DOCKET

11-IEP-1L

DATE Sept 09 2011

RECD. Sept 09 2011

PEV Adoption Rates and Anticipated Grid Impacts

Adam Langton
California Public Utilities Commission

September 2011

CPUC Actions to Date

- Phase 1: EV charging services provider not a public utility but generally a retail customer – rates subject to PUC, not FERC
- PUC retains broad rate-setting authority to avoid adverse grid impacts and to attain GHG and RPS goals
- Phase 2: PEV Rates and Cost Allocation, Metering, Programs

Phase 2 Decision of President Peevey: 7 Actions for the nascent market until 2013

1	Endorses customer choice for existing TOU rates and metering
2	Treats Res. Distribution upgrades as shared costs, like most other load
3	Affirms most Commercial and Industrial rates for non-res charging
4	Treats service providers as traditional customers
5	Starts process to bill customer-owned meters
6	Directs utilities to file a jointly-filed notification assessment report
7	Limits utility ownership of charging equipment

Load Research

We will target early 2013 to revisit PEV rates:

- 1. IOUs directed to undertake load research studies
- 2. Coulomb and Ecotality PEV charging studies will also help us understand installation costs associated with electric vehicle service equipment
- SB695 restrictions placed on residential rates will have expired, giving us more latitude in authorizing potential rate options

Known Unknowns

- Nature and Extent of Impacts:
 - Types of Costs/Benefits, generated by PEV adoption, on different aspects of the electricity system, are an area which requires further study
 - Cost implications of off-peak versus on-peak charging scenarios are vastly different, and depend on the existing customer service amperage.
 - Distribution upgrade costs to accommodate charging for residential circuits may be as much as <u>five to twenty times</u> <u>greater</u> on-peak as compared to off-peak

Utility Notification

- Within 150 days of the Decision becoming final, utilities must submit a report to the Commission on its progress in getting notification when someone purchases an EV.
- Possible data sources: OEMs, dealers, DMV, installers, local government

PEV Submetering

Utility rules already accommodate single and separate metering for PEVs, not submetering.

Stakeholders must develop submetering rules for:

- -subtractive billing
- -billing disputes
- -multiple submeters
- -certification/calibration
- -data requirements.

What if charging is at peak? Distribution impacts are time, location dependent

PEV Charging Creates A Significant Increase In Load

SCE PEV Adoption Estimates

Figure 6 - Forecast of PEVs in SCE's Service Territory

PG&E PEV Adoption Estimates

Cumulative PG&E Service Territory PEV Market Adoption Scenarios

* Shifted 10 years forward

SDG&E Adoption Estimates

Cumulative PEV sales (2010 to 2020)

BEVs and PHEVs (x 1,000)

Adoption Density

Population (in 2010) per EV (in 2020)

PG&E pop.= ~15M SCE pop.= ~ 14M SDG&E pop.= ~ 3M

Daily
Travel
Distances
(weighted %)

	Unweighted Mean	Weighted Mean	Weighted Plus Mean	Commuters	Weekend	Weekday
Average Daily Driving Distance (miles)	32.3	39.3	36.3	37.8	40.7	38.3

Figure 10: 100% L2 Chargers at All Locations

Battery: 75 mi. range, home chargers: 100% @ L2, work chargers: 100% @ L2, public chargers: 100% @ L2

97.9% Complete daily travel needs

Figure 11: 100% L1 Chargers at All Locations

Battery: 75 mi. range, home chargers: 100% @ L1, work chargers: 100% @ L1, public chargers: 100% @ L1

95.3% Complete daily travel needs

Contact Information

Adam Langton CPUC

AHL@cpuc.ca.gov (415) 703-1812

Infrastructure Scenarios:

Impact on Daily Travel Completion Rates and Peak Demand

Charge Station Availability by Location Type			% Time Charge Station	Travel Completion %	Peak Time Charging per Vehicle (kWh)	
Home	Work	Public	Present	70	veriide (KVVII)	
0%	0%	0%	0%	90.4%	N/A	
50%	0%	0%	29%	90.4% 90.4%	0.6 1.0	
50%	50%	50%	42%	91.6% 96.3%	1.8 2.4	
50%	100%	100%	54%	93.7% 97.4%	2.2 2.3	
100%	0%	0%	69%	91.7% 92.1%	1.5 2.5	
100%	50%	50%	81%	93.1% 97.6%	2.5 3.4	
100%	100%	100%	94%	95.3% 97.9%	2.8 3.2	

How are residential rates set to encourage off-peak charging?

Residential Rate Schedules

Utility	Tariff	TOU	Tiered	Meters	Meter Charge (mo./day)	Summer On-to- Off-Peak Ratio
PG&E	E-9 (A) ¹	Υ	Υ	1	\$0.21881d	5.76
	E-9 (B) ¹	Υ	Υ	2	\$0.21881d	5.01
SCE	TOU-EV-1 ⁴	Υ	N	2	\$0.00	2.24
	TOU-D-TEV ^{1,2}	Υ	Υ	1	\$0.00	2.24
SDG&E	EV-TOU ^{2,3}	Υ	N	2	\$0.00	4.14
	EV-TOU-2 ^{2,3}	Υ	Ν	1	\$0.00	4.14

- 1. Baseline (Tier 1)
- 2. Super-Off-Peak
- 3. Rates given reflect EECC. Retrieved from: http://www.sdge.com/tm2/pdf/ELEC_ELEC-SCHEDS_EECC.pdf
- 4. TOU-EV-1 does not have a meter charge, only a basic customer charge (\$/meter/day)

Note: No demand charges exist in the residential context