

Combined Heat and Power (CHP) Market Assessment Update 2011: DOCKET

Presented by: Ken Darrow Bruce Hedman Eric Wong Anne Hampson DOCKET 12-IEP-1D DATE RECD. FEB 10 2012

California Energy Commission February 16, 2012

Presentation Topics

- Market Characterization
 - Policy Landscape
 - Existing CHP
 - CHP Technical Potential
 - Energy Prices
 - CHP Technology Cost and Performance
- Market Forecast and Scenario Analysis
 - General Assumptions
 - Scenario Assumptions
 - Scenario Results (Base Case, Medium Case, High Case)
 - Greenhouse Gas (GHG) Emissions Reduction due to CHP
- Conclusions

Policy Landscape – Changes Since the 2009 CHP Market Assessment

- Qualifying Facility (QF) Settlement (October 2010) -- resolved outstanding disputes between utilities and qualifying facilities and establish a new CHP procurement program through 2020
- CHP Export Feed-in-Tariff (FIT) Provides a price for the sale of excess power to a utility from CHP facilities less than 20 MW
- Self Generation Incentive Program (SGIP) revises and extends the program by adding back non-fuel cell CHP technologies and provides funding through January 2016
- 33% Renewable Portfolio Standard (RPS) requires utilities to have 33% of their generating capacity be renewable power by 2020
- Cap and Trade establishes a market trading program for carbon dioxide emissions allowances that is designed to bring state emissions of greenhouse gases down to a specified level by 2020
- Distribution System Interconnection Settlement provides stakeholders a forum to develop a revised Rule 21 that addresses interconnection issues, especially for project exporting power

Existing CHP in California

1,202 Sites8,518 MW

Result of data reconciliation process with Energy Commission and Public Utilities Commission (CPUC) CHP data

Existing CHP by Utility Region

Source: ICF CHP Installation Database

CHP Technical Market Potential Estimation

- Evaluation of markets with good electric load factor and thermal loads to utilize thermal energy from CHP system
 - Process industries chemicals, refinery, paper, food, primary metals
 - Enhanced oil recovery
 - Large and medium commercial institutional education, health care, hotels, health clubs, prisons
 - Use of thermal for air conditioning commercial and institutional markets above plus retail, office buildings, and large multifamily complexes
- Characterization of sites with technical potential (number of sites and MW capacities)
 - Identify sites by business line using Dun & Bradstreet database
 - Estimate electric and thermal loads based on ICF analysis of usage by business line
 - On-site vs. export potential determined based on power to heat ratios for smaller sites and specific industry analysis for large sites
- Subtraction of existing CHP to determine Remaining On-site and Export Technical Potential

CHP Technical Potential Summary: Total Electrical Generating Potential

Technical Potential, MW

Market Type	50-500 kW	500-1000 kW	1-5 MW	5-20 MW	>20 MW	Total
Industrial Existing On-site	688	375	1,042	818	385	3,309
Commercial/Residential Existing	2,078	846	1,650	929	447	5,950
Export Existing	0	0	286	901	3,847	5,034
Industrial New On-site	60	29	68	51	20	228
Commercial/Residential New	471	191	384	154	64	1,264
Export New	0	0	9	40	131	180
Total	3,297	1,441	3,439	2,893	4,894	15,964

- Existing facilities represent businesses that exist today that have unmet CHP potential – either through new or expanded CHP
- New facilities represent an estimate of economic growth in the target market segments over the next 20 years

Energy Price Analysis: General Assumptions

- Future price movements based on Energy Information Administration (EIA) 2011 Annual Energy Outlook 2011 (AEO2011) Reference Case,
 - Electricity price trends from Western Electricity Coordinating Council-California region estimates of the Electricity Market Module
 - Natural gas wellhead prices based on AEO2011 estimate of Henry Hub price
 - EIA case does not include effects of California RPS or Cap and Trade
- Retail electric rates
 - Based on analysis of current tariffs for three largest investor owned and two largest municipal utilities
 - Future price growth estimated based on fixed real T&D rates and generation rates escalated based on the costs of power from a combined cycle power plant
 - CHP savings rate based on the current tariff analysis of the avoided costs due to CHP operation
- Retail Gas Rates
 - Gas utility hub price differentials from Henry Hub price based on CEC 2011 natural gas price forecast
 - CHP and boiler rate markups calculated from current firm delivery tariffs

2011 Natural Gas Wellhead Price Forecast

Natural Gas Well Head Price Forecasts

- Outlook for future wellhead gas prices well below 2009 EIA forecast
- Reduction based on low cost shale gas replacing LNG as the marginal future source of supply

Intrastate Gas Transportation Costs

Utiltiy / Customer Size Classes	50-500 kW	500-1,000 kW	1-5 MW	5-20 MW	>20 MW
	Boil	er Load, \$/millio	n Btu		
PG&E	\$2.46	\$2.18	\$1.74	\$1.34	\$0.93
SCG	\$2.34	\$1.79	\$1.27	\$0.85	\$0.69
SDG&E	\$3.18	\$2.75	\$2.66	\$2.64	\$2.63
	СН	P Load, \$/millior	n Btu		
PG&E	\$0.52	\$0.35	\$0.31	\$0.29	\$0.30
SCG	\$0.61	\$0.58	\$0.57	\$0.25	\$0.25
SDG&E	\$0.71	\$0.68	\$0.67	\$0.35	\$0.35

- Transportation costs for boiler load based on standard firm transportation rates for estimated boiler load by CHP customer class
- CHP customers get special gas transportation rate rates are lower due to the special rate and the increased consumption for the CHP system (P/H ratio assumed for this analysis 1:2)

Electric Price Forecast: 50-500 kW

Current Average Electric Prices by Load Factor, 50-500 kW Customer

Utility / Tariff :

- LADWP: A-2b Primary
- PG&E: A-10 TOU Secondary
- SCE: GS-3TOU Secondary
- SDG&E: AL-TOU Secondary
- SMUD: GS-TOU3 Secondary

Electric Price Forecast: Greater than 20 MW

Current Average Electric Prices by Load Factor, >20 MW Customer

Utility / Tariff :

- LADWP: A-3a
 Subtransmission
- PG&E: E-20-Transmission
- SCE: GS 8-TOU Transmission
- SDG&E: AL-TOU-Subtransmission
- SMUD: GS-TOU1 Transmission

Share of Retail Rates that are Avoidable with CHP

Unavoidable Costs

- Customer charges (\$/meter/month)
- Forced outages that trigger demand charges
- Non-bypassable Charges (per kWh)
- Standby reservation charges
- 10-20% of retail costs unavoidable, up to 2.7 cents/kWh for high load factor customers

CHP Technology Costs

U.S. Average Basic Installed Cost

- 12 CHP technologies characterized
 - Capital cost shown
 - Heat rate
 - Thermal available
 - Operating and maintenance
- Capital cost adjustments
 - California costs 3-10% higher
 - Emissions aftertreatment
 - SGIP and tax credits
 - Other capital incentives
- Payback based on gas rate and avoidable electric costs

Base Case Policy Assumptions

- Cap and Trade
- 33% Renewable Portfolio Standard
- SGIP with program expiration January, 2016
- AB 1613 export pricing for CHP under 20 MW
- Short Run Avoided Cost (SRAC) export pricing for CHP over 20 MW

Details on following slides

Cap and Trade GHG Allowance Assumptions

- Quantity Assumptions
 - Based on average GHG emissions for electricity generation from Energy and Environmental Economics (E3) GHG Calculator (Version 3c) prepared for the CPUC
 - CHP based on carbon content of the incremental natural gas fuel required for new systems
- Price Assumptions
 - 2009 Market Price Referent (MPR) analysis based on Synapse forecast used in the joint IOU proposal and site rulemaking R.11-03012
 - 90% reimbursement of cost increase for retail electric rates
 - No reimbursement for effective fuel cost increases for onsite CHP systems

Cap and Trade: CO₂ Allowance Price Forecast

CO₂ Allowance Price Forecast

Medium Case 2020 Price: \$46.80/MT (\$37.47 2011 \$)

- Based on Synapse
 Forecast for 2009 MPR
 joint IOU proposal
 and site rulemaking
- Linear extrapolation to 2030
- Medium case used for the analysis
- Converted to 2011 real dollars for the model inputs at 2.5% per year (MPR assumption)

Sensitivity: CO₂ Allowance Price

Effect of CO2 Allowance Price on Market Penetration compared to Base Case

- Base Case
 - Medium CO₂
 price track
 - 90% electric ratepayer reimbursement

Cap and Trade: GHG Emissions Rates

Pato undor PDS — · · · ·

 Figure based on GHG Calculator through 2020 – Accelerated Policy Case (Case 2: 33% RPS and high energy efficiency)

Utility GHG Emissions for Cap and Trade

- Assumes 33% RPS in effect
- After 2020, the 3 utilities with the lowest emissions rates remain constant through 2030 (PG&E, SDG&E, and SMUD)
- Other 4 utility areas assumed to reduce emissions an average of 5% every 5 years

CHP GHG Emissions for Cap and Trade

 CHP emissions rates based on incremental gas consumption at 117 lbs/CO2e per MMBtu

33% Renewable Portfolio Standard – Impact on Retail Electric Rates

	2011-2015	2016-2020	2021-2025	2026-2030
RPS Electric Adder, \$2011/kWh	\$0.0049	\$0.0131	\$0.0164	\$0.0164

Source: E3 GHG Calculator (V3c)

- Based on GHG Calculator Scenario 2: Accelerated Policy Case 33% RPS and High Energy Efficiency – Average price increase to 2020 is 1.64 cents/kWh
- Cost increase assumed to remain constant in real terms after 2020

SGIP with Expiration in 2016

Technology Type	Incentive (\$/W)
Conventional CHP	
Internal Combustion Engine – CHP	\$0.50
Microturbine – CHP	\$0.50
Gas Turbine - CHP	\$0.50
Emerging Technology	
Fuel Cell- CHP or Electric Only	\$2.25

- 20% CA manufacturer adders not modeled
- Fuel cell incentive reduces by 10% per year, all other technologies reduce by 5% per year
- Program assumed terminated in 2016

- 50% of payment up front – 50% over 5 years in equal installments if system maintains a minimum of 80% load factor
- Lower load factor operation annual payments are prorated proportionally
- All sizes can participate

 payments equal
 100% on first MW, 50%
 on second MW, 25% on
 third MW

AB 1613 Export Pricing

AB 1613 Export Prices	2011-2015	2016-2020	2021-	2026-2030
AB 1013 Export 1 fices	2011-2013	2010-2020	2025	2020-2030
AB 1613 FIT Basis	\$0.0611	\$0.0631	\$0.0691	\$0.0739
50-500 kW	\$0.0611	\$0.0631	\$0.0691	\$0.0739
500-1,000 kW	\$0.0611	\$0.0631	\$0.0691	\$0.0739
1-5 MW	\$0.0605	\$0.0624	\$0.0685	\$0.0732
5-20 MW	\$0.0605	\$0.0624	\$0.0685	\$0.0732
>20 MW	\$0.0610	\$0.0630	\$0.0690	\$0.0738

- AB 1613 FIT for systems less than 20 MW in all scenarios
- Export assumed to be a constant annual amount averaging the time period multipliers to one
- Customers exporting more than 1 MW pay scheduling charges
- Pricing terms are designed to reflect electric system long run marginal avoided cost

Export Pricing for Large CHP

- 2011-2015
 2016-2020
 2021-2025
 2026-2030
 - Base Export Price = SRAC
 - Medium and High Export Price = 2011 Draft MPR adjusted to gas price forecast used in this analysis

\$/kWh

Medium Case Policy Assumptions

- 33% RPS (same as in the Base Case)
- SGIP with planned phased reduction program extended based on a programmed phased reduction of incentives over time
 - 5% reduction per year for conventional
 - 10% per year reduction for emerging until emerging dollar value equals conventional – then declining at the same rate as conventional
- Aggressive export MPR pricing for over 20 MW and strong market response for projects larger than 5 MW
 - MPR price 25-35% higher than SRAC price (from previous slide)
 - Higher Market response for paybacks less than 5 years (Backup material Figure A-2)

High Case Policy Assumptions

- Includes the following Medium Case Policy Assumptions
 - SGIP with planned phased reduction
 - RPS
- Reimbursement of GHG allowance component of CHP fuel costs for onsite CHP
- No non-bypassable charges (NBCs) and elimination of "double" demand charges
 - NBCs are eliminated from IOU electric tariffs for CHP
 - No CHP outage demand charges applied when standby reservation charge is applied
 - This increases the avoidable electric costs for CHP by 1-2 cents/kWh for the IOUs depending on the utility and the rate category
 - For high load factor customers, the share of avoidable charges to retail rates ranges from 89-95% compared to the existing rates where the share ranges from 80-90%

High Case Assumptions, continued

- High Electric focus electric utility participation
 - Assumed utility ownership of large CHP with greater focus on electricity production
 - Large export CHP technical potential for sites greater than 50 MW based on combined cycle technology cost and performance – effectively increasing large export potential by 50%
 - Same export pricing assumptions as in the medium case
- 10% California State investment tax credit no size limit, no end date
- Competitive CHP Pricing capital costs reductions increased by an additional 10% to reflect learning and market competition
- Increase in market participation due to removal of barriers and risk by an additional 2-7%
- \$50/kW-year T&D capacity deferral payment for CHP less than 20 MW

Treatment of Risk Perception in the Model – Assumptions for All Cases

Maximum Market	50-500	500kW-	1-2 M/V	5 20 MM	
Parcipation Rates	kW	1, 000kW		5-20 WW	
Base Case	50%	60%	70%	80%	80%
Medium Case	60%	69%	77%	85%	85%
High Case	65%	70%	79%	90%	90%

- Market participation in each size bin is restricted to reflect the effects of customers not considering CHP or being unable to use CHP for reasons of perceived risk such as: lack of financing, business instability, specific site restrictions, and other factors
- As the market increases, the maximum market participation factors are raised proportionally with the increase in market to reflect the better business environment and the greater willingness to participate

Market Results:

Cumulative New CHP Market Penetration

Seenario	Cumulative New CHP Market Penetration, MW					
Scenario	2011	2015	2020	2025	2030	
Base Case	123	617	1,499	1,817	1,888	
Medium Case	233	1,165	3,013	3,533	3,629	
High Case	340	1,700	4,865	5,894	6,108	

Cumulative Market Penetration by Type and Scenario

High Case

Base Case Cumulative Market Penetration by Utility

Base Case Cumulative Market Penetration by utility

- PG&E 43%
- SCE 22%
- LADWP 15%
- SDG&E 10%
- SMUD 3%
- Other 7%

Small vs. Large CHP

Scenario	Ba	Base		lium	High	
Size	< 20 MW	> 20 MW	< 20 MW	> 20 MW	< 20 MW	> 20 MW
Onsite	1,269	246	1,519	263	2,901	388
Avoided AC	130	30	155	32	316	45
Export	91	122	93	1,568	295	2,162
Total	1,489	399	1,766	1,863	3,513	2,595

• Small CHP Market

- Primarily onsite market
- More commercial applications with cooling
- Incentive factors
 - SGIP
 - Retail price changes
 - Cost and performance improvements
 - Investment tax credit, T&D support

- Large CHP Market
 - Primarily export market
 - Mostly large process industries
 - Incentive factors
 - Export pricing
 - Removal of market uncertainty
 - Investment tax credit

GHG Emissions Savings Estimation

GHG Savings – Current Emissions Basis

Annual GHG Savings Current Emissions Basis

- Avoided electric sector and boiler emissions based on ARB Scoping Plan assumptions
- Avoided annual GHG emissions range from 1.4-4.5 million MT in 2020, 1.7-5.6 million MT by 2030

ARB Scoping Plan Avoided Electric Emissions AssumptionsEmissions Generation Basis, Ib/Mwh963.4Line Losses, %7.80%Emissions Delivered Bases, Ib/MWh1044.9

GHG Savings – Competing with RPS and Cap and Trade Changes in Emissions Intensity

- RPS and Cap and Trade impact CHP savings over time
- Onsite CHP reduces electric capacity needs thereby reducing the effective savings by the RPS percentage
- Export CHP is figured into utility capacity so emissions impacts are not reduced

ARB Scoping Plan Avoided Electric Emissions Assumptions

	000. -
Line Losses, %	7.80%
Emissions Delivered Bases, Ib/MWh	1044.9

Reduced by RPS Goals

Conclusions: Market Penetration Lower than 2009 Study

- Economic slowdown reduced technical market potential
- CHP technology capital costs have increased due to higher equipment and installation costs
- Export pricing for systems less than 20 MW is lower than assumed in 2009
- Spark spread is somewhat more favorable but this is offset by effects of Cap and Trade
- SGIP benefits are limited by the program's current expiration date of 2016

Conclusions: Policy Measures Considered to Increase Market Penetration

- Extending the SGIP deadline and reducing the phased reduction of benefits
- State business investment tax credit for CHP
- Reimbursement of GHG allowance costs for incremental CHP fuel consumption
- CHP rate reform with respect to NBCs and multiple demand charges
- Credit for T&D support for CHP systems on the distribution system
- Contracting for new CHP export at long run marginal avoided costs

Conclusions: Large and Small Capacity Market Issues

- Small capacity markets respond to SGIP, T&D deferral payments, electric rate increases due to RPS, and system cost reductions over time
- Large capacity markets respond primarily to export price
- All markets benefit from investment tax credits and the effect that RPS will have on electric price
- Small markets, primarily, are hurt by costs associated with Cap and Trade – large export markets have a mechanism to recover those costs

Conclusions: Export Market is Highly Uncertain

- Model showed range of possible new export market penetration depending on the assumed export price – 213-2,457 MW
- Prices approaching the full long run marginal cost of power are needed for significant penetration of new large CHP export projects – not short run avoided cost
- Smaller, AB 1613 eligible projects, have higher costs making it difficult to compete even with the utility long run marginal cost – ICF model lacks detail to include analysis of 10% locational adder
- Model assumptions set price and determine quantity of market penetration QF Settlement and Long Term Procurement Planning (LTPP) determines quantity and market sets price
- 3,000 MW procurement targets under the QF Settlement could be fully subscribed by existing CHP – after 3,000 MW target is met, new CHP procurement targets will be determined in LTPP, large export potential of 2,162 MW included in the high case is highly dependent on generator ability to secure long term contracts to reduce investment risk

Conclusions: CHP Benefit to Customers and to California Environmental Goals

GHG emissions savings

- Contribution to total GHG emissions smaller than scoping plan target
- Concurrent carbon reduction programs will reduce the marginal GHG benefits over time
- The focus should be on the cost effectiveness of GHG reduction (CHP is cheaper than some renewable alternatives)

• CHP will save customers energy costs

- \$740 million/year in the Base Case by 2030
- \$2.9 billion/year in the High Case by 2030