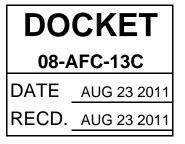
August 23, 2011

Craig Hoffman Compliance Project Manager California Energy Commission 1516 Ninth Street, MS-2000 Sacramento, CA 95814


Subject: Calico Solar 08-AFC-13C Calico Solar Project Geotechnical Engineering Report

Dear Mr. Hoffman:

Calico Solar, LLC hereby submits the Calico Solar Project Geotechnical Engineering Report dated August 23, 2011. I certify under penalty of perjury that the foregoing is true, correct and complete to the best of my knowledge.

Sincerely,

Daniel J. O'Shea On behalf of Calico Solar, LLC

Geotechnical Engineering Report

K Road Calico Solar Project 29501 Hector Road Ludlow, California

August 23, 2011 Terracon Project No. 60095029A

> Prepared for: Calico Solar, LLC Berkeley, California

> > Prepared by:

Terracon Consultants, Inc. Irvine, California

August 23, 2011

Calico Solar, LLC 2600 Tenth Street, Suite 635 Berkeley, California 94710

- Attn: Mr. Keith Heffelfinger P: 480.353.0982 email: keithh@kroadpower.com
- Re: Geotechnical Engineering Report K Road Calico Solar Project 29501 Hector Road Ludlow, California Terracon Project No. 60095029A

Dear Mr. Heffelfinger:

0.

Terracon Consultants, Inc. (Terracon) has completed the geotechnical engineering services for the above referenced project. These services were performed in general accordance with our proposal numbers D6009028 and P60110086, dated June 3, 2009 and May 25, 2011 respectively. This geotechnical engineering report presents the results of the subsurface exploration and provides geotechnical recommendations concerning earthwork and the design and construction of solar field foundations, building foundations, floor slabs, and pavements for the proposed project.

A preliminary report (60095029) was submitted to Tessera Solar dated January 4, 2010. This report includes field exploration and laboratory testing supplementing information used from this study to prepare this report.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report, or if we may be of further service, please contact us.

Sincerely,	
Terracon Consultants, Inc.	ABUHAN SH
	43 00 L T7455
Fouad (Fred) Abuhamdan, P.E Senior Project Manager	CIVIL CIVIL

(for)

Scott D. Neely, P.E. Principal

16662 Millikan Avenue Irvine, California 92606

Copies to: Addressee (1 via email, 3 via mail)

Terracon Consultants, Inc.

N:\Projects\2009\60095029A\Working Files\60095029A Geotech.doc

3

P [949] 660 9718 F [949] 660 9732 terracon.com

TABLE OF CONTENTS

		MARY	
1.0		CTION	
2.0		INFORMATION	
	2.1	Project Description	
	2.2	Site Location and Description	
3.0	SUBSURF	ACE CONDITIONS	
	3.1	Site Geology	
	3.2	Typical Subsurface Profile	4
	3.3	Percolation Test Results	5
	3.4	Thermal Resistivity Test Results	5
	3.5	Seismic Shear Wave Results	5
	3.6	Groundwater	6
	3.7	Faulting and Estimated Ground Motions	6
	3.8	Liquefaction Potential	7
4.0	RECOMM	ENDATIONS FOR DESIGN AND CONSTRUCTION	7
	4.1	Geotechnical Considerations	7
	4.2	Earthwork	8
		4.2.1 Site Preparation	8
		4.2.2 Subgrade Preparation	9
		4.2.3 Fill Materials and Placement	9
		4.2.4 Compaction Requirements	. 10
		4.2.5 Grading and Drainage	. 10
		4.2.6 Corrosion Potential	. 11
		4.2.7 Construction Considerations	. 11
	4.3	Foundations	
		4.3.1 Photovoltaic Solar Arrays and SunCatcher TM Structures Driven Piles Des	
		Recommendations	-
		4.3.2 SunCatcher [™] Structures Drilled Shafts Design Recommendations (Zone 1)	
		4.3.3 Spread Footing Design Recommendations (Zone 1)	
		4.3.4 Mat Foundations Design Recommendations (Zone 1)	
		4.3.5 Shallow Foundations Construction Considerations	
		4.3.6 Drilled Shaft Design Recommendations (Zone 1)	
		4.3.7 Drilled Shaft Construction Considerations	
	4.4	Seismic Considerations	
	4.5	Floor Slab	
		4.5.1 Design Recommendations	
	4.6	Lateral Earth Pressures	
	4.7	Pavements	
		4.7.1 Asphalt and Concrete Pavement Design Recommendations	
		4.7.2 Aggregate Surface Roadways Design Recommendations	
		4.7.3 Compacted Soils Road Design Recommendations	
		4.7.4 Construction Considerations	
5.0	GENERAL	COMMENTS	
0.0			

Geotechnical Engineering Report K Road Calico Solar Project Ludlow, California August 23, 2011 Terracon Project No. 60095029A

TABLE OF CONTENTS- continued

Exhibit No.

Appendix A – Field Exploration

Vicinity Map	A-1
Site Plan and Boring Location Diagram	A-2
Field Exploration Description	A-3
Boring and Test Pit Logs	A-4 thru A-49
General Notes	A-50
Unified Soil Classification System	A-51
Dispersion Curves and Shear Wave Velocity Plots	A-52 thru A-57

Appendix B – Laboratory Testing

Laboratory Test Description	B-1
Atterberg Limits Results	B-2
Grain Size Distribution	B-3 to B-5
Collapse Potential & Consolidation Test Results	B-6 to B-22
Direct Shear Results	B-23 to B-26
Expansion Index Test Results	B-27 to B-29
Moisture-Density Relationship	B-30 to B-39
Resistance Value of Compacted Soil	B-40
Corrosion Test Results	B-41
Thermal Resistivity Test Results	B-42 to B-51

Appendix C – Field Resistivity Testing

Resistivity Test Report	C-1	to	С	-6)
-------------------------	-----	----	---	----	---

GEOTECHNICAL ENGINEERING REPORT K ROAD CALICO SOLAR PROJECT PROJECT 29501 HECTOR ROAD LUDLOW, CALIFORNIA

Terracon Project No. 60095029A August 23, 2011

EXECUTIVE SUMMARY

This geotechnical executive summary should be used in conjunction with the entire report for design and/or construction purposes. It should be recognized that specific details were not included or fully developed in this section, and the report must be read in its entirety for a comprehensive understanding of the items contained herein. The section titled General Comments should be read for an understanding of the report limitations.

A geotechnical exploration has been performed for the K Road Calico Solar Project Project located approximately 35 miles east of Barstow on the 29501 Hector Road in the Ludlow area of San Bernardino County, California. Terracon's geotechnical scope of work included the advancement of 41 test borings and 14 test pits to approximate depths of 4 to 51½ feet below existing site grades. It should be noted that the numbering of the test borings and test pits is not necessarily sequential and was based off the BLM permit and included two long trenches across mapped earthquake fault (Alquist Priolo) zones. The fault trenches were not part of this scope of investigation and as such Trench 2 and Trench 22 were not excavated. Two of the test pits were advanced in locations determined by a URS geo-archeologist (TP-050 and TP-051). Proposed boring B-021 was also not advanced as a result of its proposed location between a utility easement and private property without right of entry. Terracon was unable to access proposed borings B-043 and B-57A with a 4x4 rig and, therefore, did not advance a boring at the B-043 location and advanced a hand auger boring at the location of B-57A. B-030 was depicted in the same location as B-031 on the permit and therefore only B-031 was drilled.

Based on the information obtained from our subsurface exploration, the site is suitable for development of the proposed project. The following geotechnical considerations were identified:

Site Soils: Subsurface soils at the project site were generalized into two major "zones". The site surface soils in Zone 1 consisted of silty sands, poorly graded sands with variable amounts of silt and gravel overlying sandstone bedrock to the maximum depth explored, 51½ feet bgs. Zone 2, a smaller area near Hector Road, consisted of silty sand with gravel and clayey sand overlying fat clays to the maximum depth explored, 26½ feet bgs. Groundwater was not encountered in any test boring at the time of drilling. On-site soils (excluding the fat clays) are suitable for use as engineered fill beneath foundations and floor slabs, pavements, and as backfill.

Foundations: Subject to successful pile testing, the project owner is planning to support the proposed SunCatcherTM structures on driven pipe piles. The proposed piles will consist of 3/8" thick hollow steel pipes which will be vibrated into the ground. If the use of driven piles proves not to be commercially feasible, the SunCatcherTM structures should be supported on drilled shaft foundations. The Photovoltaic Modular Arrays will be supported on driven piles. Service

complex building and electrical substation elements will be supported by shallow spread footings and mat foundations bearing on approved compacted soils, or drilled shafts.

Floor Slabs: The on-site surface and near surface soils over most of the site within Zone 1 are expected to exhibit low expansion potentials when compacted and subjected to light loading conditions such as those imposed by floor slabs. Construction of floor slabs directly on compacted fills composed of approved non-expansive on-site soils or approved imported soils are considered acceptable for the project. The fat clays within Zone 2 are not considered suitable for use as engineered fill beneath floor slabs.

Pavement Sections: Automobile parking areas – 3" AC over 4" ABC or 6" PCC over 10" of scarified, moisture conditioned, and compacted soils; truck drives and drive lanes – 4" AC over 4" ABC or 7" PCC over 10" of scarified, moisture conditioned, and compacted soils.

Earthwork on the project should be observed and evaluated by Terracon. The evaluation of earthwork should include observation and testing of engineered fill, subgrade preparation, foundation bearing soils, and other geotechnical conditions exposed during construction.

GEOTECHNICAL ENGINEERING REPORT K ROAD CALICO SOLAR PROJECT 29501 HECTOR ROAD LUDLOW, CALIFORNIA

Terracon Project No. 60095029A August 23, 2011

1.0 INTRODUCTION

This report presents the results of our geotechnical engineering services performed for the proposed K Road Calico Solar Project to be located approximately 35 miles east of Barstow in the Ludlow area of San Bernardino County, California. The site vicinity map (Exhibit A-1) is included in Appendix A of this report. The purpose of these services is to provide information and geotechnical engineering recommendations relative to:

- subsurface soil conditions
- earthwork
- seismic considerations
- lateral earth pressure

- groundwater conditions
- foundation design and construction
- floor slab design and construction
- pavement design and construction

Our geotechnical engineering scope of work for this project included the following field exploration.

SUBSURFACE EXPLORATION			
Exploration Type	Quantity	Depth	
Test Boring	41	4 to 51 feet	
Test Pit	14	8 to 14 feet	
Field Soil Resistivity Test	9	N/A	
Seismic Shear Wave Test	3	N/A	

Logs of the borings along with a Site Plan and Boring Location diagram (Exhibit A-2) are included in Appendix A of this report. The results of the laboratory testing performed on soil samples obtained from the site during the field exploration are included in Appendix B of this report. Descriptions of the field exploration and laboratory testing are included in their respective appendices.

1

2.0 PROJECT INFORMATION

2.1 **Project Description**

ITEM	DESCRIPTION		
Site layout	Refer to the Site Plan and Boring Location Diagram (Exhibit A-2 in Appendix A).		
	Photovolatic Modular Arrays:		
	• Single trackers supported on 4.5" and 6" diameter galvanized steel posts that will be hydraulically vibrated to depths of 6 to 10 feet below ground surface.		
	Suncatcher structures:		
	• Structures are planned to be supported on 24 inch diameter driven pipe piles or drilled shafts founded at a depth of 18.5 feet below ground surface.		
	 Railroad overpass bridge: This structure is specifically excluded from this report 		
_	Service complex:		
Structures	 Maintenance and administration building (130'x 140') to be supported on shallow foundation system. 		
	Modular temporary buildings		
	 Pumps, tanks, and other minor site elements. 		
	Facility electrical substation:		
	 Large transformers (230 kV - 500 kV) to be supported on 30'x15' concrete pads. 		
	 Dead End Transmission line towers within the proposed substation. 		
	 Switch gears and other minor site elements. 		
	 Transmission Line Towers: These structures are specifically excluded from this report 		
	Suncatchers :		
	Overturning Moment – 250 kip·ft (assumed)		
	Dead Load – 6 to 8 tons (assumed)		
Maximum loads	Single axis trackers: Vertical – 500 to 900 lbs. (assumed)		
	Substation Transformers: 12 to 15 tons (assumed)		
	Substation Dead End Towers: Axial: 20 kips (assumed)		
	Shear: 40 to 50 kips (assumed)		
	Moment: 2000 to 3000 ft-kips (assumed)		
	Maintenance Building: Column Footings: 30 to 60 kips (assumed)		
	Wall Footings: 2 to 4 kips per lineal foot (assumed)		

Geotechnical Engineering Report

K Road Calico Solar Project Ludlow, California August 23, 2011 – Terracon Project No. 60095029A

ITEM	DESCRIPTION	
Maximum allowable settlement	1-inch (assumed)	
Traffic loading Assumed Traffic Index = 5.0 for Light Automobile Parking		
Traine loading	Assumed Traffic Index = 7.0 for Heavy Parking and Drive Areas	

2.2 Site Location and Description

ITEM	DESCRIPTION	
Location	Approximately 35 miles east of Barstow on the 29501 Hector Road in the Ludlow area of San Bernardino County, California	
	T8N R5E Sections 1,2,8-15; T8N R6E Sections 4-6,7-9,17,18,	
Section, Township, Range	T9N R5E Sections 35,36; T9N R6E Sections 31-33	
	(San Bernardino Meridian)	
Existing site features	Native desert bisected by an east-west trending railroad line (BNSF), a Southern California Edison (SCE) electrical substation is adjacent to the southeastern portion of the site, two SCE and Southern California Gas Company natural gas substations along the southern boundary of the site, and several natural gas utility lines trending east-west through the southern portion of the site.	
Surrounding developments	North: Undeveloped native desert and hills. East: Undeveloped native desert with one apparent residence. West: Undeveloped native desert. South: Interstate 40 and National Trails Highway (Route 66), beyond	
Current ground cover	which is undeveloped native desert. Light to moderate growth of grass, weeds, and cacti.	
Existing topography	The site slopes gently approximately 1.4% to the southwest north of the existing railroad tracks, and even gentler, roughly 0.3%, to the northwest on the south side of the tracks. The site generally drains to the west.	

3.0 SUBSURFACE CONDITIONS

3.1 Site Geology

The site is situated within the south central portion of the Mojave Desert Geomorphic Province in Southern California. Geologic structures within the Mojave Desert tend to consist of isolated mountain ranges separated by vast expanses of desert plains, with a predominate northwestsoutheast faulting trend, with a secondary trend of east-west (parallel to the Transverse Ranges

Province). Principal bounding faults include the San Andreas Fault to the southwest and the Garlock Fault to the north.^{1, 2}

Surficial geologic units mapped at the site³ consist mainly of alluvium of Holocene to Pleistocene age. The southeastern portion of the site consists of basalt lava flow deposits from the Ludlow Crater. Rock outcrops in the northern portion of the site consist of Miocene volcanic rock.

Two Alquist-Priolo Earthquake Fault Zones intercept the site, one along the westerly edge of the property, and one in the east-central portion of the site. It should be noted that fault trenches to evaluate the location and activity levels of the faults were not within the scope of this investigation.

3.2 Typical Subsurface Profile

Specific conditions encountered at each boring location are indicated on the individual boring logs. Stratification boundaries on the boring logs represent the approximate location of changes in soil types; in-situ, the transition between materials may be gradual. Details for each of the borings can be found on the boring logs included in Appendix A of this report. Based on the results of the borings, subsurface conditions on the project site were generalized into two major "zones" as follows:

Description	Approximate Depth to Bottom of Stratum	Material Encountered	Consistency/Density	
		Silty sand and poorly graded	Loose to medium dense in	
	4 to 511/2 feet	sand with variable amounts of	the upper 5 feet. Dense to	
Zone 1		silt and gravel.	very dense below 5 feet	
	41½ feet – Maximum	Sedimentary Bedrock –	Modoratoly bard to bard	
	depth of exploration	Sandstone*	Moderately hard to hard	
7 0	0 to 2 feet	Silty sand with gravel	Loose	
Zone 2	2 to 261/2 feet	Fat clay	Stiff to Very Stiff	

* Only encountered in borings B-50 through B-54

Fill materials were not encountered in our field exploration of subsurface soils. Laboratory tests were conducted on selected soil samples and the test results are presented in Appendix B. Sulfate contents in the soils were found to be low to moderate. Laboratory test results indicate that the subsoils at shallow depth exhibit a slight collapse potential when saturated.

¹ Harden, D. R., "*California Geology, Second Edition*," Pearson Prentice Hall, 2004.

² Norris, R. M. and Webb, R. W., "Geology of California, Second Edition," John Wiley & Sons, Inc., 1990.

³ Shawn Biehler, R.W. Tang, D.A. Ponce, H.W. Oliver, 1988, *Bouger Gravity Map of the San Bernadino Quadrangle, California*, California Division of Mines and Geology.

Zone 1 includes over 90 percent of the project site and represents the typical conditions encountered within the project. Zone 2 is a comparatively small area near Hector Road in the southwest corner of the site. The approximate boundaries of Zone 1 and 2 are depicted on Exhibit 2. These boundaries of the zone are estimated and should be verified in the field during construction.

The silty sand and sand with silt soils in Zone 1 were non-plastic. The fat clay soils in Zone 2 had high plasticities with medium to high expansion potentials.

Laboratory tests were conducted on selected soil samples and the test results are presented in Appendix B.

3.3 Field Soil Resistivity Test Results

Field resistivity testing was performed using a Nilsson Model 400 soil resistance meter and in general accordance with ASTM G57-95a. Tests were conducted by driving five test rods up to 12 inches deep into the ground and recording measurements using a uniform distance of 2, 4, 8, 16 and 20 feet in the same line. The testing was performed at nine boring/test pit locations (B-003, B-014, B-025, B-029, B-033, B-043, TP-044, and B-048) around the site. Test results and the field reports are enclosed in Appendix C.

3.4 Thermal Resistivity Test Results

Soil thermal resistivity was determined for selected soils samples. We recommend that the thermal resistivity results be discussed with an electrical design team to determine the influence on cable type and backfill materials. The test results are presented in Appendix B.

3.5 Seismic Shear Wave Results

In order to determine the Site Class of the project site, as outlined in the 2009 International Building Code (IBC), three geophysical surveys were conducted on the project site. Each survey consisted of one 600-foot long seismic line with 24 equally spaced geophones along the line. One line was located in the northwest portion of the project site (near B-005), the second line was located in the south-central portion of the project site (near B-031), and the last line was located in the northeast corner of the project site (near TP-044).

In each survey, seven sets of background micro-tremor data were collected. The data sets were processed using computer program SeisOpt[®]-Remi[™] to determine the shear wave velocity profile of the upper 100 feet of the soil. Based on this profile, the average shear wave velocity of the upper 100-foot soil was calculated and ranged from 1,313 ft/s to 2,018 ft/s. In accordance with Section 1613.5.2, Site Class Definitions of the 2009 IBC, these values classify the project site as Site Class C.

The p-f image with dispersion modeling picks, modeled dispersion curves, and shear wave velocity profiles of the upper 100 feet of soil are shown on Exhibits A-61 through A-66.

3.6 Groundwater

Groundwater was not observed in any test boring or test pit at the time of field exploration. These observations represent groundwater conditions at the time of the field exploration and may not be indicative of other times, or at other locations. Groundwater conditions can change with varying seasonal and weather conditions, and other factors.

Based upon review of State of California's Groundwater Bulletin 118 for the South Lahontan Hydrologic Region, Lower Mojave River Valley Groundwater Basin, regional groundwater predominates in water bearing Pliocene and younger alluvial fan deposits and an overlying Pleistocene and younger river channel and floodplain deposits. According to the bulletin, regional groundwater was encountered at estimated depths ranging from approximately 50 to 80 feet below the existing ground surface.

Zones of perched and/or trapped groundwater may also occur at times in the subsurface soils overlying bedrock, on top of the bedrock surface or within permeable fractures in the bedrock materials. The location and amount of perched water is dependent upon several factors, including hydrologic conditions, type of site development, irrigation demands on or adjacent to the site, fluctuations in water features, seasonal and weather conditions.

3.7 Faulting and Estimated Ground Motions

The subject site is located in Southern California, which is a seismically active area. The type and magnitude of seismic hazards affecting the site are dependent on the distance to causative faults, the intensity, and the magnitude of the seismic event. The table below indicates the distance of the fault zones and the associated maximum credible earthquake that can be produced by nearby seismic events, as calculated using the USGS Earthquake Hazard Program 2002 interactive deaggregations. The cordinates of Boring B-055 which is located within the proposed service complex were used in the analysis. The Ludlow-Bullion Mtn-Mesqite Lk Fault, which is located approximately 4.4 kilometers from the site, is considered to have the most significant effect at the site from a design standpoint.

Characteristics and Estimated Earthquakes for Regional Faults		
ApproximateMaximum CredibleFault NameDistance to SiteEarthquake (MCE)(kilometers)Magnitude		
Ludlow-Bullion Mtn-Mesqite Lk	4.4	7.2
Calico-Hidalgo GR M-distrib	16.9	6.9

Based on these sources the peak ground acceleration at the subject site for a 10% Probability of Exceedance in 50 years (Return period of 475 years) is expected to be about 0.26g.

Based on our review of the State Fault Hazard Maps⁴, two Alquist-Priolo Earthquake Fault zones pass through the site. Fault studies and analysis were not performed and are beyond the scope of this report.

The proposed site plan shows that no structures with human occupancy will be located within these zones. Therefore, a seismic fault trench study may not be required.

3.8 Liquefaction Potential

Liquefaction is a mode of ground failure that results from the generation of high pore water pressures during earthquake ground shaking, causing loss of shear strength. Liquefaction is typically a hazard where loose sandy soils exist below groundwater. The CGS has designated certain areas within southern California as potential liquefaction hazard zones. These are areas considered at a risk of liquefaction-related ground failure during a seismic event, based upon mapped surficial deposits and the presence of a relatively shallow water table. The project site location was not mapped for potential liquefaction hazard by the CGS (CDMG, 1999). Based on the CGS information, and the historical depth of ground water, we conclude that the potential for liquefaction at the site is low. Other geologic hazards related to liquefaction, such as lateral spreading, are therefore also low.

4.0 **RECOMMENDATIONS FOR DESIGN AND CONSTRUCTION**

4.1 Geotechnical Considerations

The site appears suitable for the proposed construction based upon geotechnical conditions encountered in the test borings and test pits provided that the findings and recommendations presented herein are incorporated into project design and construction.

The vast majority of the site is underlain by silty sands and poorly graded sand with varying amounts of gravel (Zone 1). However, fat clay soils were encountered in an area in the southwest portion of the site (borings B-005 through B-008) near Hector Road (Zone 2 discussed herein). Foundation design parameters for the Photovoltaic solar arrays have been developed for each of these two major soil types. Foundation design parameters for the SunCatcher structures have been developed for soil types only within Zone 1. Buildings and SunCatcher structures are not planned in the areas underlain by fat clay soils (Zone 2) at this time. If the proposed layout of the solar development changes and lightly loaded buildings or SunCatchers are planned near Hector Road, we would be pleased to discuss other construction alternatives with you upon request.

Due to the slight potential for hydro-compaction in the near surface soils within the proposed service complex and electrical substation areas, spread footings bearing on 10 inches of

³ California Department of Conservation Division of Mines and Geology (CDMG), *"Digital Images of Official Maps of Alquist-Priolo Earthquake Fault Zones of California, Southern Region"*, CDMG Compact Disc 2000-003, 2000.

² The Riverside County Land Information System, http://www3.tlma.co.riverside.ca.us/pa/rclis/index.html

scarified, moisture conditioned, and compacted native soils are recommended for support of the proposed structures. Estimated movements described in this report are based on effective drainage for the life of each structure and cannot be relied upon if effective drainage is not maintained. Exposed ground, extending at least 10 feet from the perimeter, should be sloped a minimum of 5% away from each building to provide positive drainage away from each structure. Grades around each structure should be periodically inspected and adjusted as part of the structure's maintenance program.

It appears that the majority of the on-site soils except of the fat clays encountered in Zone 2 will be suitable for use as engineered fill beneath foundations, and pavements. Imported soils which may be required for the project must have potential expansion values in the "very low" range and they should satisfy the requirements contained in this report for low volume change soils.

Geotechnical engineering recommendations for foundation systems and other earth connected phases of the project are outlined below. The recommendations contained in this report are based upon the results of field and laboratory testing (which are presented in Appendices A and B), engineering analyses, and our current understanding of the proposed project.

4.2 Earthwork

The following presents recommendations for site preparation, excavation, subgrade preparation, and placement of engineered fills on the project. The recommendations presented for design and construction of earth supported elements including foundations, slabs, and pavements are contingent upon following the recommendations outlined in this section. All grading for each building structure should incorporate the limits of the proposed structure plus a minimum of five feet beyond proposed perimeter building walls and any exterior columns.

Earthwork on the project should be observed and evaluated by Terracon. The evaluation of earthwork should include observation and testing of engineered fill, subgrade preparation, foundation bearing soils, and other geotechnical conditions exposed during the construction of the project.

Grading plans were not reviewed as part of the scope of work for this report. Terracon should be retained to evaluate the grading plans as they are developed, and to provide updated recommendations based on review of those plans.

4.2.1 Site Preparation

Strip and remove existing vegetation, debris, and other deleterious materials from proposed development areas. Exposed surfaces should be free of mounds and depressions which could prevent uniform compaction.

Stripped materials consisting of vegetation and organic materials should be wasted from the site, or used to revegetate landscaped areas or exposed slopes after completion of grading operations. If it is necessary to dispose of organic materials on-site, they should be placed in non-structural areas, and in fill sections not exceeding 5 feet in height.

If fill is placed in areas of the site where existing slopes are steeper than 5:1 (horizontal:vertical), the area should be benched to reduce the potential for slippage between existing slopes and fills. Benches should be wide enough to accommodate compaction and earth moving equipment, and to allow placement of horizontal lifts of fill.

4.2.2 Subgrade Preparation

Subsequent to the surface clearing and grubbing efforts, the exposed subgrade soils beneath foundations of proposed structures (not including SunCatcher[™] units or Photovoltaic solar arrays), exterior and interior slabs, and pavement areas should be prepared to a minimum depth of 10 inches. Subgrade preparation should generally include some form of scarification (or removal), moisture conditioning, and compaction. The moisture content and compaction of subgrade soils should be maintained until slab or pavement construction.

Exposed areas which will receive fill, once properly cleared and benched where necessary, should be scarified to a minimum depth of ten inches, conditioned to near optimum moisture content, and compacted.

4.2.3 Fill Materials and Placement

All fill materials should be inorganic soils free of vegetation, debris, and fragments larger than six inches in size. Pea gravel or other similar non-cementitious, poorly-graded materials should not be used as fill or backfill without the prior approval of the geotechnical engineer.

Clean on-site soils or approved imported materials may be used as fill material for the following:

- general site grading
- exterior slab areas
- foundation areas
- interior floor slab areas
- pavement areasfoundation backfill
- r slab areas 🔹 fou

On site fat clay soils are not suitable for use as engineering fill on site.

Imported soils for use as fill material within proposed building and structure areas should conform to low volume change materials as indicated in the following specifications:

Percent Finer by Weight

<u>Gradation</u>	<u>(ASTM C 136)</u>
6"	100
3"	70-100
No. 4 Sieve	
No. 200 Sieve	30 (max)
Liquid Limit	30 (max)
Plasticity Index	15 (max)
 Maximum Expansion Index* 	20 (max)

*ASTM D 4829

Engineered fill should be placed and compacted in horizontal lifts, using equipment and procedures that will produce recommended moisture contents and densities throughout the lift. Fill lifts should not exceed ten inches loose thickness.

4.2.4 Compaction Requirements

Recommended compaction and moisture content criteria for engineered fill materials are as follows:

	Per the Standard Proctor Test (ASTM D 1557)			
Material Type and Location	Minimum Compaction Requirement (%)	Comp	ure Contents for action optimum) Maximum	
On-site granular or approved imported fill soils:				
Beneath foundations:	95	-3%	+3%	
Beneath slabs:	90	-3%	+3%	
Beneath asphalt pavements:	95	-3%	+3%	
Beneath concrete pavements:	95	-3%	+3%	
Aggregate base (beneath slabs)	90	-3%	+3%	
Aggregate base (beneath pavements)	95	-3%	+3%	
Miscellaneous backfill	90	-3%	+3%	

4.2.5 Grading and Drainage

Positive drainage should be provided during construction and maintained throughout the life of the development. Infiltration of water into utility trenches or foundation excavations should be prevented during construction. Planters and other surface features which could retain water in areas adjacent to buildings or pavements should be sealed or eliminated. In areas where

sidewalks or paving do not immediately adjoin a structure, we recommend that protective slopes be provided with a minimum grade of approximately five percent for at least 10 feet from perimeter walls. Backfill against footings, exterior walls, and in utility and sprinkler line trenches should be well compacted and free of all construction debris to reduce the possibility of moisture infiltration.

Downspouts, roof drains or scuppers should discharge into splash blocks or extensions when the ground surface beneath such features is not protected by exterior slabs or paving. Sprinkler systems should not be installed within five feet of foundation walls. Landscaped irrigation adjacent to the foundation systems should be minimized or eliminated.

4.2.6 Corrosion Potential

Results of soluble sulfate testing indicate that ASTM Type II Portland cement is suitable for all concrete on and below grade. Foundation concrete should be designed for low to moderate sulfate exposure in accordance with the provisions of the ACI Design Manual, Section 318, Chapter 4.

Laboratory test results indicate that on-site soils have resistivities ranging from 360 to 8,000 ohm-centimeters, chloride content ranging from 42 to 65 ppm, and pH values ranging from 7.50 to 8.93. These test results are provided to assist in determining the type and degree of corrosion protection that may be required. We recommend that a certified corrosion engineer determine the need for corrosion protection and design appropriate protective measures.

Refer to Summary of Laboratory Results contained in Appendix B for the complete results of the various corrosivity testing conducted on the site soils in conjunction with this geotechnical exploration.

4.2.7 Construction Considerations

It is anticipated that excavations for the proposed construction can be accomplished with conventional earthmoving equipment. Some additional effort may be necessary to excavate through very dense granular soils and to extract cobbles, particularly in deep narrow excavations such as utility trenches. Consideration should be given to obtaining a unit price for difficult excavation in the contract documents for the project.

Based upon the subsurface conditions determined from the geotechnical exploration, subgrade soils exposed during construction are anticipated to be relatively stable. However, the stability of the subgrade may be affected by precipitation, repetitive construction traffic or other factors. If unstable conditions develop, workability may be improved by scarifying and drying. During and after periods of heavy rain, overexcavation of wet zones and replacement with granular materials may be necessary.

The individual contractor(s) is responsible for designing and constructing stable, temporary excavations as required to maintain stability of both the excavation sides and bottom. Excavations should be sloped or shored in the interest of safety following local, and federal regulations, including current OSHA excavation and trench safety standards.

4.3 Foundations

Where applicable, structures can be supported by driven pile foundations, drilled shafts, mat foundations, or spread footings. It is our understanding that the SunCatcherTM units and Photovoltaic solar arrays are planned to be supported on pile foundations. If the use of driven pipe piles for the SunCatcher structures proves not to be commercially feasible, it is our recommendation that Suncatcher units be supported on drilled shafts. It is our opinion it may not be economically feasible to drive the 24 inch diameter steel pipe piles planned to support the SunCatcher units through the dense to very dense sand soils below a depth of 5 to 10 feet bgs.

Service complex building and electrical substation elements should be supported by shallow foundations. Shallow foundation recommendations pertain to structures to be located within Zone 1. If buildings are planned in the area of Zone 2 (where expansive soils are present), then Terracon should be consulted and modified recommendations should be prepared.

Recommendations for foundations for the bridge crossing the railroad tracks requires further field investigations and will be provided at a later phase. Design recommendations for foundations for the proposed structures and related structural elements are presented in the following paragraphs.

DESCRIPTION	VALUE			
Foundation Type	Driven pipe piles			
Structures	Photovoltaic solar arrays with single axis tracker units and SunCatcher Structures			
Bearing Material	Undisturbed soils below surface clearing and grubbing efforts			

4.3.1 Photovoltaic Solar Arrays and SunCatcher[™] Structures Driven Piles Design Recommendations

The controlling factor to consider during design will be the amount of lateral support the foundation element can transfer to the surrounding soil. Driven pipe piles design parameters for the proposed structures have been developed for each of these two major soil types.

Recommended soil parameters for lateral load analysis of driven pile foundations have been developed for use in LPILE computer programs. Engineering properties have been estimated as outlined below:

Lateral Load Analysis Estimated Engineering Properties of Soils							
Top Depth	Unit Weight	Weight Soil Internal Allowable Skin Subgrade Reactio					
Bottom Depth	(pcf)	(pcf) Type			K _s (pci) ¹		
2	116	SAND	29°	300	90 ²		
10	110	0,110	20	000	55		
10	447	SAND	31°	500	225 ²		
15	117	SAND	51	500	225		
15	100	SAND	36°	750	225 ²		
25	120	SAND		750	220		

Zone 1:

¹ Note: These values are based upon parameters for LPILE analyses.

² Note: This value increases linearly with depth an amount equal to the modulus and is independent of shaft diameter.

Zone 2 (Photovoltaic Solar Arrays only):

Lateral Load Analysis						
	E	stimated En	gineering Pro	perties of Soils		
Top Depth	Unit	L-Pile	Cohesion	Allowable Skin Friction	Modulus of Subgrade	5 -1
Bottom Depth	Weight (pcf)	Soil Type	ne (nef)	(psf)	Reaction K _s (pci) ¹	ε ₅₀
2		Stiff Clay				
15	120	w/o free water	2000	500	400	0.005

¹ Note: These values are based upon parameters for LPILE analyses.

4.3.2 SunCatcher[™] Structures Drilled Shafts Design Recommendations (Zone 1)

If the use of driven pipe piles for the SunCatcher[™] structures proves not to be commercially feasible, a straight shaft, drilled into native soils with a minimum diameter of 24 inches is recommended for the support of the proposed SunCatcher structures within Zone 1. No SunCatcher units are planned in the areas underlain by clayey soils in Zone 2 at this time.

Based on our review of the boring log and the Standard Penetration Test (SPT) results, engineering properties have been estimated for the soil conditions as shown in the following table.

Top <u>Depth</u> Bottom Depth	Unit Weight (pcf)	USCS Soil Type	Internal Friction ∳	Cohesion (psf)	Allowable End Bearing (psf)	Allowable Skin Friction (psf)	Coefficient of Subgrade Reaction Ks ¹ (pci)
3	115	SP-SM	30			300	90
10		35-311	50			300	30
10	120	SP-SM/	33		12.000	750	225
30	120	Bedrock	55		12,000	150	
30	120	SP-SM/	36		20.000	1,000	225
40	120	Bedrock	00		20,000	1,000	
¹ Noto: Th	Note: These values are based on parameters for LPILE or COM624P analysis						

¹ Note: These values are based on parameters for LPILE or COM624P analyses.

4.3.3 Spread Footing Design Recommendations (Zone 1)

DESCRIPTION	VALUE		
Foundation Type	Conventional Shallow Spread Footing		
	 Maintenance building (100'x 70') 		
	 Large transformers (230 kV - 500 kV) 		
Structure	 Modular temporary buildings 		
	 Pumps, switch gears, tanks, and other minor site elements. 		
Bearing Material	10 inches of scarified, moisture conditioned, and compacted native soils		
Allowable Bearing Pressure	2,500 psf		
Minimum Width for Continuous and Column Footings	16 inches and 24 inches, respectively		
Minimum Embedment Depth Below Finished Grade	18 inches		
Total Allowable Settlement	1-inch (assumed)		
Estimated Differential Settlement	1/2 to 3/4 inch over 100 feet		

The allowable foundation bearing pressures apply to dead loads plus design live load conditions. The design bearing pressure may be increased by one-third when considering total loads that include wind or seismic conditions. The weight of the foundation concrete below grade may be neglected in dead load computations.

4.3.4 Mat Foundations Design Recommendations (Zone 1)

For large transformers, tanks, or any other facilities supported on structural mat foundations bearing on a minimum of 10 inches of scarified, moisture conditioned, and compacted native soils, a modulus of subgrade reaction (Kv_1) of 200 pounds per cubic inch (pci) should be used. Other details including treatment of loose foundation soils, superstructure reinforcement and

observation of foundation excavations as outlined in this report are applicable for the design and construction of a mat foundation at the site.

The subgrade modulus (Kv) for the mat is affected by the size of the mat foundation and would vary according the following equation:

 $Kv = Kv_1 x (B+1)^2 / 4B^2$

Where:Kv1 is the modulus of vertical subgrade reactionB is the width of the mat foundation.

Thus for a footing width of B = 15 ft bearing on the sandy soils, the subgrade modulus would be:

$$Kv = 200 x (15+1)^2 / (4x \ 15^2) = 57 pci$$

4.3.5 Shallow Foundations Construction Considerations

Foundations should be reinforced as necessary to reduce the potential for distress caused by differential foundation movement.

Finished grade is defined as the lowest adjacent grade within five feet of the foundation for perimeter (or exterior) footings. The allowable foundation bearing pressures apply to dead loads plus design live load conditions. The design bearing pressure may be increased by one-third when considering total loads that include wind or seismic conditions. The weight of the foundation concrete below grade may be neglected in dead load computations.

Footings, foundations, and masonry walls should be reinforced as necessary to reduce the potential for distress caused by differential foundation movement. The use of joints at openings or other discontinuities in masonry walls is recommended.

Foundation excavations should be observed by the geotechnical engineer. If the soil conditions encountered differ significantly from those presented in this report, supplemental recommendations will be required.

4.3.6 Drilled Shaft Design Recommendations (Proposed Substation Area)

A straight shaft, drilled into native soils with a minimum diameter of 12 inches is recommended for the support of proposed towers or pole shaped structures within the proposed substation. Recommended soil parameters for lateral and axial compression load analysis of drilled shaft foundations have been developed for use in LPILE computer programs.

Based on our review of the boring log and the Standard Penetration Test (SPT) results, engineering properties have been estimated for the soil conditions as shown in the following table.

Top <u>Depth</u> Bottom Depth	Unit Weight (pcf)	USCS Soil Type	Internal Friction φ	Cohesion (psf)	Allowable End Bearing (psf)	Allowable Skin Friction (psf)	Coefficient of Subgrade Reaction Ks ¹ (pci)
3	115	SP-SM	30			300	90
10	110						000
10	120	SP-SM/	33		12.000	750	225
30	120	Bedrock			12,000	100	
30	120	SP-SM/	36		20.000	1,000	225
40	120	Bedrock			20,000	1,000	
¹ Note: These values are based on parameters for LPILE or COM624P analyses.							

The above parameters assume the groundwater level is below the maximum depth of the drilled shaft. The load capacities provided are based only on the stresses induced in the supporting soils; the structural capacity of the shafts should be checked to assure that they can safely accommodate the combined stresses induced by axial and lateral forces. The response of the drilled shaft foundations to lateral loads is dependent upon the soil/structure interaction as well as the shaft's actual diameter, length, stiffness, and "fixity" (fixed or free-head condition). When designing to resist uplift forces, the effective weight of the shaft and structure (divided by an appropriate factor of safety) and the allowable skin-friction values provided above should be used.

4.3.7 Drilled Shaft Construction Considerations

Drilling to design depths should be possible with conventional single flight power augers. Temporary steel casing may be required to properly drill and clean drilled shafts or foundation excavations for embedded poles prior to concrete placement. A water and polymer displacement method may also be considered as a means of maintaining shaft integrity during construction. Foundation concrete should be placed immediately after completion of drilling and cleaning. If foundation concrete cannot be placed in dry conditions, a tremie should be used for concrete placement. Due to potential sloughing and raveling, foundation concrete quantities may exceed calculated geometric volumes.

If casing is used for foundation construction, it should be withdrawn in a slow continuous manner maintaining a sufficient head of concrete to prevent caving or the creation of voids in pier concrete. Foundation concrete should have a relatively high fluidity when placed in cased pier holes or through a tremie. Foundation concrete with slump in the range of 6 to 8 inches is recommended.

The use of a bottom-dump hopper, or an elephant's trunk discharging near the bottom of the hole where concrete segregation will be minimized, is recommended.

Foundation bearing surfaces must be cleaned prior to concrete placement. A representative of the geotechnical engineer should inspect the bearing surface and foundation shaft configuration. If the subsurface soil conditions encountered differ significantly from those presented in this report, supplemental recommendations will be required.

We recommend that all drilled shaft installations be observed on a full-time basis by an experienced geotechnical engineer in order to evaluate that the soils encountered are consistent with the recommended design parameters.

The contractor should check for gas and/or oxygen deficiency prior to any workers entering the excavation for observation and manual cleanup. All necessary monitoring and safety precautions as required by OSHA, State or local codes should be strictly enforced.

4.4 Seismic Considerations

DESCRIPTION	VALUE
2009 International Building Code Site Classification (IBC) ¹	С
Site Latitude	N 34.79618
Site Longitude	W -116.41931
S _s Spectral Acceleration for a Short Period	1.20
S _s Spectral Acceleration for a 1-Second Period	0.40
F _a Site Coefficient for a Short Period	1.0
F _v Site Coefficient for a 1-Second Period	1.4

¹ Note: In general accordance with the *2009 International Building Code*, Table 1613.5.2. IBC Site Class is based on seismic shear wave tests.

4.5 Floor Slab

4.5.1 Design Recommendations (Zone 1)

DESCRIPTION	VALUE		
Interior floor system	Slab-on-grade concrete.		
Floor slab support	The existing engineered fill generally has low expansive potential under light loading conditions such as those imposed by floor slabs. Floor slabs and sub-base may bear directly on 10 inches of scarified and re-compacted existing engineered fill.		
Subbase	4-inches of Class II Aggregate Base materials		

DESCRIPTION	VALUE
Modulus of subgrade reaction	200 pounds per square inch per inch (psi/in) (The modulus was obtained based on our experience with similar subgrade conditions, and estimates obtained from NAVFAC 7.1 design charts)

In areas of exposed concrete, control joints should be saw cut into the slab after concrete placement in accordance with ACI Design Manual, Section 302.1R-37 8.3.12 (tooled control joints are not recommended). Additionally, dowels should be placed at the location of proposed construction joints. To control the width of cracking (should it occur) continuous slab reinforcement should be considered in exposed concrete slabs.

The use of a vapor retarder or barrier should be considered beneath concrete slabs on grade that will be covered with wood, tile, carpet or other moisture sensitive or impervious coverings, or when the slab will support equipment sensitive to moisture. When conditions warrant the use of a vapor retarder, the slab designer and slab contractor should refer to ACI 302 and ACI 360 for procedures and cautions regarding the use and placement of a vapor retarder/barrier.

The above recommendations pertain to lightly loaded floor slabs in Zone 1. If buildings are planned in the area of Zone 2 (where expansive soils are present) or heavier floor slabs are anticipated, then Terracon should be consulted and modified recommendations should be prepared.

4.6 Lateral Earth Pressures

For soils or fill materials above any free water surface, recommended equivalent fluid pressures for unrestrained foundation elements are:

ITEM	VALUE ¹
Active Case	40 psf/ft
Passive Case	350 psf/ft
At-Rest Case	60 psf/ft
Coefficient of Base Friction or Adhesion at Base of Footing	0.40 ² psf

¹Note: The values are based on the on-site soils used as backfill.

²Note: The coefficient of base friction should be reduced to 0.30 when used in conjunction with passive pressure.

The lateral earth pressures herein do not include any factor of safety and are not applicable for submerged soils/hydrostatic loading. Additional recommendations may be necessary if such conditions are to be included in the design.

Fill against foundation and retaining walls should be compacted to densities specified in the Earthwork section of this report. Compaction of each lift adjacent to walls should be accomplished with hand-operated tampers or other lightweight compactors.

4.7 Pavements

4.7.1 Asphalt and Concrete Pavement Design Recommendations

A design R-Value of 55 was used to calculate the asphaltic concrete pavement thickness sections and a modulus of subgrade reaction value (k) of 200 pounds per cubic inch (pci) was used in calculating the Portland cement concrete pavement sections. R-value testing should be completed prior to pavement construction to verify the design R-value.

Assuming the pavement subgrades will be prepared as recommended within this report, the following pavement sections should be considered minimums for this project for the traffic indices assumed in the table below. As more specific traffic information becomes available, we should be contacted to reevaluate the pavement calculations.

	Recommended Pavement Section Thickness (inches)*				
	Light (Automobile) Parking Assumed Traffic Index (TI) = 5.0	Heavy Parking and Drive Areas Assumed TI = 7.0			
<u>Section I</u> Portland Cement Concrete (600 psi Flexural Strength)	6.0" Concrete over 10" of scarified, moisture conditioned, and compacted soils	7.0" Concrete over 10" of scarified, moisture conditioned, and compacted soils			
Section II3" Asphaltic Concrete over 4" Class II Aggregate Base over 10" of scarified, moisture conditioned, and compacted soils4" Asphaltic Concrete ov II Aggregate Base over scarified, moisture conditioned, and compacted soils* All materials should meet the CALTRANS Standard Specifications for Highway Construction.4" Asphaltic Concrete ov II Aggregate Base over scarified, moisture conditioned, and compacted soils					

These pavement sections are considered minimal sections based upon the expected traffic and the existing subgrade conditions. However, they are expected to function with periodic maintenance and overlays if good drainage is provided and maintained.

All concrete for rigid pavements should have a minimum flexural strength of 600 psi, and be placed with a maximum slump of four inches. Proper joint spacing will also be required to prevent excessive slab curling and shrinkage cracking. All joints should be sealed to prevent entry of foreign material and dowelled where necessary for load transfer.

4.7.2 Aggregate Surface Roadways Design Recommendations

Aggregate surface roadway design was conducted in general accordance with the Army Corps of Engineers (Corps), Technical Manual TM-5-822, Design of Aggregate Surface Roads and Airfields (1990).

The design of pavement thickness was based on traffic containing 200 vehicles per day with 25 percent trucks, less than 10 percent of the total traffic composed of trucks having three or more axles, and no tracked vehicles. Terracon should be contacted if significant changes in traffic loads or characteristics are anticipated.

As proposed, aggregate surface course of the secondary site access road should be 6 inches in depth after full compaction, and constructed directly above 10 inches of scarified, moisture conditioned, and compacted native soils. The aggregate surface course should have a plasticity index (PI) between 6 and 12, and meet the following gradation:

Sieve Designation	Percent Passing
1-inch	100
³⁄₄-inch	90 – 100
3/8-inch	60 - 80
US No. 4	40 - 60
US No. 8	28 – 48
US No. 16	20 – 36
US No. 30	14 – 26
US No. 50	10 – 22
US No. 100	9 – 17
US No. 200	8 – 15

Aggregate surface course should be compacted to a minimum of 95 percent of the soils maximum dry density as defined by ASTM D-1557. Typically, a minimum of 8 inches of loose aggregate surface course will be required to meet the 6-inch minimum constructed thickness. The surface course should be compacted at a moisture content not more than 4 percent above the optimum moisture content defined by ASTM D-1557.

Regardless of the design, gravel roadways will display varying levels of wear and deterioration. We recommend a system of site inspection at a minimum of once per year to verify the adequacy of the roadway and apply preventative measures as needed for erosion control and regrading. An initial site inspection should be completed approximately three months following construction. Shoulder build-up on both sides of proposed roadways should match the aggregate surface elevation and slope outwards at a minimum grade of 10% for five feet.

4.7.3 Compacted Soils Road Design Recommendations

Based upon the soils conditions encountered in the test borings, the use of on-site soils for construction of onsite is considered acceptable. The use of asphalt concrete or other hardened material to surface the roadways decreases the potential for erosion of the roadway to occur.

If high traffic loading is anticipated during wet seasons or when the upper soils are in saturated conditions, the proposed compacted soils road may experience wheel path rutting and depression up to 3 inches deep.

It is our understanding that un-surfaced access roads, maintenance roads, and the perimeter road will consist of a minimum of 12-inches of compacted on-site soils with soil stabilizer. It is our opinion that un-surfaced roads consisting of 10-inches of compacted on-site granular soils are sufficient for the project site. The upper ten inches of subgrade soils beneath existing grade, and any fill required to raise site grades should be moisture conditioned and compacted to a minimum density of 95 percent of ASTM D-1557.

As proposed, positive drainage should be provided during construction and maintained throughout the life of the roadways. Proposed roadway design should maintain the integrity of the road and eliminate ponding. The un-surfaced roads are expected to function with periodic maintenance. Shoulder build-up on both sides of proposed roadways should match the finish grade elevation and slope outwards at a minimum grade of 10% for five feet.

Un-surfaced roadways will display varying levels of wear and deterioration. The extent of erosion may consist of shallow washboarding or rills that are several inches in depth. We recommend a system of site inspection at a minimum of once per year to verify the adequacy of the roadway and to apply any preventative measures needed for erosion control and possible regrading. An initial site inspection should be completed approximately three months following construction.

Based on the site plans provided by the client and prepared by Westwood Professional Services, Inc., soil stabilizers will be used on the un-surfaced roads. Soil stabilizers are anticipated to reduce the rate of erosion.

4.7.4 Construction Considerations

Materials and construction of pavements for the project should be in accordance with the requirements and specifications of the State of California Department of Transportation, or other approved local governing specifications.

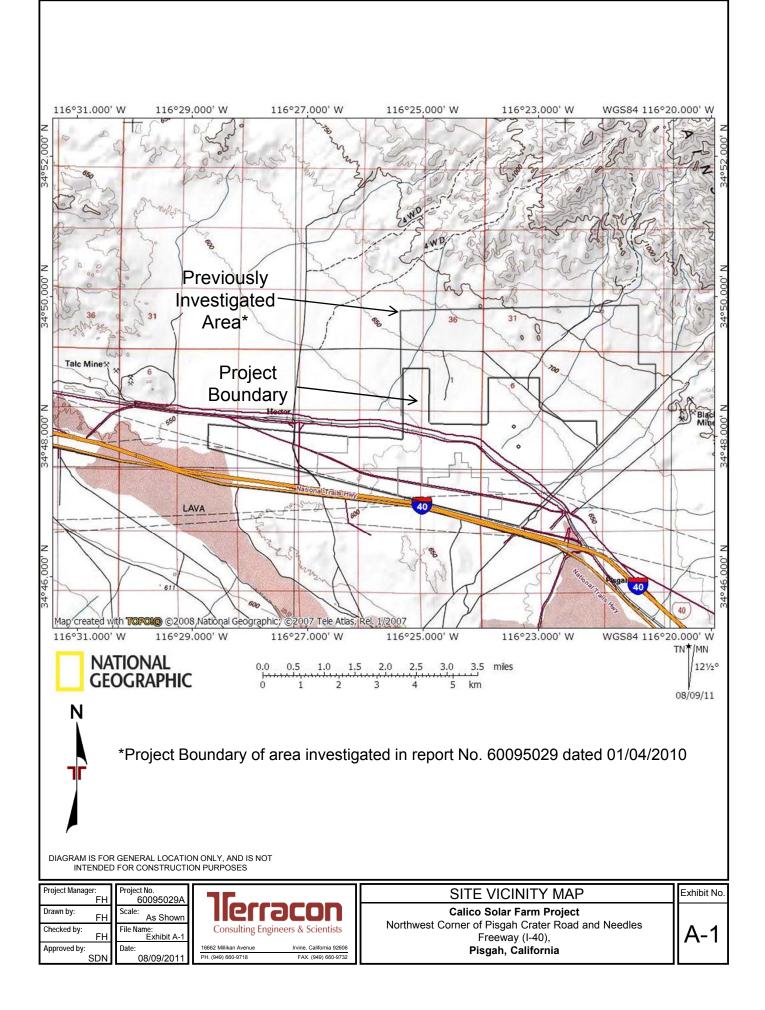
Base course or pavement materials should not be placed when the surface is wet. Surface drainage should be provided away from the edge of paved areas to minimize lateral moisture transmission into the subgrade.

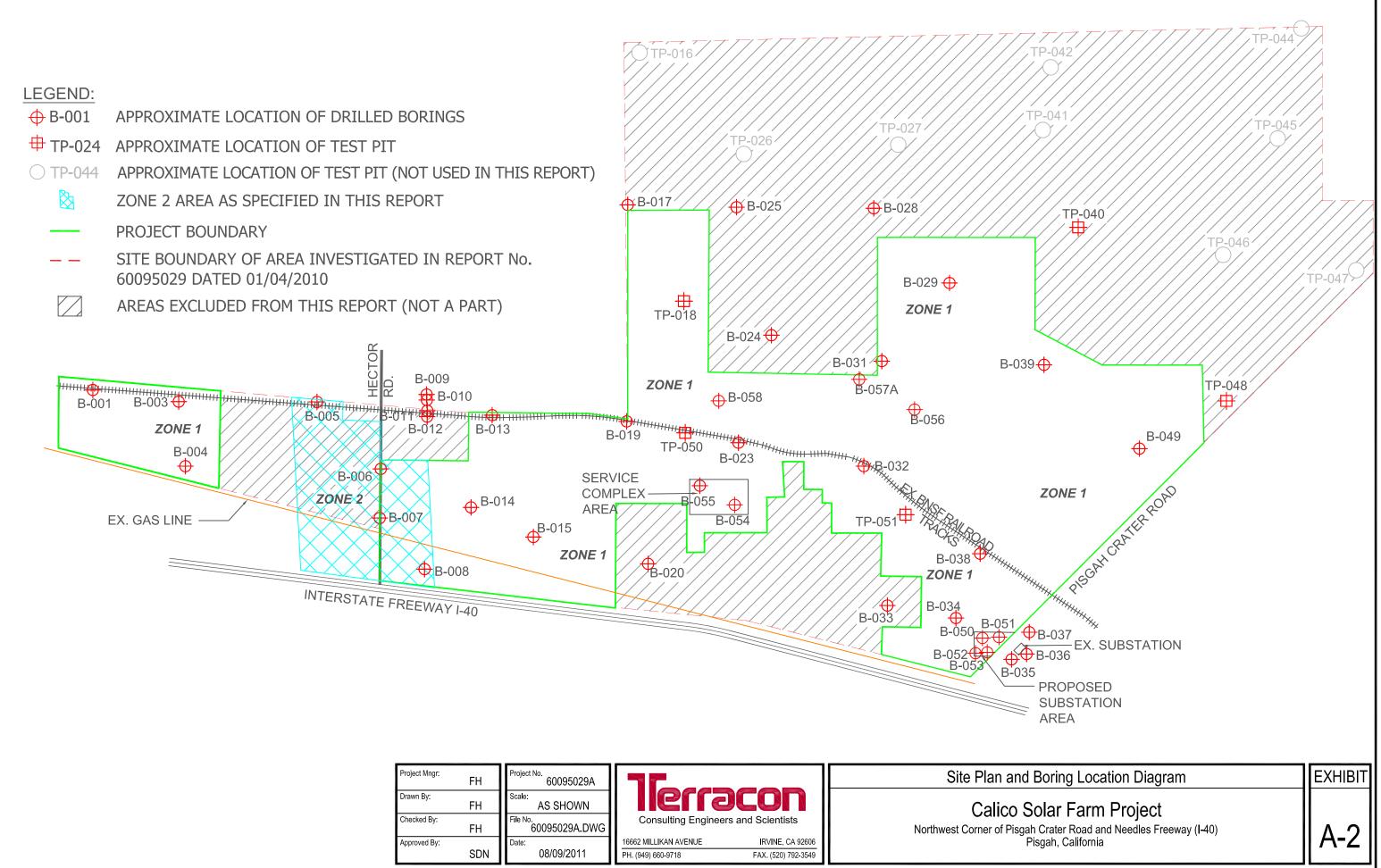
Preventative maintenance should be planned and provided for through an on-going pavement management program in order to enhance future pavement performance. Preventative maintenance activities are intended to slow the rate of pavement deterioration, and to preserve the pavement investment.

Preventative maintenance consists of both localized maintenance (e.g. crack sealing and patching) and global maintenance (e.g. surface sealing). Preventative maintenance is usually the first priority when implementing a planned pavement maintenance program and provides the highest return on investment for pavements.

5.0 GENERAL COMMENTS

Terracon should be retained to review the final design plans and specifications so comments can be made regarding interpretation and implementation of our geotechnical recommendations in the design and specifications. Terracon also should be retained to provide observation and testing services during grading, excavation, foundation construction and other earth-related construction phases of the project.


The analysis and recommendations presented in this report are based upon the data obtained from the borings performed at the indicated locations and from other information discussed in this report. This report does not reflect variations that may occur between borings, across the site, or due to the modifying effects of construction or weather. The nature and extent of such variations may not become evident until during or after construction. If variations appear, we should be immediately notified so that further evaluation and supplemental recommendations can be provided.


The scope of services for this project does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.

This report has been prepared for the exclusive use of our client for specific application to the project discussed and has been prepared in accordance with generally accepted geotechnical engineering practices. No warranties, either express or implied, are intended or made. Site safety, excavation support, and dewatering requirements are the responsibility of others. In the event that changes in the nature, design, or location of the project as outlined in this report are planned, the conclusions and recommendations contained in this report shall not be considered valid unless Terracon reviews the changes and either verifies or modifies the conclusions of this report in writing.

APPENDIX A

FIELD EXPLORATION

Project Mngr:	FH	Project No. 60095029A			Site Plan a
Drawn By:	FH	Scale: AS SHOWN		DCON	Calico
Checked By:	FH	File No. 60095029A.DWG	Consulting Engineer	rs and Scientists	Northwest Corner of Pi
Approved By:	SDN	Date: 08/09/2011	16662 MILLIKAN AVENUE PH. (949) 660-9718	IRVINE, CA 92606 FAX. (520) 792-3549	

Field Exploration Description

A total of 32 test borings and 14 test pits were drilled/excavated at the site between October 5 and October 22, 2009. The borings were drilled to depths ranging from approximately 12¹/₂ to 51 feet below the ground surface and the test pits were excavated to depths ranging from 8 to14 feet bgs. The test borings were advanced with a truck-mounted CME-75 and Mobil B-53 drill rigs utilizing 8-inch diameter hollow-stem augers and the test pits were excavated with a backhoe.

An additional nine test borings were advanced at the site between July 5 and July 22, 2011. Eight borings were drilled to approximate depths of 11 to 41¹/₂ feet below the ground surface (bgs) and one hand augur boring was excavated to a depth of 4 feet bgs. The drilled test borings were advanced with a truck-mounted Mobile B-61 drill rig utilizing 8-inch diameter hollow-stem auger. The hand augur boring was advanced with a 4-inch diameter hand augur tool.

It should be noted that the numbering of the test borings and test pits is not necessarily sequential and was based off the BLM permit. Approximate locations for borings and test pits are shown on the attached Site Plan Boring Location Diagram, Exhibit A-2. The borings and test pits were located in the field using the proposed site plan and an aerial photograph of the site, and a handheld gps unit. The accuracy of field exploration locations should only be assumed to the level implied by the method used.

Continuous lithologic logs of each boring were recorded by the field geologist during the drilling operations. At selected intervals, samples of the subsurface materials were taken by driving split-spoon or ring-barrel samplers. Bulk samples of subsurface materials were also obtained.

Penetration resistance measurements were obtained by driving the split-spoon and ring-barrel samplers into the subsurface materials with a 140-pound automatic hammer falling 30 inches. The penetration resistance value is a useful index in estimating the consistency or relative density of materials encountered.

Groundwater conditions were evaluated in each boring at the time of site exploration.

LOG	OF	BOR	ING	NO.	B-001
-----	----	-----	-----	-----	-------

Page 1 of 1

CL	ENT													
	Stirling Energy Systems													
SIT		P	RO	JEC	Г			0						
	East of Barstow, California						AMPLE		r One	TESTS				
						3		-						
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 1807 ft		ИЕРІН, П.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID LIMIT	PLASTICITY INDEX		
	SILTY SAND Beige, medium dense with	+ -		SM		BS	ш.	ш	>0			ш=		
	fine to medium grained sand, some coarse grained sand, and fine gravel.		2	0		20								
	3 1804 POORLY GRADED SAND WITH SILT	<u>I</u>	_	SP-		RS		55	3	93				
	Beige, medium dense to dense, with fine to medium grained sand, some coarse	6	4	SM										
	grained sand and trace fine gravel.		6	SP- SM		RS		79	3	96				
				8										
		1(SP- SM		RS		73	7	98				
		1:	2	SIVI										
		14	4											
		10	6	SP- SM	X	RS		65	11	92				
		18	8											
		20	0	SP- SM	X	RS		79	8	103				
		2:	_											
	26 1781		_	SP-		SPT		50/5"	5					
	Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.			SM										
	stratification lines represent the approximate boundary lines veen soil and rock types: in-situ, the transition may be gradual.													
	TER LEVEL OBSERVATIONS, ft						BOR	ING S	TARTE	ED		10	-5-09	
WL		_						ING C					-5-09	
WL	[¥] NE ¥ 16	2					RIG		CME		OREM/		JP	
WL	┼───┤						-				DB #		5029	

LOG OF BORING NO. B-003

Page 1 of 1

CLI	ENT Stirling Energy Systems											
SIT	Stirling Energy Systems	PRO	JEC	Т								
	East of Barstow, California							r One				
					SA	AMPLE				TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 1824 ft	DEPTH, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID LIMIT	PLASTICITY INDEX	
	SILTY SAND Beige, loose with fine to	_	SM	Μ	SPT		8					
	fine gravel.	2	SP		RS		34	4	99			
	POORLY GRADED SAND Beige, medium dense to very dense with fine to coarse		SP		SPT		65					
	grained sand.	4	SP		RS		50/5"	2	112			
		6-	SP		SPT		55	2	112			
	7.5 1816.5 SILTY SAND Beige, dense with fine to	8	SM		RS		78	10	99			
		10-	SM		SPT		23	4	109			
	<u>SANDY SILT</u> Beige, hard with fine grained sand.		ML		RS		80					
		12	ML		SPT		53					
	14.5 1809.5	14-	ML	X	SPT		26					
	POORLY GRADED SAND WITH SILT Beige, very dense with fine to coarse	16	SP- SM		RS		50/5"	3	112			
	grained sand. 20 1804	18										
	SANDY SILT Beige, hard with fine grained sand.	20	ML		RS		50/4"	3	107			
		22			ODT							
	26.5 1797.5	26-	ML	M	SPT		54	14				
	Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.											
The	stratification lines represent the approximate boundary lines een soil and rock types: in-situ, the transition may be gradual.	1	1	I				1		1		
	TER LEVEL OBSERVATIONS, ft					BOR	ING S	TARTE	ED		10	-5-09
WL			-	-			ING C					-5-09
WL		30				RIG		CME	-75 F	OREMA	٨N	MLS
WL					_				J	OB #	6009	5029

LOG OF BORING NO. B-004

Page 1 of 1

CLI	ENT											
	Stirling Energy Systems		150	-								
SIT	East of Barstow, California	PRO	JEC	I			Sola	r One				
	Last of Darstow, Camornia				SA	AMPLE				TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 1830 ft <u>SILTY SAND WITH GRAVEL</u> Beige,	DEPTH, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	loose with fine to coarse grained sand and some sub-angular fine gravel.	2										
	4.5 1825.5	4	SM	X	RS		31	6	115			
	POORLY GRADED SAND Beige, medium dense to very dense with fine to coarse grained sand.	6	SP	X	RS		32	5	113			
	Calcium carbonate observed around 8 feet bgs.	8	SP		RS		32	7	117			
	10 1820	10-					04	10	440			
	SILTY SAND WITH GRAVEL Beige, 11.5 dense with fine to coarse grained sand and some sub-angular fine gravel. 1818.5 POORLY GRADED SAND Beige, dense	12	SM		RS		61	10	113			
	to very dense with fine to coarse grained 14.5 sand.	14	-									
	POORLY GRADED SAND WITH SILT AND GRAVEL Beige, very dense with fine to coarse grained sand and some sub-angular gravel.	16	SP- SM		RS		50/6"	11	101			
		22	SP- SM	×	RS		-50/2" -	-11	108			
	25.5 1804.5 Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.		SP- SM		SPT		50/6"					
The betw	stratification lines represent the approximate boundary lines veen soil and rock types: in-situ, the transition may be gradual.		·									
WA	TER LEVEL OBSERVATIONS, ft					BOR	RING S	TARTE	ED		10	-5-09
WL			-				RING C	OMPL	ETED		10	-5-09
WL		عال	_L	J		RIG		CME	-75 F	OREM	٩N	MLS
WL									I.	OB #	6009	5029

Page 1 of 1

CLI	ENT												
	Stirling Energy Systems												
SIT			PRO	JEC	Т								
	East of Barstow, California							Sola	r One				
						S	AMPLE				TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 1852 ft		DEPTH, ft.	USCS SYMBOL		түре	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID LIMIT	PLASTICITY INDEX	
	SILTY SAND WITH GRAVEL Beige,			SM		SPT	_	13					
	loose with fine to coarse grained sand and some sub-angular fine gravel.	5	2	SM		RS		21	22	96			
	FAT CLAY Red-brown, stiff with low to medium plasticity fines.		_	СН		SPT		14					
	Calcium Carbonate observed around 3 feet bgs.		4	CH		RS		32					
	Contains fine grained sand and is very stiff.		6	СН		SPT		10	27	92	58	31	
			8	СН		RS		38	27	98			
				СН		SPT		14					
			10	СН		RS		42	27	96			
			12	СН		SPT							
			14-	СН		SPT							
	Trace fine sub-angular gravel observed around 15 feet bgs.			СН		RS		29	26	95			
	around to reet bys.		 18										
			_										
			20	СН		RS		36	28	97			
			22										
			24	-									
	26.5 1825	.5	26-	СН	X	SPT		20	29				
	Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.												
	stratification lines represent the approximate boundary lines veen soil and rock types: in-situ, the transition may be gradual.												
WA	TER LEVEL OBSERVATIONS, ft						BOR	ING S	TARTE	Ð		10	-5-09
WL								ING C					-5-09
WL			זר	-٢	וך		RIG		CME		DREMA		MLS
WL							RIG)REIMA		™LS 5029

Page 1 of 1

	ENT	I										5.	
CLI	Stirling Energy Systems												
SIT			PRO	JEC	Г								
	East of Barstow, California								r One				
						SA	AMPLE				TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 1878 ft		DEPTH, ft.	USCS SYMBOL		түре	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID LIMIT	PLASTICITY INDEX	
	SILTY SAND WITH GRAVEL Beige,			SM		SPT		47					
	loose with fine to coarse grained sand and some sub-angular fine gravel.	1875.5	2	SM		RS		50/5"	4	105			
	FAT CLAY Red-brown, stiff to very stiff with low to medium plasticity fines.		4	СН	X	SPT		35					
				СН		RS		38	12				
			6 	СН	X	SPT		33					
			8	СН	X	RS		45	23	90			
			10-	СН	X	SPT		26					
			 12	СН		RS		65	26	98			
			=	СН	X	SPT		19					
			14	CH		SPT		30	0.4	404			
			16	СН		RS		54	24	101			
			18 										
			20	СН	X	RS		42	25	94			
			22 										
	26.5	1851.5	26	СН		BS		22	24				
	Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.	1001.0	_		•								
The betw	stratification lines represent the approximate boundary lines een soil and rock types: in-situ, the transition may be gradual.												
	TER LEVEL OBSERVATIONS, ft						BOR	ING S	TARTE	ED		10	-5-09
WL	[¥] NE [¥] 1						BOR	ING C	OMPL	ETED		10	-5-09
WL			JC				RIG		CME	-75 FC	DREM	٩N	JP
WL						-				JC)B#	6009	5029

Page 1 of 1

CLI	ENT												
	Stirling Energy Systems												
SIT	E	P	RO	JEC	Т								
	East of Barstow, California								r One				
						SA	AMPLE	Ξ			TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 1895 ft		DEPTH, tt.	USCS SYMBOL		түре	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID LIMIT	PLASTICITY INDEX	
	SILTY SAND WITH GRAVEL Beige,			SM		SPT		16					
	loose with fine to coarse grained sand and	5	2—	SM		RS		29	3				
	<u>CLAYEY SAND</u> Red-brown, medium dense with fine to medium grained sand.			SC		SPT		25					
	Lightly cemented.			SC		RS		43	24	93			
	6 188 FAT CLAY Red-brown, stiff to hard with low to medium plasticity fines and trace fine		6	СН	H	SPT		25					
	to medium grained sand.	;	8	СН		RS		46	29	84			
	Crystalline mica observed at 10 feet bgs.	1	0	СН	X	SPT		25			69	41	
	Increasingly plastic.	1	2	СН		RS		50	27	97	03	71	
				СН		SPT		22					
		1	4	СН		SPT		60					
		1	6	СН	X	RS		50/5"	22	104			
		1	_										
		2		СН	X	RS		73	23	105			
		2	_										
	26.5 1868.		_	СН		SPT		37	26				
	Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.												
	stratification lines represent the approximate boundary lines veen soil and rock types: in-situ, the transition may be gradual.											l	
	TER LEVEL OBSERVATIONS, ft						BOR	ING S	TARTE	Ð		10	-5-09
													-5-09
WL				-٢			RIG						
WL							RIG		CME		OREM/ OB #		JP 5029

Page 1 of 1

~ · ·												J · ·	
CLI	ENT Stirling Energy Systems												
SIT	E		PRO	JEC	Г								
	East of Barstow, California								r One				
						S	AMPLE	<u> </u>			TESTS		
	DESCRIPTION Approx. Surface Elev.: 1921 ft		DEPTH, ft.	USCS SYMBOL		түре	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	SILTY SAND WITH GRAVEL Beige, loose with fine to coarse grained sand and		_										
	2.5 some sub-angular fine gravel.	918.5	2—										
	FAT CLAY Red-brown, very stiff to hard with low to medium plasticity fines.		4	SM	X	RS		37	22	95			
			6	СН	X	RS		40	22	99	66	38	
			8	СН	X	RS		44	27	96			
			 10	0.1				- 1					
			 12	СН	X	RS		51	30	92			
			14										
			 16	СН	X	RS		47	26	98			
			20	СН	X	RS		50/6"	26	100)		
			22 										
		394.5	26	СН		SPT		23	27				
	Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.												
The betw	stratification lines represent the approximate boundary lines een soil and rock types: in-situ, the transition may be gradual.												
WA	TER LEVEL OBSERVATIONS, ft						BOR	RING S	TARTE	Ð		10	-6-09
WL	[¥] NE [¥]							ING C	OMPL	ETEC)	10	-6-09
WL	¥ NE ¥ ¥ ¥ 1er	Γ	JC				RIG		CME	-75	FOREMA	٨N	MLS
WL	· · · · · · · · · · · · · · · · · · ·	_				_					IOB #	6000	5029

CLI	ENT Stirling Energy Systems											
SIT	E	PRO	JEC	Г								
	East of Barstow, California							r One				
					SA	AMPLE	=			TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 1882 ft	DEPTH, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID LIMIT	PLASTICITY INDEX	
	<u>POORLY GRADED SAND</u> Beige, medium dense with fine to coarse grained sand and some fine sub-angular gravel.		SP		BS							
	some me sub-angular gravel.	2	SP	X	RS		28	1	114			
	5 1877 POORLY GRADED SAND WITH SILT AND GRAVEL Beige to light-brown,	4	SP- SM		RS		71	3	119			
	dense with fine grained sand and some fine sub-angular gravel. Very dense with calcium carbonate	8	SP-		RS		50/5"	3	122			
	observed around 8 feet bgs.		SM									
	Dense with decreased gravel size around 10 feet bgs	10 — — — 12 —	SP- SM	X	RS		71	5	115			
		14-	-									
	Increased fines around 16 feet bgs.	16-	SP- SM	X	RS		90	3	102			
		18	-									
		20	SP- SM	X	RS		50/5"	4	111			
		22										
12/11/09		24	SP-		RS		70	10				
		26	SM				70					
	29 1853 SILT Beige, hard with fine grained sand	28										
	and coarse sub-angular gravel.	30	ML	X	RS		50/6"	13	90			
	Continued Next Page	32-	-									
The	stratification lines represent the approximate boundary lines veen soil and rock types: in-situ, the transition may be gradual.	1						1				
WA	TER LEVEL OBSERVATIONS, ft					BOF	RING S	TARTE	ED		10	-8-09
WL	· · · · · · · · · · · · · · · · · · ·		-				RING C	OMPL	ETED			-8-09
WL		حال	_C	J		RIG		CME		DREM		MLS
WL									JC)B #	6009	5029

Page 2 of 2

CL	IENT		rling Energy Syst	ems												
SIT	ΓE					PRO	JEC	Т			Colo	. 0				
		EdS	t of Barstow, Calif	ornia					S	AMPLE		r One		TESTS		
GRAPHIC LOG			DESCRIPTION			DEPTH, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIMIT	PLASTICITY INDEX	
		<u>SILT</u> Beige, and coarse s	hard with fine graine ub-angular gravel.	ed sand		34										
	27	No gravel ob	served in 35 foot sa	-		36-	ML	X	RS		46	13				
	37	AND GRAVE	ADED SAND WITH S L Beige to light-bro / dense with fine gra e sub-angular grave	<u>SILT</u> wn, ained sand		38										
						_	SP- SM	X	RS		50/5"	19	83			
						42 44 										
						46	SP- SM	X	RS		56	11				
						48										
BOREHOLE 2000 60095029 BORING LOGS GPU TERR2000 GDT 12/11/09 TA TA 주 화 해 TA 가 추 하 해	51		ring. not encountered. lled with soil cutting		1831	_	SP- SM		SPT		50/4"	28	73			
The betv	ween		ent the approximate boun in-situ, the transition ma RVATIONS, ft							BOF	RING S	TARTE	ED		10	-8-09
2000 WL	. <u></u>		Y	Ter		76				BOF	RING C	OMPL	ETED		10	-8-09
WL WL	_		Ψ <u></u>			JL				RIG		CME		DREM		MLS

Page 1 of 1

CLI	ENT											
	Stirling Energy Systems											
SIT		PRO	JEC	Т				-				
	East of Barstow, California							r One				
					SA	AMPLE				TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 1882 ft	DEPTH, ft.	USCS SYMBOL		түре	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID LIMIT	PLASTICITY INDEX	
	POORLY GRADED SAND WITH SILT	_	1									
	AND GRAVEL Beige to light-brown, dense with fine grained sand and some fine sub-angular gravel.	2	SP-		RS		41	1	95			
		4										
		6	SP- SM	X	RS		50/6"	3	113			
		8	SP-	0	NR		50/5"					
			SM				00/0					
	Increased gravel content around 10 feet	10 _	SP-	\mathbf{X}	RS		50/2"	5	113			
	bgs.	12	SM									
			SP-	$\mathbf{\times}$	RS		50/3"	2	122			
		16	SM									
		20 _	SP-		RS		50/6"	4	118			
		22	SM SP-		SPT		50/3"	11				
<u> </u>	26.5 1855.5 Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.	26—	SM									
	stratification lines represent the approximate boundary lines een soil and rock types: in-situ, the transition may be gradual.											
	TER LEVEL OBSERVATIONS, ft					BOR	RING S	TARTE	-D		10	-8-09
WL												-8-09
WL		ar	-٢	ור		RIG				DREM		MLS
WL						RIG		CME				
VVL									JC)B #	0005	5029

Page 1 of 2

CLI	ENT											
	Stirling Energy Systems											
SIT		PRO	JEC	Т				-				
	East of Barstow, California							r One				
					SA	AMPLE				TESTS		
GRAPHIC LOG	DESCRIPTION	DEPTH, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
<u>5</u>	Approx. Surface Elev.: 1883 ft	<u> </u>				_		≥ŏ	Ξă	==	ΞZ	
	POORLY GRADED SAND Beige, medium dense with fine to medium grained sand.		SP	M	SPT		14					
	Fine to coarse grained sand and trace sub-angular gravel.	2	SP		RS		47	2	115			
	4.5 1878.5	4	SP	M	SPT		41					
	SILTY SAND Beige to light-brown, very	1 –	SM	\mathbf{X}	RS		50/4"	4	114			
	dense with fine to coarse grained sand and trace sub-angular gravel.	6	SM	Η	SPT		50/5"					
		8	SM		RS		50/5"			-		
	No gravel observed at 8 feet bgs. 9.5 1873.5	_						4	114	_		
	POORLY GRADED SAND WITH SILT	10-	SM		SPT		50/3"			_		
	AND GRAVEL Beige, very dense with fine to coarse grained sand, some	-	SP-		RS		50/3"	3	117			
	sub-angular gravel, and non-plastic fines.	12-	SM SP-		SPT		50/6"					
			SM		351		50/0					
		14-	SP-	М	SPT		77					
		_	SM SP-		RS		50/6"	7	114	-		
		16-	SM				00/0					
		18	-									
	Calcium carbonate observed at 20 feet bgs.	20-	SP-		RS		50/4"	5	107			
		22-	SM									
	24 1859											
1-1-1-	SILTY SAND Beige to light-brown, very	24	1									
	dense with fine to coarse grained sand and trace sub-angular gravel.		SM	Μ	SPT		50/6"	4	99			
		26-	-									
		28-										
		_	1									
		30-	SM		RS		50/5"	15	94			
		32-										
	Continued Next Page											
	stratification lines represent the approximate boundary lines veen soil and rock types: in-situ, the transition may be gradual.											
WA	TER LEVEL OBSERVATIONS, ft					BOR	ING S	TARTE	Ð		10	-6-09
WL	^y NE ¥ T					BOR	ING C	OMPL	ETED		10	-6-09
WL		٦Ľ				RIG		CME	-75 F	OREM	٩N	MLS
WL										OB #	6009	5029

Page 2 of 2

CL	IENT Stirling Energy Systems												
SI	E		PRO	JEC	Т			0-1-					
	East of Barstow, California					S	AMPLI		r One		TESTS	;	
GRAPHIC LOG	DESCRIPTION		DEPTH, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY	LIQUID	PLASTICITY INDEX	
	SILTY SAND Beige to light-brown, very dense with fine to coarse grained sand and trace sub-angular gravel.		34										
			36	SM	X	SPT		59	21				
			38										
			40	SM	×	RS		50/2"	14	103			
			42										
			44	SM		SPT		69	21				
			46										
			48										
	51.5	1831.5	50	SM	X	RS		75	21	98			
BOREHOLE 2000 60095029 BORING LOGS.GPJ TERR2000.GDT 12/11/09 TA 전 주 과고 12 12 12 12 12 12 12 12 12 12 12 12 12 1	Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.												
The bet	stratification lines represent the approximate boundary lines ween soil and rock types: in-situ, the transition may be gradual.						_						
W 80 5000 W 5000	ATER LEVEL OBSERVATIONS, ft												-6-09
	$\begin{array}{c c} \overline{Y} & \underline{Y} \\ \overline{Y} & \underline{Y} \end{array}$	266	ar	-٢	וך		BOF RIG	RING C			DREM		-6-09 MLS
WL)B #		95029

CL	ENT											
017	Stirling Energy Systems		150	.								
SIT	E East of Barstow, California	PRO	JEC	I			Sola	r One				
	Last of Darstow, Camornia				S	AMPLE				TESTS		
GRAPHIC LOG	DESCRIPTION	DEPTH, ft.	USCS SYMBOL		түре	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID LIMIT	PLASTICITY INDEX	
19	Approx. Surface Elev.: 1883 ft	8				_		₹ö	D D D C		ЧÏ	
	SILTY SAND Beige to light-brown, very dense with fine to coarse grained sand and		SM	X	SPT		19					
	trace sub-angular gravel.	2	SM		RS		82	3	119			
		4-	SM		SPT		35					
	6 1877	6	SM		RS		50/4"	4	120			
	POORLY GRADED SAND WITH SILT AND GRAVEL Beige, very dense with		SP- SM	M	SPT		50/6"					
	fine to coarse grained sand, some sub-angular gravel, and non-plastic fines.	8	SP- SM	X	RS		50/6"	4	117			
		10-	SP- SM	X	SPT		50/6"					
			SP-	X	RS		50/6"	3	114			
	13.5 1869.5	12	SP- SM	X	SPT		72					
	POORLY GRADED SAND Beige, medium 15 dense with fine to coarse grained sand. 1868	14	SP	X	SPT		77					
	SILTY SAND Beige to light-brown, very dense with fine to coarse grained sand and trace sub-angular gravel.	16	SM		RS		50/6"	3	112			
		20	SM		RS		50/2"	12	84			
	20 F	26-	SM		SPT		66	8				
	26.5 1856.5 Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.											
	stratification lines represent the approximate boundary lines veen soil and rock types: in-situ, the transition may be gradual.											
	TER LEVEL OBSERVATIONS, ft					BOF	RING S	TARTE	ED		10	-5-09
WL							ING C					-5-09
WL		J				RIG		CME		DREM		MLS
WL									JC)B #	6009	5029

Page 1 of 1

CLI	ENT											
	Stirling Energy Systems											
SIT		PRO	JEC	Т				-				
	East of Barstow, California							r One				
GRAPHIC LOG	DESCRIPTION	DEPTH, ft.	USCS SYMBOL		TYPE		BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	TESTS LIMIT	PLASTICITY INDEX	
	Approx. Surface Elev.: 1903 ft POORLY GRADED SAND Beige, medium				Η	Ľ.	ш	>0				
	dense with fine to medium grained sand.	2										
			SP	X	RS		58	2	129			
		-	SP		RS		87	3	110			
	7 1896 POORLY GRADED SAND WITH SILT	6— — —										
	AND GRAVEL Beige, very dense with fine to coarse grained sand, some	8	SP- SM		RS		50/5"	2	115			
	sub-angular gravel, and non-plastic fines.	10-	SP-		RS		50/3"	5	108			
		 12	SM				00/0		100			
		 14	-									
		 16	SP-		RS		50/6"	2	106			
		 18	SM									
		20	SP-		RS		50/4"	4	112			
	22 1881 SILTY SAND Beige to light-brown, very dense with fine to coarse grained sand and trace sub-angular gravel.	22	SM									
		24	SM		SPT		47	4				
<u>1111</u>	26.5 1876.5 Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.	26										
	stratification lines represent the approximate boundary lines een soil and rock types: in-situ, the transition may be gradual.											
	TER LEVEL OBSERVATIONS, ft					BOF	RING S	TARTE	Ð		10	-5-09
WL							RING C					-5-09
WL		ال				RIG		CME		DREM		MLS
WL)B #	6009	5029

CLI	ENT											
	Stirling Energy Systems											
SIT		PRC	JEC	Т			0.1.	•				
	East of Barstow, California				5	AMPLE		r One		TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 1918 ft	DEPTH, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY		PLASTICITY INDEX	
	SILTY SAND Beige to light-brown, medium dense with fine grained sand.	2-	SM	A V	BS							
	4.5 1913.5	- - 4	SM	X	RS		30	7	107			
	POORLY GRADED SAND WITH SILT AND GRAVEL Beige, medium dense with fine to medium grained sand.	- - 6	SP- SM	X	RS		82	5	111			
	Red-brown.	8	SP- SM	X	RS		84	5	118			
	Coloium contegente chapming around 11	10	SP-		RS		50/4"	5	116			
가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가	Calcium carbonate observed around 11 feet bgs. Increased silt content and trace gravel. 26.5 1891.5 Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.	12 14 16 18 20 22 24 26	SP- SM		RS RS SPT		50/6" 50/6" 85	5 9 5	112			
	stratification lines represent the approximate boundary lines een soil and rock types: in-situ, the transition may be gradual.											
	TER LEVEL OBSERVATIONS, ft					BOR	RING S	TARTE	Ð		10	-6-09
			-				RING C	OMPL	ETED)	10	-6-09
WL						RIG		CME		OREM		MLS
WL										JOB #	6009	95029

	CLI	ENT	Sti	rling Energy Sys	tems												
╞	SIT	E					PRO	JEC	Т								
┢			East	t of Barstow, Cal	ifornia					5	AMPLI		r One		TESTS		
	GRAPHIC LOG	Appro	ox. Surface Ele	DESCRIPTION			DEPTH, ft.	USCS SYMBOL		түре	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY		PLASTICITY INDEX	
			POORLY GR	ADED SAND Beig	e, medium												
			dense with fil	ne to coarse graine	a sana.		2										
		4.5				1943.5	 4	SP	X	RS		40	4	111			
		4.5	POORLY GR	ADED SAND WITH	SILT	1943.3				RS		50/4"	18	00			
			Beige, mediu sand.	IM dense with fine	grained		6	<u>SP-</u> SM		<u> </u>		50/4	10	86			
			Trace sub-ar	ngular gravel and ca	alcium		8	SP- SM		RS		50/4"	9	105			
-		9.5		bserved around 8 fe Beige to light-brow		1938.5	10-										
			dense with fi	ne grained sand.	,		_	SM		RS		50/5"	9	101			
							12	-									
							14										
							16-	SM		RS		50/5"	7	103			
							 18	-									
							20	SM	X	RS		50/5"	25	84			
							22-										
							 24										
/11/09								CM		SPT		32	10				
DT 12		26.5	Dottom of to-	ring		1921.5	26-	SM		371		52	18				
BOREHOLE 2000 60095029 BORING LOGS.GPJ TERR2000.GDT 12/11/09			Bottom of bo Groundwater Boring backfi	ing. not encountered. illed with soil cuttin	gs.												
BORIN																	
095029 E				ent the approximate bou in-situ, the transition m													
00 60			EVEL OBSEF		 							RING S					-6-09
LE_20	WL	⊻ N ⊻	E	¥ ⊻] 1 [e			-6	ור			RING C					-6-09
REHO	WL	<u> </u>		<u> </u>							RIG		CME		DREM		MLS
20	** -	1												100	лD #	0005	າວບຂອ

CLI	ENT											
SIT	Stirling Energy Systems	PRO	JFC	т								
•	East of Barstow, California							r One				
					S	AMPLE				TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 2122 ft	DEPTH, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID LIMIT	PLASTICITY INDEX	
	POORLY GRADED SAND WITH SILT	_										
	AND GRAVEL Beige, medium dense with fine to medium grained sand.	2										
	Ğ		SP-		RS		37	1	118			
	4.5 2117.5	4	SM									
° 	POORLY GRADED SAND WITH GRAVEL Beige, dense with fine to coarse grained		SP		RS		38	1	114			
$\langle \cdot \rangle$	sand.	6										
) ø 0	Decreased gravel content.	8	SP		RS		47	1	112			
° ()		_	-									
ø O		10	SP		RS		55	1				
。 。		 12	+									
。 () () () () () () () () () () () () ()		_										
, O		14										
。 。 。	Very dense with an increased gravel content.	 16 <i></i> _	SP		RS		50/3"	1	116			
<i></i> 	content.	_										
o o ()		18										
。 。 。 。		20-										
°. O.			SP		RS		50/6"	1	125			
ن. ہ ک		22-										
ø O	24 2098	24—										
	SILTY SAND Beige to light-brown, dense with fine grained sand and trace	24 			0.0.7							
	26.5 sub-angular gravel. 2095.5	26-	SM	M	SPT		90	1				
	Bottom of boring. Groundwater not encountered.											
	Boring backfilled with soil cuttings.											
The	stratification lines represent the approximate boundary lines		1	I						1		
	veen soil and rock types: in-situ, the transition may be gradual. TER LEVEL OBSERVATIONS, ft					R∩⊏	ING S	TART	-D		10	-8-09
WL												-o-09 -8-09
WL			_ C			RIG				DREMA		MLS
WL	│)B #		5029

	CLI	ENT	Stirling Energy Syst	ems											
	SIT		East of Barstow, Cali		PRO	JEC	Т			Sola	r One				
		L	Last of Darstow, Call	lornia				S	AMPLE				TESTS		
	GRAPHIC LOG	Approx. Surface	DESCRIPTION e Elev.: 1943 ft		DEPTH, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID LIMIT	PLASTICITY INDEX	
		SILTY SA dense wit	ND Beige to light-brow th fine grained sand.	/n, very	-										
			-		2	SM		RS		64	9	112			
					4										
					6	SM	X	RS		54	5	113			
		Beige, m	GRADED SAND WITH edium dense with fine g	<u>1935.5</u> SILT grained <u>1933.5</u>	8	SP- SM		RS		43	3	113			
		POORLY	GRADED SAND Beige	e, very	10-	SP		RS		50/3"	2	112			
		POORLY	th fine to coarse graine GRADED SAND WITH	SILT	 12						_				
		Beige, de	ense with fine grained s	and.	14										
					 16	SP- SM		RS		50/6"	4	101			
					 18										
					20-										
						SP- SM		RS		50/6"	3	109			
					22										
 60					24	-									
r 12/11		26 Bottom o	fboring	1917	 26—	SP- SM	0	NR		50/5"					
BOREHOLE 2000 60095029 BORING LOGS.GPJ TERR2000.GDT 12/11/09		Groundw	ater not encountered. ackfilled with soil cutting	js.											
SPJ TER															
B LOGS.(
BORING															
095029 I			present the approximate bou pes: in-situ, the transition ma												
00 60			SERVATIONS, ft							RING S					-6-09
OLE 20	WL WL	⊻ NE ⊻	<u>Ұ</u> <u>Ұ</u>	Jlerr	ar	-٢	וך		BOF RIG	RING C			OREM		-6-09 MLS
BOREH	WL			▏▋▋⋐▃▖▋▋▝							ONE		DB #		95029

CLI	ENT											
	Stirling Energy Systems											
SIT		PRO	JEC	Г			Solo	- 0				
	East of Barstow, California				Sł			r One		TESTS		
CONTRACTOR C	East of Barstow, California DESCRIPTION Approx. Surface Elev.: 2039 ft SILTY SAND Beige, medium dense with fine grained sand. 2.5 2036.5 POORLY GRADED SAND WITH GRAVEL Beige, medium dense with fine to medium grained sand and some sub-angular gravel. 4.5 SILTY SAND WITH GRAVEL Beige to light-brown, dense with fine to coarse grained sand and some sub-angular gravel. 12 2027 POORLY GRADED SAND WITH SILT AND GRAVEL AND GRAVEL Red-brown, dense with fine to coarse grained sand.	Ч, НЦАЗО 2 — 4 — 6 — 10 — 12 — 14 — 114 — 16 —	SP-SMBOL SMBOL SMBOL SP-SMBOL		BS RS RS RS RS	RECOVERY (in)		r One MATER % CONTENT, % 1 6 11 7 7	P8 98 123 104 104 104		PLASTICITY	
	19 2020 SILTY SAND WITH GRAVEL very dense with fine grained sand and some sub-angular gravel. Red-brown, very dense with fine grained sand and some sub-angular gravel. No gravel around 25 feet bgs. 2012.5 Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.	20 22 24 24 26	SM		RS		30	7	101			
The	stratification lines represent the approximate boundary lines veen soil and rock types: in-situ, the transition may be gradual.											
	TER LEVEL OBSERVATIONS, ft					BOR	ING S	TARTE	-D		10-'	22-09
WL												22-09
WL						RIG				DREMA		MLS
WL	<u>│</u>					-)B #		5029

CLI	ENT											
SIT	Stirling Energy Systems	PRO		г								
311	East of Barstow, California	FKU	JEC	I			Sola	r One				
					S	AMPLE				TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 1986 ft	DEPTH, ft.	USCS SYMBOL		түре	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID LIMIT	PLASTICITY INDEX	
	SILTY SAND Beige, medium dense with							-				
	fine to coarse grained sand and some sub-angular gravel.	2—										
		_	SM	X	RS		42	3	115			
	4.5 1981.5	4	-									
	POORLY GRADED SAND WITH SILT Beige, very dense with fine grained sand and some sub-angular gravel.	6	SP- SM	X	RS		74	3	120			
		8	SP-	X	RS		41	3	113			
	9.5 1976.5 SILTY SAND WITH GRAVEL Beige, very	-	SM									
	dense with fine grained sand.	10	SM	X	RS		62	3	117			
		12	-									
	Contains some sub-angular gravel.		SM		RS		50/5"	4	111			
	19 1967 POORLY GRADED SAND WITH SILT	16										
	Beige, very dense with fine grained sand.	20— — 22— —	SP- SM	X	RS		50/3"					
		24										
	25.5 1960.5 Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.	_	<u>SP-</u> SM		<u>SPT</u>		50/4"	2				
The betw	stratification lines represent the approximate boundary lines een soil and rock types: in-situ, the transition may be gradual.											
WA	TER LEVEL OBSERVATIONS, ft					BOR	ING S	TARTE	Ð		10	-6-09
WL	I Z NE IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII					BOR	ING C	OMPL	ETED		10	-6-09
WL		عال		J		RIG		CME	-75 FC	DREMA	AN	MLS
WL									JC)B #	6009	5029

Page 1 of 1

CLI	IENT											
SIT	Stirling Energy Systems	PRC	JEC	т								
	East of Barstow, California							r One				
			\square	F	S/	AMPLE		 		TESTS	,	
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 2046 ft	DEPTH, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID LIMIT	PLASTICITY INDEX	
o ()	POORLY GRADED SAND WITH GRAVEL Beige to light-brown, dense with fine to		-									
ن. ہ د	medium grained sand.	2									1	1
) Ø Ø			SP		RS		56	2	127			
。 。 。 。	Less gravel.		- SP		RS		42	2	117	<u> </u> !	+	
<i>р</i> , О	7 2039	6-	3F	Å	π3		42	∠		ļ!	\square	ı
	POORLY GRADED SAND WITH SILT	8	- SP-		RS		42	1	117	'	\vdash	
	AND GRAVEL Beige, dense to very dense with fine to coarse grained sand,		SM	Å			44		117	ļ!	 	· !
	some sub-angular gravel, and non-plastic fines.	10-	SP-		RS		56	2	119		├ ──┤	·
	Fine to coarse grained sand with increased gravel.	-	SM	Å						<u> </u> !	 	
	graver.	12— — — 14— —										
	1	16-	SP-	X	RS		50/5"	1	120	<u> </u> !	──┤	
		18										
	Increased silt content.	-	SP-	X	RS		50/4"	3	118	ļ!		
		22					-0.751					
	26.5 2019.5		SP-		SPT		50/5"	1			[]	
	Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.											
The	stratification lines represent the approximate boundary lines			<u> </u>	I	1				<u>ـــــــــــــــــــــــــــــــــــــ</u>		
betw	veen soil and rock types: in-situ, the transition may be gradual.							- ^ O T [10	0.00
WA WL	ATER LEVEL OBSERVATIONS, ft ↓ NE ↓ The second se						ING S)-8-09)-8-09
WL		a	-٢	זר		RIG				OREMA		MLS
WL				<i>•</i> •	╵■┃	NO						95029

CLI	ENT												
SIT	Stirling Energy Systems		SOJI										
511	East of Barstow, California		KOJI	ECI				Sola	r One				
						S	AMPLE				TESTS		
° ° °	DESCRIPTION Approx. Surface Elev.: 2164 ft <u>POORLY GRADED SAND WITH GRAVEL</u> Beige, dense with fine to coarse grained sand and some sub-angular gravel. 4.5 2159. <u>POORLY GRADED SAND WITH SILT</u>	- DEPTH, ft 2- 2- 2-		R INSCS SYMBOL		RS S	RECOVERY (in)	. BLOWS/FT.	C WATER CONTENT, %	DRY DENSITY DCf		PLASTICITY INDEX	
	AND GRAVEL Beige, dense to very dense with fine to coarse grained sand, some sub-angular gravel, and non-plastic	6-		SP- SM		RS		67	1				
	fines. 9.5 2154.	8-		SP- SM	X	RS		88	2	127			
°. • ()	POORLY GRADED SAND WITH GRAVEL Beige, very dense with fine to coarse grained sand and some sub-angular gravel.	10-		SP		RS		50	2	119			
Ø. 0 1	14 215 POORLY GRADED SAND WITH SILT												
	AND GRAVEL Beige, dense to very dense with fine to coarse grained sand, some sub-angular gravel, and non-plastic fines.	16 - 18 - 20 -		6P- 6M		RS		50/6"	1	116			
	24 214	22-		SM		KO		50/5	1	110			
	SILTY SAND WITH GRAVEL Beige, very dense with fine grained sand and some sub-angular gravel. Increased fines and less gravel. Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.	3 26-		δM		SPT		50/6"	2				
The betw	stratification lines represent the approximate boundary lines /een soil and rock types: in-situ, the transition may be gradual.												
WA	TER LEVEL OBSERVATIONS, ft						BOR	ING S	TARTE	D		10	-8-09
WL			_	_	-		BOR	ING C	OMPL	ETED		10	-8-09
WL		J	C				RIG		CME	-75 F	OREM	٩N	MLS
WL			_								OB #	6009	95029

Page 1 of 1

CLI	ENT											
SIT	Stirling Energy Systems	PRO										
311	East of Barstow, California	FKU	JEC	I			Sola	r One				
					SA	AMPLE				TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 2209 ft	DEPTH, ft.	USCS SYMBOL		түре	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID LIMIT	PLASTICITY INDEX	
	POORLY GRADED SAND WITH SILT		_									
	AND GRAVEL Beige, dense with fine to coarse grained sand.	2										
		2	SP-		RS		44	1	85			
	4.5 2204.5	4	SM		1.0			'	00			
	SILTY SAND Beige, dense with fine	_										
	grained sand and trace sub-angular gravel.	6—	SM		RS		37	1				
	7.5 2201.5	_										
0	POORLY GRADED SAND WITH GRAVEL	8	SP		RS		68					
o. (:) }	Beige, very dense with fine to coarse grained sand and some sub-angular gravel.	_										
° () ? 0 ()		10	SP	$\mathbf{\nabla}$	RS		71	1	122			
°. 		40										
\sim		12										
, 0. . ()		 14 —										
0												
° 0 0		 16	SP		RS		61	1	120			
		_	-									
。 (^\		18										
• • •		_										
0		20-	SP		RS		67	1	122			
• 🔿												
) 		22										
<u>،</u> 0		24										
	POORLY GRADED SAND WITH SILT AND GRAVEL Beige, dense with fine to											
	26.5 coarse grained sand, some sub-angular 2182.5	26—	SP- SM	M	SPT		78	1				
	gravel, and non-plastic fines.											
	Groundwater not encountered.											
	Boring backfilled with soil cuttings.											
The	stratification lines represent the approximate boundary lines		1							I		
betw	veen soil and rock types: in-situ, the transition may be gradual.											
							ING S					-7-09
WL				ור			ING C					-7-09
WL		IJL		J		RIG		CME	-75 FC	DREMA	٩N	MLS
WL									JC)B #	6009	5029

Page 1 of 1

CLI	ENT											
	Stirling Energy Systems											
SIT		PRO	JEC	Т								
	East of Barstow, California							r One				
					S/	AMPLE	<u> </u>			TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 2188 ft	DEPTH, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID LIMIT	PLASTICITY INDEX	
, O	POORLY GRADED SAND WITH GRAVEL	_	SP		BS							
。 。 ()	Beige to light-brown, medium dense with fine to medium grained sand.	2		[
, , ,		2	SP	X	RS		43	1	122			
• 🖒		4		Ň								
) Ø	7 2181	6-	SP	0	NR		55	2	100			
	POORLY GRADED SAND WITH SILT AND GRAVEL Beige, dense to very dense with fine to coarse grained sand,	8	SP- SM		RS		70	1	117			
	some sub-angular gravel, and non-plastic fines.	10-	SP-		RS		50/6"	2	124			
	Fine grained sand and decreased gravel.	 12	SM		ко —		50/0	2	124			
		-	-									
		14										
		16-	SP- SM	X	RS		50/6"	2	147			
		 18	-									
		20-	SP-		RS		50/6"	3	117			
		22-	SM		ко		50/0	3	117			
		24-										
	25 2163				0.55		= 0 / 0 !					
	26 <u>SILTY SAND</u> Beige, very dense with fine 2162 / grained sand.	26-	SM		SPT		50/2"	2				
	Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.											
	stratification lines represent the approximate boundary lines veen soil and rock types: in-situ, the transition may be gradual.		1									
	TER LEVEL OBSERVATIONS, ft					BOD	RING S	тарт	ח=		10	-7-09
			-6	וך			RING C			<u></u>		-7-09
WL WL						RIG		CME		DREM		MLS 5029

CL	ENT Stirling Energy Systems												
SIT	E	P	PROJ	EC	Г			Oala	. 0				
	East of Barstow, California					SA	AMPLE		r One		TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 2077 ft		DEPTH, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
。 。 ()	POORLY GRADED SAND WITH GRAVEL Beige to light-brown, medium dense with		=										
). 17	fine to medium grained sand.	:	2-										
°.O.			4	SP	X	RS		32	1	113			
。 (` `			-	SP		RS		37	2	109			
0. 0		2070	6						-				
		068.5	8	SM		RS		28	3	109			
°.	sub-angular gravel. POORLY GRADED SAND WITH GRAVEL	1	0										
<i>r</i> 3	Beige to light-brown, medium dense to very dense with fine to medium grained sand		=	SP	X	RS		44	2	112			
₀ () ₀ ()	and sub-angular gravel.	1	2										
0		1.	4										
₀ . ₀ .(_		1	6	SP		RS		53	2	121			
r5.		1	. –										
°. °.()		1	°										
) Ø		2	0	SP		RS		65	1	111			
。 。 〔		2	2										
) Ø.		24											
√ (11/09		2.	4	SP	\bigcirc	NR		50/6"					
		2	6	JF	\bigcirc			30/0					
R2000.GI		2	8										
		3											
OS GP				SP	0	NR		50/5"					
	Continued Next Dage	33	2-										
	Continued Next Page stratification lines represent the approximate boundary lines												
	veen soil and rock types: in-situ, the transition may be gradual. TER LEVEL OBSERVATIONS, ft						BOD	ING S		ח:		10	22-09
WF 200				-				ING S					22-09 22-09
WL	^y NE y y Ter	61		10			RIG				OREM		MLS
WL										J	DB #	6009	95029

Page 2 of 2

CLI	ENT											
	Stirling Energy Systems											
SITI		PRC	JEC	Г				-				
	East of Barstow, California							r One		тгото		
	DESCRIPTION POORLY GRADED SAND WITH GRAVEL Beige to light-brown, medium dense to very dense with fine to medium grained sand and sub-angular gravel.	Junction of the second	INSCS SAMBOL		S/ NR RS SPI	RECOVERY (in)		x ATER CONTENT, %	Dry Density 150 110		PLASTICITY	
	51 2026 Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.	48	- SP		RS		50/6"					
The :	stratification lines represent the approximate boundary lines een soil and rock types: in-situ, the transition may be gradual.											
	TER LEVEL OBSERVATIONS, ft					BOR	RING S	TARTE	-D		10_'	22-09
WL												22-09
WL	Yes Yes Yes Yes		-٢			RIG				OREM		MLS
WL										OB #		5029

	CLI	ENT				_								
	•	Stirling Energy Systems				_								
	SIT			PRO	JEC	ſ			Cala					
┢		East of Barstow, California					6	AMPLE		r One		TESTS		
	GRAPHIC LOG	DESCRIPTION		ЭЕРТН, ft.	USCS SYMBOL		түре	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf		PLASTICITY INDEX	
Ļ	0	Approx. Surface Elev.: 2024 ft		ā	Š		F	R	BI	≥ö	Ξă		⊒⊒	
		POORLY GRADED SAND Beige, loose with fine grained sand and trace sub-angular gravel.		2	SP		RS		14	1	107			
		4.5 POORLY GRADED SAND WITH SILT	2019.5	4										
		AND GRAVEL Beige, medium dense with fine to coarse grained sand, trace sub-angular gravel, and non-plastic fines.		6	SP- SM		RS		51	2	122			
		Calcium carbonate observed around 8 feet bgs.		8	SP- SM	X	RS		53	3	110			
		Dense.		10-	SP-		RS		50/5"	3	95			
					SM				50/5	5	35			
				 14										
				16-	SP- SM	X	RS		80	2	113			
				18										
			2003		SP- SM	0	NR		50/5"					
BOREHOLE_2000 60095029 BORING LOGS.GPJ TERR2000.GDT 12/11/09		Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.			5M									
95029 BC		stratification lines represent the approximate boundary lines veen soil and rock types: in-situ, the transition may be gradual.											1	
009 0	WA	TER LEVEL OBSERVATIONS, ft						BOF	RING S	TARTE	ED		10-:	22-09
E_2000	NL	[▼] NE ▼							RING C				10-2	22-09
EHOL	WL			JL				RIG		В		OREM		MLS
M M M M	NL										J	OB #	6009	95029

CL	ENT											
	Stirling Energy Systems		1	<u> </u>								
SIT	E East of Barstow, California	PRO	JEC	1			Sala	r One				
	East of Darstow, California				S	AMPLE				TESTS		
GRAPHIC LOG	DESCRIPTION	DEPTH, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIMIT	PLASTICITY INDEX	
Б	Approx. Surface Elev.: 2040 ft	<u> </u>	S		≽	RE	ВГ	≷ö	ЦĞ		ЧZ	
	<u>SILTY SAND</u> Beige, medium dense with fine to coarse grained sand and trace sub-angular gravel.	2	SM		RS		47	4	111			
		4	-									
	Some sub-angular gravel.	6	SM	X	RS		57	5	105			
	9 Very dense. 203 [.] POORLY GRADED SAND WITH SILT	8	SM		RS		91	4	110			
	AND GRAVEL Beige, very dense with fine to coarse grained sand, some sub-angular gravel, and non-plastic fines.	10	SP- SM		RS		67	3	116			
	Sub-angular graver, and non-plastic lines.	12	-									
		16 	SP- SM		RS		50/6"	3	122			
	Little to no gravel.	20	SP- SM		RS		50/4"	5	115			
SDT 12/11/09	26.5 2013. Bottom of boring.		SP- SM		SPT		69	3				
BOREHOLE 2000 60095029 BORING LOGS GPJ TERR2000 GDT TM Ap and A an	Groundwater not encountered. Boring backfilled with soil cuttings.											
The betv	stratification lines represent the approximate boundary lines veen soil and rock types: in-situ, the transition may be gradual.	·										
WA	TER LEVEL OBSERVATIONS, ft					BOF	RING S	TARTE	ED		10	-6-09
JW 2000			-				RING C	OMPL	ETED		10	-6-09
WL	[¥] NE ¥ 16	حال	_C	J		RIG		CME	-75 F0	DREM	٩N	MLS
ML WL									JC)B #	6009	95029

	CLI	ENT											
	0.7	Stirling Energy Systems		150	-								
	SIT	East of Barstow, California	PRO	JEC	I			Sola	r One				
		Last of Darstow, Camornia				S	AMPLE				TESTS		
	GRAPHIC LOG	DESCRIPTION	DEPTH, ft.	USCS SYMBOL		Эс	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	GR.	Approx. Surface Elev.: 2061 ft	DEI	NSU		ТҮРЕ	RE	BLG	CO	DR	ΔĒ	PL/	
		POORLY GRADED SAND WITH SILT AND GRAVEL Beige, dense with fine to coarse grained sand and some sub-angular gravel.	2	SP- SM		RS		65	4	115			
		Calcium carbonate observed around 5 feet	4	SP-		RS		58	6	113			
		bgs.	6	SM SP-		RS		50/6"	5	119			
		Decreased gravel size and content.		SM				50/0	0	110			
				SP- SM	X	RS		67	4	112			
			12— — — 14—	-									
			16	SP- SM		RS		50/5"	4	111			
			18										
		Fine grained sand.	=	SP- SM		RS		50/5"	3	117			
60			22										
SDT 12/11			26	SP- SM	X	SPT		71	3				
BOREHOLE 2000 60055029 BORING LOGS GPJ TERR2000 GDT 12/11/09			28	-									
OGS.GP.		Beige to light-brown. Calcium carbonate	30	SP- SM	X	RS		50/5"	4	116			
30RING L	14	observed around 31 feet bgs. Continued Next Page	32										
95029 E		stratification lines represent the approximate boundary lines een soil and rock types: in-situ, the transition may be gradual.											
0 600	WA	TER LEVEL OBSERVATIONS, ft					BOF	RING S	TARTE	ED		10)-7-09
NLE_200(WL WL	[¥] № ¥ ¥ ¥ Terr		- 6	ור			RING C)-7-09
ZEHC							RIG		CME				MLS
ğ	WL									JC)B #	6009	95029

Page 2 of 2

CL	IENT			_								
	Stirling Energy Systems											
SI	E East of Barstow, California	PRC	JEC	I			Sala	r One				
	Last of Darstow, California				S	AMPL				TESTS	;	
GRAPHIC LOG	DESCRIPTION	DEPTH, ft.	USCS SYMBOL		түре	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	POORLY GRADED SAND WITH SILT		+-									
	AND GRAVEL Beige, dense with fine to coarse grained sand and some sub-angular gravel.	34			0.07		50/48	_				
		36-	SP-		SPT		50/4"	5				
		38-										
	Increased gravel content.	40	SP-		RS		50/5"	4	108			
		42										
		44										
	Decreased gravel content.	46-	SP-		SPT		50/4"	5				
		48-										
		50-	SP-		RS		50/4"	3				
- 11	51 20 Bottom of boring.	010	SM		RS		50/4	3				
1/09	Groundwater not encountered. Boring backfilled with soil cuttings.											
BOREHOLE 2000 60095029 BORING LOGS.GPJ TERR2000.GDT 12/11/09 TA 저 주 목 물 물 물 물 물 물 물 물 물 물 물 물 물 물 물 물 물 물												
រារ ខ្លួ The	stratification lines represent the approximate boundary lines											
bet	veen soil and rock types: in-situ, the transition may be gradual.					D A -						
W 300 W	ATER LEVEL OBSERVATIONS, ft						RING S					-7-09
			-6	וך			RING C					-7-09
						RIG		CME				MLS
B WL									JC	DB #	6009	5029

CLI	ENT											
SIT	Stirling Energy Systems	PRC		<u></u>								
511	⊑ East of Barstow, California	PRU	JEC	I			Sola	r One				
					S	AMPLE				TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 2085 ft	DEPTH, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID LIMIT	PLASTICITY INDEX	
	POORLY GRADED SAND WITH SILT AND GRAVEL Beige, medium dense with		SP- SM	Å	BS							
	fine to coarse grained sand and some sub-angular gravel.	2— — 4—	SP- SM		RS		40	6	110			
	Dense.	6	SP- SM		RS		65	5	106			
		8	SP-		RS		79	3	115			
		10-										
	Very dense.		SP-	\bigcirc	NR		50/5"					
		14-	-									
		16	SP- SM	×	RS		50/3"	4	118			
		20— — 22—	SP- SM		RS		50/5"	5	122			
		 24	SP-		SPT		59	4				
	26.5 2058.5 Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.	26—	SM									
The betw	stratification lines represent the approximate boundary lines een soil and rock types: in-situ, the transition may be gradual.											
	TER LEVEL OBSERVATIONS, ft					BOR	ING S	TARTE	ED		10	-7-09
WL							ING C					-7-09
WL		30				RIG		CME	-75 F	OREM		MLS
WL									J	OB #	6009	5029

Page 1 of 1

CLI	ENT											
017	Stirling Energy Systems			_								
SIT	⊏ East of Barstow, California	PRO	JEC	I			Sola	r One				
					S	AMPLE				TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 2090 ft	DEPTH, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	POORLY GRADED SAND WITH SILT AND GRAVEL Beige, medium dense with	=										
	fine to coarse grained sand and some sub-angular gravel.	2	SP-		RS		49	2	121			
		-										
		6	SP- SM	X	RS		47	3	115			
	Very dense.	8	SP-		RS		50/4"	2	129			
	Dense.	10			D C		70	0	447			
	Dense.	_	SP- SM		RS		73	3	117			
		12— — — 14—										
	Light-brown.	 16	SP-		RS		74	3	113			
		18	SM									
		20	SP-		RS		50/5"	4	111			
	26.5 2063.5	22— — 24— 24— 	SP-		SPT		75	3				
	Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.		SM									
	stratification lines represent the approximate boundary lines									1		
	veen soil and rock types: in-situ, the transition may be gradual. TER LEVEL OBSERVATIONS, ft					BOR	RING S	TARTE	-D		10	-7-09
												-7-09
WL						RIG		CME		OREM		MLS
WL	│									OB #	6009	5029

CLI	ENT											
SIT	Stirling Energy Systems	PR	OJE	.т								
	L East of Barstow, California						Sola	r One				
	· · ·				S	AMPL	E			TESTS		
GRAPHIC LOG	DESCRIPTION	DEPTH, ft.	S SYMBOL		щ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	EL.	PLASTICITY INDEX	
GR4	Approx. Surface Elev.: 2086 ft	DEF	USCS		ТҮРЕ	REC	BLO	WAT	DR) pcf	LIQUID	PLA	
	<u>SILTY SAND</u> Beige to light-brown, medium dense to dense with fine grained		SN		SPT		10					
	sand and trace sub-angular gravel.	2-	SN	1	RS		69	4	115			
	Calcium carbonate observed around 3 feet 4.5 bgs208	5 4-	SN		SPT		78					
	POORLY GRADED SAND WITH SILT AND GRAVEL Beige, very dense with		-SF		RS		50/6"	3	114			
	fine to coarse grained sand, sub-angular 7.5 gravel, and non-plastic fines.	6- 8.5		-M	SPT		68					
	<u>SILTY SAND WITH GRAVEL</u> Beige to <u>9</u> light-brown, very dense with fine to coarse	8-			RS		50/5"	3	113			
	grained sand and sub-angular gravel.	10-	-SF		SPT		50					
	POORLY GRADED SAND WITH SILT AND GRAVEL Beige, very dense with		SF	-	RS		50/6"	2	122			
	fine to coarse grained sand, sub-angular gravel, and non-plastic fines.	12-	-SF	-M	SPT		28					
		14-		-M	SPT		59					
		16-		-	RS		50/6"	3	117			
		18- 20-										
		20			RS		50/5"	5	111			
		22-										
12/11/09	26.5 2059				SPT		50/5"	4				
60095029 BORING LOGS.GPJ TERR2000.GDT The standard to the stan	Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.											
The betw	stratification lines represent the approximate boundary lines een soil and rock types: in-situ, the transition may be gradual.							1		1		
	TER LEVEL OBSERVATIONS, ft					BOF	RING S	TARTE	ED		10	-7-09
JW 2005 JW 2000 JW L							RING C					-7-09
WL		J				RIG		CME		DREM		MLS
WL									JC)B #	6009	95029

CLI	ENT											
SIT	Stirling Energy Systems	PRO		т								
011	L East of Barstow, California		JLU				Sola	r One				
					S	AMPLE				TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 2065 ft	DEPTH, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID LIMIT	PLASTICITY INDEX	
	POORLY GRADED SAND Beige. medium dense with fine to coarse grained sand.	_										
	dense with line to coarse grained sand.	2	1									
	4.5 2060.5	4	SP	X	RS		47	2	115			
	POORLY GRADED SAND WITH SILT		SP-		RS		64	4	118			
	AND GRAVEL Beige, dense with fine to coarse grained sand and sub-angular	6	SM		<u>ко</u>		04	4	110			
° °	POORLY GRADED SAND WITH GRAVEL Red-brown, very dense with fine to coarse	8	SP	X	RS		50/5"	4	117			
Ø	grained sand and sub-angular gravel.	10-										
ە ب			SP	X	RS		92					
$\langle \cdot \rangle$	12.5 2052.5	12-	SP	X	SPT		50/3"					
	Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.		SP		511		50/3					
The betw	stratification lines represent the approximate boundary lines een soil and rock types: in-situ, the transition may be gradual.											
							RING S					22-09
WL	[¥] № ¥ Terr						RING C					22-09
WL		JL				RIG		B		OREM		MLS
WL									J	OB #	6009	5029

Page 1 of 1

CLI	ENT											
	Stirling Energy Systems											
SIT		PRO	JEC	Т				-				
	East of Barstow, California							r One				
					S	AMPLE				TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 2178 ft	DEPTH, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID LIMIT	PLASTICITY INDEX	
	POORLY GRADED SAND WITH SILT				-	Ľ.	ш	>0			ш =	
	Beige, medium dense with fine to coarse grained sand and trace sub-angular gravel.	2	SP-		RS		22	1	106			
		4										
	Increased gravel content. Less fines.	6	SP- SM		RS		54	2	122			
	Dense with increased coarse sand.	8	SP- SM	X	RS		48	1	122			
		10-										
	Very dense.	 12	SP- SM		RS		69	2	117			
		12 — — 14 —	-									
		 16	SP-		RS		50/5"	1	118			
		18										
		20-	SP-		RS		50/5"	1	125			
		22	ŚM									
		24										
	25.5 2152.5 26.5 POORLY GRADED SAND Light-brown, medium dense with fine grained sand.	 26	SP		SPT		57	2				
	Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.											
	stratification lines represent the approximate boundary lines een soil and rock types: in-situ, the transition may be gradual.											
WA	TER LEVEL OBSERVATIONS, ft					BOR	RING S	TARTE	ED		10	-7-09
WL							ING C	OMPL	ETED		10	-7-09
WL			_[RIG		CME	-75 FC	DREM	۹N	MLS
WL					_				JC)B #	6009	5029

Page 1 of 1

CLI	ENT											
	Stirling Energy Systems											
SITI		PRO	JEC	Т			• •	•				
	East of Barstow, California		-					r One		TEOTO		
					S	AMPLE	=			TESTS		
GRAPHIC LOG		DEPTH, ft.	USCS SYMBOL		түре	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID LIMIT	PLASTICITY INDEX	
0 	Approx. Surface Elev.: 2514 ft POORLY GRADED SAND WITH SILT				-	R	В	≤0	Δā		≙≤	
	AND GRAVEL Beige, very dense with fine to medium grained sand and sub-angular gravel.	2	SP- SM SP- SM		RS RS		50/6"	1	125			
		4										
	Increased coarse grained sand and fine sub-angular gravel.	6	SP- SM	X	RS		55	0	124			
		8	SP- SM	X	RS		64	2	117			
	Thin zone of increased fines.	10-	SP-		RS		60	2	116			
	Thin zone of increased lines.	 12	SM		кэ 		69	2	110			
		 14	-									
	Increased gravel content.	16	SP- SM		RS		50/5"	1	111			
	Decreased gravel content.	18— 20—	SP-		RS		50/3"	3	114			
		22 — 24 —	SM									
	25.5 2488.5	_	SP-	$\left \right $	NR		50/5"					
	Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.	26—	SM									
	stratification lines represent the approximate boundary lines											
	een soil and rock types: in-situ, the transition may be gradual.						RING S	тлотг			10	7.00
	TER LEVEL OBSERVATIONS, ft ⊻ NE ⊻											-7-09
WL	¥ NE ¥ ¥ ¥		-6				RING C					-7-09
WL						RIG		CME				MLS
WL									L JC)B #	6000	5029

	LOG OF TE	STI		10.	Т	P-0'	18				F	Page 1	of 1
CLI	ENT Stirling Energy Systems												
SIT			PRO	JEC	Т								
	East of Barstow, California								r One	i .			
						S	AMPLE	<u>=</u>			TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 2281 ft		DEPTH, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	9.5 SILTY SAND Beige with fine grained sand and some sub-angular gravel. POORLY GRADED SAND WITH GRAVEL Beige with fine to coarse grained sand and sub-angular gravel and cobble. Intermittent layers of increased fines and increased gravels. Calcium carbonate buildup observed on test pit walls at 5 feet bgs.	2280.5-	2 4 6 8 10 12			BS			1				
o	14 Bottom of test pit.	2267	14		+	BS			2				
BOREHOLE Z000 60095029 BORING LOGS.GPJ TERKZ000.GDT 12/11/09	Groundwater not encountered. Test pit backfilled with soil cuttings.												
The betw	stratification lines represent the approximate boundary lines /een soil and rock types: in-situ, the transition may be gradual.												
WA	TER LEVEL OBSERVATIONS, ft						TES	T PIT S	START	ED		10-2	21-09
WL N									COMP	LETED		10-:	21-09
WL WL	¥ NE¥¥¥		JL	L			BAC	KHOE	В		OREM/ OB #		MLS 95029
ă 🚬										0	- u m		

LOG OF TEST	PIT NO.	TP-040
-------------	---------	--------

Page 1 of 1

CLI													
	Stirling Energy Systems												
SITE East of Baratow, California			JEC	Т			0.1.	•					
	East of Barstow, California				6	SAMPLE TESTS							
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 2341 ft	DEPTH, ft.	USCS SYMBOL		ТҮРЕ		BLOWS/FT.	WATER CONTENT, %	DRY DENSITY	LIQUID	PLASTICITY INDEX		
,	POORLY GRADED SAND WITH GRAVEL		_										
° ° °	Beige with fine to coarse grained sand and sub-angular gravel and cobble. Intermittent layers of increased fines and increased gravels.	2 2 4											
D.	Calcium carbonate buildup observed on	6		1	BS			2					
° () ° () ° ()	test pit walls at 5.5 feet bgs.	6 8 10 12 12		•									
	14 2327 Bottom of test pit.	 14		L.	BS			2					
	Groundwater not encountered. Test pit backfilled with soil cuttings.												
The stratification lines represent the approximate boundary lines between soil and rock types: in-situ, the transition may be gradual.													
WATER LEVEL OBSERVATIONS, ft				TEST PIT STARTED 10-							19-09		
										19-09			
		٦٢					KHOE			REMA		MLS	
WL										B #		5029	

Page 1 of 1

CLI												
0171	Stirling Energy Systems			_								
SITE East of Barstow, California			JEC	I			Sola	r One				
					S	AMPLE				TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 2280 ft	DEPTH, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	POORLY GRADED SAND WITH GRAVEL Beige with fine to coarse grained sand and											
°. () Ø. ()	Calcium carbonate buildup observed on test pit walls at 3 feet bgs.	2		Ĵ	BS			1				
	Intermittent layers of increased fines and increased gravels.	6 8 10										
。 。 。 。 〇		12		A								
	14 2266 Bottom of test pit. Groundwater not encountered. Test pit backfilled with soil cuttings.	14			BS							
	stratification lines represent the approximate boundary lines een soil and rock types: in-situ, the transition may be gradual.											
	TER LEVEL OBSERVATIONS, ft						T PIT S					19-09
WL			- 7	ור					ETED			19-09
WL		JL				BAC	KHOE	B				MLS
WL									1.10	DB#	6009	5029

Page 1 of 1

CLIE												
SITE	Stirling Energy Systems	PRO	IFC	г								
OIL	East of Barstow, California	1100		1			Sola	r One				
					S	AMPLE				TESTS		
GRAPHIC LOG	DESCRIPTION	DEPTH, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID LIMIT	PLASTICITY INDEX	
0.0.	POORLY GRADED SAND WITH GRAVEL				•			20				
° ° ° °	Beige with fine to coarse grained sand and sub-angular gravel and cobble.	2		•								
• ·	Calcium carbonate buildup observed on	4—		¥	BS			2				
	test pit walls at 4 feet bgs. Intermittent layers of increased fines and increased gravels.	6										
• ()	3			Ĵ	BS			2				
	Bottom of test pit. Groundwater not encountered. Test pit backfilled with soil cuttings.	8	-		BS			2				
WA WL	etratification lines represent the approximate boundary lines been soil and rock types: in-situ, the transition may be gradual. TER LEVEL OBSERVATIONS, ft ✓ NE ✓ ✓ NE ✓ ✓ NE ✓ ✓ NE ✓	–				TES	T PIT S T PIT C KHOE	COMPI	LETED		10-	19-09 19-09
						BAC	NHUE	B				MLS
WL									L JC)B #	6009	5029

BOREHOLE_2000_60095029 BORING LOGS.GPJ_TERR2000.GDT_12/11/09

LOG OF	TEST I	PIT NO.	TP-051
--------	--------	---------	--------

CLI	IENT	Sti	rling Energy Syst	ome											
SIT	E				PRO	JEC	Т								
	1	East	t of Barstow, Cali	fornia					AMPLE		r One		TESTS		
GRAPHIC LOG			DESCRIPTION		DEPTH, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIMIT	PLASTICITY INDEX	
• • •		Beige with fin	ADED SAND WITH the to coarse grained gravel and cobble.		2	-	1	BS			1				
。 。 。		Intermittent la increased gra	ayers of increased f avels.	ïnes and		-	1	BS			3				
) 	•	.					Î	BS			2				
<u>. O</u>	10	Calcium carb test pit walls	onate buildup obse at 9 feet bgs.	rved on	10-		I ↓	BS			5				
60095029 BORING LOGS.GPJ TERR2000.GDT 12/11/09			it pit. not encountered. filled with soil cuttin	gs.											
The betv	stratifica veen soil	tion lines represe and rock types:	ent the approximate bou in-situ, the transition ma	ndary lines ay be gradual.											
WA			RVATIONS, ft						TES	T PIT S	START	ΈD		10-	19-09
JW SOREHOLE 2000	_		Ţ		_				TES	T PIT (COMP	LETED		10-	19-09
WL			Ψ.	Jleu	30	_C			BAC	KHOE	В	-95 F	OREM	٩N	MLS
WL												J	OB #	6009	95029

CLI	ENT KRoad Solar Power												
SIT	E NWC of Pisgah Crater Rd and Needles Fwy (I-40)	PRO	JEC	т									
	Pisgah, California							alico	o Sola	r			
						SAMI F	PLE BLOW	s			TESTS		
GRAPHIC LOG	DESCRIPTION	DEPTH, ft.	USCS SYMBOL	INTERVAL	ТҮРЕ	1st 6"	2nd 6"	3rd 6"	WATER CONTENT, %	DRY DENSITY pcf	LIQUID LIMIT	PLASTICITY INDEX	-#200
	<u>SILTY SAND;</u> some gravel, tan, slightly damp.	1	SM	A V	BS								
	POORLY GRADED SAND WITH SILT AND GRAVEL ; tan, medium dense to dense, slightly damp.	4	SP- SM		RS		20	25	3	110			
		5— 6— 7—	SP- SM		SPT	11	14	11					
0 0 0 0 0		8	SP- SM		RS	10	18	26					
o Y	10	10-											
	<u>SEDIMENTARY BEDROCK -</u> <u>SANDSTONE</u> ; tan, slightly damp.		-	\mathbb{N}	SPT	9	50/3"						
	<u>or aborone</u> , an, orgina damp.	11											
		12-											
		13	-										
		14-	1										
		15-											
		-	-	\mathbf{N}	RS	27	36 5	50/4.5					
0T 8/10/11	16.5 Boring terminated at 16.5'. Bottom of BORING.	16											
BOREHOLE 2000 60095029A GPJ TERR2000.GDT 8/10/11 TA TA T													
betw	stratification lines represent the approximate boundary lines een soil and rock types: in-situ, the transition may be gradual.												
WA	TER LEVEL OBSERVATIONS, ft					В	ORIN	IG S	TARTE	ED		7	-6-11
000 WL	^I ✓ None WD II ✓	_				В	ORIN	IG C	OMPL	ETED		7	-6-11
WL	Vertical Vertical Vertical Vertical Vertical Vertical	30	_C			R	IG		В	-61 FC	DREM	٩N	JR
WL	Backfilled Upon Completion					A	PPR	OVE	D S	DN JC)B #	60095	029A

CLI	ENT KRoad Solar Power												
SIT	E NWC of Pisgah Crater Rd and Needles Fwy (I-40)	PRO	JEC	т									
	Pisgah, California							alico	o Sola	r			
						SAMF B	PLE LOW:	s			TESTS		
GRAPHIC LOG	DESCRIPTION	DEPTH, ft.	USCS SYMBOL	INTERVAL	ТҮРЕ	1st 6"	2nd 6"	3rd 6"	WATER CONTENT, %	DRY DENSITY pcf	LIQUID LIMIT	PLASTICITY INDEX	-#200
	<u>SILTY SAND;</u> some gravel, tan, slightly damp.		SM	Å	BS								19
	POORLY GRADED SAND WITH SILT AND GRAVEL; tan, dense, slightly damp.	3	SP- SM		RS	24	36	42	3	92			
		5— 6— 7—	SP- SM		SPT	8	16	15					
		8	SP- SM	X	RS	26	30	40	4	116			
	10 SEDIMENTARY BEDROCK - SANDSTONE; tan, slightly damp.	10	-		SPT	30	50/4"						
		12— 13— 14—	-										
		15— 15— 16—	-		RS	44	43 5	60/5.5					
		17— 18— 18— 19—	-										
0.GDT 8/10/11	21.5	20	-	X	RS	19	21	20	3	119			
BOREHOLE 2000 60095029A.GPJ TERR2000.GDT TAM TAM Sandar San Sandar Sandar S Sandar Sandar S	Boring terminated at 21.5'. Bottom of BORING.												
The betw	stratification lines represent the approximate boundary lines reen soil and rock types: in-situ, the transition may be gradual.												
WA	TER LEVEL OBSERVATIONS, ft					В	ORIN	IG S	TARTE	Ð		7	'-6-11
WL	Image: Provide with the second secon		-			В	ORIN	IG C	OMPL	ETED		7	'-6-11
WL	Image: WD Image: WD Image: WD Image: WD Image: WD Image: WD Image: WD Image: W	JL				RI	G		В	-61 FC	DREM	٩N	JR
WL	Backfilled Upon Completion					A	PPR	OVE	D S	DN JC)B #	60095	029A

CLI	ENT KRoad Solar Power												
SIT	E NWC of Pisgah Crater Rd and Needles Fwy (I-40)	PRO	JEC	Т									
	Pisgah, California							alico	o Sola	r			
						SAMF		<u> </u>			TESTS		
GRAPHIC LOG	DESCRIPTION	DEPTH, ft.	USCS SYMBOL	INTERVAL	TYPE	1st 6"	2nd 6" 07	3rd 6"	WATER CONTENT, %	DRY DENSITY pcf	LIQUID LIMIT	PLASTICITY INDEX	-#200
	SILTY SAND; trace gravel, tan, damp.	 1— 2—	SM	A V	BS								
	POORLY GRADED SAND WITH SILT AND GRAVEL; tan, medium dense to very dense, damp.	3 4 5 6 7 8 9	SP- SM SP- SM SP- SM		RS SPT RS	10 - 12 50/5"	13	18	10	112			
00.GDT 8/10/1	10 SEDIMENTARY BEDROCK - SANDSTONE; tan, damp. 21.5 Boring terminated at 21.5'	10 — 11 — 12 — 13 — 13 — 14 — 15 — 16 — 17 — 18 — 19 — 20 — 21 —			SPT RS SPT	16 17	32 t 26 13	28	12	108			8
BOREHOLE 2000 6009502ALGPU TERR2000.GDT TAM A and A an	Boring terminated at 21.5'. <u>Bottom of BORING.</u> stratification lines represent the approximate boundary lines												
betw	een soil and rock types: in-situ, the transition may be gradual.												
© WA	TER LEVEL OBSERVATIONS, ft								TARTE				-6-11
	Vertical WD Vertical WD <t< th=""><th></th><th>-6</th><th>ור</th><th></th><th>BC</th><th></th><th>IG C</th><th>OMPL</th><th></th><th></th><th></th><th>-6-11</th></t<>		-6	ור		BC		IG C	OMPL				-6-11
		JL	_L			RI					DREM		JR
WL	Backfilled Upon Completion					AF	PPR	OVE	D S	DN JC)B #	60095	029A

SITI	E NWC of Pisgah Crater Rd and Needles Fwy (I-40)	PRC	JEC	Т			-		• ·				
	Pisgah, California					SAMF		alico	o Sola	r	TESTS	•	
							LOW	S					
GRAPHIC LOG	DESCRIPTION	DEPTH, ft.	USCS SYMBOL	INTERVAL	ТҮРЕ	1st 6"	2nd 6"	3rd 6"	WATER CONTENT, %	DRY DENSITY pcf	LIQUID LIMIT	PLASTICITY INDEX	000
	SILTY SAND; trace gravel, tan, slightly damp.	1	SM		BS								
0	2.5 POORLY GRADED SAND WITH SILT AND GRAVEL; tan, medium dense to very dense, slightly damp.	3	SP- SM		SPT	3	4	9					
0 0 0	moderate cementation.	5	SP- SM		RS	24	38	50/5"	6	123			
		7	SP- SM		SPT	22	50/5"						
0 0 0		10	SP- SM	X	RS	30	27	40	3	118			
> 0 <		12— 13— 14—											
0 0 0		15— 	SP- SM		RS	17	17	17					
00													
× 0 0		20	SP- SM		RS	17	30	36	3	123			
The shetw	Continued Next Page stratification lines represent the approximate boundary lines een soil and rock types: in-situ, the transition may be gradual.	23-											
	TER LEVEL OBSERVATIONS, ft					B	ORIN	IG S	TARTI	ED		7	7-6-
WL			_	_						ETED			7-6-
WL	Vertical Vertical Vertical Vertical Vertical Vertical	a	-6			RI					OREM		-

Page 2 of 2

	NWC of Pisgah Crater Rd and Needles Fwy (I-40)	PRO	JEC	Т									
	Pisgah, California							alico	o Sola	r			
						SAM	PLE LOW	c			TESTS		
GRAPHIC LOG	DESCRIPTION	DEPTH, ft.	USCS SYMBOL	INTERVAL	TYPE	1st 6"	2nd 6"	3rd 6"	WATER CONTENT, %	DRY DENSITY pcf	LIQUID LIMIT	PLASTICITY INDEX	0000
	POORLY GRADED SAND WITH SILT AND GRAVEL; tan, medium dense to very dense, slightly damp.	32	SP- SM		RS		24	26	6	116			
35	<u>SEDIMENTARY BEDROCK -</u> <u>SANDSTONE</u> ; tan, slightly damp.	33— 34— 35— 36— 37— 38— 39— 40— 41—			RS	27	50/5"	50/4"	4	115			
betwee	Boring terminated at 41.5'. Bottom of BORING. ratification lines represent the approximate boundary lines en soil and rock types: in-situ, the transition may be gradual.												
	ER LEVEL OBSERVATIONS, ft					_			TARTE				7-6-
	Z None WD Y Y Y Terr					В	ORIN	IG C	OMPL	ETED		7	7-6-
	<u>v v</u> IPrr		_			R							

SIT	KRoad Solar Power E NWC of Pisgah Crater Rd and Needles Fwy (I-40)	PRO	JEC	Т									
	Pisgah, California						С	alico	o Sola	r			
						SAM	PLE LOW	c			TESTS	;	
GRAPHIC LOG	DESCRIPTION	DEPTH, ft.	USCS SYMBOL	INTERVAL	ТҮРЕ	1st 6"	2nd 6"	3rd 6"	WATER CONTENT, %	DRY DENSITY pcf	LIQUID LIMIT	PLASTICITY INDEX	UUC#-
	POORLY GRADED SAND WITH SILT;	_	SP-		BS								8
	some gravel, tan brown, medium dense, slightly damp.	1 	SM SP- SM		SPT	14	17	13					
	weak to moderate cementation.	3	SP- SM		SPT	7	13	15					
		5	SP- SM		RS	6	14	21	4	113			
	7.5 SEDIMENTARY BEDROCK - SANDSTONE; light brown, slightly damp.	7			SPT	10	27	37					
		9			RS	30	50		1	125			
		12— 12— 13—	-		SPT	22	50						
	13.5 Refusal was encountered on sedimentary bedrock. Boring terminated at 13.5'. Bottom of BORING.												
The	stratification lines represent the approximate boundary lines												
betw	een soil and rock types: in-situ, the transition may be gradual.												
	TER LEVEL OBSERVATIONS, ft								TARTE				22-
WL						B(R		IG C		ETED		7-	22-
NL										-61 F0	OREM		,

CLI	ENT KRoad Solar Power												
SIT	E NWC of Pisgah Crater Rd and Needles Fwy (I-40)	PRO	JEC	т									
	Pisgah, California							alico	o Sola	r			
				<u> </u>		SAM		<u>د</u>			TESTS		
GRAPHIC LOG	DESCRIPTION	DEPTH, ft.	USCS SYMBOL	INTERVAL	ТҮРЕ	1st 6"	2nd 6"	3rd 6"	WATER CONTENT, %	DRY DENSITY pcf	LIQUID LIMIT	PLASTICITY INDEX	-#200
	POORLY GRADED SAND WITH SILT; some gravel, tan brown, slightly damp.	 1 2	SP- SM	A V	BS								
	<u>POORLY GRADED SAND WITH SILT</u> <u>AND GRAVEL</u> ; tan brown, loose to medium dense, slightly damp.		SP- SM SP- SM		SPT RS		4	6 8	2	110			
	 7.5 <u>SILTY SAND WITH GRAVEL</u>; light brown, very dense, slightly damp. 10 	9	SP- SM		SPT	50/3"			4	102			
BOREHOLE 2000 BOUGBOL BAUNT R R R R R R R R R R R R R R R R R R R	11 SAND; light brown, very dense, slightly damp. Refusal was encountered on very dense gravel. Boring terminated at 11'. Bottom of BORING.	- 10	GP		RS	12	50						
The betv	stratification lines represent the approximate boundary lines een soil and rock types: in-situ, the transition may be gradual.												
WA	TER LEVEL OBSERVATIONS, ft					B	ORIN	IG S	TARTE	ED		7-:	22-11
WL						В	ORIN	IG C	OMPL	ETED		7-3	22-11
WL	Vertical Vertical Vertical Vertical Vertical Vertical	30	_C			RI	IG		В	-61 FC	DREM	AN	JR
WL	Backfilled Upon Completion					A	PPR	OVE	D S	DN JC)B #	60095	029A

CL	ENT			_									
	KRoad Solar Power E NWC of Pisgah Crater Rd and Needles Fwy (I-40)	PRO	IFC	т									
011	Pisgah, California						С	alico	o Sola	r			
						SAM	PLE				TESTS		
			.			В	BLOW	S					
GRAPHIC LOG	DESCRIPTION	DEPTH, ft.	USCS SYMBOL	INTERVAL	ТҮРЕ	1st 6"	2nd 6"	3rd 6"	WATER CONTENT, %	DRY DENSITY pcf	LIQUID LIMIT	PLASTICITY INDEX	-#200
	POORLY GRADED SAND WITH SILT; some gravel, tan, slightly damp.	1-	SP- SM		BS								-
	2.5	2	-	V									
$\circ \circ \circ$	POORLY GRADED SAND WITH SILT AND GRAVEL; tan, medium dense to dense, slightly damp.	3	SP- SM		SPT	5	7	6					
		5	SP- SM		RS	10	24	22					
Ő		7											
0,0		8	SP- SM		SPT	7	9	11					
• O		-	-										
\circ			SP- SM	X	RS	14	23	27					
$\circ 0$		12-											
• ()) 0		13-	-										
		14											
	16.5	15— 	SP- SM	X	SPT	. 9	14	16					6
	Boring terminated at 16.5'. <u>Bottom of BORING.</u>												
BOREHOLE 2000 60095029A.GPJ TERR2000.GDT 8/10/11 TA 저 중 평낙 가 가 한 영국													
The betv	stratification lines represent the approximate boundary lines veen soil and rock types: in-situ, the transition may be gradual.												
600 WA	TER LEVEL OBSERVATIONS, ft					B	ORIN	IG S	TARTI	ED		7	-5-11
WL										ETED			'-5-11
۳ MF	Image: WD Image: WD Image: WD Image: WD Image: WD Image: WD Image: WD Image: W	30	_C		Π	R		-			DREM		JR
WL	Backfilled Upon Completion					A	PPR	OVE	D S	DN JC)B #	60095	029A

LOG OF HAND AUGER NO. B-057A

CL	ENT KRoad Solar Power												
SIT	KRoad Solar Power E NWC of Pisgah Crater Rd and Needles Fwy (I-40)	PRO	JEC	Т									
	Pisgah, California			-			С	alico	o Sola	ır			
					-	SAM					TESTS	\$ 	
GRAPHIC LOG	DESCRIPTION	DEPTH, ft.	USCS SYMBOL	INTERVAL	ТҮРЕ	1st 6"	2nd 6" AO	3rd 6"	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	-#200
	POORLY GRADED SAND WITH SILT; some gravel, light brown, slightly damp.		SP- SM	X	BS								10
BOREHOLE 2000 60095029A.GPJ TERR2000.GDT 8/10/11 TA A A A TA A A A	Bottom of HAND AUGER.												
betv	stratification lines represent the approximate boundary lines een soil and rock types: in-situ, the transition may be gradual.					-							
WA	TER LEVEL OBSERVATIONS, ft						AND	AUC	SER S	TARTE	Ð	7	7-5-11
⁸ WL	Variable Variable Variable Variable Variable Variable		-			H	AND	AUG	SER C	OMPL	ETED	7	7-5-11
WL		حال	_C	J		R	IG			F	OREM	AN	JR
WL	Backfilled Upon Completion			_		A	PPR	OVE	D S	DN J	OB #	60095	5029A

CL	ENT KRoad Solar Power												
SIT	E NWC of Pisgah Crater Rd and Needles Fwy (I-40)	PRO	JEC	т									
	Pisgah, California							alico	o Sola	r			
						SAMI B	PLE LOW	S			TESTS		
GRAPHIC LOG	DESCRIPTION	DEPTH, ft.	USCS SYMBOL	INTERVAL	ТҮРЕ	1st 6"	2nd 6"	3rd 6"	WATER CONTENT, %	DRY DENSITY pcf	LIQUID LIMIT	PLASTICITY INDEX	-#200
	<u>SILTY SAND;</u> some gravel, tan, slightly damp.	1	SM		BS								
° ° ° °	POORLY GRADED SAND WITH SILT AND GRAVEL; tan, medium dense to very dense, slightly damp.	3	SP- SM		SPT	4	11	15					5
0 0 0		5 6	SP- SM	X	RS	30	36	46	3	120			
0 0 0		7— 8— 9—	SP- SM		SPT	20	34	36					
		10	SP- SM		RS	33	35	54	2	128			
		12— 13— 14—	-										
00		15 	SP- SM		SPT	6	10	16					
BOREHOLE 2000 60095029A.GPJ TERR2000.GDT 8/10/11 TA 정 형내 가 강화해	Boring terminated at 16.5'. Bottom of BORING.												
0.00 The Detv	stratification lines represent the approximate boundary lines een soil and rock types: in-situ, the transition may be gradual.	1			1	I							
WA	TER LEVEL OBSERVATIONS, ft					B	ORIN	IG S	TARTE	ED		7	-5-11
WL									OMPL				-5-11
u WL	Vertical None WD Vertical None WD Vertical None WD Vertical None None None None None None None None	30	_C		Π	R					DREM		JR
wL	Backfilled Upon Completion					A	PPR	OVE		DN JC			

GENERAL NOTES

DRILLING & SAMPLING SYMBOLS:

SPT:	Split Spoon - 1- ³ /8" I.D., 2" O.D., unless otherwise noted	HS:	Hollow Stem Auger
ST:	Thin-Walled Tube - 2" O.D., 3" O.D. unless otherwise noted	PA:	Power Auger
RS:	Ring Sampler - 2.42" I.D., 3" O.D., unless otherwise noted	HA:	Hand Auger
DB:	Diamond Bit Coring - 4", N, B	RB:	Rock Bit
BS:	Bulk Sample or Auger Sample	WB:	Wash Boring or Mud I

The number of blows required to advance a standard 2-inch O.D. split-spoon sampler (SS) the last 12 inches of the total 18-inch penetration with a 140-pound hammer falling 30 inches is considered the "Standard Penetration" or "N-value". For 3" O.D. ring samplers (RS) the penetration value is reported as the number of blows required to advance the sampler 12 inches using a 140-pound hammer falling 30 inches, reported as "blows per foot," and is not considered equivalent to the "Standard Penetration" or "N-value".

WATER LEVEL MEASUREMENT SYMBOLS:

WL:	Water Level	WS:	While Sampling	N/E:	Not Encountered
WCI:	Wet Cave in	WD:	While Drilling		
DCI:	Dry Cave in	BCR:	Before Casing Removal		
AB:	After Boring	ACR:	After Casing Removal		

Water levels indicated on the boring logs are the levels measured in the borings at the times indicated. Groundwater levels at other times and other locations across the site could vary. In pervious soils, the indicated levels may reflect the location of groundwater. In low permeability soils, the accurate determination of groundwater levels may not be possible with only short-term observations.

DESCRIPTIVE SOIL CLASSIFICATION: Soil classification is based on the Unified Soil Classification System. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; their principal descriptors are: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are principally described as clays if they are plastic, and silts if they are slightly plastic or non-plastic. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse-grained soils are defined on the basis of their in-place relative density and fine-grained soils on the basis of their consistency.

CONSISTENCY OF FINE-GRAINED SOILS

<u>Unconfined</u> <u>Compressive</u> <u>Strength, Qu, psf</u>	<u>Standard</u> <u>Penetration or</u> <u>N-value (SS)</u> <u>Blows/Ft.</u>	<u>Consistency</u>
< 500	0 - 1	Very Soft
500 - 1,000	2 - 4	Soft
1,000 - 2,000	4 - 8	Medium Stiff
2,000 - 4,000	8 -15	Stiff
4,000 - 8,000	15 - 30	Very Stiff
8,000+	≥ 30	Hard

RELATIVE PROPORTIONS OF SAND AND GRAVEL

Descriptive Term(s) of other constituents	Percent of Dry Weight
Trace	< 15
With	15 – 29
Modifier	> 30

RELATIVE PROPORTIONS OF FINES

<u>Descriptive Term(s) of other</u> <u>constituents</u>	<u>Percent of</u> Dry Weight
Trace	< 5
With	5 – 12
Modifier	> 12

RELATIVE DENSITY OF COARSE-GRAINED SOILS

Rotary

<u>.</u>	<u>Standard</u> <u>Penetration or</u> <u>N-value (SS)</u> <u>Blows/Ft.</u>	<u>Ring Sampler (RS)</u> <u>Blows/Ft.</u>	<u>Relative Density</u>
	0 – 3	0-6	Very Loose
	4 – 9	7-18	Loose
	10 – 29	19-58	Medium Dense
	30 – 50	59-98	Dense
	≥ 50	≥ 99	Very Dense

GRAIN SIZE TERMINOLOGY

<u>Major Component</u> <u>of Sample</u>	Particle Size
Boulders Cobbles Gravel Sand Silt or Clay	Over 12 in. (300mm) 12 in. to 3 in. (300mm to 75 mm) 3 in. to #4 sieve (75mm to 4.75 mm) #4 to #200 sieve (4.75mm to 0.075mm) Passing #200 Sieve (0.075mm)
PLASTIC	CITY DESCRIPTION
<u>Term</u>	Plasticity Index
Non-plastic Low Medium	0 1-10 11-30

High

> 30

llerracon

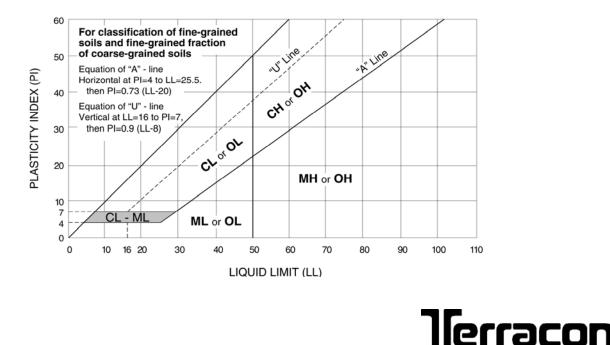
Rev 04/10

UNIFIED SOIL CLASSIFICATION SYSTEM

Criteria for Assigning Group Symbols and Group Names Using Laboratory Tests ^A					Soil Classification
				Group Symbol	Group Name ^B
Coarse Grained Soils	Gravels	Clean Gravels	$Cu \geq 4 \mbox{ and } 1 \leq Cc \leq 3^{\mbox{\tiny E}}$	GW	Well-graded gravel ^F
More than 50% retained	More than 50% of coarse fraction retained on	Less than 5% fines ^c	$Cu < 4 \ and/or \ 1 > Cc > 3^{\text{E}}$	GP	Poorly graded gravel ^F
on No. 200 sieve	No. 4 sieve		Fines classify as ML or MH	GM	Silty gravel ^{F,G, H}
		than 12% fines ^c	Fines classify as CL or CH	GC	Clayey gravel ^{F,G,H}
	Sands	Clean Sands	$Cu \geq 6 \text{ and } 1 \leq Cc \leq 3^{\text{E}}$		Well-graded sand
	50% or more of coarse fraction passes	Less than 5% fines ^D	$Cu < 6$ and/or $1 > Cc > 3^{\text{E}}$	SP	Poorly graded sand
	No. 4 sieve Sands with Fines	Fines classify as ML or MH	SM	Silty sand G,H,I	
		More than 12% fines ^D	Fines Classify as CL or CH	SC	Clayey sand ^{G,H,I}
Fine-Grained Soils			$PI > 7$ and plots on or above "A" line $^{\rm J}$	CL	Lean clay ^{K,L,M}
50% or more passes the No. 200 sieve	e Liquid limit less than 50		PI < 4 or plots below "A" line ^J	ML	Silt ^{K,L,M}
		organic	Liquid limit - oven dried < 0.75	OL	Organic clay ^{K,L,M,N}
			Liquid limit - not dried	OL	Organic silt $K_{K,L,M,O}$
	Silts and Clays	inorganic	PI plots on or above "A" line	СН	Fat clay ^{ĸ,∟,м}
	Liquid limit 50 or more		PI plots below "A" line	MH	Elastic Silt ^{K,L,M}
		organic	Liquid limit - oven dried < 0.75	ОН	Organic clay ^{K,L,M,P}
			Liquid limit - not dried	OII	Organic silt ^{K,L,M,Q}
Highly organic soils	Prima	rily organic matter, dark in co	lor, and organic odor	PT	Peat

^ABased on the material passing the 3-in. (75-mm) sieve

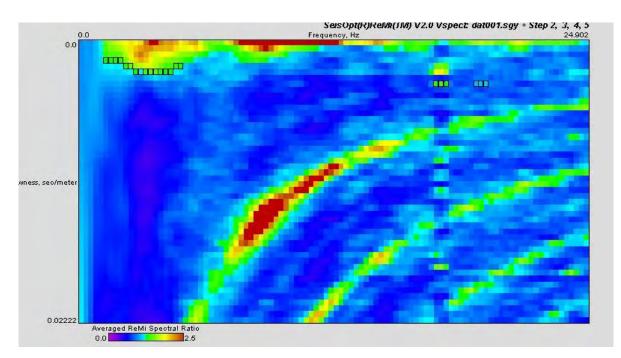
- ^B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.
- ^C Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.


^D Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with silt, SP-SC poorly graded sand with clay

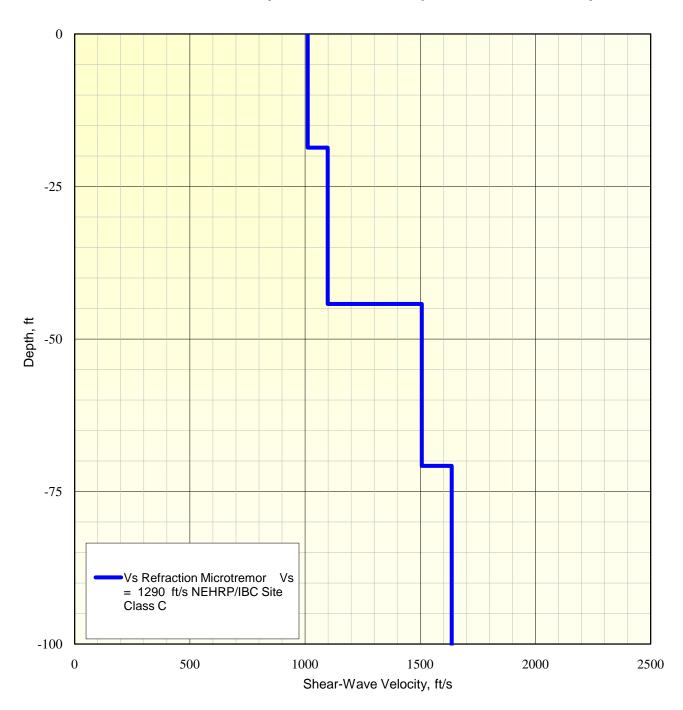
^ECu =
$$D_{60}/D_{10}$$
 Cc = $\frac{(D_{30})^2}{D_{10} \times D_{60}}$

 $^{\sf F}$ If soil contains \geq 15% sand, add "with sand" to group name. $^{\sf G}$ If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

^HIf fines are organic, add "with organic fines" to group name.


- ¹ If soil contains \geq 15% gravel, add "with gravel" to group name.
- ^J If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.
- ^K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.
- $^{\text{L}}$ If soil contains \geq 30% plus No. 200 predominantly sand, add "sandy" to group name.
- $^{\rm M}$ If soil contains \geq 30% plus No. 200, predominantly gravel, add "gravelly" to group name.
- ^N PI \geq 4 and plots on or above "A" line.
- ^oPI < 4 or plots below "A" line.
- ^P PI plots on or above "A" line.
- ^QPI plots below "A" line.

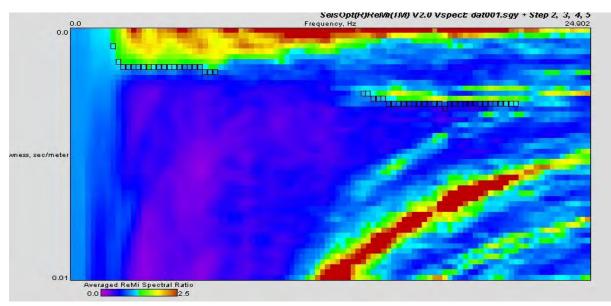
Stirling Energy System Calico - Solar One B-005 Terracon Project No. 60095029


3000 Rayleigh Wave Phase Velocity, ft/s 2000 • • 1000 Calculated Dispersion **Picked Dispersion** 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Period, s

p-f Image with Dispersion Modeling Picks

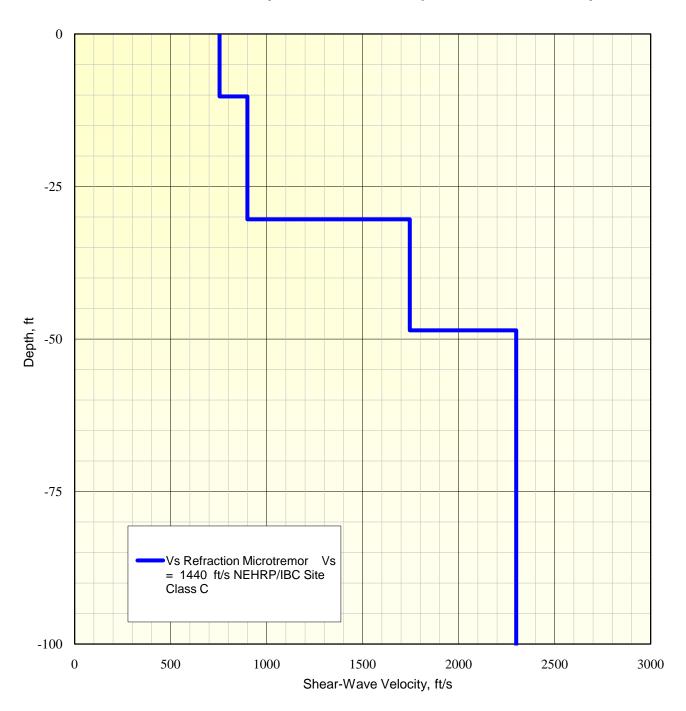
Dispersion Curve Showing Picks and Fit

Stirling Energy System Calico - Solar One B-005 Terracon Project No. 60095029



Shear-Wave Velocity Profile from SeisOpt ReMi Software Analysis

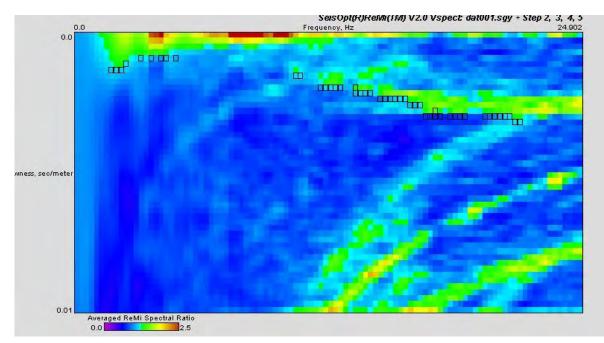
Stirling Energy System Calico - Solar One B-031 Terracon Project No. 60095029


4000 Rayleigh Wave Phase Velocity, ft/s 3000 2000 1000 Calculated Dispersion **Picked Dispersion** 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Period, s

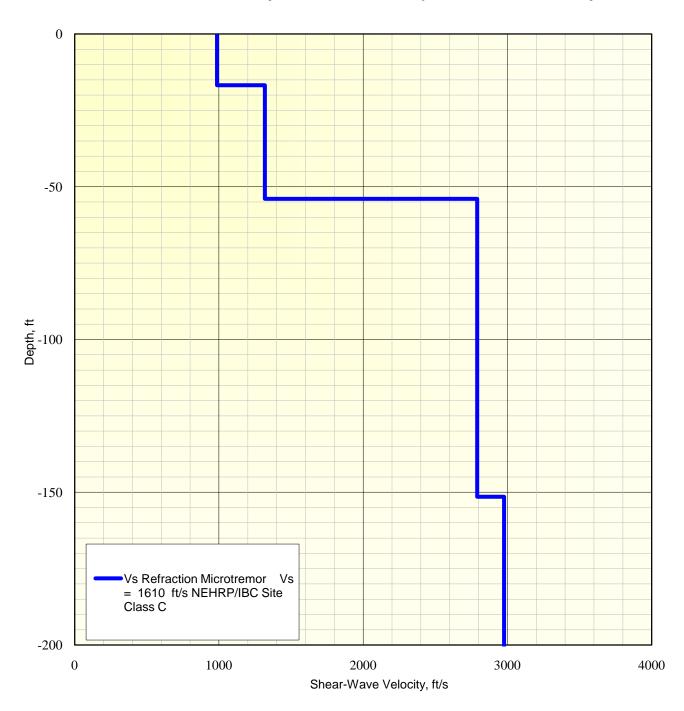
p-f Image with Dispersion Modeling Picks

Dispersion Curve Showing Picks and Fit

Stirling Energy System Calico - Solar One B-031 Terracon Project No. 60095029



Shear-Wave Velocity Profile from SeisOpt ReMi Software Analysis


Stirling Energy System Calico - Solar One T-044 Terracon Project No. 60095029

Dispersion Curve Showing Picks and Fit 5000 Rayleigh Wave Phase Velocity, ft/s 4000 3000 2000 1000 Calculated Dispersion **Picked Dispersion** 0 0 0.1 0.2 0.3 0.4 0.5 0.6 Period, s

p-f Image with Dispersion Modeling Picks

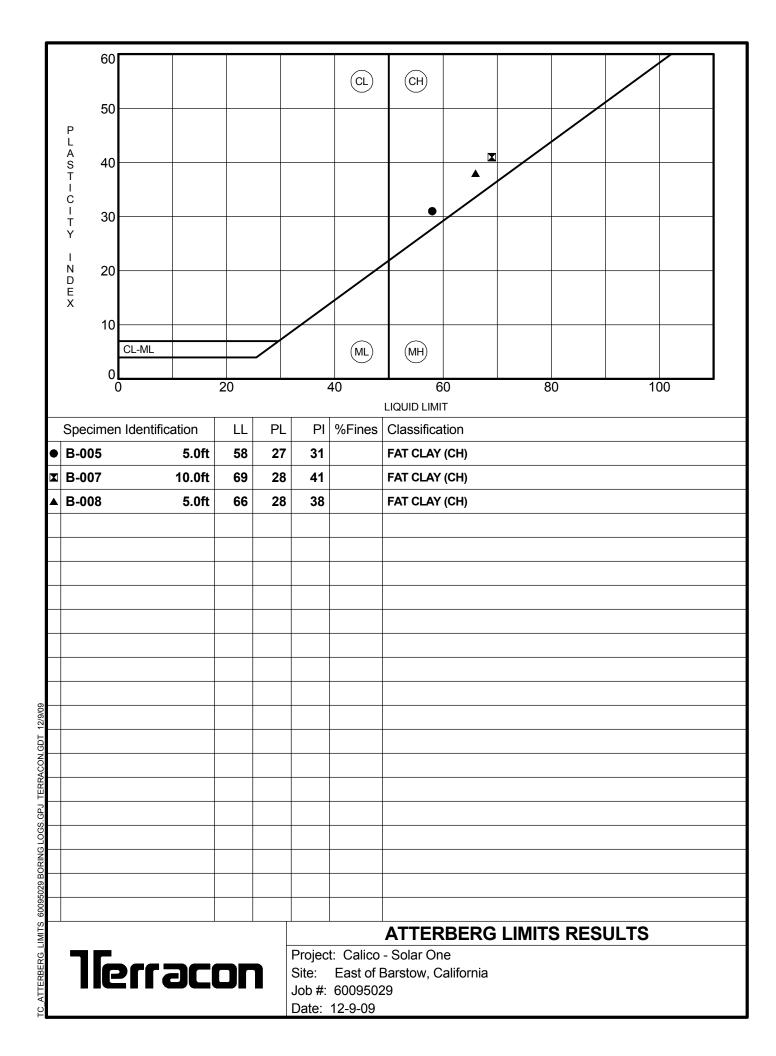
Stirling Energy System Calico - Solar One T-044 Terracon Project No. 60095029

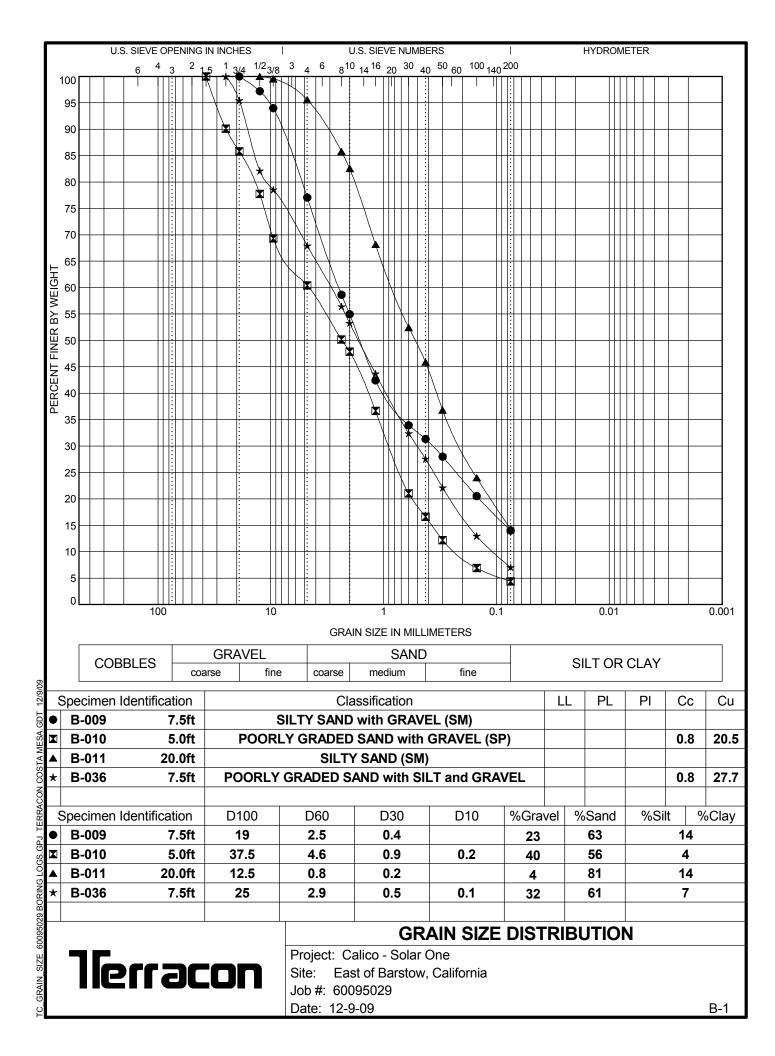
Shear-Wave Velocity Profile from SeisOpt ReMi Software Analysis

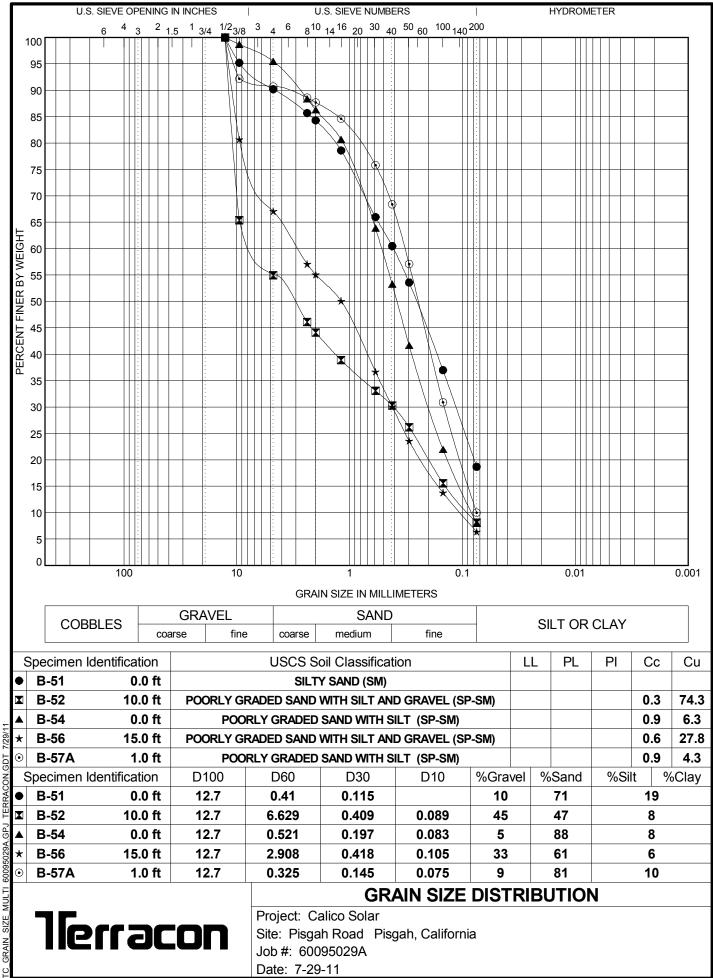
APPENDIX B

LABORATORY TESTING

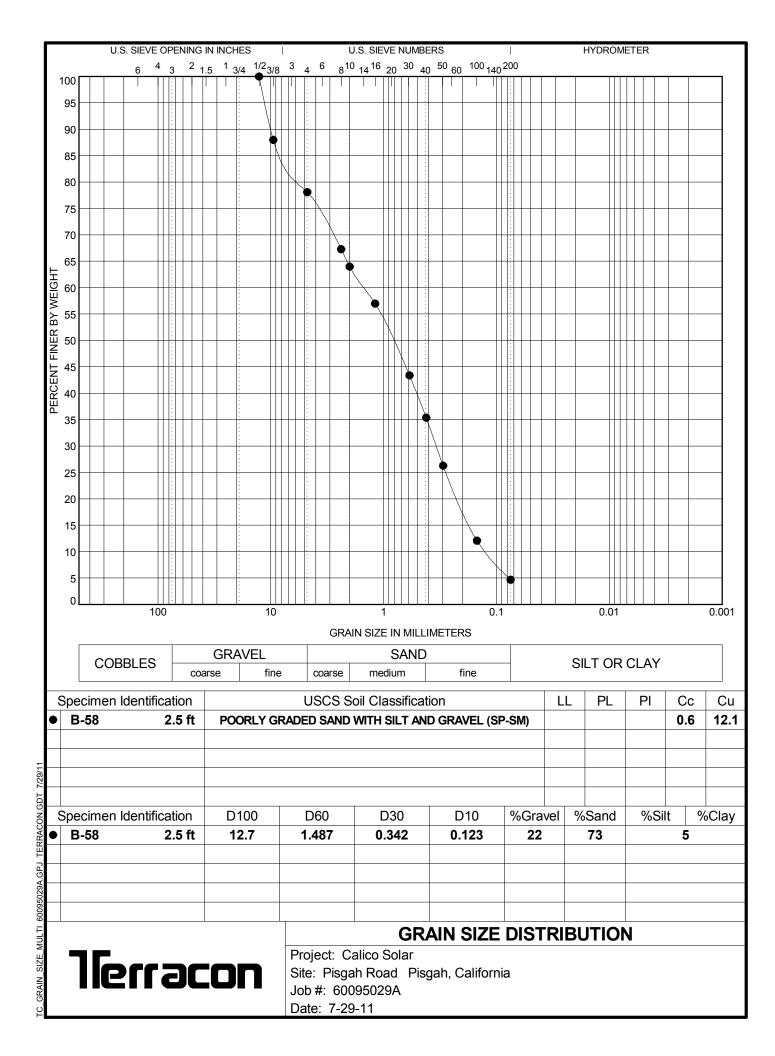
Laboratory Testing

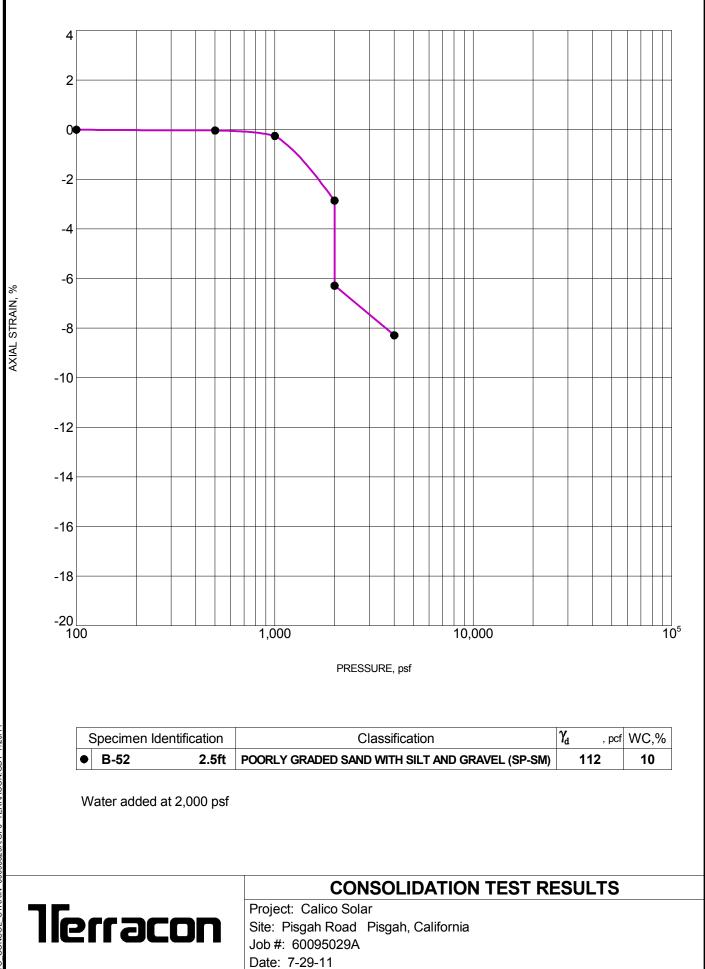

Samples retrieved during the field exploration were taken to the laboratory for further observation by the project geotechnical engineer and were classified in accordance with the Unified Soil Classification System (USCS) described in Appendix A. At that time, the field descriptions were confirmed or modified as necessary and an applicable laboratory testing program was formulated to determine engineering properties of the subsurface materials.

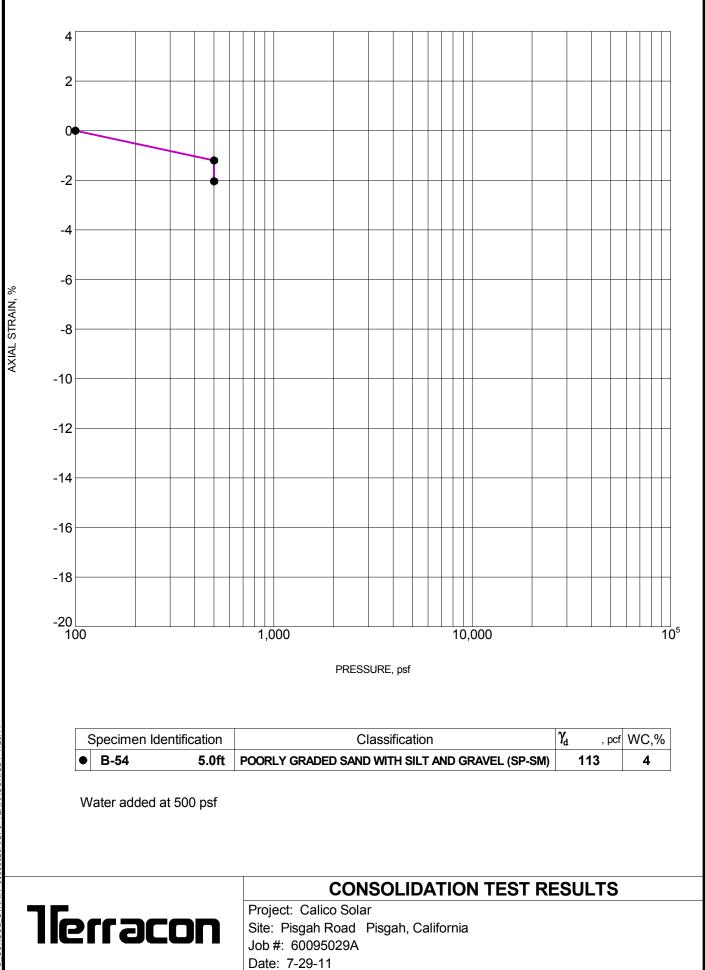

Laboratory tests were conducted on selected soil samples and the test results are presented in this appendix. The laboratory test results were used for the geotechnical engineering analyses, and the development of foundation and earthwork recommendations. Laboratory tests were performed in general accordance with the applicable ASTM, local or other accepted standards.


Selected soil samples obtained from the site were tested for the following engineering properties:

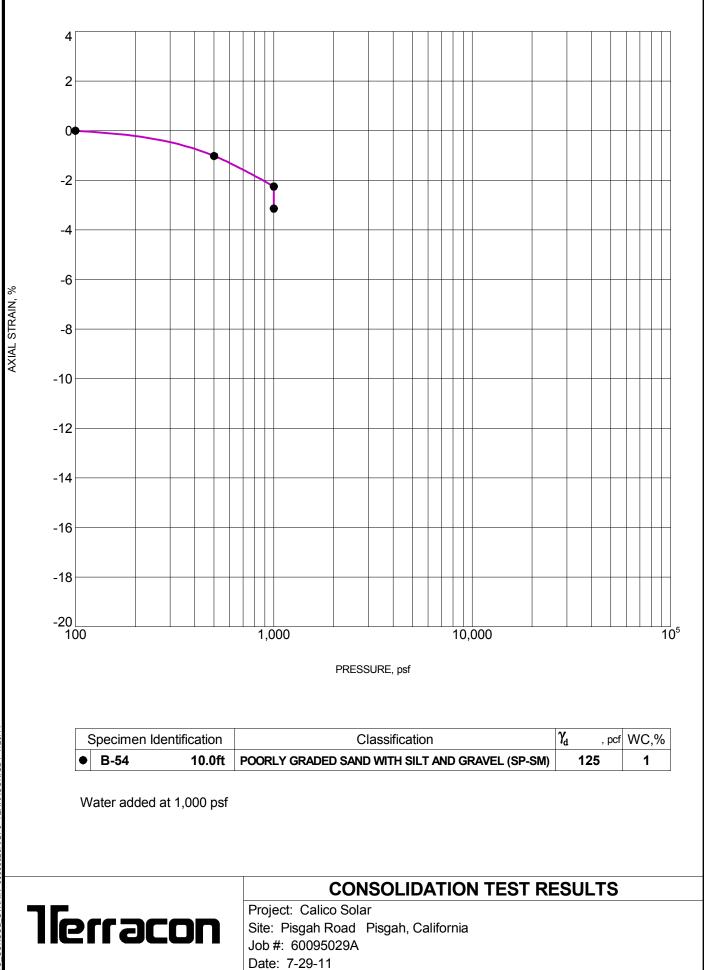
- Consolidation
- Sieve Analysis
- Atterberg Limits
- Direct Shear
- Soluble Chlorides
- pH
- Standard Proctor

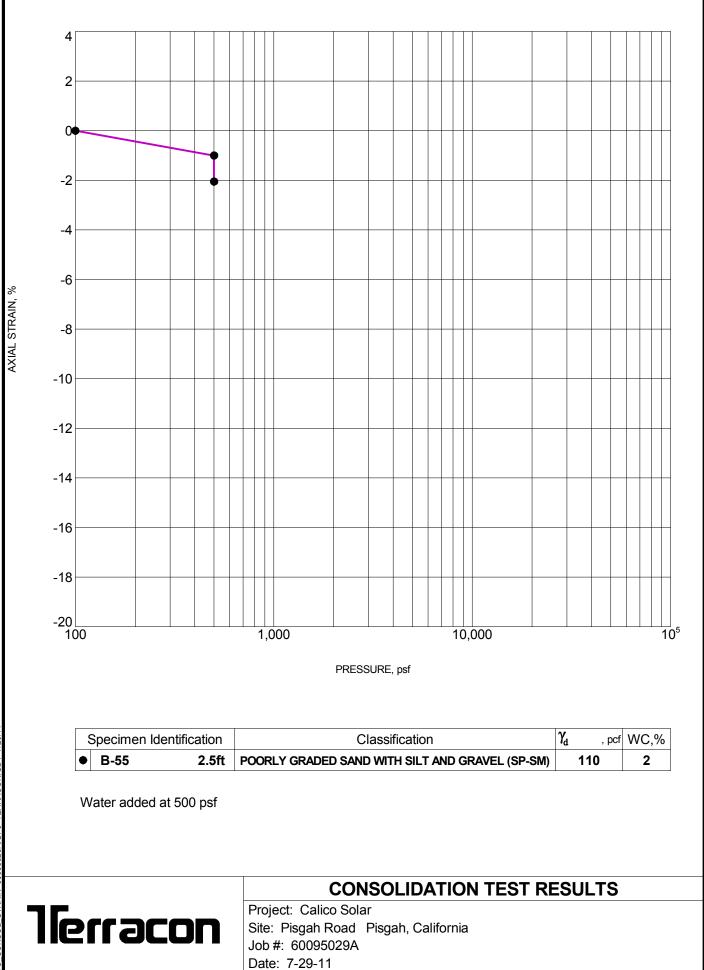

- In-situ Water Content
- In-situ Dry Density
- Moisture Density Relationship
- Remolded Expansion/Swell
- Soluble Sulfates
- Minimum Resistivity

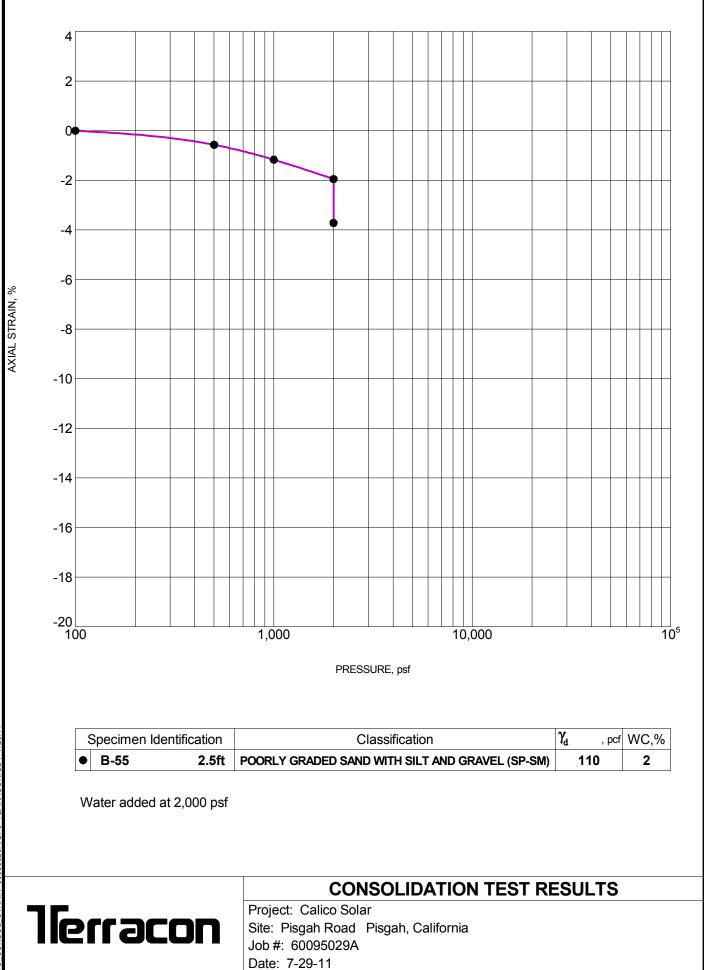


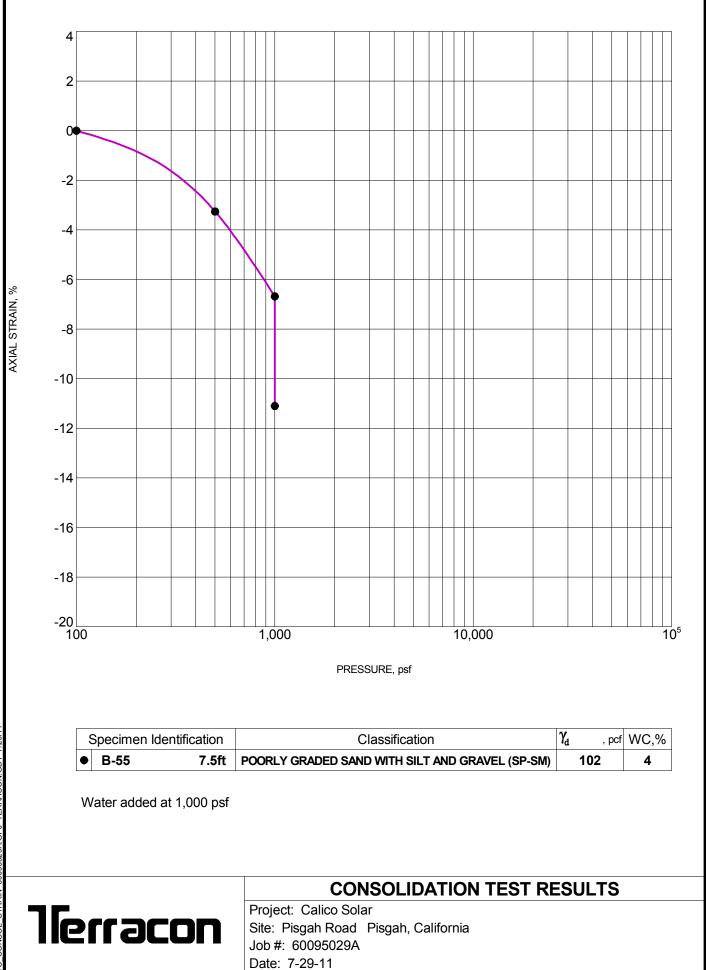


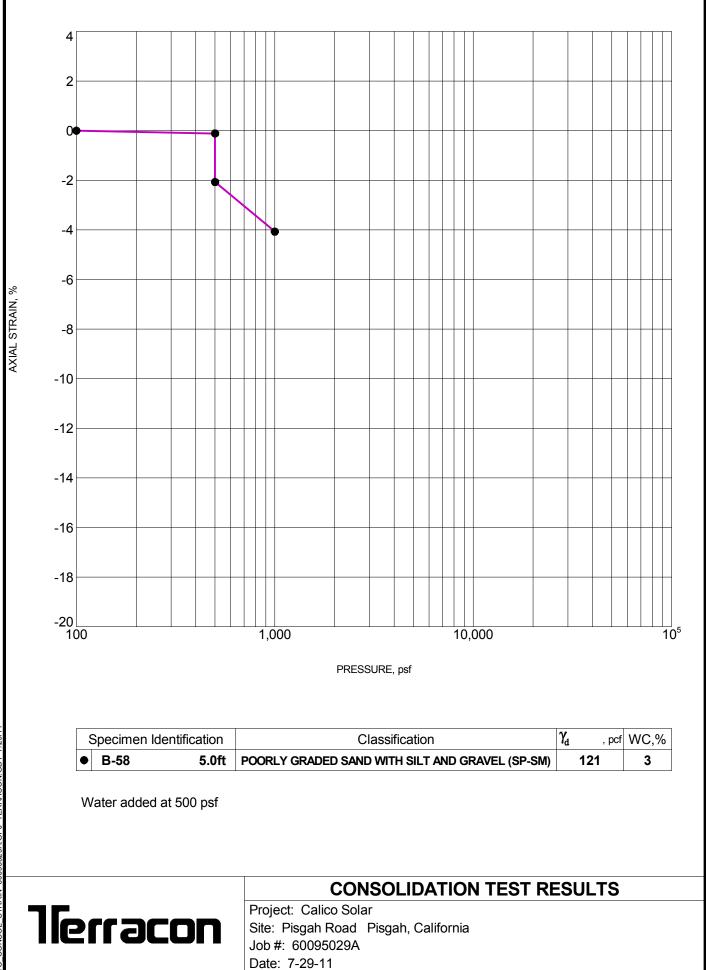
ILDDACON SOOG MULTI GRAIN SIZE

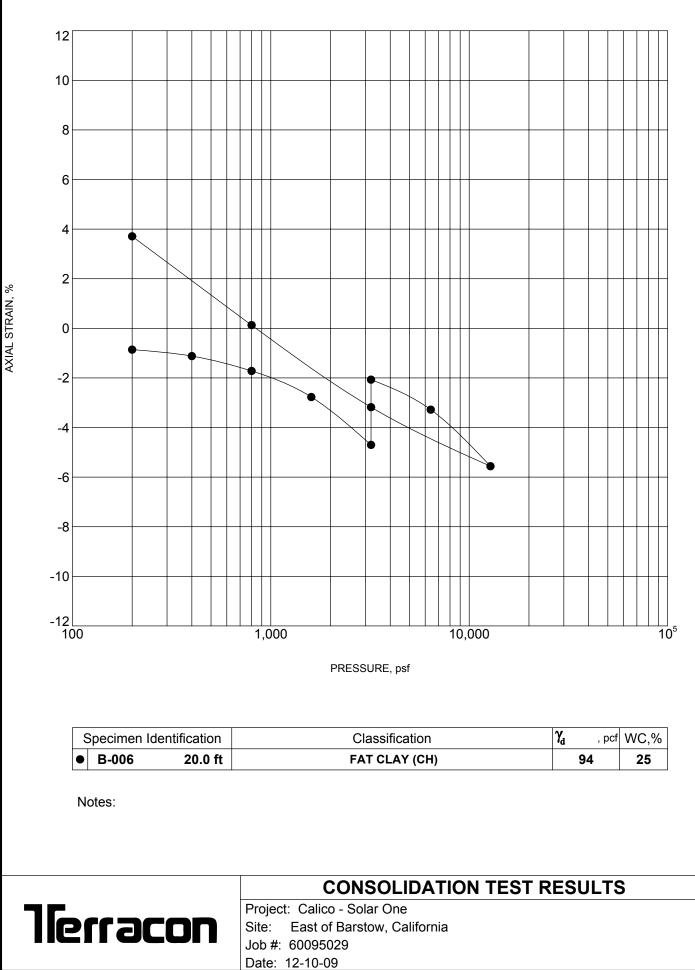


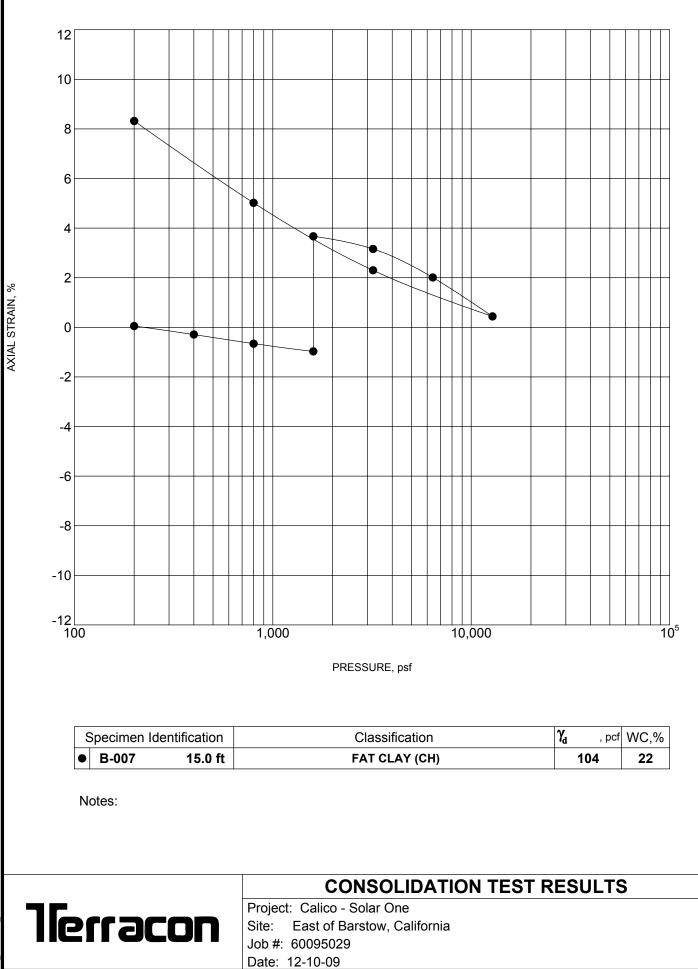

TC_CONSOL_STRAIN 60095029A.GPJ TERRACON.GDT 7/29/11

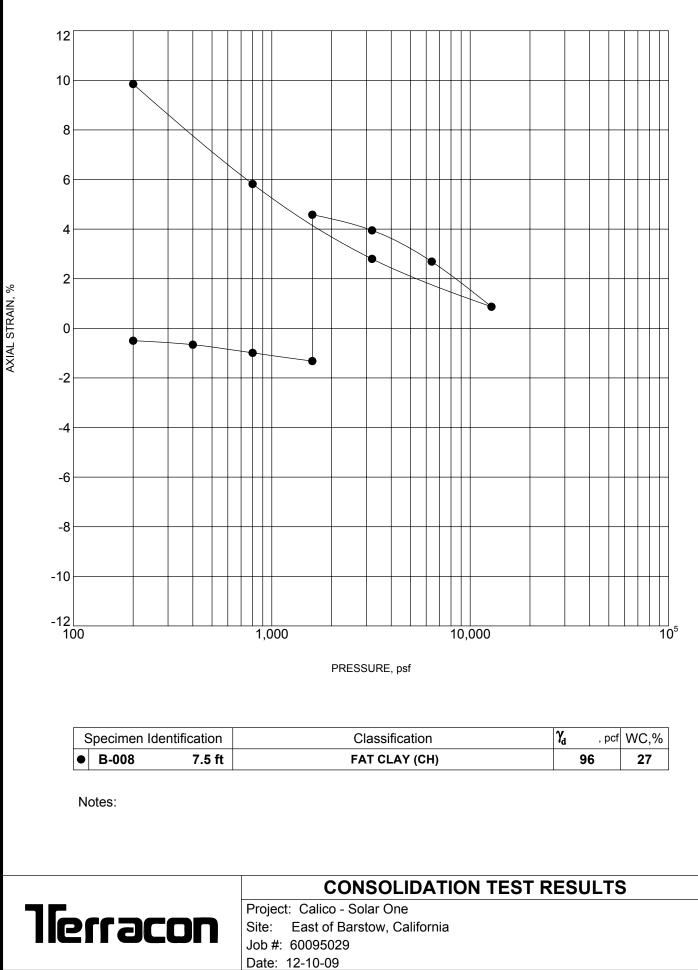

TC_CONSOL_STRAIN 60095029A.GPJ_TERRACON.GDT_7/29/11

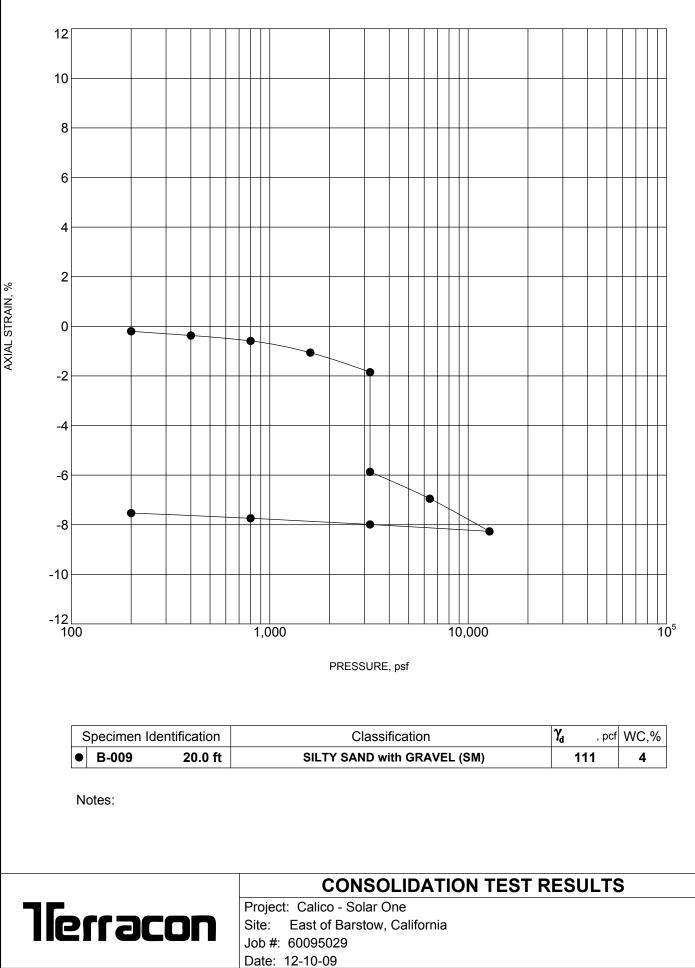

.GDT 7/29/11

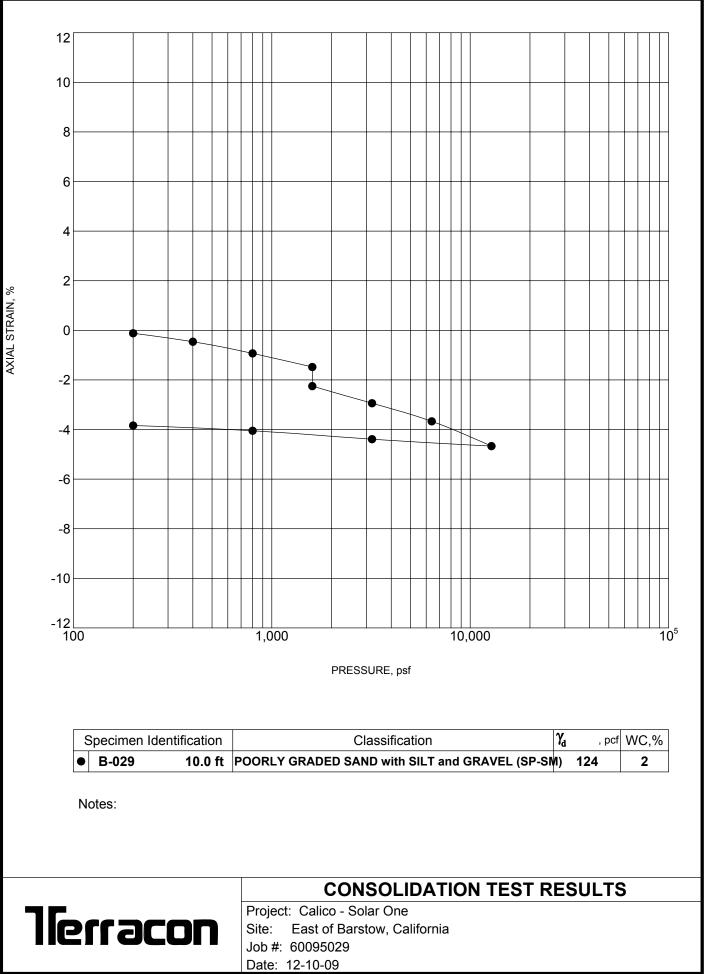

TC_CONSOL_STRAIN_60095029A.GPJ_TERRACON.GDT_7/29/11


TC_CONSOL_STRAIN 60095029A.GPJ TERRACON.GDT 7/29/11

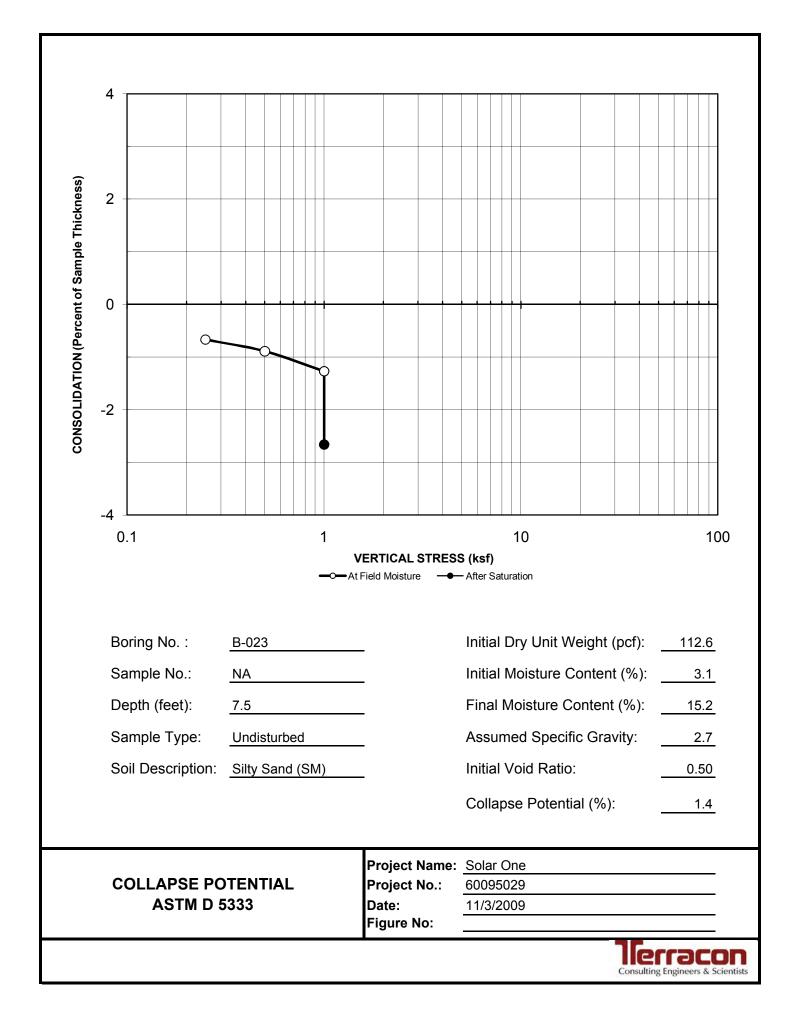

TC_CONSOL_STRAIN 60095029A.GPJ_TERRACON.GDT_7/29/11

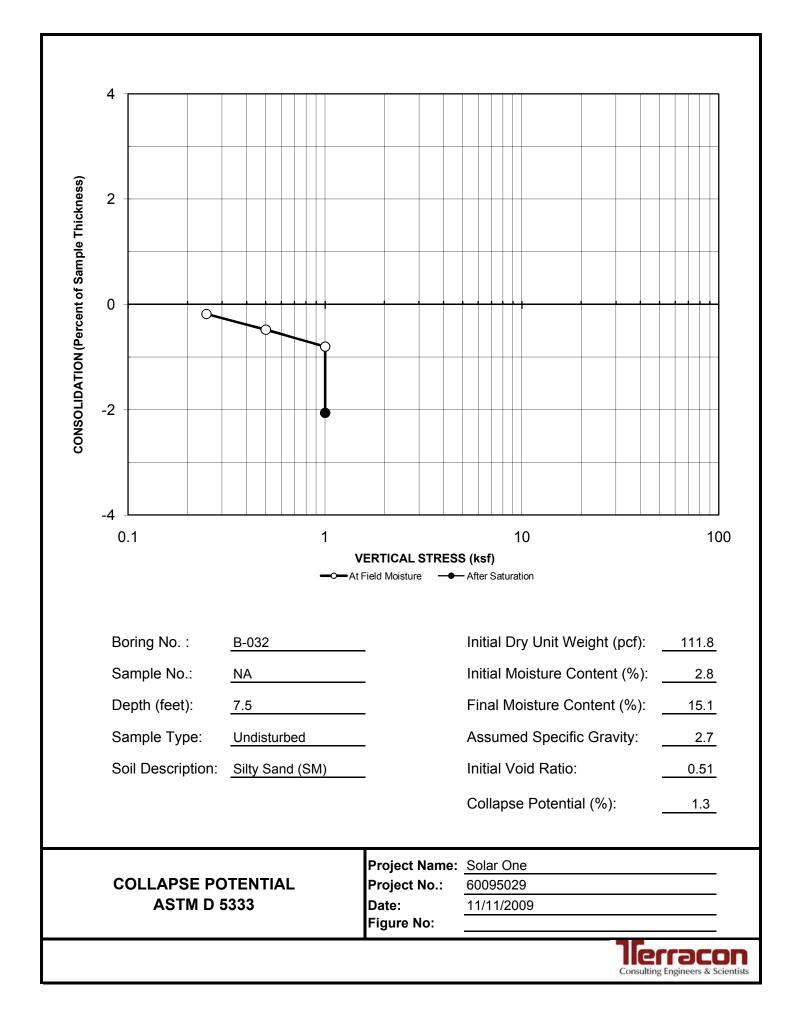

TC_CONSOL_STRAIN_60095029A.GPJ_TERRACON.GDT_7/29/11

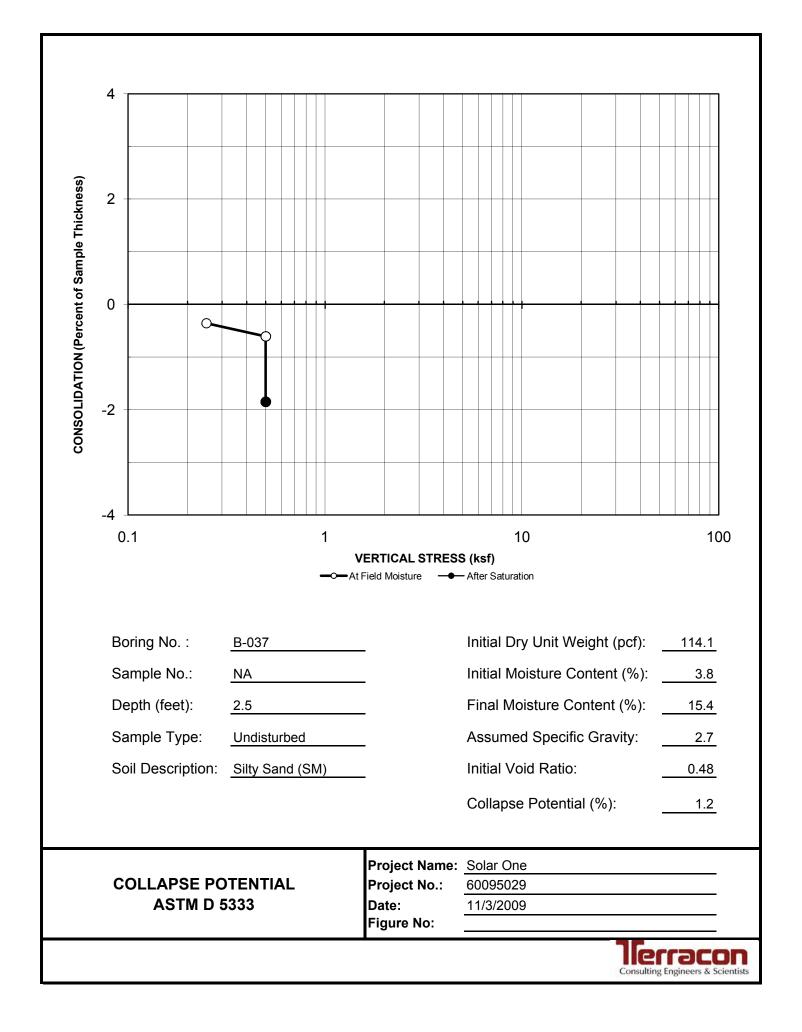

TC_CONSOL_STRAIN_60095029 BORING LOGS.GPJ_TERRACON.GDT_12/10/09

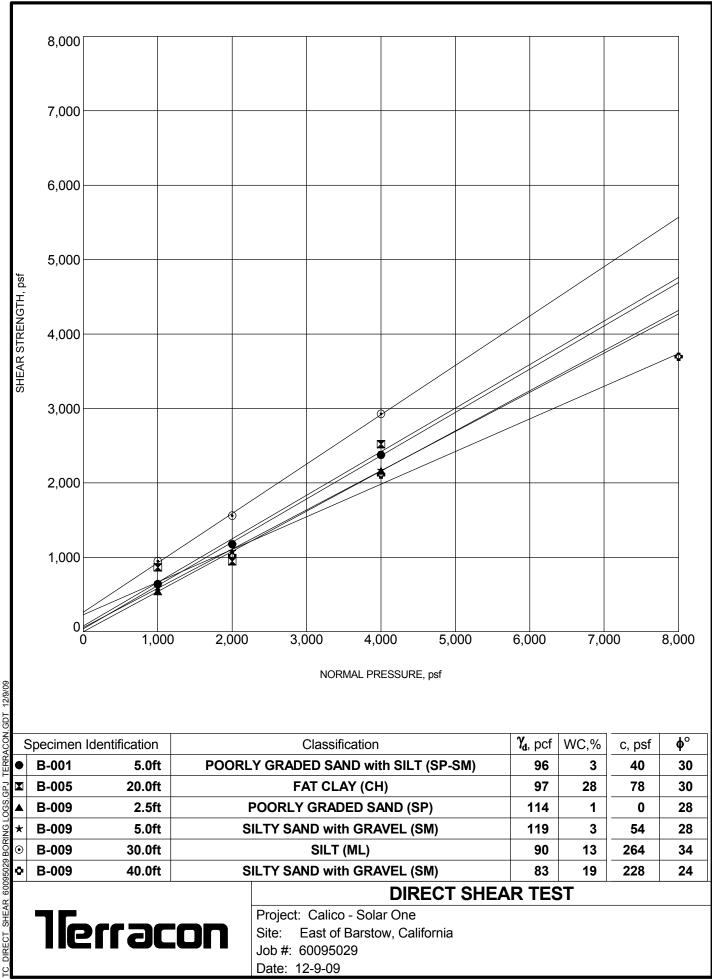

TC_CONSOL_STRAIN 60095029 BORING LOGS.GPJ_TERRACON.GDT_12/10/09

TC_CONSOL_STRAIN_60095029 BORING LOGS.GPJ_TERRACON.GDT_12/10/09

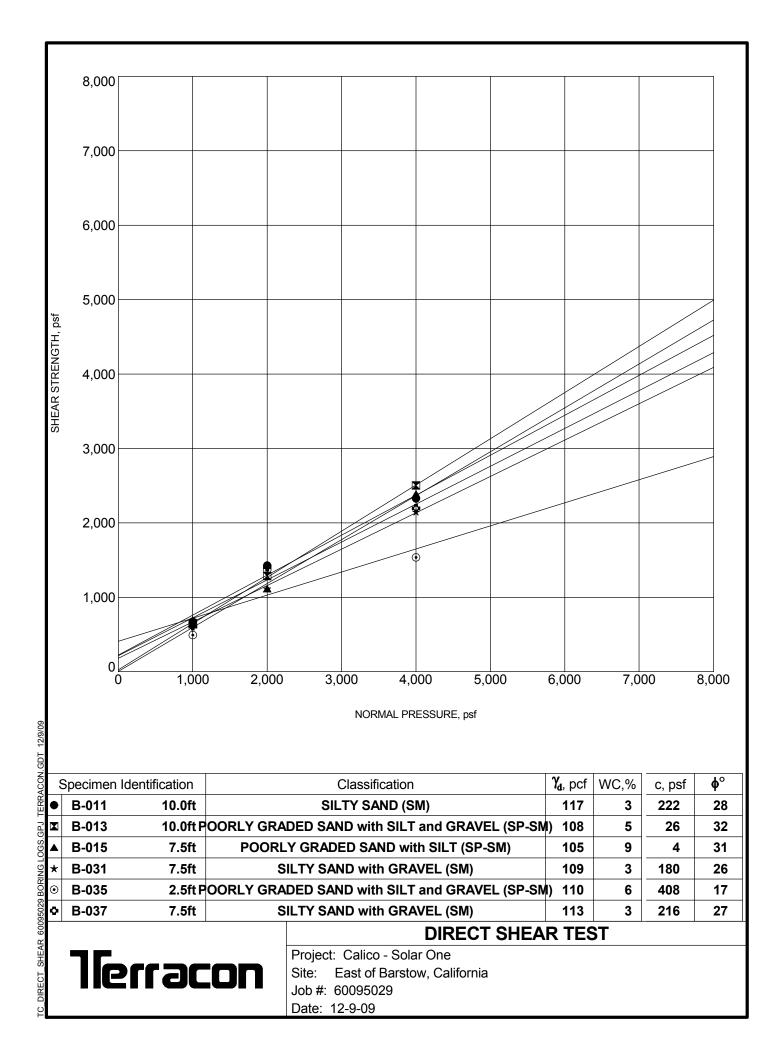

TC_CONSOL_STRAIN_60095029 BORING LOGS.GPJ_TERRACON.GDT_12/10/09

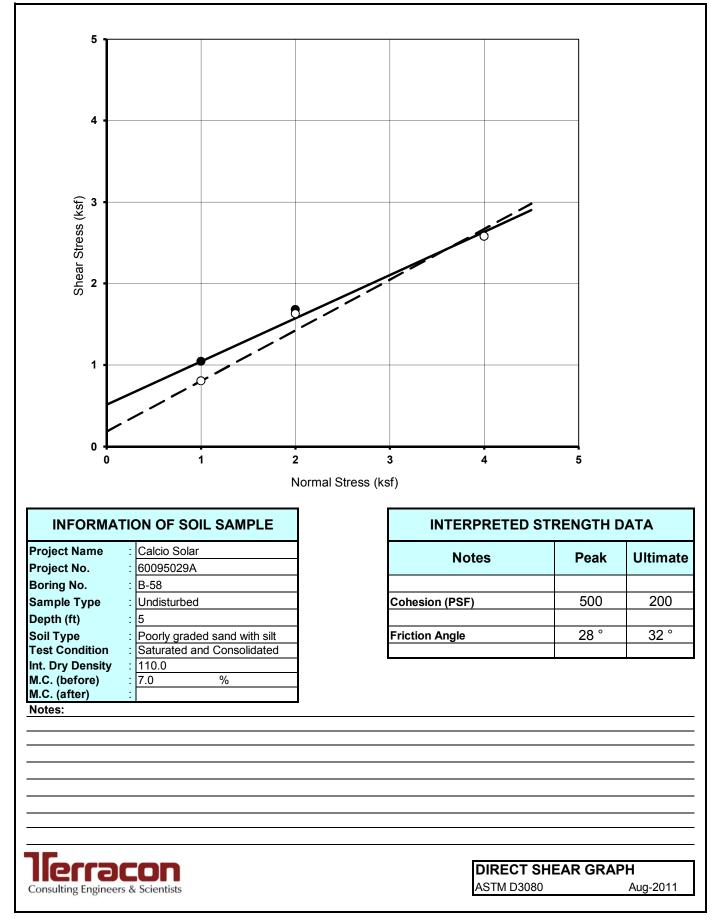


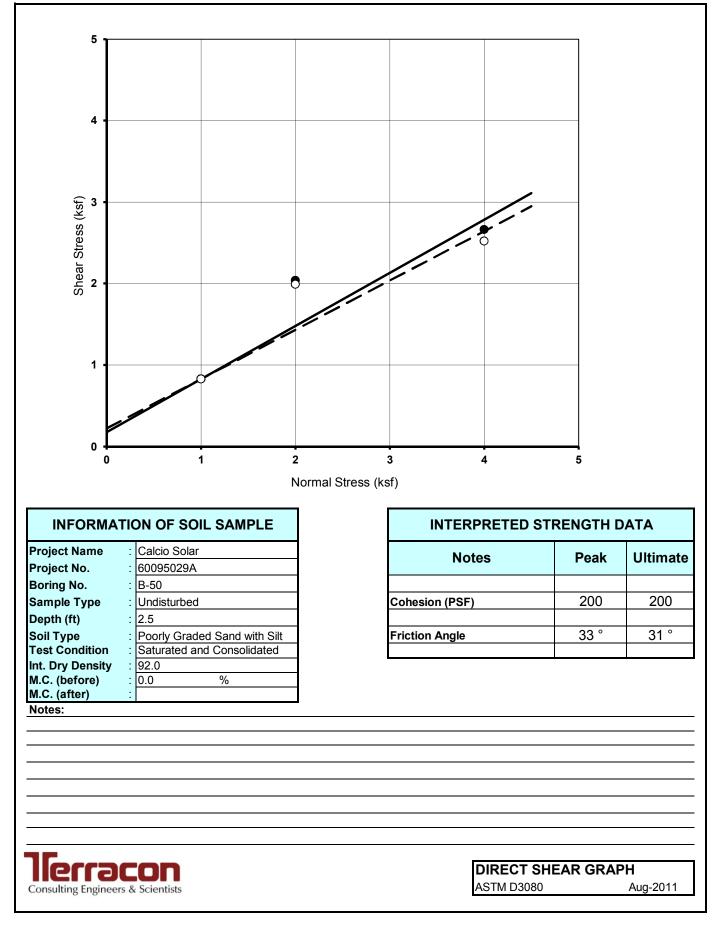

TC_CONSOL_STRAIN_60095029 BORING LOGS.GPJ_TERRACON.GDT_12/10/09



TC_CONSOL_STRAIN_60095029 BORING LOGS.GPJ_TERRACON.GDT_12/10/09







TERRACON.GDT OGS.GPJ DIRECT SHEAR 60095029 BORING I

Expansion Index

oil	Boring No.:	B-006
le and Soil rmation	Sample No.:	NA
	Sample Depth:	10'
ample Inforn	Soil Classification (USCS Symbol):	Fat Clay (CH)
Sai		

Proj. No.:	6009	502	9					
Tested By:	СР			Da	te:	10/2	9/20	09
	Test Standard	Used	X	UBC 1 ASTM	-	329		
Pe	We	ight	Afte	to Scree er Scree on #4 S	ning	NA NA NA		g g %
Final]							
105.3								
693.5								
F7F 0								

Project:

Solar One

Moisture Determination	Units	Initial	Final
Assumed Moisture Content	%		
Tare Weight	g	214.1	105.3
Weight of Soil (Wet) + Tare	g	281.7	693.5
Weight of Soil (Dry) + Tare	g	270.1	575.3
Moisture Content	%	20.7%	43.1%
Density Determination			
Weight of Soil + Ring (Wet)	g	526.2	588.2
Weight of Ring	g	195.6	195.6
Wet Weight of Soil	g	330.6	392.6
Wet Density	pcf	100.5	
Final Sample Height	in		1.1037
Final Volume	ft ³		0.0080
Final Wet Density	pcf	1	107.9
Dry Density	pcf	83.3	75.4
Degree of Saturation (G _s = 2.7)	%	54.6	94.2

Initial Dry Density	83.3	pcf
Initial MC	20.7	%
Initial Saturation	54.6	%
Final Dry Density	75.4	pcf
Final Dry Density Final MC	75.4 43.1	pcf %

_	Date	Time	Dial Reading	Deflection
Start	10/29/2009	9:50	0.0740	
Add Water (After 10 minutes)	10/29/2009	10:00	0.0881	0.0141
				-
				-
				-
				-
				-
				-
24 hours	10/30/2009	18:14	0.1777	0.0896

Expansion	Potential
Index, El	Expansion
0-20	Very Low
21-50	Low
51-90	Medium
91-130	High
>130	Very High

Measured Expansion Index = ΕI

88

Recommend to use EI =

EI₅₀ Expansion Index =

93

93

— • • • •		n Index	
- Yr	nansin	n index	
	/unioi0	II IIIMOA	

mple and So nformation	Boring No.:	B-007
	Sample No.:	NA
	Sample Depth:	7.5'
	Soil Classification (USCS Symbol):	Fat Clay (CH)
Sai		

Project:	Solar One			
Proj. No.:	60095029			
Tested By:	СР	Date:	11/12/2	2009
Pe	Weight Prior t	r Screening	29 	g g %
Final	1			
	1			
105.3				
703.0]			
572.8]			
47.9%	-			
	1			
597.7]			
195.6				

Moisture Determination	Units	Initial	Final
Assumed Moisture Content	%		
Tare Weight	g	214.1	105.3
Weight of Soil (Wet) + Tare	g	256.0	703.0
Weight of Soil (Dry) + Tare	g	248.7	572.8
Moisture Content	%	21.1%	47.9%
Density Determination			
Weight of Soil + Ring (Wet)	g	525.4	597.7
Weight of Ring	g	195.6	195.6
Wet Weight of Soil	g	329.8	402.1
Wet Density	pcf	100.3	
Final Sample Height	in		1.0890
Final Volume	ft ³		0.0079
Final Wet Density	pcf		112.0
Dry Density	pcf	82.8	75.7
Degree of Saturation (G _s = 2.7)	%	55.0	105.5

82.8	pcf
21.1	%
55.0	%
	_
75.7	pcf
47.9	%
105.5	%
	21.1 55.0 75.7 47.9

_	Date	Time	Dial Reading	Deflection
Start	11/5/2009	15:42	0.0311	
Add Water (After 10 minutes)	11/5/2009	15:52	0.0300	-0.0011
				-
				-
				-
				-
				-
				-
24 hours	11/6/2009	14:36	0.1201	0.0901

Expansion	Potential
Index, El	Expansion
0-20	Very Low
21-50	Low
51-90	Medium
91-130	High
>130	Very High

Measured Expansion Index = ΕI

90

Recommend to use EI =

EI₅₀ Expansion Index =

95

95

Expa	nsion	Index
LAPU	131011	IIIUCA

oil	Boring No.:	B-008
ld Soil tion	Sample No.:	NA
le and rmatic	Sample Depth:	2.5'
ample Inforr	Soil Classification (USCS Symbol):	Fat Clay (CH)
Sar		

Project:	Solar One			
Proj. No.:	60095029			
Tested By:	СР	Date:	11/5/20	09
Ре	Weight Prior t Weight After rcent Retained	er Screening	29 NA NA NA	g g %
Final				
105.3				
703.0]			
586.2	1			
41.0%				
	4			
597.7	l			

Moisture Determination	Units	Initial	Final
Assumed Moisture Content	%		
Tare Weight	g	214.1	105.3
Weight of Soil (Wet) + Tare	g	289.3	703.0
Weight of Soil (Dry) + Tare	g	278.6	586.2
Moisture Content	%	16.6%	41.0%
Density Determination			
Weight of Soil + Ring (Wet)	g	555.7	597.7
Weight of Ring	g	195.7	195.7
Wet Weight of Soil	g	360.0	402.0
Wet Density	pcf	109.4	
Final Sample Height	in		1.0890
Final Volume	ft ³		0.0079
Final Wet Density	pcf		111.9
Dry Density	pcf	93.9	79.4
Degree of Saturation (G _s = 2.7)	%	56.4	98.6

Initial Dry Density	93.9	pcf
Initial MC	16.6	%
Initial Saturation	56.4	%
Final Dry Density Final MC	79.4 41.0	pcf

	Date	Time	Dial Reading	Deflection
Start	11/5/2009	15:42	0.0311	
Add Water (After 10 minutes)	11/5/2009	15:52	0.0300	-0.0011
				-
				-
				-
				-
24 hours	11/6/2009	14:36	0.1201	0.0901

Expansion	Potential
Index, El	Expansion
0-20	Very Low
21-50	Low
51-90	Medium
91-130	High
>130	Very High

96

Measured Expansion Index = ΕI

90

Recommend to use EI =

EI₅₀ Expansion Index =

96

	COMP	ACTION	I TEST			
Client Name : Tessera Project Name: Solar One Project No. : 60095029 Location: Sample No. : B-001			Calculated By : Checked By :	ZC ZC CP 0 to 2.5	Date: Date: Date:	10/14/0 10/14/0 10/14/0
Visual Sample Description: Yellowis MOLD VOLUME (CU.FT) [h Brown Sand	(SW-SM)	Compaction Me		X ASTM D ASTM D X Moist Dry	
Trail No.	1	2	3	4	5	6
Wt. Comp. Soil + Mold (gm.)	3651.8	3748.4	3836.0	3805.4		
Wt. of Mold (gm.)	1862.7	1862.7	1862.7	1862.7		
Net Wt. of Soil (gm.)	1789.1	1885.7	1973.3	1942.7		
Container No.						
Wt. of Container (gm.)	214.1	214.1	214.1	214.1		
Wet Wt. of Soil + Cont. (gm.)	431.7	450.1	520.7	527.9		
Dry Wt. of Soil + Cont. (gm.)	418.9	432.0	489.1	487.6		
Moisture Content (%)	6.3	8.3		14.7		
Wet Density (pcf)	118.4	124.8	130.6	128.6		
Dry Density (pcf)	111.5	115.3	117.2	112.1		
Maximum Dry Density (pcf)		117.5	Optimum	Moisture Co	ntent (%)	10.
Assumed Specific Gravity = 2.70 PROCEDURE USED <i>Method A</i> Soil Passing No. 4 (4.75 mm) Sieve	1:	30			100% sat. @ a	ssumed Gs
Mold : 4 in. (101.6 mm) diameter Layers : 5 (Five) Blows per layer : 25 (twenty-five) May be used if No.4 retained < 20% <i>Method B</i> Soil Passing 3/8 in. (9.5 mm) Sieve	1:	20				
Mold : 4 in. (101.6 mm) diameter Layers : 5 (Five) Blows per layer : 25 (twenty-five) Use if + No.4 > 20% and - 3/8 " < 20% Method C	1	10				
Soil Passing 3/4 in. (19.0 mm) Sieve Mold : 6 in. (152.4 mm) diameter Layers : 5 (Five) Blows per layer : 56 (fifty-six) Use if + 3/8 in >20% and + in <30%	1	0.00	10.00	2	20.00	30.00

	COMP	ACTION	TEST			
Client Name : Tessera Project Name: Solar One Project No. : 60095029 Location: Sample No. : B-007			Calculated By : Checked By :	ZC ZC CP 0-1	Date: Date: Date:	11/26/09
Visual Sample Description: Light Brown	own Sand W/ S		Compaction Me Preparation Me		X ASTM D ASTM D X Moist Dry	
Trail No.	1	2	3	4	5	6
Wt. Comp. Soil + Mold (gm.)	3725.1	3821.7	3881.1	3834.3		
Wt. of Mold (gm.)	1862.7	1862.7	1862.7	1862.7		
Net Wt. of Soil (gm.)	1862.4	1959.0	2018.4	1971.6		
Container No.						
Wt. of Container (gm.)	214.1	214.1	214.1	214.1		
Wet Wt. of Soil + Cont. (gm.)	420.6	424.9	406.1	412.9		
Dry Wt. of Soil + Cont. (gm.)	413.3	413.5	392.9	396.0		
Moisture Content (%)	3.7	5.7	7.4	9.3		
Wet Density (pcf)	123.3	129.7	133.6	130.5		
Dry Density (pcf)	118.9	122.7	124.4	119.4		
Maximum Dry Density (pcf)		124.6	Optimum	Moisture Co	ntent (%)	6.5
 PROCEDURE USED Method A Soil Passing No. 4 (4.75 mm) Sieve Mold: 4 in. (101.6 mm) diameter Layers: 5 (Five) Blows per layer: 25 (twenty-five) May be used if No.4 retained < 20% Method B Soil Passing 3/8 in. (9.5 mm) Sieve Mold: 4 in. (101.6 mm) diameter Layers: 5 (Five) Blows per layer: 25 (twenty-five) Use if + No.4 > 20% and - 3/8 " < 20% Method C Soil Passing 3/4 in. (19.0 mm) Sieve Mold: 6 in. (152.4 mm) diameter 	1: 1:		10.00			
Layers : 5 (Five) Blows per layer : 56 (fifty-six) Use if + 3/8 in >20% and + in <30%		0.00	10.00	2	20.00	30.00

COMPACTION TEST

Client Name : Tessera Project Name : Solar One Project No. : 60095029 Location : Sample No. : Sample No. : B-013 Visual Sample Description : Reddish MOLD VOLUME (CU.FT) [Brown Sand S	Silt Clay (SM	Calculated By : Checked By : Depth (ft) :	CP 0-1 ethod	Date: Date: Date: X ASTM D ASTM D X Moist Dry	
Trail No.	1	2	3	4	5	6
Wt. Comp. Soil + Mold (gm.)	3725.9	3840.4	3990.3	3956.8		
Wt. of Mold (gm.)	1862.7	1862.7	1862.7	1862.7	,	
Net Wt. of Soil (gm.)	1863.2	1977.7	2127.6	2094.1		
Container No.						
Wt. of Container (gm.)	214.1	214.1	214.1	214.1		
Wet Wt. of Soil + Cont. (gm.)	423.8	467.5	427.5	422.5		
Dry Wt. of Soil + Cont. (gm.)	416.2	454.7	412.1	404.1		
Moisture Content (%)	3.8	5.3	7.8	9.7		
Wet Density (pcf)	123.4	130.9	140.9	138.6	;	
Dry Density (pcf)	118.9	124.3	130.7	126.4		
Maximum Dry Density (pcf) Assumed Specific Gravity = 2.70 PROCEDURE USED Method A Soil Passing No. 4 (4.75 mm) Sieve Mold : 4 in. (101.6 mm) diameter Layers : 5 (Five) Blows per layer : 25 (twenty-five) May be used if No.4 retained < 20% Method B Soil Passing 3/8 in. (9.5 mm) Sieve Mold : 4 in. (101.6 mm) diameter Layers : 5 (Five) Blows per layer : 25 (twenty-five) Use if + No.4 > 20% and - 3/8 " < 20% Method C Soil Passing 3/4 in. (19.0 mm) Sieve Mold : 6 in. (152.4 mm) diameter Layers : 5 (Five) Blows per layer : 56 (fifty-six) Use if + 3/8 in >20% and + in <30%	13	130.5 40 30 20 10 0.00	Optimum Optimum	Moisture Co	20.00	7.0 Assumed Gs

	COMP	ACTION	I TEST			
Client Name : Tessera Project Name: Solar One Project No. : 60095029 Location: Sample No. : B-017			Calculated By : Checked By :	ZC ZC CP 0-1	Date: Date: Date:	11/26/09
Visual Sample Description: Brown S MOLD VOLUME (CU.FT)	and Silt Clay(0.0333	SM-SC)	Compaction Me Preparation Me		X ASTM D ASTM D X Moist Dry	
Trail No.	1	2	3	4	5	6
Wt. Comp. Soil + Mold (gm.)	3794.1	3898.6	3934.2	3895.6		
Wt. of Mold (gm.)	1862.7	1862.7	1862.7	1862.7		
Net Wt. of Soil (gm.)	1931.4	2035.9	2071.5	2032.9		
Container No.						
Wt. of Container (gm.)	214.1	214.1	214.1	214.1		
Wet Wt. of Soil + Cont. (gm.)	387.7	431.5	389.6	423.5		
Dry Wt. of Soil + Cont. (gm.)	375.2	411.4	369.8	396.3		
Moisture Content (%)	7.8	10.2	12.7	14.9		
Wet Density (pcf)	127.9	134.8	137.1	134.6		
Dry Density (pcf)	118.7	122.3	121.7	117.1		
Maximum Dry Density (pcf)		123.2	Optimum	Moisture Co	ontent (%)	11.5
Assumed Specific Gravity = 2.75 PROCEDURE USED <i>Method A</i> Soil Passing No. 4 (4.75 mm) Sieve Mold : 4 in. (101.6 mm) diameter Layers : 5 (Five)		40			100% sat. @ a	assumed Gs
Blows per layer : 25 (twenty-five) May be used if No.4 retained < 20% <i>Method B</i> Soil Passing 3/8 in. (9.5 mm) Sieve Mold : 4 in. (101.6 mm) diameter Layers : 5 (Five) Blows per layer : 25 (twenty-five) Use if + No.4 > 20% and - 3/8 " < 20% <i>Method C</i>		20				
Soil Passing 3/4 in. (19.0 mm) Sieve Mold : 6 in. (152.4 mm) diameter Layers : 5 (Five) Blows per layer : 56 (fifty-six) Use if + 3/8 in >20% and + in <30%	1	0.00	10.00	2	20.00	30.00

Client Name : Tessera Project Name: Solar One Project No. : 60095029 Location: B-021 Sample No. : Visual Sample Description: Visual Sample Description: Silty Sar	nd (SM) 0.0333		Calculated By : Checked By :	CP 0 to 1 ethod	Date: Date: Date: X ASTM D ASTM D X Moist Dry	
Trail No.	1	2	3	4	5	6
Wt. Comp. Soil + Mold (gm.)	3738.8	3834.8	3864.4	3822.1		
Wt. of Mold (gm.)	1862.1	1862.1	1862.1	1862.1		
Net Wt. of Soil (gm.)	1876.7	1972.7	2002.3	1960.0		
Container No.						
Wt. of Container (gm.)	214.1	214.1	214.1	214.1		
Wet Wt. of Soil + Cont. (gm.)	382.9	411.1	499.0	483.6		
Dry Wt. of Soil + Cont. (gm.)	371.7	392.7	468.1	450.0		
Moisture Content (%)	7.1	10.3	12.1	14.2		
Wet Density (pcf)	124.2	130.6	132.6	129.8		
Dry Density (pcf)	116.0	118.4	118.2	113.6		
Maximum Dry Density (pcf) Assumed Specific Gravity = 2.61 PROCEDURE USED Method A Soil Passing No. 4 (4.75 mm) Sieve Mold: 4 in. (101.6 mm) diameter Layers: 5 (Five) Blows per layer: 25 (twenty-five) May be used if No.4 retained < 20% Method B Soil Passing 3/8 in. (9.5 mm) Sieve Mold: 4 in. (101.6 mm) diameter Layers: 5 (Five) Blows per layer: 25 (twenty-five) Use if + No.4 > 20% and - 3/8 " < 20% Method C Soil Passing 3/4 in. (19.0 mm) Sieve Mold: 6 in. (152.4 mm) diameter Layers: 5 (Five) Blows per layer: 56 (fifty-six) Use if + 3/8 in >20% and + in <30%	1: 1:	119.0 40 30 20 10 0.00	Optimum I	Moisture Co	20.00	11.0 ssumed Gs

COMPACTION TEST

Client Name : Tessera Project Name: Solar One Project No. : 60095029 Location: Sample No. : Sample No. : B-031 Visual Sample Description: Yellowis MOLD VOLUME (CU.FT) [h brown Sand	Gravel mix	Calculated By : Checked By : Depth (ft) :	CP 0-1 thod	Date: Date: Date: Date: X ASTM D ² ASTM D6 X Moist Dry	
Trail No.	1	2	3	4	5	6
Wt. Comp. Soil + Mold (gm.)	3708.4	3776.9	3825.9	3851.9		
Wt. of Mold (gm.)	1862.7	1862.7	1862.7	1862.7	1	
Net Wt. of Soil (gm.)	1845.7	1914.2	1963.2	1989.2		
Container No.						
Wt. of Container (gm.)	214.1	214.1	214.1	214.1		
Wet Wt. of Soil + Cont. (gm.)	386.8	428.4	431.3	449.2		
Dry Wt. of Soil + Cont. (gm.)	381.9	418.1	416.2	428.0		
Moisture Content (%)	2.9	5.0	7.5	9.9		
Wet Density (pcf)	122.2	126.7	130.0	131.7		
Dry Density (pcf)	118.7	120.6	120.9	119.8		
Maximum Dry Density (pcf) Assumed Specific Gravity = 2.65 PROCEDURE USED Method A Soil Passing No. 4 (4.75 mm) Sieve Mold : 4 in. (101.6 mm) diameter Layers : 5 (Five) Blows per layer : 25 (twenty-five) May be used if No.4 retained < 20% Method B Soil Passing 3/8 in. (9.5 mm) Sieve Mold : 4 in. (101.6 mm) diameter Layers : 5 (Five) Blows per layer : 25 (twenty-five) Use if + No.4 > 20% and - 3/8 " < 20% Method C Soil Passing 3/4 in. (19.0 mm) Sieve Mold : 6 in. (152.4 mm) diameter Layers : 5 (Five) Blows per layer : 56 (fifty-six)	1	122.4 40 30 20 10 0.00	Optimum I Optimum I Optimu	Moisture Co	20.00	6.0 ssumed Gs

	COMPA		TEST			
Client Name :TesseraProject Name:Solar OneProject No. :60095029Location:Sample No. :B-0034			Calculated By : Checked By :	ZC ZC CP 0-1	Date: Date: Date:	11/26/0 11/26/0 11/26/0
Visual Sample Description: Light Brown MOLD VOLUME (CU.FT) [own Silty Sand	(SM)	Compaction Me Preparation Me		X ASTM D ASTM D X Moist Dry	
Trail No.	1	2	3	4	5	6
Wt. Comp. Soil + Mold (gm.)	3827.3	3727.8	3883.1	3872.7		
Wt. of Mold (gm.)	1862.7	1862.7	1862.7	1862.7		
Net Wt. of Soil (gm.)	1964.6	1865.1	2020.4	2010.0		
Container No.						
Wt. of Container (gm.)	214.1	214.1	214.1	214.1		
Wet Wt. of Soil + Cont. (gm.)	431.7	412.1	425.1	409.4		
Dry Wt. of Soil + Cont. (gm.)	404.6	398.4	406.9	389.3		
Moisture Content (%)	14.2	7.4	9.4	11.5		
Wet Density (pcf)	130.1	123.5	133.8	133.1		
Dry Density (pcf)	113.9	114.9	122.2	119.4		
Maximum Dry Density (pcf) Assumed Specific Gravity = 2.60		122.0		Moisture Co 100% sat. @ a		9.
 PROCEDURE USED Method A Soil Passing No. 4 (4.75 mm) Sieve Mold: 4 in. (101.6 mm) diameter Layers: 5 (Five) Blows per layer: 25 (twenty-five) May be used if No.4 retained < 20% Method B Soil Passing 3/8 in. (9.5 mm) Sieve Mold: 4 in. (101.6 mm) diameter Layers: 5 (Five) Blows per layer: 25 (twenty-five) Use if + No.4 > 20% and - 3/8 " < 20% Method C Soil Passing 3/4 in. (19.0 mm) Sieve Mold: 6 in. (152.4 mm) diameter 	12	20				
Layers : 5 (Five) Blows per layer : 56 (fifty-six) Use if + 3/8 in >20% and + in <30%	10	0.00	10.00	2	0.00	30.00

COMPACTION TEST

Client Name : Tessera Project Name : Solar One Project No. : 60095029 Location : B-035 Sample No. : Visual Sample Description: Visual Sample Description: Yellow-E MOLD VOLUME (CU.FT) [Brown Silty Sa	nd (SP-SM0	Calculated By : Checked By :	CP 0-5' ethod	Date: Date: Date Date X ASTM D ASTM D X Moist Dry	01557
Trail No.	1	2	3	4	5	6
Wt. Comp. Soil + Mold (gm.)	3872.6	3959.2	3966.2	3937.3		
Wt. of Mold (gm.)	1862.7	1862.7	1862.7	1862.7		
Net Wt. of Soil (gm.)	2009.9	2096.5	2103.5	2074.6		
Container No.						
Wt. of Container (gm.)	214.1	214.1	214.1	214.1		
Wet Wt. of Soil + Cont. (gm.)	433.1	436.1	436.2	430.4		
Dry Wt. of Soil + Cont. (gm.)	418.9	418.9	415.2	405.8		
Moisture Content (%)	6.9	8.4	10.4	12.8		
Wet Density (pcf)	133.1	138.8	139.3	137.3		
Dry Density (pcf)	124.4	128.0	126.1	121.7		
Maximum Dry Density (pcf) Assumed Specific Gravity = 2.70 PROCEDURE USED Method A Soil Passing No. 4 (4.75 mm) Sieve Mold: 4 in. (101.6 mm) diameter Layers: 5 (Five) Blows per layer: 25 (twenty-five) May be used if No.4 retained < 20% Method B Soil Passing 3/8 in. (9.5 mm) Sieve Mold: 4 in. (101.6 mm) diameter Layers: 5 (Five) Blows per layer: 25 (twenty-five) Use if + No.4 > 20% and - 3/8 " < 20% Method C Soil Passing 3/4 in. (19.0 mm) Sieve Mold: 6 in. (152.4 mm) diameter Layers: 5 (Five) Blows per layer: 56 (fifty-six) Use if + 3/8 in >20% and + in <30%	1	128.0 40 30 20 10 0.00	Optimum I	Moisture Co	20.00	9.5 assumed Gs

	COMPA		ITEST			
Client Name : Tessera Project Name: Solar One Project No. : 6005029 Location: Sample No. : B-043 Visual Sample Description: Gravel W	// Sand (GP)		Calculated By : Checked By :	ZC ZC CP 0-1	Date: Date: Date:	11/26/09
MOLD VOLUME (CU.FT)	0.0333		Compaction Me		X ASTM D ASTM D X Moist Dry	
Trail No.	1	2	3	4	5	6
Wt. Comp. Soil + Mold (gm.)	3705.4	3764.1	3804.1	3774.0		
Wt. of Mold (gm.)	1862.7	1862.7	1862.7	1862.7		
Net Wt. of Soil (gm.)	1842.7	1901.4	1941.4	1911.3		
Container No.						
Wt. of Container (gm.)	214.1	214.1	214.1	214.1		
Wet Wt. of Soil + Cont. (gm.)	412.8	401.8	435.3	418.9		
Dry Wt. of Soil + Cont. (gm.)	407.7	393.6	421.8	402.1		
Moisture Content (%)	2.6	4.6	6.5	8.9		
Wet Density (pcf)	122.0	125.9	128.5	126.5		
Dry Density (pcf)	118.9	120.4	120.7	116.2		
Maximum Dry Density (pcf)		121.0	Optimum	Moisture Co		5.5
Assumed Specific Gravity = 2.60	14	IO	N 1 1		100% sat. @ a	issumed Gs
PROCEDURE USED	-1					
Soil Passing No. 4 (4.75 mm) Sieve Mold : 4 in. (101.6 mm) diameter Layers : 5 (Five) Blows per layer : 25 (twenty-five) May be used if No.4 retained < 20%	13	30				
Soil Passing 3/8 in. (9.5 mm) Sieve Mold : 4 in. (101.6 mm) diameter Layers : 5 (Five) Blows per layer : 25 (twenty-five) Use if + No.4 > 20% and - 3/8 " < 20% Method C	12	20				
Soil Passing 3/4 in. (19.0 mm) Sieve Mold : 6 in. (152.4 mm) diameter Layers : 5 (Five) Blows per layer : 56 (fifty-six) Use if + 3/8 in >20% and + in <30%	11	0.00	10.00	2	20.00	30.00

COMPACTION TEST

Client Name :TesseraProject Name:Solar OneProject No. :60095026Location:B-049Sample No. :Visual Sample Description:Visual Sample Description:Gravel NMOLD VOLUME (CU.FT)[W/ Sand (GP) 0.0333		Calculated By : Checked By :	CP 0-5 ethod	Date: Date: Date: ASTM [X ASTM [X Moist Dry	07/16/09 2: 07/17/09 01557
Trail No.	1	2	3	4	5	6
Wt. Comp. Soil + Mold (gm.)	3695.2	3790.7	3823.8	3822.1		
Wt. of Mold (gm.)	1862.7	1862.7	1862.7	1862.7		
Net Wt. of Soil (gm.)	1832.5	1928.0	1961.1	1959.4		
Container No.						
Wt. of Container (gm.)	214.1	214.1	214.1	214.1		
Wet Wt. of Soil + Cont. (gm.)	434.1	471.2	520.9	483.6		
Dry Wt. of Soil + Cont. (gm.)	427.3	459.2	501.4	460.7		
Moisture Content (%)	3.2	4.9	6.8	9.3		
Wet Density (pcf)	121.3	127.6	129.8	129.7		
Dry Density (pcf)	117.6	121.7	121.6	118.7		
Maximum Dry Density (pcf) Assumed Specific Gravity = 2.63 PROCEDURE USED Method A Soil Passing No. 4 (4.75 mm) Sieve Mold : 4 in. (101.6 mm) diameter Layers : 3 (Three) Blows per layer : 25 (twenty-five) May be used if No.4 retained < 20% Method B Soil Passing 3/8 in. (9.5 mm) Sieve Mold : 4 in. (101.6 mm) diameter Layers : 3 (Three) Blows per layer : 25 (twenty-five) Use if + No.4 > 20% and - 3/8 " < 20% Method C Soil Passing 3/4 in. (19.0 mm) Sieve Mold : 6 in. (152.4 mm) diameter Layers : 3 (Three) Blows per layer : 56 (fifty-six) Use if + 3/8 in >20% and + in <30%		122.5 140 130 120 120 110 0.00	Optimum	Moisture Co	20.00	6.0 assumed Gs

AP Engineering & Testing, Inc.

R-VALUE TEST DATA

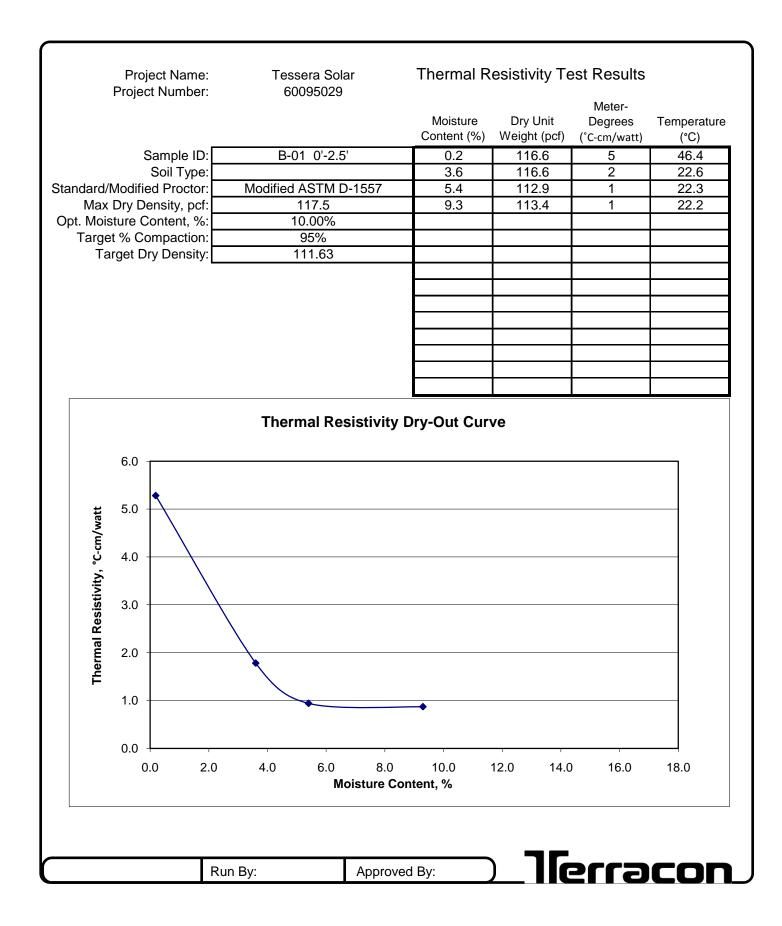
ASTM D2844

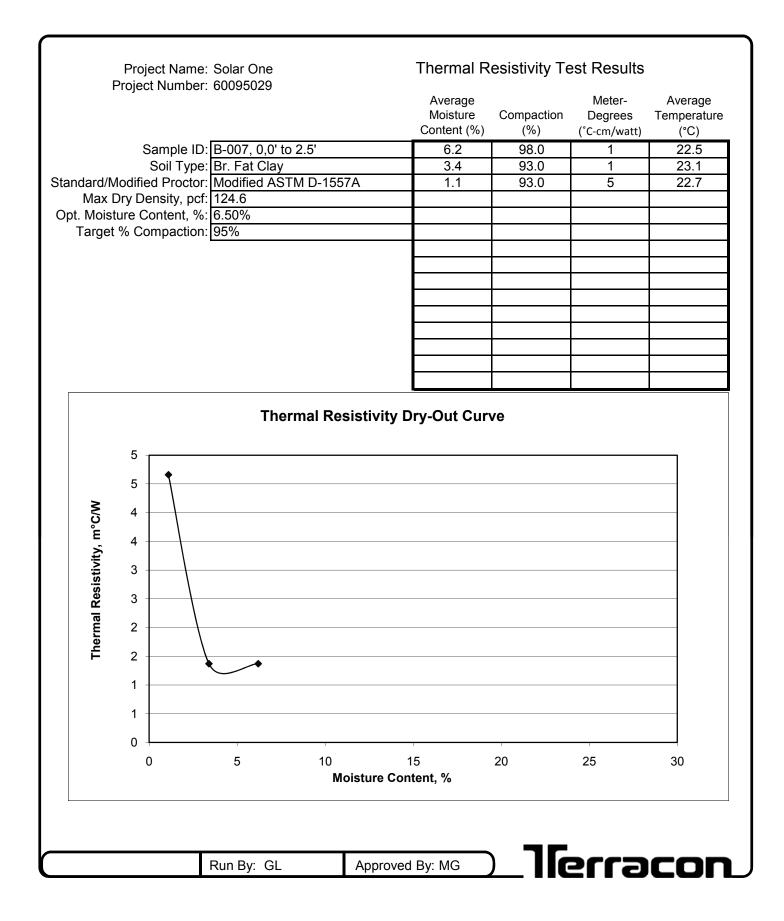
Project Name: Solar Or		Tested By:		Date:	11/17/09
Project Number: 6009502	.9	Checked By:	AP	Date:	11/18/09
Boring No.: B-020					
Sample No.: Bulk	Depth (f	t.): <u>0-5</u>	-		
Location: N/A					
Soil Description: Pale Re	d Silty Sand		-		
Mold Number	В	С	D		
Water Added, g	10	107	104		
Compact Moisture(%)	2.3	12.2	11.9		
Compaction Gage Pressur	e, psi 200	200	200		
Exudation Pressure, psi	443	145	303		
Sample Height, Inches	2.7	2.7	2.7		
Gross Weight Mold, g	3065	3068	3071		
Tare Weight Mold, g	1967	1969	1971		
Net Sample Weight, g	1098	1099	1100		
Expansion, inchesx10 ⁻⁴	0	0	0		
Stability 2,000 (160 psi)	14/25	17/30	16/26		
Turns Displacement	4.25	4.19	4.57		
R-Value Uncorrected	76	72	74		
R-Value Corrected	79	76	77		
Dry Density, pcf	120.4	110.0	110.4		
Traffic Index	8.0	8.0	8.0		
G.E. by Stability	0.36	0.41	0.39		
G.E. by Expansion	0.00	0.00	0.00		
		100	·		
		90			
		80			
		70			
R-Value by Exudation =	77				
R-Value by Expansion =	N/A				
Equilibrium R-Value =	77	BULL 100			
(by Exudation)		_			
- •		30			
		20			
Remarks: $G_f = 1.5$		10			
0.0 %	Retained on the ³ / ₄ "	0 +			
		0	100 200 300		600 700 80
			EXUDATIO	N PRESSURE	- 251

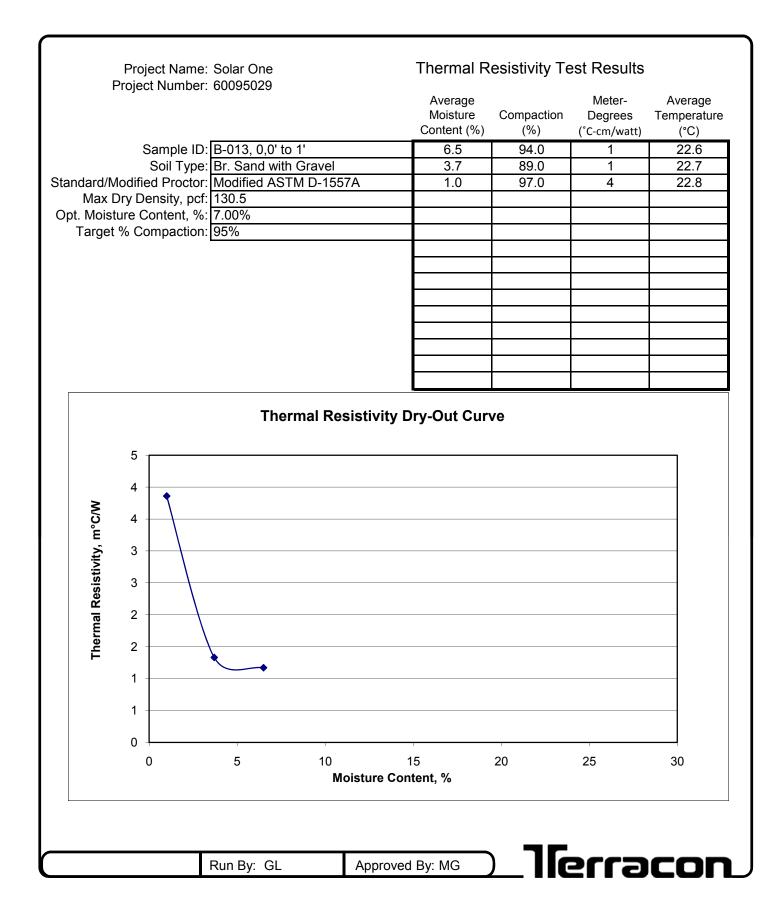
CORROSION TEST RESULTS

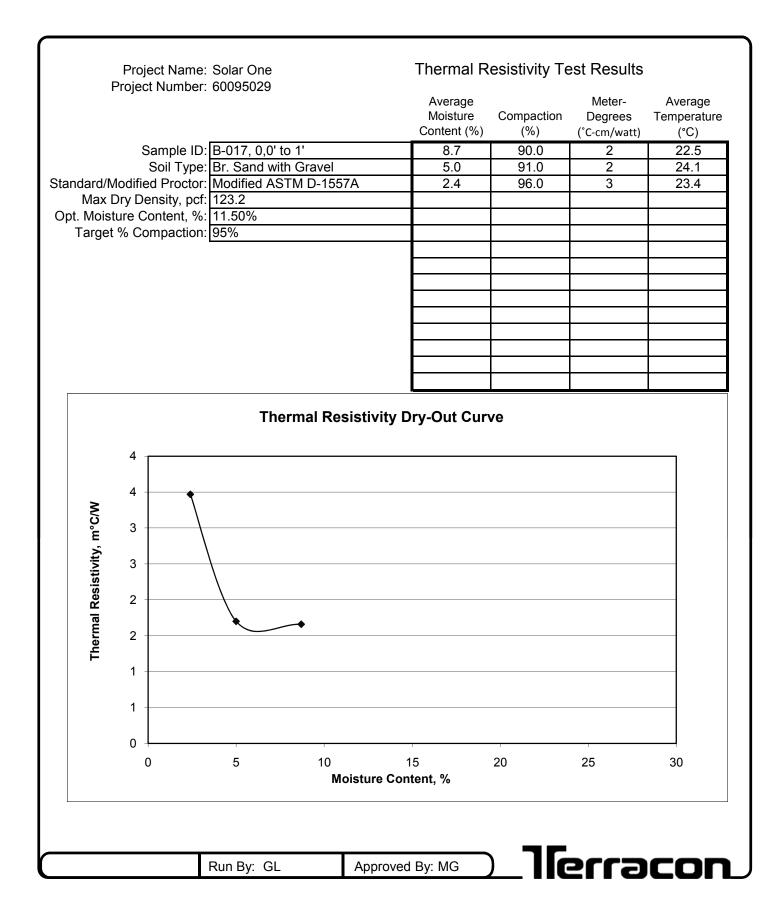
Client Name: K Road Power Project Name: Calico Solar Project No.: 60095029A Date: 8/9/2011

Boring No.	Sample No.	Depth (ft)	Soil Type	Minimum Resistivity (ohm-cm)	рН	Sulfate Content (ppm	Chloride Content (ppm)
B-001	-	0 to 2	SM	1,300	8.93	25	61
B-009	-	0 to 5	SP	5,900	8.18	1	61
B-014	-	0 to 2	SM	360	8.23	715	62
B-035	-	0 to 5	SP-SM	3,900	8.30	6	65
B-049	-	0 to 1	SP-SM	8,000	8.28	2	62
TP-045	-	5	SM	4,000	8.16	20	61
B-051	-	0 to 2	SM	3,100	7.50	34	42

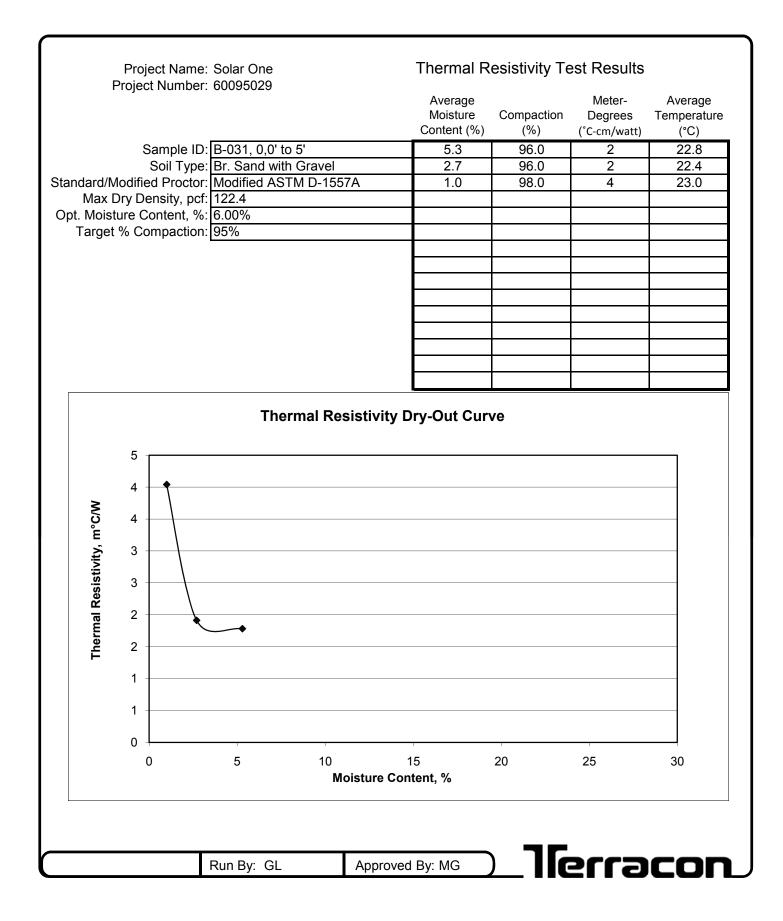

 NOTES:
 Resistivity Test and pH: California Test Methods 643

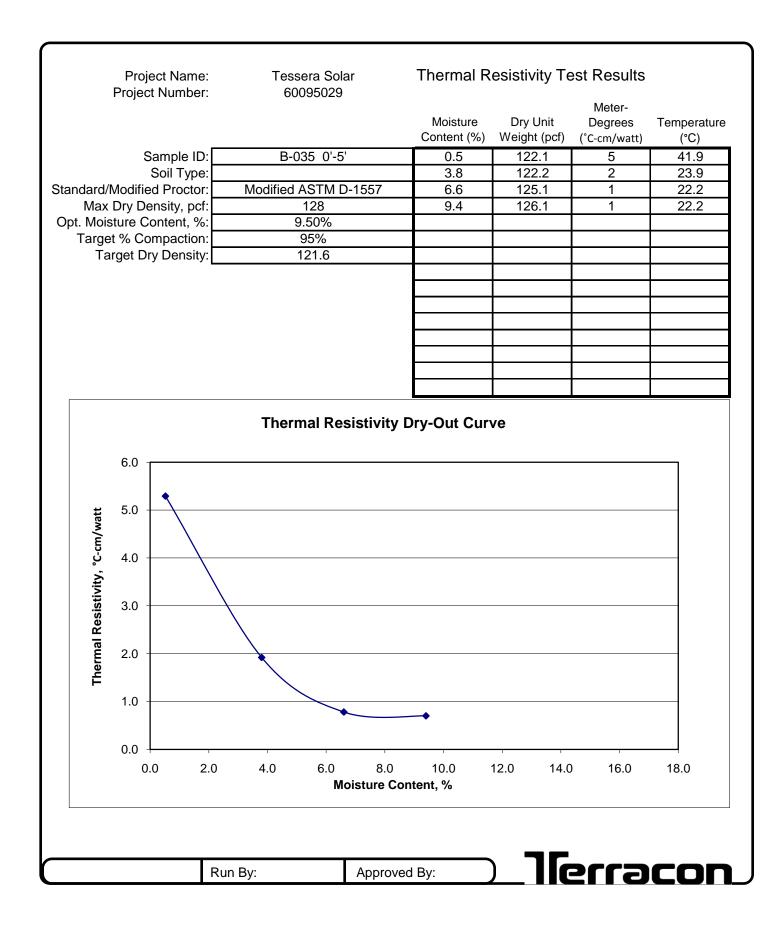

 Sulfate Content :
 California Test Method 417

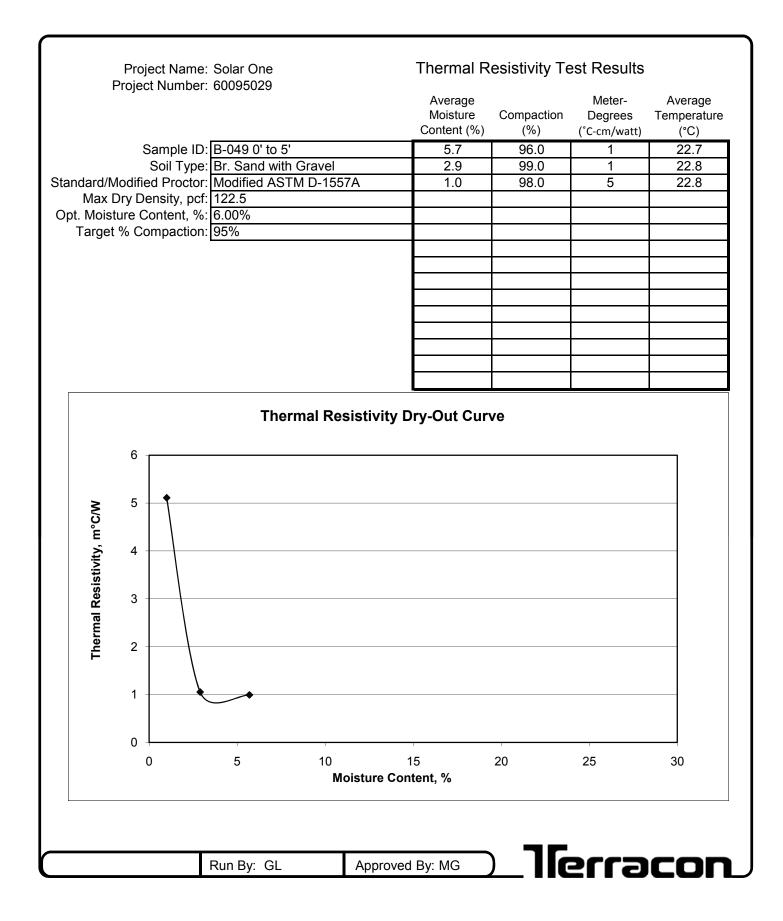

 Chloride Content :
 California Test Method 422


 ND = Not Detectable
 NA = Not Sufficient Sample

 NR = Not Requested
 NR = Not Requested






ŗ	Project Name: Project Number:	Tessera Sola 60095029	ar Thermal R	esistivity Te	est Results	
		0000020	Moisture Content (%)	Dry Unit Weight (pcf)	Meter- Degrees (°C-cm/watt)	Temperature (°C)
	Sample ID:	B-021 0'-1	7.7	108.5	1	20.8
	Soil Type:		4.7	109.8	1	20.8
	Modified Proctor:	Modified ASTM D		109.0	3	20.2
	Dry Density, pcf:	119	1.0	110.9	5	21.4
	ture Content, %: t % Compaction:	<u> </u>				
	rget Dry Density:	113.05				
-cm/watt	5.0 4.5 4.0 3.5	Thermal Re	sistivity Dry-Out Cur	ve		
Resistivity, °C-cm/watt	3.0	\				
	2.0					
mal		\backslash				
Thermal	1.5	×				
	1.0		•			
	0.0					
	0.0 2.0		8.0 10.0 oisture Content, %	12.0 14.0) 16.0	18.0
)_][

	Project Name: Project Number:	Tessera Solar 60095029	Thermal R	esistivity Te	est Results	
	-		Moisture Content (%)	Dry Unit Weight (pcf)	Meter- Degrees (°C-cm/watt)	Temperature (°C)
	Sample ID:	B-034 0'-1'	12.6	120.1	1	22.1
	Soil Type:		5.6	115.2	1	24.7
	Modified Proctor:	Modified ASTM D-1557	4.1	114.9	2	24.5
	Dry Density, pcf:	122	2.8	114.2	3	24.6
	sture Content, %:	10.00%	1.0	117.9	5	47.8
	t % Compaction: rget Dry Density:	<u>95%</u> 115.9				
	.go ,					
	6.0	Thermal Resistivity	Dry-Out Cur	ve		
t t	5.0					
Resistivity, °C-cm/watt	4.0					
istivity,	3.0					
Thermal	2.0	•				
	1.0					
	0.0 0.0 2.0) 4.0 6.0 8.0 Moisture C		12.0 14.0) 16.0	18.0

	Project Name: Tessera S Project Number: 6009502		Thermal Resistivity Test Results			
	·		Moisture Content (%)	Dry Unit Weight (pcf)	Meter- Degrees (°C-cm/watt)	Temperature (°C)
Sample ID: Soil Type:		B-043 0'-1'	11.1	113.6	1	21.8
			8.5	115.2	1	22.5
Standard/Modified Proctor: Modified ASTM D-1557		5.3	115.2	2	23.5	
Max Dry Density, pcf: 121		3.9	114.3	3	23.5	
Opt. Moisture Content, %: 5.50%		1.8	118.6	5	23.4	
Target % Compaction: 95%			0.7	124.2	6	47.3
Ia	rget Dry Density:	114.95				
		Thermal Resistivi	ty Dry-Out Cur	ve		
	7.0					
watt	6.0					
Thermal Resistivity, "C-cm/watt	5.0					
	4.0					
	3.0	•				
	2.0					
	1.0		••			
	0.0	4.0 6.0 8.		12.0 14.0) 16.0	18.0
	0.0 2.0		Content, %			
	0.0 2.0		Content, %		sua	

APPENDIX C FIELD RESISTIVITY TESTING

Project No: 60095029 Site Name: Boring No.: B-014 Solar One Site Address: Hwy 40 and Hector Road, Pisgah, CA CP Field Test By: CP **Report Prepared By:** Description of the soil as seen at the site: Choose from the following descriptions that best describe the earth conditions: Good clay earth Solid Rock Sandy Soil High Rise Site Provide the following information: Date of resistivity test: 10/21/2009 Weather for the seven days preceding the test: Clear and Sunny (The last three days must have been clear and sunny.) Model number of test instrument: Nilsson Model 400 Serial number of test instrument: 4-7530 **RESITIVITY TESTING DATA AND RESULTS:**

A (ft) =	2	4	8	16	20
FORMULA D= (OHM-CM)	383*R	766*R	1532*R	3064*R	3830*R
AREA 1 MEASURED R	19	5.1	1.7	0.92	0.61
AREA 1 CALC D	7277	3907	2604	2819	2336

Project No: 60095029 Site Name: Boring No.: B-014 Solar One Site Address: Hwy 40 and Hector Road, Pisgah, CA CP Field Test By: CP **Report Prepared By:** Description of the soil as seen at the site: Choose from the following descriptions that best describe the earth conditions: Good clay earth Solid Rock Sandy Soil High Rise Site Provide the following information: Date of resistivity test: 10/21/2009 Weather for the seven days preceding the test: Clear and Sunny (The last three days must have been clear and sunny.) Model number of test instrument: Nilsson Model 400 Serial number of test instrument: 4-7530 **RESITIVITY TESTING DATA AND RESULTS:**

A (ft) =	2	4	8	16	20
FORMULA D= (OHM-CM)	383*R	766*R	1532*R	3064*R	3830*R
AREA 1 MEASURED R	20	6.7	3.2	3.2	3.2
AREA 1 CALC D	7660	5132	4902	9805	12256

Project No: 60095029 Site Name: Boring No.: B-033 Solar One Site Address: Hwy 40 and Hector Road, Pisgah, CA CP Field Test By: CP **Report Prepared By:** Description of the soil as seen at the site: Choose from the following descriptions that best describe the earth conditions: Good clay earth Solid Rock Sandy Soil High Rise Site Provide the following information: Date of resistivity test: 10/21/2009 Weather for the seven days preceding the test: Clear and Sunny (The last three days must have been clear and sunny.) Model number of test instrument: Nilsson Model 400 Serial number of test instrument: 4-7530 **RESITIVITY TESTING DATA AND RESULTS:**

A (ft) =	2	4	8	16	20
FORMULA D= (OHM-CM)	383*R	766*R	1532*R	3064*R	3830*R
AREA 1 MEASURED R	660000	410000	740000	560000	200000
AREA 1 CALC D	252780000	314060000	1133680000	1715840000	766000000

Project No: 60095029 Site Name: Boring No.: B-048 Solar One Site Address: Hwy 40 and Hector Road, Pisgah, CA CP Field Test By: CP **Report Prepared By:** Description of the soil as seen at the site: Choose from the following descriptions that best describe the earth conditions: Good clay earth Solid Rock Sandy Soil High Rise Site Provide the following information: Date of resistivity test: 10/21/2009 Weather for the seven days preceding the test: Clear and Sunny (The last three days must have been clear and sunny.) Model number of test instrument: Nilsson Model 400 Serial number of test instrument: 4-7530 **RESITIVITY TESTING DATA AND RESULTS:**

A (ft) =	2	4	8	16	20
FORMULA D= (OHM-CM)	383*R	766*R	1532*R	3064*R	3830*R
AREA 1 MEASURED R	1600	1300	1900	1800	8900
AREA 1 CALC D	612800	995800	2910800	5515200	34087000

Project No: 60095029 Site Name: Boring No.: B-029 Solar One Site Address: Hwy 40 and Hector Road, Pisgah, CA CP Field Test By: CP **Report Prepared By:** Description of the soil as seen at the site: Choose from the following descriptions that best describe the earth conditions: Good clay earth Solid Rock Sandy Soil High Rise Site Provide the following information: Date of resistivity test: 10/21/2009 Weather for the seven days preceding the test: Clear and Sunny (The last three days must have been clear and sunny.) Model number of test instrument: Nilsson Model 400 Serial number of test instrument: 4-7530 **RESITIVITY TESTING DATA AND RESULTS:**

A (ft) =	2	4	8	16	20
FORMULA D= (OHM-CM)	383*R	766*R	1532*R	3064*R	3830*R
AREA 1 MEASURED R	140000	130000	160000	71000	16000
AREA 1 CALC D	53620000	99580000	245120000	217544000	61280000

Project No: 60095029 Site Name: Boring No.: B-025 Solar One Site Address: Hwy 40 and Hector Road, Pisgah, CA CP Field Test By: CP **Report Prepared By:** Description of the soil as seen at the site: Choose from the following descriptions that best describe the earth conditions: Good clay earth Solid Rock Sandy Soil High Rise Site Provide the following information: Date of resistivity test: 10/21/2009 Weather for the seven days preceding the test: Clear and Sunny (The last three days must have been clear and sunny.) Model number of test instrument: Nilsson Model 400 Serial number of test instrument: 4-7530 **RESITIVITY TESTING DATA AND RESULTS:**

A (ft) =	2	4	8	16	20
FORMULA D= (OHM-CM)	383*R	766*R	1532*R	3064*R	3830*R
AREA 1 MEASURED R	310	300	4700	120	0
AREA 1 CALC D	118730	229800	7200400	367680	0

Project No: 60095029 Site Name: Boring No.: B-043 Solar One Site Address: Hwy 40 and Hector Road, Pisgah, CA CP Field Test By: CP **Report Prepared By:** Description of the soil as seen at the site: Choose from the following descriptions that best describe the earth conditions: Good clay earth Solid Rock Sandy Soil High Rise Site Provide the following information: Date of resistivity test: 10/21/2009 Weather for the seven days preceding the test: Clear and Sunny (The last three days must have been clear and sunny.) Model number of test instrument: Nilsson Model 400 Serial number of test instrument: 4-7530 **RESITIVITY TESTING DATA AND RESULTS:**

A (ft) =	2	4	8	16	20
FORMULA D= (OHM-CM)	383*R	766*R	1532*R	3064*R	3830*R
AREA 1 MEASURED R	1000	10900	12000	12000	0
AREA 1 CALC D	383000	8349400	18384000	36768000	0

				Project No:	60095029
Site	e Name:	Solar One	Boring No.:	B-032	
Site	Address:	Hwy 40 and Hector Road,	Pisgah, CA		
Rep	oort Prepared By:	MLS	Field Test By	MLS	
Des	scription of the soil a	s seen at the site:			
	oose from the followi aditions:	ng descriptions that best	describe the ea	arth	
	Good clay earth	Solid Roo	ck		
	Sandy Soil	High Rise			
Pro	vide the following in	formation:			
Dat	e of resistivity test:	10/23/2009			
	ather for the seven d last three days must have b	ays preceding the test: een clear and sunny.)	Clear and Su	nny	
Mo	del number of test in	strument:	Nilsson Mode	el 400	
Ser	ial number of test ins	strument:	4-7530	_	
RE	SITIVITY TESTING D	ATA AND RESULTS:			

A (ft) =	2	4	8	16	20
FORMULA D= (OHM-CM)	383*R	766*R	1532*R	3064*R	3830*R
AREA 1 MEASURED R	120	20	400	20	11
AREA 1 CALC D	45960	15320	612800	61280	42130

			Project No:	60095029
Site Name:	Solar One	Boring No.:	TP-044	
Site Address:	Hwy 40 and Hector Road	, Pisgah, CA		
Report Prepared By:	MLS	Field Test By	MLS	
Description of the soil as	s seen at the site:			
Choose from the followin conditions:	ng descriptions that best	describe the ea	arth	
Good clay earth	Solid Ro	ck		
Sandy Soil	High Ris			
Provide the following inf	ormation:			
Date of resistivity test:	10/30/2009			
Weather for the seven da (The last three days must have be		Clear and Su	nny	
Model number of test ins	strument:	Nilsson Mode	el 400	
Serial number of test ins	trument:	4-7530	_	
RESITIVITY TESTING DA	TA AND RESULTS:			

A (ft) =	2	4	8	16	20
FORMULA D= (OHM-CM)	383*R	766*R	1532*R	3064*R	3830*R
AREA 1 MEASURED R	56000	1800	2000	4600	6500
AREA 1 CALC D	21448000	1378800	3064000	14094400	24895000

BEFORE THE ENERGY RESOURCES CONSERVATION AND DEVELOPMENT COMMISSION OF THE STATE OF CALIFORNIA 1516 NINTH STREET, SACRAMENTO, CA 95814 1-800-822-6228 – WWW.ENERGY.CA.GOV

FOR THE CALICO SOLAR PROJECT AMENDMENT

Docket No. 08-AFC-13C PROOF OF SERVICE (Revised 8/1/2011)

APPLICANT

Calico Solar, LLC Daniel J. O'Shea Managing Director 2600 10th Street, Suite 635 Berkeley, CA 94710 dano@kroadpower.com

CONSULTANT

URS Corporation Angela Leiba AFC Project Manager 4225 Executive Square, #1600 La Jolla, CA 92037 angela_leiba@URSCorp.com

APPLICANT'S COUNSEL

Allan J. Thompson Attorney at Law 21 C Orinda Way #314 Orinda, CA 94563 allanori@comcast.net

Bingham McCutchen, LLP Ella Foley Gannon, Partner Three Embarcadero Center San Francisco, CA 94111 <u>e-mail service preferred</u> <u>ella.gannon@bingham.com</u>

INTERVENORS

Society for the Conservation of Bighorn Sheep Bob Burke, Gary Thomas 1980 East Main St., #50 Barstow, CA 92311 <u>e-mail service preferred</u> cameracoordinator@sheepsociety.com Basin and Range Watch Laura Cunningham, Kevin Emmerich P.O. Box 70 Beatty, NV 89003 <u>e-mail service preferred</u> atomictoadranch@netzero.net

California Unions for Reliable Energy (CURE) c/o: Tanya A. Gulesserian, Marc D. Joseph Adams Broadwell Joseph & Cardozo 601 Gateway Boulevard, Ste. 1000 South San Francisco, CA 94080 <u>e-mail service preferred</u> tgulesserian@adamsbroadwell.com

Patrick C. Jackson 600 Darwood Avenue San Dimas, CA 91773 <u>e-mail service preferred</u> <u>ochsjack@earthlink.net</u>

Sierra Club Gloria D. Smith, Travis Ritchie 85 Second Street, Second floor San Francisco, CA 94105 <u>e-mail service preferred</u> gloria.smith@sierraclub.org travis.ritchie@sierraclub.org Newberry Community Service District c/o Wayne W. Weierbach P.O. Box 206 Newberry Springs, CA 92365 <u>e-mail service preferred</u> <u>newberryCSD@gmail.com</u>

Defenders of Wildlife Kim Delfino, California Program Director 1303 J Street, Suite 270 Sacramento, California 95814 <u>e-mail service preferred</u> <u>kdelfino@defenders.org</u>

Defenders of Wildlife Jeff Aardahl, California Representative 46600 Old State Highway, Unit 13 Gualala, California 95445 <u>e-mail service preferred</u> jaardahl@defenders.org

BNSF Railroad Cynthia Lea Burch, Helen B. Kim, Anne Alexander Katten Muchin Rosenman LLP 2029 Century Park East, Suite 2700 Los Angeles, CA 90067-3012 cynthia.burch@kattenlaw.com helen.kim@kattenlaw.com anne.alexander@kattenlaw.com

County of San Bernardino Jean-Rene Basle, County Counsel Bart W. Brizzee, Principal Assistant County Counsel 385 N. Arrowhead Avenue, 4th Fl. San Bernardino, CA 92415-0140

bbrizzee@cc.sbcounty.gov INTERESTED AGENCIES/ENTITIES/PERSONS California ISO e-recipient@caiso.com

BLM – Nevada State Office Jim Stobaugh P.O. Box 12000 Reno, NV 89520 jim_stobaugh@blm.gov

Bureau of Land Management Joan Patrovsky, Specialist/ Project Manager CDD-Barstow Field Office 2601 Barstow Road Barstow, CA 92311 jpatrovs@blm.gov

California Department of Fish & Game Becky Jones 36431 41st Street East Palmdale, CA 93552 dfgpalm@adelphia.net

BNSF Railroad Steven A. Lamb Katten Muchin Rosenman LLP 2029 Century Park East, Suite 2700 Los Angeles, CA 90067-3012 steven.lamb@kattenlaw.com

ENERGY COMMISSION – DECISIONMAKERS KAREN DOUGLAS Commissioner and Presiding Member

kldougla@energy.state.ca.us

Adviser to Commissioner Douglas glemei@energy.state.ca.us

ROBERT B. WEISENMILLER Chairman and Associate Member weisenm@energy.state.ca.us

Eileen Allen Adviser to Chairman Weisenmiller eallen@energy.state.ca.us

Kourtney Vaccaro Hearing Officer kvaccaro@energy.state.ca.us

ENERGY COMMISSION STAFF

Kerry Willis Staff Counsel <u>e-mail service preferred</u> <u>kwillis@energy.state.ca.us</u>

Stephen Adams Co-Staff Counsel <u>e-mail service preferred</u> sadams@energy.state.ca.us

Craig Hoffman Project Manager <u>e-mail service preferred</u> <u>choffman@energy.state.ca.us</u>

Caryn Holmes <u>e-mail service preferred</u> cholmes@energy.state.ca.us

ENERGY COMMISSION – PUBLIC ADVISER

Jennifer Jennings Public Adviser <u>e-mail service preferred</u> publicadviser@energy.state.ca.us

DECLARATION OF SERVICE

I, Marsha Curtis, declare that on August 23, 2011, I served and filed copies of the attached Calico Solar's Geotechnical Engineering Report, dated August 23, 2011. The original document, filed with the Docket Unit or the Chief Counsel, as required by the applicable regulation, is accompanied by a copy of the most recent Proof of Service list, located on the web page for this project at:

[www.energy.ca.gov/sitingcases/calicosolar/compliance/index.html].

The document has been sent to the other parties in this proceeding (as shown on the Proof of Service list) and to the Commission's Docket Unit or Chief Counsel, as appropriate, in the following manner:

(Check all that Apply)

For service to all other parties:

X Served electronically to all e-mail addresses on the Proof of Service list;

X Served by delivering on this date, either personally, or for mailing with the U.S. Postal Service with first-class postage thereon fully prepaid, to the name and address of the person served, for mailing that same day in the ordinary course of business; that the envelope was sealed and placed for collection and mailing on that date to those addresses **NOT** marked "e-mail preferred."

AND

For filing with the Docket Unit at the Energy Commission:

- _X__ by sending an original paper copy and one electronic copy, mailed with the U.S. Postal Service with first-class postage thereon fully prepaid and e-mailed respectively, to the address below (preferred method); *OR*
 - by depositing an original and 12 paper copies in the mail with the U.S. Postal Service with firstclass postage thereon fully prepaid, as follows:

CALIFORNIA ENERGY COMMISSION – DOCKET UNIT

Attn: Docket No. 08-AFC-13C 1516 Ninth Street, MS-4 Sacramento, CA 95814-5512 <u>docket@energy.state.ca.us</u>

OR, if filing a Petition for Reconsideration of Decision or Order pursuant to Title 20, § 1720:

Served by delivering on this date one electronic copy by e-mail, and an original paper copy to the Chief Counsel at the following address, either personally, or for mailing with the U.S. Postal Service with first-class postage thereon fully prepaid:

California Energy Commission Michael J. Levy, Chief Counsel 1516 Ninth Street, MS-14 Sacramento, CA 95814 <u>mlevy@energy.state.ca.us</u>

I declare under penalty of perjury under the laws of the State of California that the foregoing is true and correct, that I am employed in the county where this mailing occurred, and that I am over the age of 18 years and not a party to the proceeding.

Marshatuch

A/74422322.1