vort-Vouch) (Vort-Vouch) if Vort(Vort-Vouch) if Vort(Vort(Vort-Vouch) if Vort(Vort(Vort-Vouch) if Vort(Vort(Vort-Vouch) if Vort(Vort(Vort-Vouch) if Vort(Vort(Vort-Vouch) if Vort(Vort(Vort-Vouch) if Vort(Vort-Vouch) if Vort(Vort(Vort-Vouch) if Vort(Vort(Vort-Vouch) if Vort(Vort(Vort-Vouch) if Vort(Vort(Vort-Vouch) if Vort(Vort(Vort-Vouch) if Vort(Vort(Vort(Vort(Vort(Vort(Vort(Vort($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ES<br>(after merged)<br><verit<vtour< td=""></verit<vtour<> |
| Find Height above Stack z <sub>ort</sub><br>Height above Ground z <sub>ort</sub> +h <sub>s</sub><br>Table of Plume-averaged Vertical Velocities:<br>Height (fect)<br>above ground<br><i>Top of jet =</i> 125.0<br>130.0<br>140.0<br>150.0<br>160.0<br><i>Begin Merging (touch) =</i> 164.7<br>200.0<br>250.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16.311<br>46.791<br>(meters)<br>above stack<br>7.62<br>9.14<br>12.19<br>15.24<br>18.29<br>19.71<br>30.48<br>45.72                                                                                                                                              | meters<br>meters<br>Radius(m)<br>1.219<br>1.014<br>1.502<br>1.990<br>2.477<br>2.706<br>#N/A<br>#N/A                                                                                                                                                                 | 53.5<br>153.5<br>Vert.<br>Vel(m/s)<br>7.39<br>6.21<br>5.05<br>4.45<br>4.07<br>3.93<br>3.88<br>3.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | feet<br>feet<br>CEC Staff<br>Calc(m/s)<br>V==*P <sup>2 ™</sup> V=<br>111.31<br>9.20<br>8.11<br>7.41<br>7.45<br>5.98<br>5.13                                                                                                                                                                                                                     | $\begin{split} & V = V_{souch} + ( \\ & V = single p \\ & BEFORE T \\ & z_{chl} = z_{full} = z \\ & z_{chl} = z_{shuth} + z \\ & z_{chl} = z_{shuth} + z \\ & z_{chl} = single \\ & \\ & Single Plum \\ & V_{\mu u e w} + (Va)_{e} \\ & a = 0.16(z - b_{\mu} = \theta_{w}(1 + (1 - t_{\mu}) - t_{\mu})) \\ & how = 0.16(z - t_{\mu}) \\ & how = 0.16(z$                                                                                                                                                                                                                                                                                                                                           | tume values<br>OUCHING-I<br>$\cdot [[N(V^2a)_{ray}, v_{ray}, v_{r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\label{eq:constraints} \begin{split} & \text{if } i < z_{\text{fourh}} \\ & \text{USE SINGLE PLUME VALU} \\ & \text{USE CNUCLE PLUME VALU} \\ & (V_{01}^{-1})^2_{-1} a_{-1}^{-1} (0.16 \text{ if } V_{orts} < V_{m}) \\ & (V_{01}^{-1} V_{0100}) (V_{m}^{-1} V_{0100}) \text{ if } V_{m} \\ & \text{if } V_{orts}^{-1} V_{01000} (V_{m}^{-1} V_{01000}) \\ & \text{if } V_{orts}^{-1} V_{01000} (V_{m}^{-1} V_{01000}) \\ & \text{if } V_{orts}^{-1} (V_{01000}^{-1} a_{-1}^{-1} A_{-1}^{-1}) \\ & \text{if } V_{orts}^{-1} (V_{01000}^{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ES<br>(after merged)<br><verit<vtour< td=""></verit<vtour<> |
| Find Height above Stack z <sub>ont</sub><br>Height above Ground z <sub>ont</sub> +h <sub>s</sub><br>Table of Plume-averaged Vertical Velocities:<br>Height (feet)<br>above ground<br><i>Top of jet =</i> 125.0<br>130 0<br>140 0<br>150 0<br>160 0<br><i>Begin Merging (touch) =</i> 164.7<br>200 0<br>250 0<br>300 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16.311<br>46.791<br>(meters)<br>above stack<br>7.62<br>9.14<br>12.19<br>15.24<br>18.29<br><b>19.71</b><br>30.48<br>45.72<br>60.96                                                                                                                              | meters<br>meters<br>Radius(m)<br>1.219<br>1.014<br>1.502<br>1.990<br>2.477<br>2.706<br>#N/A<br>#N/A<br>#N/A                                                                                                                                                         | 53.5<br>153.5<br>Vert.<br>Vel(m/s)<br>7.39<br>6.21<br>5.05<br>4.45<br>4.07<br>3.93<br>3.88<br>3.81<br>3.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | feet<br>feet<br>CEC Staff<br>Colc(m/s)<br>V====================================                                                                                                                                                                                                                                                                 | $\begin{split} & V = V_{stouch} + ( \\ & V = single p \\ & BEFORE T \\ & z_{chl} = z_{full} = z \\ & z_{chl} = z_{stouch} + z \\ & z_{chl} = z_{stouch} + z \\ & z_{chl} = single \\ & \\ & Single Plum \\ & V_{pures} + (Va)_{e} \\ & a = 0.16(z, -b_{p} = \theta_{s}(1 + (1, -1))) \\ & herpolate(z, -b_{p}) + herpolate(z, -b_{p}) \\ & \\ & herpolate(z, -b_{p}) + herpolate(z, -b_{p}) \\ & \\ & \\ & herpolate(z, -b_{p}) + herpolate(z, -b_{p}) \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tume values<br>OUCHING-I<br>$\cdot [[N(V^2a)_{ray}, v_{ray}, v_{r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\label{eq:constraints} \begin{split} & \text{if } i < z_{\text{fourh}} \\ & \text{USE SINGLE PLUME VALU} \\ & \text{USE CNUCLE PLUME VALU} \\ & (V_{01}^{-1})^2_{-1} a_{-1}^{-1} (0.16 \text{ if } V_{orts} < V_{m}) \\ & (V_{01}^{-1} V_{0100}) (V_{m}^{-1} V_{0100}) \text{ if } V_{m} \\ & \text{if } V_{orts}^{-1} V_{01000} (V_{m}^{-1} V_{01000}) \\ & \text{if } V_{orts}^{-1} V_{01000} (V_{m}^{-1} V_{01000}) \\ & \text{if } V_{orts}^{-1} (V_{01000}^{-1} a_{-1}^{-1} A_{-1}^{-1}) \\ & \text{if } V_{orts}^{-1} (V_{01000}^{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ES<br>(after merged)<br><verit<vtour< td=""></verit<vtour<> |
| Find Height above Stack z <sub>ort</sub><br>Height above Ground z <sub>ort</sub> +h <sub>a</sub><br>able of Plume-averaged Vertical Velocities.<br>Height (feet)<br>above ground<br><i>Top of jet =</i> 125.0<br>130.0<br>140.0<br>150.0<br>Begin Merging (touch) = 164.7<br>200.0<br>250.0<br>300.0<br>350.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16.311<br>46.791<br>(meters)<br>above stack<br>7.62<br>9.14<br>12.19<br>15.24<br>18.29<br><b>19.71</b><br>30.48<br>45.72<br>60.95<br>76.20                                                                                                                     | meters<br>meters<br>Plume<br>Radius(m)<br>1.219<br>1.014<br>1.502<br>1.990<br>2.477<br>2.706<br>#N/A<br>#N/A<br>#N/A                                                                                                                                                | 53 5<br>153.5<br>Vert.<br>Vel(m/s)<br>6 21<br>5 .05<br>4 .45<br>4 .07<br>7 .99<br>9<br>3 .88<br>3 .81<br>3 .74<br>3 .367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | feet<br>feet<br>CEC Staff<br>V                                                                                                                                                                                                                                                                                                                  | $\begin{split} & V = V_{stouch} + ( \\ & V = single p \\ & BEFORE T \\ & z_{chl} = z_{full} = z \\ & z_{chl} = z_{stouch} + z \\ & z_{chl} = z_{stouch} + z \\ & z_{chl} = single \\ & \\ & Single Plum \\ & V_{pures} + (Va)_{e} \\ & a = 0.16(z, -b_{p} = \theta_{s}(1 + (1, -1))) \\ & herpolate(z, -b_{p}) + herpolate(z, -b_{p}) \\ & \\ & herpolate(z, -b_{p}) + herpolate(z, -b_{p}) \\ & \\ & \\ & herpolate(z, -b_{p}) + herpolate(z, -b_{p}) \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tume values<br>OUCHING-I<br>$\cdot [[N(V^2a)_{ray}, v_{ray}, v_{r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\label{eq:constraints} \begin{split} & \text{if } i < z_{\text{fourh}} \\ & \text{USE SINGLE PLUME VALU} \\ & \text{USE CNUCLE PLUME VALU} \\ & (V_{01}^{-1})^2_{-1} a_{-1}^{-1} (0.16 \text{ if } V_{orts} < V_{m}) \\ & (V_{01}^{-1} V_{0100}) (V_{m}^{-1} V_{0100}) \text{ if } V_{m} \\ & \text{if } V_{orts}^{-1} V_{01000} (V_{m}^{-1} V_{01000}) \\ & \text{if } V_{orts}^{-1} V_{01000} (V_{m}^{-1} V_{01000}) \\ & \text{if } V_{orts}^{-1} (V_{01000}^{-1} a_{-1}^{-1} A_{-1}^{-1}) \\ & \text{if } V_{orts}^{-1} (V_{01000}^{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ES<br>(after merged<br><verit<vtou< td=""></verit<vtou<>    |
| Find Height above Stack 2 <sub>ort</sub><br>Height above Ground 2 <sub>ort</sub> +h <sub>s</sub><br>fable of Plume-averaged Vertical Velocities.<br>Height (feet)<br>above ground<br><i>Top of jet</i> = 125.0<br>130 0<br>140 0<br>150 0<br>160 0<br><i>Begin Merging (touch)</i> = 164.7<br>200 0<br>356 0<br>356 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16.311<br>46.791<br>above stack<br>7.62<br>9.141<br>12.19<br>15.24<br>18.29<br>19.71<br>30.48<br>45.72<br>60.96<br>76.20<br>9.144                                                                                                                              | meters<br>meters<br>Plume<br>Radius(m)<br>1.219<br>1.014<br>1.502<br>1.990<br>2.477<br>2.706<br>#N/A<br>#N/A<br>#N/A<br>#N/A                                                                                                                                        | 53.5<br>153.5<br>Vert.<br>Vel(m/s)<br>6.21<br>5.05<br>4.45<br>4.07<br>3.999<br>3.88<br>3.81<br>3.74<br>3.67<br>3.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | feet<br>feet<br>CetC Staff<br>Calc(m/s)<br>V <sub>rec</sub> =N <sup>2-21</sup> V <sub>ec</sub><br>11 31<br>9 20<br>8 11<br>7 41<br>7 16<br>5 98<br>5 13<br>4 63<br>4 63<br>4 02                                                                                                                                                                 | $\begin{split} & V = V_{lough} + ( \\ V = single \ p \\ & BEFORE \ T \\ & Zont = Z_{risc} + \\ & Zont = Z_{risc} + \\ & Zont = single \\ & Single \ Plum \\ & Zont = single \\ & Single \ Plum \\ & Zont = single \\ & Single \ Plum \\ & Zont = single \\ & Single \ Plum \\ & Zont = single \\ & Single \ Plum \\ & Zont = single \\ & Single \ Plum \\ & Zont = single \\ & Zont = single \\ & Zont = single \\ & Single \ Plum \\ & Zont = single \\ & Zont = single \\ & Single \ Plum \\ & Zont = single \\ & Zont \\ & Zont = single \\ & Zont \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tume values<br>OUCHING-<br>$([N(V^2a)_{rail})_{rail}(z_{1ar}^2,z_{1ava})_r)$<br>the Eqns<br>$r^{2}-0.12F_{0}(z,z_{1}^{2},z_{2}^{2})$<br>$(\theta_{0}/\theta_{0}))^{*}(V_{e}$<br>$I Layer Eqn V_{m}-V_{1ava})^{*}(I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\label{eq:constraints} \begin{split} & \text{if } i \neq_{\text{ztouch}} \\ & \text{USE SINGLE PLUME VALU} \\ & \text{USE CNUCLE PLUME VALU} \\ & (V_{01}^{-1})^2_{-1}a_{-1}^{-1}(0.16 \text{ if } V_{orta} < V_{m}) \\ & (V_{01}^{-1} V_{0100}) (V_{m} - V_{0100}) \text{ if } V_{m} \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{0100}) \\ & \text{if } V_{orta} > V_{0000} (\text{before merge}) \\ & \text{if } V_{orta} > V_{0000} (\text{before merge}) \\ & \text{if } V_{orta} > V_{0000} (\text{before merge}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{0100}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{0100}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{00000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{00000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{01000} (V_{01000} (V_{01000} - V_{01000}) \\ & \text{if } V_{01000} (V_{01000} - V_{01000}) \\ & \text{if } V_{01000} (V_{01000} - V_{01000} - V_{01000}) \\ &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ES<br>(after merged<br><verit<vtou< td=""></verit<vtou<>    |
| Find Height above Stack 2 <sub>ort</sub><br>Height above Ground 2 <sub>ort</sub> +h <sub>s</sub><br>Table of Plume-averaged Vertical Velocities:<br>Height (fect)<br>above ground<br><i>Top of jet - 125.0</i><br>130.0<br>140.0<br>150.0<br>160.0<br><i>Begin Merging (touch) - 164.7</i><br>200.0<br>256.0<br>300.0<br>356.0<br>400.0<br><i>End Merging (full/mp) - 661.9</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16 311<br>46 791<br>above stack<br>7.62<br>9.14<br>12,19<br>15,24<br>18,29<br>19,71<br>30.48<br>45,72<br>60.96<br>76,20<br>91.44<br>171.88                                                                                                                     | meters<br>meters<br>Plume<br>Radius(m)<br>1.219<br>1.014<br>1.502<br>1.990<br>2.477<br>2.706<br>#N/A<br>#N/A<br>#N/A<br>#N/A<br>#N/A<br>49.262                                                                                                                      | 53.5<br>153.5<br>Vert.<br>Vel(m/s)<br>6.21<br>5.55<br>4.45<br>4.67<br>3.93<br>3.88<br>3.81<br>3.74<br>3.67<br>3.60<br>3.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | feet<br>feet<br>CEC Staff<br>Cole(m/s)<br>V==*N <sup>2</sup> =V <sub>4</sub><br>111 31<br>9 202<br>8 11<br>7 41<br>7 16<br>5 98<br>5 13<br>4 63<br>4 28<br>4 4 28<br>4 20<br>2 3 24                                                                                                                                                             | $\begin{split} & V = V_{1souch} + ( \\ & V = single \ p \\ & BEFORE \ T \\ & z_{col} = z_{fal} + z_{col} = single \\ & z_{col} = single \\ & Single \ Plum \\ & V_{uos} = ((Va)_{e} \\ & a = 0.16 (z, z) \\ & \theta_{p} = \theta_{a}(1 + (1, 1, 1)) \\ & Interpolatee \\ & V = V_{1souch} + ( \\ & Merged \ Plu \\ \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tume values<br>OUCHING-<br>([[N(V <sup>1</sup> a] <sub>rat</sub><br>(z <sub>1at</sub> -z <sub>1ovon</sub> ))<br>plume sofn<br>he Eqns<br>z <sub>v</sub> )<br>(8 <sub>e</sub> /9 <sub>e</sub> ))'(V <sub>e</sub><br>H Layer Eqn<br>V <sub>m</sub> -V <sub>1ovoh</sub> )''(<br>me Eqns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\label{eq:constraints} \begin{split} & \text{if } i \neq_{\text{ztouch}} \\ & \text{USE SINGLE PLUME VALU} \\ & \text{USE CNUCLE PLUME VALU} \\ & (V_{01}^{-1})^2_{-1}a_{-1}^{-1}(0.16 \text{ if } V_{orta} < V_{m}) \\ & (V_{01}^{-1} V_{0100}) (V_{m} - V_{0100}) \text{ if } V_{m} \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{0100}) \\ & \text{if } V_{orta} > V_{0000} (\text{before merge}) \\ & \text{if } V_{orta} > V_{0000} (\text{before merge}) \\ & \text{if } V_{orta} > V_{0000} (\text{before merge}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{0100}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{0100}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{00000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{00000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{01000} (V_{01000} (V_{01000} - V_{01000}) \\ & \text{if } V_{01000} (V_{01000} - V_{01000}) \\ & \text{if } V_{01000} (V_{01000} - V_{01000} - V_{01000}) \\ &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ES<br>(after merged)<br><verit<vtour< td=""></verit<vtour<> |
| Bind Height above Stack zont           Height above Ground zont the           Table of Plume-averaged Vertical Velocities:           Height (feet)           above ground           Top of jet = 125.0           1300           140.0           150.0           160.0           160.0           160.0           160.0           160.0           160.0           160.0           160.0           160.0           160.0           160.0           160.0           160.0           160.0           160.0           160.0           160.0           160.0           160.0           160.0           160.0           160.0           160.0           200.0           200.0           200.0           200.0           200.0           200.0           200.0           200.0           200.0           200.0           200.0           200.0           200.0           200.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16 311<br>46 791<br>above stack<br>7.62<br>9.14<br>12 19<br>15 24<br>18 29<br>19.71<br>30.44<br>45.72<br>60.96<br>76.20<br>91.44<br>171.88<br>213.36                                                                                                           | meters<br>meters<br>Plume<br>Radius(m)<br>1.219<br>1.014<br>1.502<br>1.990<br>2.477<br>2.706<br>#NVA<br>#NVA<br>#NVA<br>#NVA<br>#NVA<br>#NVA<br>#NVA<br>#NVA                                                                                                        | 53.5<br>153.5<br>Vert.<br>Vel(m/s)<br>6.21<br>5.05<br>4.45<br>4.45<br>4.47<br>3.93<br>3.88<br>3.81<br>3.74<br>3.67<br>3.60<br>3.24<br>4.3,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | feet<br>feet<br>CEC Stalf<br>Calc(m/s)<br>V==*N <sup>2 20</sup> vs<br>8 11<br>7 41<br>7 16<br>5 98<br>5 13<br>4 63<br>4 4 02<br>3 24<br>3 3 01                                                                                                                                                                                                  | $\begin{split} & V = V_{touch} + ( \\ V = single \ p \\ & BEFORE \ z_{chl} = z_{full} + \\ & z_{chl} = z_{full} + \\ & z_{chl} = z_{full} + \\ & z_{chl} = single \\ & \\ & Single \ Plum \\ & v_{puret} + (va)_{p} \\ & a = 0, 16(z, b_{p} = \theta_{s}(1 + (1, -1))) \\ & & \\ & Interpolate \\ & V = v_{touch} + ( \\ & \\ & \\ & Merged \ Plu \\ & V = (N(V^2a)_{n}, -1) \\ \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tume values<br>OUCHING-1<br>$\cdot$ [[N(V <sup>2</sup> a) <sub>ful</sub><br>$\cdot$ []N(V <sup>2</sup> a)<br>$\cdot$ []N(V <sup>2</sup> a | $\label{eq:constraints} \begin{split} & \text{if } i \neq_{\text{ztouch}} \\ & \text{USE SINGLE PLUME VALU} \\ & \text{USE CNUCLE PLUME VALU} \\ & (V_{01}^{-1})^2_{-1}a_{-1}^{-1}(0.16 \text{ if } V_{orta} < V_{m}) \\ & (V_{01}^{-1} V_{0100}) (V_{m} - V_{0100}) \text{ if } V_{m} \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{0100}) \\ & \text{if } V_{orta} > V_{0000} (\text{before merge}) \\ & \text{if } V_{orta} > V_{0000} (\text{before merge}) \\ & \text{if } V_{orta} > V_{0000} (\text{before merge}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{0100}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{0100}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{00000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{00000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{01000} (V_{01000} (V_{01000} - V_{01000}) \\ & \text{if } V_{01000} (V_{01000} - V_{01000}) \\ & \text{if } V_{01000} (V_{01000} - V_{01000} - V_{01000}) \\ &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ES<br>(after merged<br><verit<vtou< td=""></verit<vtou<>    |
| Find Height above Stack z <sub>ort</sub><br>Height above Ground z <sub>ort</sub> +h <sub>a</sub><br>fable of Plume-averaged Vertical Velocities.<br>Height (feet)<br>above ground<br><i>Top of jet</i> = 125.0<br>130.0<br>140.0<br>150.0<br>160.0<br><i>Begin Merging (touch)</i> = 164.7<br>200.0<br>250.0<br>300.0<br>356.0<br>400.0<br><i>End Merging (full/mp)</i> = 661.9<br>800.0<br>1000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.311<br>46.791<br>above stack<br>7.62<br>9.14<br>12.19<br>15.24<br>18.29<br>19.17<br>30.48<br>45.72<br>60.96<br>76.20<br>91.44<br>1771.88<br>2213.36<br>2274.32                                                                                              | meters<br>meters<br>Radius(m)<br>1.219<br>1.014<br>1.502<br>1.990<br>2.477<br>2.706<br>#N/A<br>#N/A<br>#N/A<br>#N/A<br>#N/A<br>#N/A<br>#N/A<br>#N/A                                                                                                                 | 53 5<br>153.5<br>Vert.<br>Vel(m/s)<br>6 21<br>5 .05<br>4 .45<br>4 .07<br>3.99<br>3 .88<br>3 .81<br>3 .74<br>3 .60<br>3 .24<br>3 .10<br>2 .94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | feet<br>feet<br>CEC Staff<br>Calc(m/s)<br>V <sub>m</sub> =N <sup>2</sup> <sup>-31</sup> V <sub>m</sub><br>11 31<br>9 20<br>8 11<br>7 16<br>5 98<br>5 13<br>4 6<br>5 98<br>5 13<br>4 4 28<br>4 4 22<br>3 24<br>3 20<br>2 26                                                                                                                      | $\begin{split} & V = V_{1souch} + ( \\ & V = single \ p \\ & BEFORE \ T \\ & z_{col} = z_{fal} + z_{col} = single \\ & z_{col} = single \\ & Single \ Plum \\ & V_{uos} = ((Va)_{e} \\ & a = 0.16 (z, z) \\ & \theta_{p} = \theta_{a}(1 + (1, 1, 1)) \\ & Interpolatee \\ & V = V_{1souch} + ( \\ & Merged \ Plu \\ \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tume values<br>OUCHING-1<br>$\cdot$ [[N(V <sup>2</sup> a) <sub>ful</sub><br>$\cdot$ []N(V <sup>2</sup> a)<br>$\cdot$ []N(V <sup>2</sup> a | $\label{eq:constraints} \begin{split} & \text{if } i \neq_{\text{ztouch}} \\ & \text{USE SINGLE PLUME VALU} \\ & \text{USE CNUCLE PLUME VALU} \\ & (V_{01}^{-1})^2_{-1}a_{-1}^{-1}(0.16 \text{ if } V_{orta} < V_{m}) \\ & (V_{01}^{-1} V_{0100}) (V_{m} - V_{0100}) \text{ if } V_{m} \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{0100}) \\ & \text{if } V_{orta} > V_{0000} (\text{before merge}) \\ & \text{if } V_{orta} > V_{0000} (\text{before merge}) \\ & \text{if } V_{orta} > V_{0000} (\text{before merge}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{0100}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{0100}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{00000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{00000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{01000} (V_{01000} (V_{01000} - V_{01000}) \\ & \text{if } V_{01000} (V_{01000} - V_{01000}) \\ & \text{if } V_{01000} (V_{01000} - V_{01000} - V_{01000}) \\ &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ES<br>(after merged<br><verit<vtou< td=""></verit<vtou<>    |
| Find Height above Stack 2 <sub>ort</sub><br>Height above Ground 2 <sub>ort</sub> +h <sub>s</sub><br>Table of Plume-averaged Vertical Velocities.<br>Height (feet)<br>above ground<br><i>Top of jet</i> = 125.0<br>130 0<br>140 0<br>150 0<br>160 0<br><i>Begin Merging (touch)</i> = 164.7<br>200 0<br>255 0<br>300 0<br>255 0<br>300 0<br>255 0<br>300 0<br>250 0<br>200 0<br>250 0<br>200 0<br>2000 | 16 311<br>46 791<br>above stack<br>7.62<br>9.141<br>12 19<br>15 24<br>18 29<br>19.77<br>30 48<br>45 72<br>60.96<br>76 200<br>91 44<br>177.88<br>213 36<br>274 32<br>335 28                                                                                     | meters<br>meters<br>Radius(m)<br>1.014<br>1.014<br>1.502<br>1.990<br>2.477<br>2.766<br>#N/A<br>#N/A<br>#N/A<br>#N/A<br>#N/A<br>49.265<br>5.901<br>65.655<br>5.901                                                                                                   | 53.5<br>153.5<br>Vert.<br>Vel(m/s)<br>6.21<br>5.05<br>4.45<br>4.07<br>3.99<br>3.88<br>3.81<br>3.74<br>3.60<br>3.24<br>3.10<br>3.10<br>2.54<br>4.281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | feet<br>feet<br>CEC Staff<br>Calc(m/s)<br>V <sub>re</sub> =t <sup>e ct</sup> V <sub>s</sub><br>11 31<br>9 20<br>8 11<br>7 41<br>7 16<br>5 98<br>5 13<br>4 63<br>4 63<br>4 63<br>4 63<br>4 02<br>3 24<br>3 01<br>2 76<br>2 58                                                                                                                    | $\begin{split} & V = V_{touch} + ( \\ V = single \ p \\ & BEFORE \ z_{chl} = z_{full} + \\ & z_{chl} = z_{full} + \\ & z_{chl} = z_{full} + \\ & z_{chl} = single \\ & \\ & Single \ Plum \\ & v_{puret} + (va)_{p} \\ & a = 0, 16(z, b_{p} = \theta_{s}(1 + (1, -1))) \\ & & \\ & Interpolate \\ & V = v_{touch} + ( \\ & \\ & \\ & Merged \ Plu \\ & V = (N(V^2a)_{n}, -1) \\ \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tume values<br>OUCHING-1<br>$\cdot$ [[N(V <sup>2</sup> a) <sub>ful</sub><br>$\cdot$ []N(V <sup>2</sup> a)<br>$\cdot$ []N(V <sup>2</sup> a | $\label{eq:constraints} \begin{split} & \text{if } i \neq_{\text{ztouch}} \\ & \text{USE SINGLE PLUME VALU} \\ & \text{USE CNUCLE PLUME VALU} \\ & (V_{01}^{-1})^2_{-1}a_{-1}^{-1}(0.16 \text{ if } V_{orta} < V_{m}) \\ & (V_{01}^{-1} V_{0100}) (V_{m} - V_{0100}) \text{ if } V_{m} \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{0100}) \\ & \text{if } V_{orta} > V_{0000} (\text{before merge}) \\ & \text{if } V_{orta} > V_{0000} (\text{before merge}) \\ & \text{if } V_{orta} > V_{0000} (\text{before merge}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{0100}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{0100}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{00000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{00000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{01000} (V_{01000} (V_{01000} - V_{01000}) \\ & \text{if } V_{01000} (V_{01000} - V_{01000}) \\ & \text{if } V_{01000} (V_{01000} - V_{01000} - V_{01000}) \\ &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ES<br>(after merged<br><verit<vtou< td=""></verit<vtou<>    |
| Find Height above Stack 2 <sub>ort</sub><br>Height above Ground 2 <sub>ort</sub> +h <sub>s</sub><br>Table of Plume-averaged Vertical Velocities:<br>Height (fect)<br>above ground<br><i>Top of jet - 125.0</i><br>130.0<br>140.0<br>150.0<br>160.0<br><i>Begin Merging (touch) - 164.7</i><br>200.0<br>256.0<br>300.0<br>356.0<br>561.9<br><i>End Merging (full/mp) - 661.9</i><br>800.0<br>1000.0<br>1200.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16 311<br>46 791<br>above stack<br>7.62<br>9.14<br>12,19<br>15,24<br>18,29<br>19.71<br>30.48<br>45,72<br>60.96<br>76,20<br>91.44<br>1771.88<br>2213.36<br>274.32<br>335.28<br>3362,42                                                                          | meters<br>meters<br>Plume<br>Radius(m)<br>1.219<br>1.011<br>1.502<br>1.990<br>2.477<br>2.705<br>#N/A<br>#N/A<br>#N/A<br>#N/A<br>49.262<br>55.901<br>65.655<br>75.403<br>85.162                                                                                      | 53.5<br>153.5<br>Vert.<br>Vel(m/s)<br>6.21<br>5.05<br>4.45<br>4.47<br>3.93<br>3.88<br>3.81<br>3.74<br>3.67<br>3.60<br>3.24<br>3.10<br>2.94<br>2.81<br>2.270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | feet<br>feet<br>CEC Staff<br>Celc(m/s)<br>V==*№25V_s<br>111 31<br>9 202<br>8 11<br>7 41<br>7 16<br>5 98<br>5 13<br>4 63<br>4 26<br>4 4 20<br>3 24<br>4 3 01<br>2 76<br>2 88<br>2 244                                                                                                                                                            | $\begin{split} & V = V_{touch} + ( \\ V = single \ p \\ & BEFORE \ z_{chl} = z_{full} + \\ & z_{chl} = z_{full} + \\ & z_{chl} = z_{full} + \\ & z_{chl} = single \\ & \\ & Single \ Plum \\ & v_{puret} + (va)_{p} \\ & a = 0, 16(z, b_{p} = \theta_{s}(1 + (1, -1))) \\ & & \\ & Interpolate \\ & V = v_{touch} + ( \\ & \\ & \\ & Merged \ Plu \\ & V = (N(V^2a)_{n}, -1) \\ \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tume values<br>OUCHING-1<br>$\cdot$ [[N(V <sup>2</sup> a) <sub>ful</sub><br>$\cdot$ [[N(V <sup>2</sup> a) <sub>ful</sub><br>plume soln<br>he Eqns<br>*-0.12F <sub>0</sub> (z-z,<br>z,)<br>( $\theta_0/\theta_s$ ))*(Ve<br>t Layer Eqn<br>$V_m$ -V <sub>1000</sub> )*(C<br>me Eqns<br>$_{a}/a$ ) <sup>1/2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\label{eq:constraints} \begin{split} & \text{if } i \neq_{\text{ztouch}} \\ & \text{USE SINGLE PLUME VALU} \\ & \text{USE CNUCLE PLUME VALU} \\ & (V_{01}^{-1})^2_{-1}a_{-1}^{-1}(0.16 \text{ if } V_{orta} < V_{m}) \\ & (V_{01}^{-1} V_{0100}) (V_{m} - V_{0100}) \text{ if } V_{m} \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{0100}) \\ & \text{if } V_{orta} > V_{0000} (\text{before merge}) \\ & \text{if } V_{orta} > V_{0000} (\text{before merge}) \\ & \text{if } V_{orta} > V_{0000} (\text{before merge}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{0100}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{0100}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{00000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{00000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{01000} (V_{01000} (V_{01000} - V_{01000}) \\ & \text{if } V_{01000} (V_{01000} - V_{01000}) \\ & \text{if } V_{01000} (V_{01000} - V_{01000} - V_{01000}) \\ &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ES<br>(after merged<br><verit<vtou< td=""></verit<vtou<>    |
| Find Height above Stack z <sub>ort</sub><br>Height above Ground z <sub>ort</sub> +h <sub>a</sub><br>fable of Plume-averaged Vertical Velocities:<br>Height (feet)<br>above ground<br><i>Top of jet</i> = 125.0<br>130 0<br>140 0<br>160 0<br><i>Begin Merging (touch)</i> = 164.7<br>200 0<br>2560 0<br>300 0<br>300 0<br>350.0<br>400.0<br><i>End Merging (full/mp)</i> = 661.9<br>800 0<br>1000 0<br>1200 0<br>1400 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16 311<br>46 791<br>above stack<br>7.62<br>9.14<br>12 19<br>15 24<br>18 22<br><b>19.71</b><br>30.48<br>45 72<br>60.95<br>76 20<br>91.44<br><b>171.88</b><br>213.35 28<br>335 28<br>336 24<br>457 20                                                            | meters<br>meters<br>Radius(m)<br>1.014<br>1.502<br>1.903<br>2.477<br>2.705<br>#N/A<br>#N/A<br>#N/A<br>#N/A<br>#N/A<br>#N/A<br>49.262<br>55.655<br>75.403<br>85.162<br>94.915                                                                                        | 53 5<br>153.5<br>Vert.<br>Vel(m/s)<br>6 21<br>5 05<br>4 45<br>4 45<br>4 45<br>3 393<br>3 88<br>3 81<br>3 74<br>3 67<br>3 60<br>3 24<br>3 30<br>2 94<br>2 81<br>2 70<br>2 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | feet<br>feet<br>CEC Stalf<br>Calc(m/s)<br>V==*N <sup>2 20</sup> vs<br>8 11<br>7 41<br>7 16<br>5 98<br>5 13<br>4 63<br>4 4 02<br>3 24<br>4 02<br>3 24<br>3 3 01<br>2 76<br>2 58<br>2 44<br>2 23                                                                                                                                                  | $\begin{split} & V = V_{touch} + ( \\ V = single \ p \\ & BEFORE \ z_{chl} = z_{full} + \\ & z_{chl} = z_{full} + \\ & z_{chl} = z_{full} + \\ & z_{chl} = single \\ & \\ & Single \ Plum \\ & v_{puret} + (va)_{p} \\ & a = 0, 16(z, b_{p} = \theta_{s}(1 + (1, -1))) \\ & & \\ & Interpolate \\ & V = v_{touch} + ( \\ & \\ & \\ & Merged \ Plu \\ & V = (N(V^2a)_{n}, -1) \\ \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tume values<br>OUCHING-1<br>$\cdot$ [[N(V <sup>2</sup> a) <sub>ful</sub><br>$\cdot$ [[N(V <sup>2</sup> a) <sub>ful</sub><br>plume soln<br>he Eqns<br>*-0.12F <sub>0</sub> (z-z,<br>z,)<br>( $\theta_0/\theta_s$ ))*(Ve<br>t Layer Eqn<br>$V_m$ -V <sub>1000</sub> )*(C<br>me Eqns<br>$_{a}/a$ ) <sup>1/2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\label{eq:constraints} \begin{split} & \text{if } i \neq_{\text{ztouch}} \\ & \text{USE SINGLE PLUME VALU} \\ & \text{USE CNUCLE PLUME VALU} \\ & (V_{01}^{-1})^2_{-1}a_{-1}^{-1}(0.16 \text{ if } V_{orta} < V_{m}) \\ & (V_{01}^{-1} V_{0100}) (V_{m} - V_{0100}) \text{ if } V_{m} \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{0100}) \\ & \text{if } V_{orta} > V_{0000} (\text{before merge}) \\ & \text{if } V_{orta} > V_{0000} (\text{before merge}) \\ & \text{if } V_{orta} > V_{0000} (\text{before merge}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{0100}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{0100}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{00000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{00000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{01000} (V_{01000} (V_{01000} - V_{01000}) \\ & \text{if } V_{01000} (V_{01000} - V_{01000}) \\ & \text{if } V_{01000} (V_{01000} - V_{01000} - V_{01000}) \\ &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ES<br>(after merged<br><verit<vtou< td=""></verit<vtou<>    |
| Find Height above Stack z <sub>ort</sub><br>Height above Ground z <sub>ort</sub> +h <sub>a</sub><br>Table of Plume-averaged Vertical Velocities.<br>Height (feet)<br>above ground<br><i>Top of jet = 125.0</i><br>130.0<br>140.0<br>150.0<br>160.0<br><i>Begin Merging (touch) = 161.7</i><br>200.0<br>255.0<br>300.0<br>300.0<br>300.0<br>300.0<br>300.0<br>100.0<br><i>End Merging (tull/mp) = 661.9</i><br>800.0<br>1000.0<br>1200.0<br>1200.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16 311<br>46 791<br>above stack<br>7.62<br>9.141<br>12 19<br>15 24<br>18 29<br>19.17<br>30 48<br>45 72<br>60 95<br>76 20<br>91 44<br>1771.88<br>2213 35<br>2274 32<br>335 28<br>396 24<br>457 20<br>518 16                                                     | meters<br>meters<br>Radius(m)<br>1.014<br>1.502<br>1.990<br>2.706<br>#NVA<br>#NVA<br>#NVA<br>#NVA<br>#NVA<br>#NVA<br>49.262<br>55.901<br>65.655<br>75.403<br>85.162<br>94.915<br>104.663                                                                            | 53 5<br>153.5<br>Vert.<br>Vel(m/s)<br>6 21<br>5 .05<br>4 .45<br>4 .07<br>3.99<br>3.88<br>3.81<br>3.74<br>3.67<br>3.60<br>3.24<br>2.81<br>2.70<br>2.60<br>2.60<br>2.50<br>2.52<br>2.52<br>2.52<br>3.53<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.55<br>3.5 | feet<br>feet<br>CEC Staff<br>Calc(m/s)<br>V <sub>∞</sub> st <sup>gent</sup> V <sub>n</sub><br>1133<br>9 20<br>8 11<br>7 161<br>5 98<br>5 13<br>4 63<br>4 63<br>4 4 02<br>3 24<br>9 20<br>6 2 58<br>2 44<br>2 23<br>2 25<br>3 2 23                                                                                                               | $\begin{split} & V = V_{touch} + ( \\ V = single \ p \\ & BEFORE \ z_{chl} = z_{full} + \\ & z_{chl} = z_{full} + \\ & z_{chl} = z_{full} + \\ & z_{chl} = single \\ & \\ & Single \ Plum \\ & v_{puret} + (va)_{p} \\ & a = 0, 16(z, b_{p} = \theta_{s}(1 + (1, -1))) \\ & & \\ & Interpolate \\ & V = v_{touch} + ( \\ & \\ & \\ & Merged \ Plu \\ & V = (N(V^2a)_{n}, -1) \\ \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tume values<br>OUCHING-1<br>$\cdot$ [[N(V <sup>2</sup> a) <sub>ful</sub><br>$\cdot$ [[N(V <sup>2</sup> a) <sub>ful</sub><br>plume soln<br>he Eqns<br>*-0.12F <sub>0</sub> (z-z,<br>z,)<br>( $\theta_0/\theta_s$ ))*(Ve<br>t Layer Eqn<br>$V_m$ -V <sub>1000</sub> )*(C<br>me Eqns<br>$_{a}/a$ ) <sup>1/2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\label{eq:constraints} \begin{split} & \text{if } i \neq_{\text{ztouch}} \\ & \text{USE SINGLE PLUME VALU} \\ & \text{USE CNUCLE PLUME VALU} \\ & (V_{01}^{-1})^2_{-1}a_{-1}^{-1}(0.16 \text{ if } V_{orta} < V_{m}) \\ & (V_{01}^{-1} V_{0100}) (V_{m} - V_{0100}) \text{ if } V_{m} \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{0100}) \\ & \text{if } V_{orta} > V_{0000} (\text{before merge}) \\ & \text{if } V_{orta} > V_{0000} (\text{before merge}) \\ & \text{if } V_{orta} > V_{0000} (\text{before merge}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{0100}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{0100}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{00000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{00000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{01000} (V_{01000} (V_{01000} - V_{01000}) \\ & \text{if } V_{01000} (V_{01000} - V_{01000}) \\ & \text{if } V_{01000} (V_{01000} - V_{01000} - V_{01000}) \\ &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ES<br>(after merged)<br><verit<vtour< td=""></verit<vtour<> |
| Find Height above Stack Z <sub>ort</sub><br>Height above Ground Z <sub>ort</sub> +h <sub>s</sub><br>Table of Plume-averaged Vertical Velocities:<br>Height (feet)<br>above ground<br><i>Top of jet</i> = 125.0<br>130 0<br>140 0<br>150 0<br>160 0<br><i>Begin Merging (touch)</i> = 164.7<br>200 0<br>255 0<br>300 0<br>255 0<br>300 0<br>255 0<br>300 0<br>100 0<br>1000 | 16 311<br>46 791<br>above stack<br>7.62<br>9.141<br>12 19<br>15 24<br>18 29<br>19.77<br>30 48<br>45 72<br>60.96<br>76 200<br>91 44<br>171.88<br>213 36<br>274 32<br>335 28<br>396 24<br>457 20<br>518.16<br>579 12                                             | meters<br>meters<br>Radius(m)<br>1.014<br>1.014<br>1.502<br>1.990<br>2.477<br>2.766<br>#N/A<br>#N/A<br>#N/A<br>#N/A<br>#N/A<br>49.267<br>55.901<br>65.655<br>75.403<br>85.162<br>94.916<br>104.669<br>94.916                                                        | 53 5<br>153.5<br>Vert.<br>Vel(m/s)<br>6 21<br>5 05<br>4 45<br>4 407<br>3.999<br>3.88<br>3.81<br>3.74<br>3.60<br>3.24<br>2.81<br>2.70<br>2.60<br>2.252<br>2.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | feet<br>feet<br>CEC Staff<br>Calc(m/s)<br>V <sub>re</sub> st <sup>e at</sup> V <sub>s</sub><br>11 31<br>9 20<br>8 11<br>7 41<br>7 16<br>5 98<br>5 13<br>4 63<br>4 402<br>3 24<br>3 20<br>2 58<br>2 44<br>2 33<br>2 23<br>2 25<br>5 24<br>2 45<br>2 45<br>2 45<br>2 45<br>2 45<br>2 45                                                           | $\begin{split} & V = V_{touch} + ( \\ V = single \ p \\ & BEFORE \ T \\ & Z_{ch} = 2r_{tal} + \\ & Z_{ch} = 2r_{tal} + \\ & Z_{ch} = single \\ & \\ & Single \ Plum \\ & V_{puret} + (Va)_p \\ & a = 0, 16(z, b_p = \theta_s(1 + (1, -1))) \\ & \\ & Interpolate \\ & V = V_{touch} + ( \\ & \\ & \\ & Merged \ Plu \\ & V = (N(V^2a)_n, \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tume values<br>OUCHING-1<br>$\cdot$ [[N(V <sup>2</sup> a) <sub>ful</sub><br>$\cdot$ [[N(V <sup>2</sup> a) <sub>ful</sub><br>plume soln<br>he Eqns<br>*-0.12F <sub>0</sub> (z-z,<br>z,)<br>( $\theta_0/\theta_s$ ))*(Ve<br>t Layer Eqn<br>$V_m$ -V <sub>1000</sub> )*(C<br>me Eqns<br>$_{a}/a$ ) <sup>1/2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\label{eq:constraints} \begin{split} & \text{if } i \neq_{\text{ztouch}} \\ & \text{USE SINGLE PLUME VALU} \\ & \text{USE CNUCLE PLUME VALU} \\ & (V_{01}^{-1})^2_{-1}a_{-1}^{-1}(0.16 \text{ if } V_{orta} < V_{m}) \\ & (V_{01}^{-1} V_{0100}) (V_{m} - V_{0100}) \text{ if } V_{m} \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{0100}) \\ & \text{if } V_{orta} > V_{0000} (\text{before merge}) \\ & \text{if } V_{orta} > V_{0000} (\text{before merge}) \\ & \text{if } V_{orta} > V_{0000} (\text{before merge}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{0100}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{0100}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{00000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{00000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{01000} (V_{01000} (V_{01000} - V_{01000}) \\ & \text{if } V_{01000} (V_{01000} - V_{01000}) \\ & \text{if } V_{01000} (V_{01000} - V_{01000} - V_{01000}) \\ &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ES<br>(after merged)<br><verit<vtoue< td=""></verit<vtoue<> |
| Find Height above Stack 2 <sub>ort</sub><br>Height above Ground 2 <sub>ort</sub> +h <sub>s</sub><br>Table of Plume-overaged Vertical Velocities:<br>Height (fect)<br>above ground<br><i>Top of jet =</i> 125.0<br>130.0<br>140.0<br>150.0<br><i>Begin Merging (touch) =</i> 164.7<br>200.0<br><i>Begin Merging (touch) =</i> 164.7<br>200.0<br>300.0<br>300.0<br>561.9<br>800.0<br>1000.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16 311<br>46 791<br>above stack<br>7.62<br>9.141<br>12.19<br>15.24<br>18.29<br>19.71<br>30.48<br>45.72<br>60.96<br>76 20<br>91.44<br>171.88<br>2213.36<br>274.32<br>335.28<br>336.24<br>457.20<br>518.16<br>659.12<br>640.08                                   | meters<br>meters<br>Plume<br>Radius(m)<br>1.014<br>1.014<br>1.502<br>1.999<br>2.477<br>2.705<br>#N/A<br>#N/A<br>#N/A<br>#N/A<br>#N/A<br>#N/A<br>49.262<br>55.901<br>65.655<br>75.403<br>85.162<br>94.915<br>104.669<br>114.423<br>1124.175                          | 53.5<br>153.5<br>Vert.<br>Vel(m/s)<br>6.21<br>5.05<br>4.45<br>4.47<br>3.93<br>3.88<br>3.81<br>3.74<br>3.67<br>3.505<br>3.24<br>3.10<br>2.94<br>2.81<br>2.270<br>2.502<br>2.52<br>2.44<br>2.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | feet<br>feet<br>CEC Staff<br>Calc(m/s)<br>V==*N <sup>2</sup> =V.<br>11 31<br>9 202<br>8 11<br>7 41<br>7 16<br>5 98<br>5 13<br>4 63<br>4 20<br>3 24<br>4 20<br>3 24<br>4 23<br>3 24<br>2 23<br>2 25<br>2 26<br>8 2 28                                                                                                                            | $\begin{split} & V = V_{1 \otimes o \circ h} + ( \\ & V = \text{single } p \\ & \text{BEFORE T} \\ & \text{Zoil} = Z_{1 \otimes o} + i \\ & \text{Zoil} = Z_{1 \otimes o} + i \\ & \text{Zoil} = \text{single } \\ & \text{Single Plum} \\ & V_{2 \otimes \sigma} = (Va)_{0} \\ & \text{a} = 0.16 [2 \\ & \text{a} = 0.$ | tume values<br>OUCHING-1<br>$\cdot$ [[N(V <sup>2</sup> a) <sub>ful</sub><br>$\cdot$ [[N(V <sup>2</sup> a) <sub>ful</sub><br>plume soln<br>he Eqns<br>*-0.12F <sub>0</sub> (z-z,<br>z,)<br>( $\theta_0/\theta_s$ ))*(Ve<br>t Layer Eqn<br>$V_m$ -V <sub>1000</sub> )*(C<br>me Eqns<br>$_{a}/a$ ) <sup>1/2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\label{eq:constraints} \begin{split} & \text{if } i \neq_{\text{ztouch}} \\ & \text{USE SINGLE PLUME VALU} \\ & \text{USE CNUCLE PLUME VALU} \\ & (V_{01}^{-1})^2_{-1}a_{-1}^{-1}(0.16 \text{ if } V_{orta} < V_{m}) \\ & (V_{01}^{-1} V_{0100}) (V_{m} - V_{0100}) \text{ if } V_{m} \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{0100}) \\ & \text{if } V_{orta} > V_{0000} (\text{before merge}) \\ & \text{if } V_{orta} > V_{0000} (\text{before merge}) \\ & \text{if } V_{orta} > V_{0000} (\text{before merge}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{0100}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{0100}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{00000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{00000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{orta} > V_{0000} (V_{m} - V_{01000}) \\ & \text{if } V_{01000} (V_{01000} (V_{01000} - V_{01000}) \\ & \text{if } V_{01000} (V_{01000} - V_{01000}) \\ & \text{if } V_{01000} (V_{01000} - V_{01000} - V_{01000}) \\ &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ES<br>(after merged)<br><verit<vtoue< td=""></verit<vtoue<> |
| Find Height above Stack z <sub>ort</sub><br>Height above Ground z <sub>ort</sub> th <sub>a</sub><br>Table of Plume-averaged Vertical Velocities.<br>Height (feet)<br>above ground<br><i>Top of jet =</i> 122.0<br>1300<br>144.0<br>1500<br><i>Begin Merging (touch) =</i> 164.7<br>2000<br>2560<br>0<br>3000<br>3560<br>400.0<br><i>End Merging (full/mp) =</i> 661.9<br>800<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1200.0<br>1600.0<br>1800.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0                                                                                                                                    | 16 311<br>46 791<br>above stack<br>7.62<br>9.14<br>12 19<br>15 24<br>18 229<br><b>19.71</b><br>30.48<br>45 72<br>60.95<br>76 20<br>91.44<br><b>171.88</b><br>2713 52<br>835 28<br>335 28<br>335 28<br>336 22<br>457 20<br>518.16<br>579 12<br>640.08<br>70.104 | meters<br>meters<br>Radius(m)<br>1.014<br>1.502<br>1.990<br>2.477<br>2.706<br>#NVA<br>#NVA<br>#NVA<br>#NVA<br>#NVA<br>#NVA<br>#NVA<br>49.262<br>55.901<br>65.655<br>75.403<br>85.162<br>94.915<br>104.669<br>114.423<br>124.175<br>104.669                          | 53 5<br>153.5<br>Vert.<br>Vel(m/s)<br>6 21<br>5 05<br>4 45<br>4 45<br>3 07<br>3 88<br>3 88<br>3 88<br>3 88<br>3 88<br>3 88<br>3 74<br>3 07<br>3 20<br>2 94<br>2 88<br>2 70<br>2 60<br>2 52<br>2 44<br>2 88<br>2 70<br>2 60<br>2 52<br>2 44<br>2 88<br>2 70<br>2 60<br>2 50<br>2 50<br>2 50<br>2 50<br>5 70<br>5 70   | feet<br>feet<br>CEC Stalf<br>Calc(m/s)<br>V = s <sup>10</sup> <sup>2 m</sup> √s<br>11 31<br>9 20<br>8 11<br>7 41<br>7 16<br>5 98<br>5 13<br>4 63<br>4 4 02<br>3 24<br>4 02<br>3 3 24<br>3 3 01<br>2 76<br>2 58<br>2 44<br>4 2<br>3 3 24<br>2 53<br>2 23<br>2 23<br>2 23<br>2 215<br>2 00<br>2 00<br>2 00<br>2 00<br>2 00<br>2 00<br>2 00<br>2 0 | $\begin{split} & V = V_{1 \otimes o \circ h} + ( \\ & V = \text{single } p \\ & \text{BEFORE T} \\ & \text{Zoil} = Z_{1 \otimes o} + i \\ & \text{Zoil} = Z_{1 \otimes o} + i \\ & \text{Zoil} = \text{single } \\ & \text{Single Plum} \\ & V_{2 \otimes \sigma} = (Va)_{0} \\ & \text{a} = 0.16 [2 \\ & \text{a} = 0.$ | tume values<br>OUCHING-1<br>$\cdot$ [[N(V <sup>2</sup> a) <sub>ful</sub><br>$\cdot$ [[N(V <sup>2</sup> a) <sub>ful</sub><br>plume soln<br>he Eqns<br>*-0.12F <sub>0</sub> (z-z,<br>z,)<br>( $\theta_0/\theta_s$ ))*(Ve<br>t Layer Eqn<br>$V_m$ -V <sub>1000</sub> )*(C<br>me Eqns<br>$_{a}/a$ ) <sup>1/2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\label{eq:constraints} \begin{split} & \text{if } i < z_{\text{fourh}} \\ & \text{USE SINGLE PLUME VALU} \\ & \text{USE CNUCLE PLUME VALU} \\ & (V_{01}^{-1})^2_{-1} a_{-1}^{-1} (0.16 \text{ if } V_{orts} < V_{m}) \\ & (V_{01}^{-1} V_{0100}) (V_{m}^{-1} V_{0100}) \text{ if } V_{m} \\ & \text{if } V_{orts}^{-1} V_{01000} (V_{m}^{-1} V_{01000}) \\ & \text{if } V_{orts}^{-1} V_{01000} (V_{m}^{-1} V_{01000}) \\ & \text{if } V_{orts}^{-1} (V_{01000}^{-1} a_{-1}^{-1} A_{-1}^{-1}) \\ & \text{if } V_{orts}^{-1} (V_{01000}^{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ES<br>(after merged)<br><verit<vtoue< td=""></verit<vtoue<> |
| Find Height above Stack z <sub>ort</sub><br>Height above Ground z <sub>ort</sub> +h <sub>a</sub><br>fable of Plume-averaged Vertical Velocities.<br>Height (feet)<br>above ground<br><i>Top of jet</i> = 125.0<br>130.0<br>140.0<br>150.0<br>160.0<br><i>Begin Merging (touch)</i> = 164.7<br>200.0<br>256.0<br>300.0<br>300.0<br>300.0<br>300.0<br>300.0<br>300.0<br>100.0<br>End Merging (full/mp) = 661.9<br>800.0<br>1000.0<br>1200.0<br>1200.0<br>1200.0<br>2200.0<br>2200.0<br>2200.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16 311<br>46 791<br>above stack<br>7.62<br>9.141<br>12 19<br>15 24<br>18 29<br>19.17<br>30.48<br>45 72<br>60.94<br>76 20<br>91.44<br>1771.88<br>2213.35<br>28<br>396 24<br>457 20<br>518.16<br>679.12<br>640.08<br>770.144<br>772.60                           | meters<br>meters<br>Radius(m)<br>1.014<br>1.502<br>1.990<br>2.477<br>2.706<br>#N/A<br>#N/A<br>#N/A<br>#N/A<br>#N/A<br>#N/A<br>#N/A<br>49.262<br>55.901<br>65.655<br>75.403<br>85.162<br>94.916<br>104.669<br>114.423<br>124.176<br>103.930<br>114.3684              | 53 5<br>153.5<br>Vert.<br>Vel(m/s)<br>6 21<br>5 05<br>4 45<br>4 40<br>3 88<br>3 88<br>3 88<br>3 88<br>3 87<br>3 60<br>3 24<br>2 81<br>2 70<br>2 60<br>2 52<br>2 44<br>2 38<br>2 22<br>2 2 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | feet<br>feet<br>CEC Staff<br>Cate(m/s)<br>V <sub>re</sub> =N <sup>2</sup> <sup>23</sup> V <sub>s</sub><br>1133<br>9 20<br>8 11<br>7 161<br>5 98<br>5 13<br>4 63<br>4 63<br>4 63<br>4 63<br>4 63<br>4 62<br>3 24<br>2 3 24<br>2 258<br>2 24<br>2 24<br>2 24<br>2 258<br>2 24<br>2 258<br>2 24<br>2 155<br>2 206<br>2 206<br>2 196                | $\begin{split} & V = V_{1 \otimes o \circ h} + ( \\ & V = \text{single } p \\ & \text{BEFORE T} \\ & \text{Zoil} = Z_{1 \otimes o} + i \\ & \text{Zoil} = Z_{1 \otimes o} + i \\ & \text{Zoil} = \text{single } \\ & \text{Single Plum} \\ & V_{2 \otimes \sigma} = (Va)_{0} \\ & \text{a} = 0.16 [2 \\ & \text{a} = 0.$ | tume values<br>OUCHING-1<br>$\cdot$ [[N(V <sup>2</sup> a) <sub>ful</sub><br>$\cdot$ [[N(V <sup>2</sup> a) <sub>ful</sub><br>plume soln<br>he Eqns<br>*-0.12F <sub>0</sub> (z-z,<br>z,)<br>( $\theta_0/\theta_s$ ))*(Ve<br>t Layer Eqn<br>$V_m$ -V <sub>1000</sub> )*(C<br>me Eqns<br>$_{a}/a$ ) <sup>1/2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\label{eq:constraints} \begin{split} & \text{if } i < z_{\text{fourh}} \\ & \text{USE SINGLE PLUME VALU} \\ & \text{USE CNUCLE PLUME VALU} \\ & (V_{01}^{-1})^2_{-1} a_{-1}^{-1} (0.16 \text{ if } V_{orts} < V_{m}) \\ & (V_{01}^{-1} V_{0100}) (V_{m}^{-1} V_{0100}) \text{ if } V_{m} \\ & \text{if } V_{orts}^{-1} V_{01000} (V_{m}^{-1} V_{01000}) \\ & \text{if } V_{orts}^{-1} V_{01000} (V_{m}^{-1} V_{01000}) \\ & \text{if } V_{orts}^{-1} (V_{01000}^{-1} a_{-1}^{-1} A_{-1}^{-1}) \\ & \text{if } V_{orts}^{-1} (V_{01000}^{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ES<br>(after merged)<br><vcrit<vtour< td=""></vcrit<vtour<> |
| Find Height above Stack z <sub>ort</sub><br>Height above Ground z <sub>ort</sub> th <sub>a</sub><br>Table of Plume-averaged Vertical Velocities.<br>Height (feet)<br>above ground<br><i>Top of jet =</i> 122.0<br>1300<br>144.0<br>1500<br><i>Begin Merging (touch) =</i> 164.7<br>2000<br>2560<br>0<br>3000<br>3560<br>400.0<br><i>End Merging (full/mp) =</i> 661.9<br>800<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1200.0<br>1600.0<br>1800.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1200.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0<br>1000.0                                                                                                                                    | 16 311<br>46 791<br>above stack<br>7.62<br>9.14<br>12 19<br>15 24<br>18 229<br><b>19.71</b><br>30.48<br>45 72<br>60.95<br>76 20<br>91.44<br><b>171.88</b><br>2713 52<br>835 28<br>335 28<br>335 28<br>336 22<br>457 20<br>518.16<br>579 12<br>640.08<br>70.104 | meters<br>meters<br>Radius(m)<br>1.014<br>1.014<br>1.0502<br>1.990<br>2.477<br>2.766<br>#N/A<br>#N/A<br>#N/A<br>#N/A<br>#N/A<br>#N/A<br>49.267<br>55.901<br>65.655<br>75.403<br>85.162<br>94.916<br>104.669<br>114.423<br>124.175<br>133.930<br>1143.684<br>153.437 | 53 5<br>153.5<br>Vert.<br>Vel(m/s)<br>6 21<br>5 .05<br>4 .45<br>4 .07<br>3.99<br>3 .88<br>3.81<br>3.74<br>3.67<br>3.60<br>3.24<br>2.81<br>2.70<br>2.60<br>2.52<br>2.44<br>2.38<br>2.22<br>2.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | feet<br>feet<br>CEC Staff<br>Calc(m/s)<br>V <sub>100</sub> = 10 <sup>2</sup> e <sup>3</sup> V <sub>20</sub><br>8 11<br>7 41<br>7 16<br>5 98<br>5 13<br>4 63<br>4 402<br>3 24<br>4 02<br>3 24<br>4 02<br>3 20<br>2 15<br>2 00<br>2 02<br>1 96<br>1 91                                                                                            | $\begin{split} & V = V_{1 \otimes o \circ h} + ( \\ & V = \text{single } p \\ & \text{BEFORE T} \\ & \text{Zoil} = Z_{1 \otimes o} + i \\ & \text{Zoil} = Z_{1 \otimes o} + i \\ & \text{Zoil} = \text{single } \\ & \text{Single Plum} \\ & V_{2 \otimes \sigma} = (Va)_{0} \\ & \text{a} = 0.16 [2 \\ & \text{a} = 0.$ | tume values<br>OUCHING-1<br>$\cdot$ [[N(V <sup>2</sup> a) <sub>ful</sub><br>$\cdot$ [[N(V <sup>2</sup> a) <sub>ful</sub><br>plume soln<br>he Eqns<br>*-0.12F <sub>0</sub> (z-z,<br>z,)<br>( $\theta_0/\theta_s$ ))*(Ve<br>t Layer Eqn<br>$V_m$ -V <sub>1000</sub> )*(C<br>me Eqns<br>$_{a}/a$ ) <sup>1/2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\label{eq:constraints} \begin{split} & \text{if } i < z_{\text{fourh}} \\ & \text{USE SINGLE PLUME VALU} \\ & \text{USE CNUCLE PLUME VALU} \\ & (V_{01}^{-1})^2_{-1} a_{-1}^{-1} (0.16 \text{ if } V_{orts} < V_{m}) \\ & (V_{01}^{-1} V_{0100}) (V_{m}^{-1} V_{0100}) \text{ if } V_{m} \\ & \text{if } V_{orts}^{-1} V_{01000} (V_{m}^{-1} V_{01000}) \\ & \text{if } V_{orts}^{-1} V_{01000} (V_{m}^{-1} V_{01000}) \\ & \text{if } V_{orts}^{-1} (V_{01000}^{-1} a_{-1}^{-1} A_{-1}^{-1}) \\ & \text{if } V_{orts}^{-1} (V_{01000}^{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ES<br>(after merged<br><verit<vtou< td=""></verit<vtou<>    |