

National Cases:

High Gas Price, Low Gas Price, and Constrained
Shale Gas

Staff Workshop
2011 Integrated Energy Policy Report
California Energy Commission

September 27, 2011

Leon D. Brathwaite

Electricity Analysis Office

Electricity Supply Analysis Division

Ibrathwa@energy.state.ca.us//916-654-4771

DOCKET

11-IEP-1K

DATE

RECD. Sept 21 2011

National Cases: Road Map

- Purpose of the Cases
- Major Policy Issues
- What are the National Cases
- Case Descriptions
- General Impact of Price Changes
- Performance of Cases
 - Prices
 - Supply Portfolio Impacts
- Difference Results
- Conclusions

National Cases: Purpose of Cases

- To examine price and supply in the national natural gas market
 - Potential vulnerabilities to California
 - Potential opportunities for California
- To investigate natural gas price and supply uncertainty
 - Plausible range of conditions developed
- To evaluate the impact of relevant policy drivers
- To develop plausible outlooks of prices and supply

National Cases: Major Policy Issues

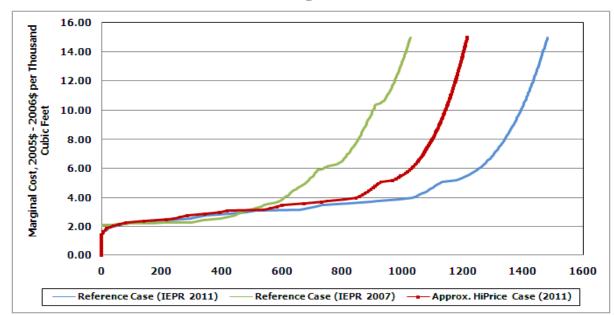
- Implementation of Renewables Portfolio Standard (RPS)
- Conversion of coal-fired generation
- Environmental mitigation of shale development
 - Water use and disposal
- Licensing of liquefied natural gas (LNG) export capability

National Cases: What are the National Cases

- Staff constructed the following national cases:
 - High Price case
 - Low Price case
 - Constrained Shale case
- Cases constructed to evaluate natural gas price movements and impacts

National Cases: High Price Case Description

- Removed 50 GW (280,000 GWh) of coal-fired generation distributed per Brattle Group analysis.
- Assumed robust economic performance, with longterm annual economic growth capped at about 3.5%.
- Delayed RPS implementation by additional 10 years as states grapple with budgetary concerns
- Starting in 2016, assumed robust LNG export capability developed and utilized at:
 - Kitimat (Canada, Apache)
 - Sabine Pass (Cheniere), Lake Charles (BG), and Freeport
 - Cove Point



National Cases: High Price Case Description (cont'd)

- Assumed added environmental compliance costs in Canada and the United States:
 - \$0.40/Mcf to the O&M cost of developing shale formations
 - \$0.20/Mcf to conventional resources
- Removed from development potential shale resources in particular regions, such as Pennsylvania, New York, Colorado, and Wyoming
 - Altered the available gas resource and shrank resource base by about 17.8%
 - Re-established merit order of resource selection
- Introduced constraints on development in Iraq, Iran, Venezuela, and Russia

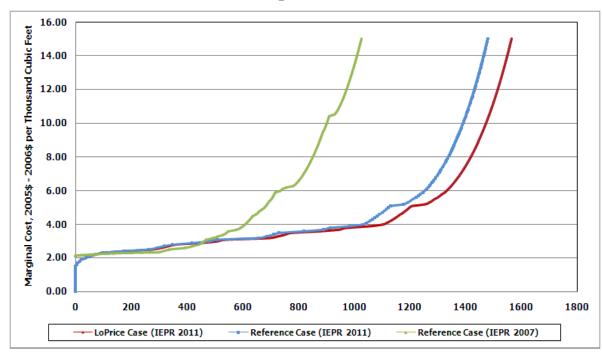
National Cases: High Price Case Description (cont'd)

- Resource base shrinks as a result of "turning off" potential reserves in sensitive areas
- Resource base shrinks by about 17.8%

Sources: California Energy Commission; Altos Management Partners; Baker Institute; National Petroleum Council.

National Cases: Low Price Case Description

- Assumed all states meet RPS targets on time
- Capped long-term annual economic growth at about 2.1%, portending weak gross domestic product growth
- Disallowed LNG exports, thus keeping North America isolated
- Assumed technology develops at a rate of 2.5%



National Cases: Low Price Case Description (cont'd)

- Assumed larger resource base
 - Increased assessment size in the Marcellus, Haynesville, and western Canadian shale formations
 - Used upper range of published data
 - Resulted in additional 5.76% rightward shift of overall supply cost curve
- Allowed Iran, Iraq, and Venezuela to enter the market unimpeded beyond pre-specified dates

National Cases: Low Price Case Description (cont'd)

- Resource base expands as larger assessments of reserves become more likely
- Resource base expands by about 5.8%

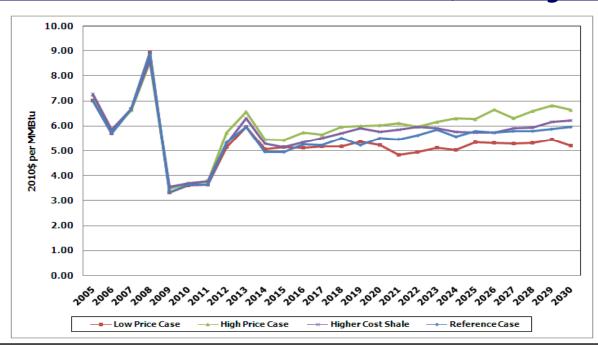
Sources: California Energy Commission; Altos Management Partners; Baker Institute; National Petroleum Council.

National Cases: Constrained Shale Case Description

- Assumed heightened environmental concerns related to development of shale formations
 - Implementation of additional regulatory requirements on further development, particularly related to fluids used in the hydraulic fracturing process
 - Acquisition, treatment, and disposal of water push state regulators to issue new policy directives.
 - Added requirements for protection of groundwater aquifers
- Regulatory compliance after 2013 in both Canada and the United States:
 - Adds another \$0.40/Mcf to the cost of production of shale natural gas;
 - Adds \$0.20/Mcf to conventional production.
- Resource base remains unchanged from reference case

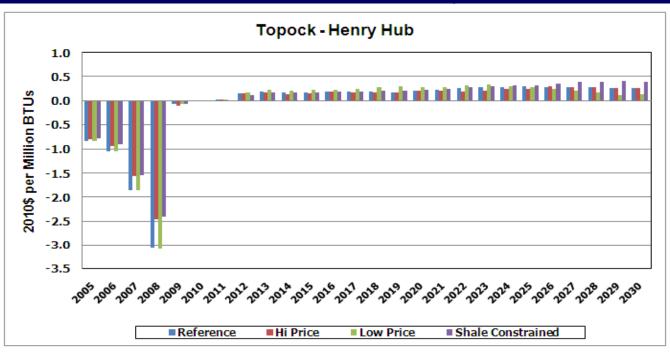
National Cases: General Impacts of Price Changes

- Price changes produce various responses:
 - Higher prices
 - Depress demand
 - Stimulate added supply
 - Lower prices
 - Stimulate demand
 - Suppress supply
- Usually, a combination of dual impact occurs
- Price *changes* also re-configure the order of economic selection and, thus, the supply portfolio
 - In a dynamic market, this can affect the attractiveness of particular supply resources
- Question: What is the dominant effect?



National Cases: Supply Balance

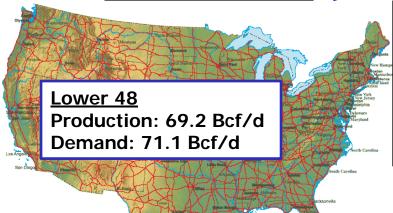
Performance of Cases: Lower 48


National Cases: Price Performance of Cases (Henry Hub)

- Prices behave as expected:
 - High Price case produced highest prices
 - Low price case produced lowest prices
- Together, four cases produced the "zone of uncertainty"

National Cases: Price Performance of Cases (Differentials)

- Differentials turn positive around 2013:
 - Access to shale and 'tight' gas resources is re-ordering the supply portfolio, impacting eastern prices more than western



National Cases: Supply Portfolio of Reference Case (2025)

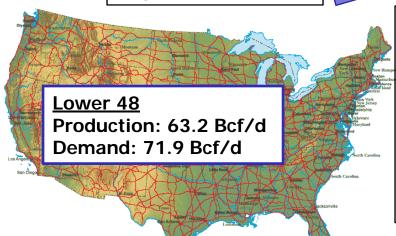
Canadian

Imports: 10.5 Bcf/d

- Two main demands: End-use and Exports
- Demand satisfied by:
 - Canadian Imports
 - L48 Production
 - LNG Imports

Exports: 7.2 Bcf/d

LNG Imports: 1.7 Bcf/d


National Cases: Reconfiguration of Supply Portfolio (2025)

Canadian

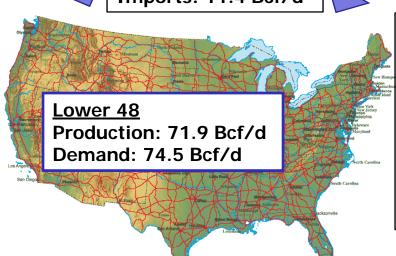
Imports: 13.2 Bcf/d

High Price Case (+8.5%)

- Two main demands: End-use (+1.1%) and Exports (+9.7%)
- Demand satisfied by:
 - Canadian Imports (+25.2%)
 - -L48 Production (-8.8%)
 - -LNG Imports (+290.3%)
- Competing sources of natural gas reconfiguring the supply portfolio

Exports: 7.9 Bcf/d

LNG Imports: 6.6 Bcf/d


National Cases: Reconfiguration of Supply Portfolio (2025)

Canadian

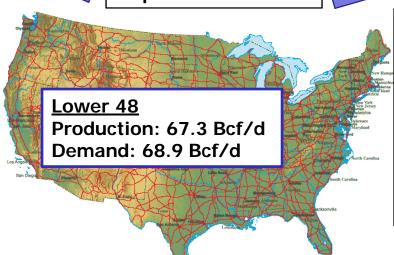
Imports: 11.4 Bcf/d

Low Price Case (-7.6%)

- Two main demands: End-use (+4.7%) and Exports (0%)
- Demand satisfied by:
 - Canadian Imports (+8.0%)
 - -L48 Production (+3.9%)
 - -LNG Imports (-14.7%)
- Competing sources of natural gas reconfiguring the supply portfolio

Exports: 7.2 Bcf/d

LNG Imports: 1.6 Bcf/d


National Cases: Reconfiguration of Supply Portfolio (2025)

Canadian

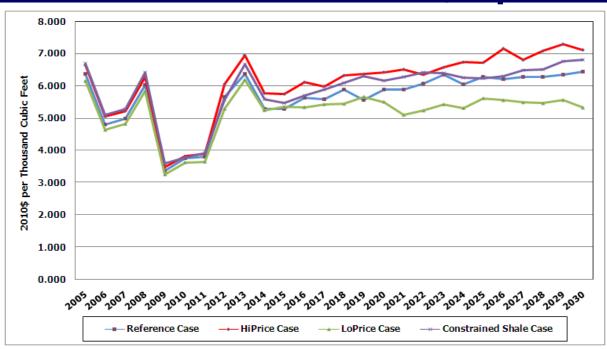
Imports: 9.0 Bcf/d

Constrained Shale Case (-1.0%)

- Two main demands: End-use (-3.2%) and Exports (-16.7%)
- Demand satisfied by:
 - Canadian Imports (-14.8%)
 - L48 Production (-2.8%)
 - -LNG Imports (+4.9%)
- Competing sources of natural gas reconfiguring the supply portfolio

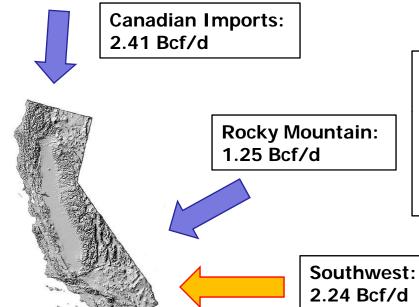
Exports: 6.0 Bcf/d

LNG Imports: 1.8 Bcf/d



National Cases: Supply Balance

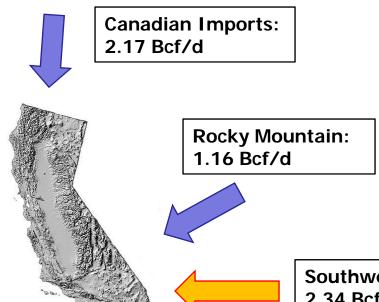
Performance of Cases: California


National Cases: Price Performance of Cases (Topock Hub)

- Prices behave as expected:
 - High Price case produced highest prices
 - Low price case produced lowest prices
- Together, four cases produce "zone of uncertainty"

National Cases: California Supply Portfolio (2025)

Reference Case


- California Demand: End-use
- Demand satisfied by:
 - Canadian Imports
 - Rocky Mountain Supplies
 - Southwest Supplies
 - Local Production

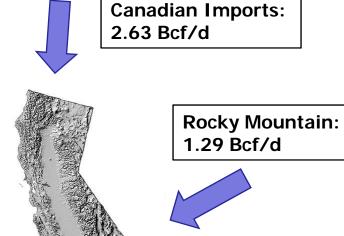
California

Production: 0.28 Bcf/d Demand: 6.05 Bcf/d

National Cases: California Supply Portfolio (2025)

High Price Case (+7.3%)

- California Demand: End-use (-2.0%)
- Demand satisfied by:
 - Canadian Imports (-9.7%)
 - Rocky Mountain Supplies (-7.4%)
 - Southwest Supplies (+4.5%)
 - Local Production (+28.5%)
- Competing sources of natural gas reconfiguring the supply portfolio


Southwest: 2.34 Bcf/d

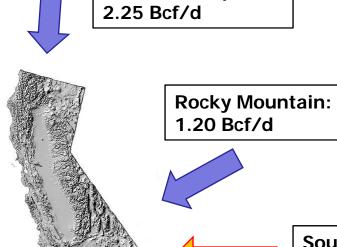
California

Production: 0.35 Bcf/d Demand: 5.93 Bcf/d

National Cases: California Supply Portfolio (2025)

Low Price Case (-10.1%)

- California Demand: End-use (+4.3%)
- Demand satisfied by:
 - Canadian Imports (+9.4%)
 - Rocky Mountain Supplies (+3.2%)
 - Southwest Supplies (-4.0%)
 - Local Production (+30.2%)
- Competing sources of natural gas reconfiguring the supply portfolio


Southwest: 2.15 Bcf/d

California

Production: 0.36 Bcf/d Demand: 6.31 Bcf/d

National Cases: California Supply Portfolio (2025)

Canadian Imports:

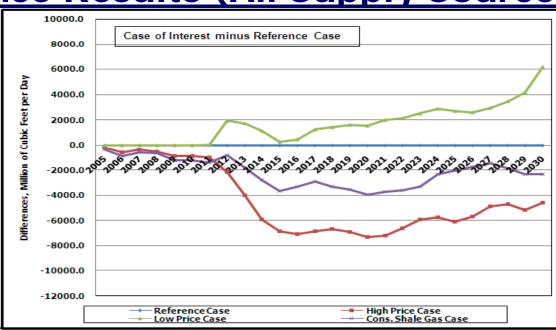
Shale Constrained Case (-0.6%)

- California Demand: End-use (-3.0%)
- Demand satisfied by:
 - Canadian Imports (-6.4%)
 - Rocky Mountain Supplies (-4.1%)
 - Southwest Supplies (+0.6%)
 - -Local Production (+4.8%)
- Competing sources of natural gas reconfiguring the supply portfolio

Southwest: 2.25 Bcf/d

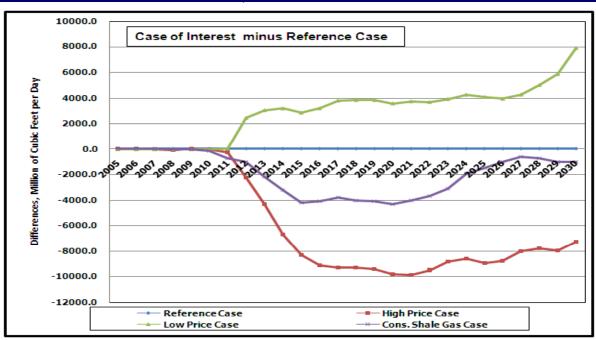
California

Production: 0.29 Bcf/d Demand: 5.87 Bcf/d

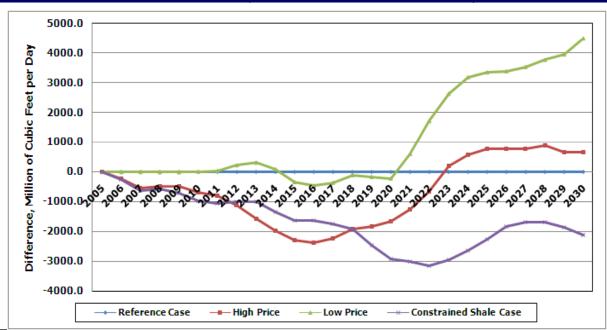


National Cases: Difference Results

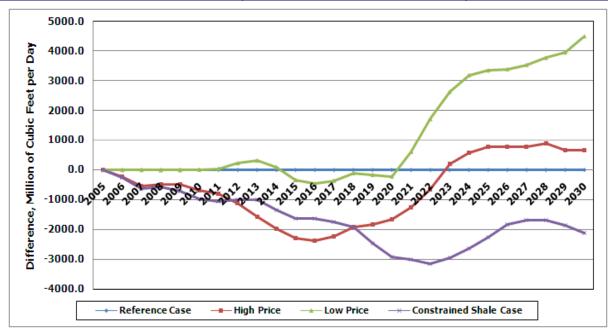
Difference Results


National Cases: <u>Difference Results (All Supply Sources)</u>

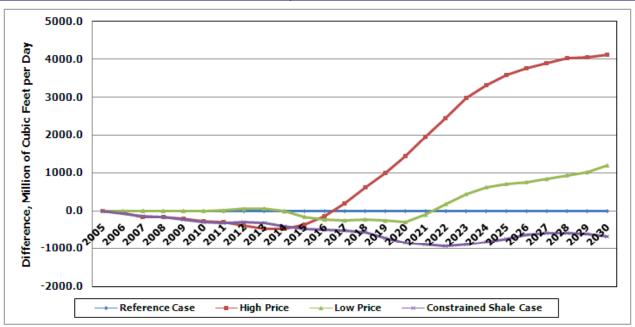
- Higher environmental cost reconfigures the order of selection resources, pushing US production lower in the High Price case and the Constrained Shale case
- In the Low Price case, lower domestic prices pushes out LNG imports and increased domestic production fills the gap


National Cases: <u>Difference Results (Shale Gas Production)</u>

- Higher environmental costs lower domestic shale production in both the High Price case and the Constrained Shale Gas case
- In the Low Price case, shale gas production increases as LNG imports lose out as a result of lower domestic prices


National Cases: Difference Results (US Demand)

- Higher prices push demand lower in the High Price case and the Constrained shale gas case
- Although demand starts out lower in the High Price case, robust economic performance and coal conversion push US demand higher after 2022


National Cases: Difference Results (US Demand) (cont'd)

- Low prices stimulate demand in the Low Price case, pushing demand higher
- All states meet RPS implementation on time
 - Dampen natural gas demand between 2012 and 2020

National Cases: Difference Results (US Power Generation)

 In the High Price case, power generation gas demand climbs higher as robust economic performance and coal conversion pull in more natural gas

National Cases: Conclusions

- Added environmental mitigation costs may delay the development of shale formations
- Price changes can reconfigure the supply portfolio
- Plausible national cases produce a range of price and supply outcomes

National Cases: Epilogue

Questions & Comments