500 Capitol Mall, Suite 1600
Sacramento, California 95814
main 916.447.0700
fax 916.447.4781
www.stoel.com

Melissa A. Foster
Direct (916) 319-4673 mafoster@stoel.com

DOCKET

11-AFC-1
DATE AUG 162011
RECD. AUG 162011

Re: Pio Pico Energy Center Project (11-AFC-01)

Supplemental Responses to Data Requests Related to Traffic and Transportation

Dear Mr. Solorio:
On behalf of Pio Pico Energy Center, LLC, please find enclosed for docketing supplemental responses to data requests related to the Traffic and Transportation resource topic. Specifically, the enclosed information responds to the August 1, 2011 requests of California Energy Commission Staff member Kristin Ford.

Should you have any questions or concerns regarding this information, please contact me.
Respectfully submitted,

MAF:kjh
Enclosures
cc: See Proof of Service List

PIO PICO ENERGY CENTER PROJECT

11-AFC-01

Supplemental Responses to Traffic and Transportation Data Requests Responses to Email Correspondence from Kristin Ford, August 1, 2011

1a. First, in the AFC, on page 5.11-17, under Table 5.11-7, peak project construction trip generation estimates are stated. However, there is no description of which roads these trips are based from.

The purpose of Table 5.11-7 is to summarize and present the project construction trip generation assumptions. The trips were not based from specific roads, but were based on the Applicant's estimates of project construction traffic. The traffic model was then used to assign the Table 5.11-7 trip summaries into the traffic model network representing the traffic study area. The traffic model network is comprised of links (representing roadways), nodes (representing intersections), zones (representing trip generators such as the proposed project), and gates (representing inbound trip origins or outbound trip destinations). The "zone" interacts with the "gate" destination or origin of the trips (i.e. SR-125 North is identified as a gate destination). Based on the traffic model trip assignment and interactions between gates and zones, project added trips at the link level (roadway) or node level (intersection) are factored into the traffic impact analysis caiculations resulting in Level of Service (LOS) forecast for the study roadway's or intersection's operational performance with and without the proposed project.

The project trip assignment with respect to the roadways is provided in the February 2011 AFC page 5.11-19, on Table 5.11-11, Roadway Segment LOS - Year 2013 Peak Project Construction Conditions. Table 5.11-11 presents the project construction trip generation estimates identified for the specific study roadway segments (on a daily trip basis as required by the traffic study methodology), and reports the traffic analysis modeling results for the project construction impacts.

1b. The paragraph on page 5.11-16 states project distribution is 20% to and from the north of SR-125 north of Otay Mesa Road and $\mathbf{8 0 \%}$ to and from the west on Otay Mesa Road (SR-905) west of SR-125. For clarification, is the above distribution route what was used for Table 5.11-7? If so, are the roadways (Otay Mesa Road to SR 905 and Sanyo, Sanyo and Enrico Fermi, Enrico Fermi and Alta and Otay Mesa and Paseo De La Fuente) included in the $\mathbf{8 0 \%}$?

To clarify the question, is the above distribution route what was used for Table 5.11-7? We have two answers as it pertains to the context of how "used for Table 5.11-7" could be implied in the question. No, it (trip distribution) was not used for the creation or development of Table 5.11-7, but yes, it (trip distribution) was used for the assignment of trips from Table 5.11-7.

Regarding the project distribution on the aforementioned roadways (Otay Mesa Road to SR 905 and Sanyo, Sanyo and Enrico Fermi, Enrico Fermi and Alta and Otay Mesa and Paseo De La Fuente), the response is yes, these were included in the 80 percent assignment and the 20 percent assignments, as these roadways segments are located on the east side of SR-125 before the trip distributions were split coming from the project site with 20 percent assigned to SR-125 and 80 percent assigned to Otay Mesa Road to the west of SR-125.

Supplemental Responses to Traffic and Transportation Data Requests Responses to Email Correspondence from Kristin Ford, August 1, 2011

2. Table 5.11-9, 5.11-11, 5.11-13, 5.11-15 does not analyze peak am and pm hour trips. Please provide me the respective information and the LOS change, if any.

The AFC traffic analysis was conducted in accordance with County of San Diego and City of San Diego requirements, which only require daily roadway segment LOS analysis and peak hour intersection analysis. The peak AM and PM hour analysis for intersections presented in Tables 5.11-4, 5.11-10, 5.11-12, 5.11-14 and 5.11-16 provide a more realistic indication of roadway performance as it provides a more comprehensive operational performance of the roadway system including the effects of the intersecting roadways. The findings from the peak intersection analysis indicate that all study intersections are forecasted to operate at acceptable LOS (i.e., LOS D or better), resulting in no significant intersection traffic impacts during both project construction and operation scenarios.

In response to this data request, peak hour roadway segment analysis was conducted and the results, including project added peak AM and PM hour trips, are summarized in the attached Table 5.11-21 (new table; refer to Attachment 1 for the associated modeling documentation).

Consistent with the results of the AM and PM peak intersection analysis conducted for the project construction and operations, the results of the requested peak hour roadway segment analysis indicate that all study roadway segments are forecasted to operate at acceptable LOS (LOS D or better), resulting in no significant roadway traffic impacts during both project construction and operation scenarios.
3. In the Data Response Traf-48, the AGL is at approximately 2500 feet. Can you explain why the AGL is so high in comparison to other analysis's I have read?

Several factors contribute to the height above ground level (AGL) at which the thermal plume velocity, under calm conditions, drops below the target of $4.2 \mathrm{~m} / \mathrm{s}$.

- Stack temperature: The exhaust temperature for simple cycle turbines is much higher than for combined cycle facilities. This results in greater plume buoyancy and higher plume velocities.
- Multiple stacks: PPEC has three stacks that are close enough to each other for the plumes to merge. Using the equations recommended by CEC, merged plumes get a significant boost to velocity (the factor for three stacks is $(3)^{25}=1.32$ higher than for a single stack).
- Larger plume momentum: The PPEC turbines are 100 MW each; more exhaust out a single stack means that the momentum of the exhaust plume is larger, and the plume velocity decreases more slowly with height than for a smaller turbine.

At PPEC, the maximum plume velocity for a single stack is below $4.2 \mathrm{~m} / \mathrm{s}$ at 1200 ft AGL, which is also below the height at which the plumes merge. Once they merge at around 1300 ft AGL, the model kicks the combined velocity up to $5.3 \mathrm{~m} / \mathrm{sec}$. It falls once again to $4.2 \mathrm{~m} / \mathrm{sec}$ at around 2500 ft .
PROJECT CONSTRUCTION AND operation PEAK HOUR road way segment analysis

Roadway	Segment			Year 2013 No Project Conditions				Year 2013 Plus Project Construction				Year 2014 No Project Condition				Year 2014 Project Operations			
				AM Peak Hour		PM Peak Hour		AM Peak Hour		PM Peak Hour		AM Peak Hour		PM Peak Hour		AM Peak Hour		PM Peak Hour	
		Lane Type	Direction	Volume	LOS	Volume	LOS	Volume	LOS	Volume	LOS	Votume	LOS	Volume	LOS	Volume	LOS	Volume	LOS
SR 125 ${ }^{1}$	North of SR 905	Exoressway	NB	106	B	492	B	107	B	554	B	110	B	510	B	110	B	512	B
			SB	779	B	194	B	840	B	194	B	806	B	201	B	808	B	201	B
SR 905 ${ }^{1}$	La Medra Road and Piper Ranch Road.	2-Divided	EB	1608	C	1747	C	1850	C	1747	C	1664	C	1810	c	1674	C	1810	C
		3-Divided	WB	1141	B	1740	B	1147	B	1987	B	1183	B	1803	B	1183	B	1813	B
$\begin{aligned} & \text { Otay Mesa } \\ & \text { Roadd }^{2} \\ & \hline \end{aligned}$	SR 905 and Sanyo Avenue	1-Undivided	EB	1042	D	261	D	1345	D	261	D	1079	D	270	D	1091	D	270	D
			WB	235		941		242		1256		244		975		244		987	
$\begin{aligned} & \text { Oray mesa } \\ & \text { Rnad }^{2} \end{aligned}$	Sanyo Avenue and Entico Fermi norive_	1 -Undivded	EB	650	C	140	B	953	D	140	0	674	c	145	B	686	c	145	B
			WB	192	B	625	c	198		934		199	B	648	C	199	B	660	c
$\begin{aligned} & \text { पray Mesa } \\ & \text { Road }^{2} \end{aligned}$	Enrico Fermi Drive and Atta Road	1.Undivided	EB	586	C	83	B	889	c	83	B	607	C	86	B	619	C	86	8
			WB	105	B	4.56	B	112	c	765	C	109	B	472	B	109	B	484	B
Alta Road	Oray Mesa Road and Paseo De La	1-Undivided	NB	586	c	83	B	889	c	83	B	607	C	86	B	619	C	86	B
			SB	105	B	456	B	112	c	765	C	109	B	472	B	109	B	484	B

 (2- Two-lane undivided roadways with volumes exceeding 880 directional volume per lane were out of the tabulated (Table 7) range and
3. Roadway volume on Alta Road north of Otay Mesa Road is the sarne as Otay Mesa Road between Enrico Fermi Drive and Alta Road.

Kristin Ford KFord@energy.state.ca.us

- This message has been replied to.

Dear Noel,
I have a handful of questions regarding the Traffic section in the AFC and the respective data responses. Please feel free to call me if you need further clarification from me.

1. First, in the $A F C$, on page 5.1-17, under Table 5.11-7, peak project construction trip generation estimates are stated. However, there is no description of which roads these trips are based from. 'The paragraph on page 5.11-16 states project distribution is 20% to and from the north of SR-125 north of Otay Mesa Road and 80% to and from the west on Otay Mesa Road (SR-905) west of SR-125. For clarification, is the above distribution route what was used for Table 5.11-7? If so, are the roadways (Otay Mesa Road to SR 905 and Sanyo, Sanyo and Enrico Fermi, Enrico Fermi and Alta and Otay Mesa and Paseo De La Puente) included in the 80% ?
2. Table 5.11-9, 5.11-11,5.11-13, 5.11-15 doe not analyze peak am and pm hour trips. Please provide me the respective information and the LOS change, if any.
3. In the Data Response Traf-48, the AGL is at approximately 2500 feet. Can you explain why the AGL is so high in comparison to other analysis's I have read?

Thanks,
Kristin

```
Kristin Ford
Environmental Planner
p 916.654.4658
f 916.651.8868
California Energy Commission
Siting, Transmission and Environmental Protection Division
1516 9th Street, MS 40
Sacramento, CA 95814
```


ATTACHMENT 1

HCS+: Two-Lane Highways Release 5.21

Phone:
Fax:
E-Mail:

Two-Way Two-Lane Highway Segment Analysis \qquad
Analyst
NVC
SD County
8/10/2011
Date Performed
AM
Otay Mesa Road
SR 905 to Sanyo
SD County
2013 No Project
Analysis Year
Description Pio Pico Energy Center

Average Travel Speed

Grade adjustment factor, fG
PCE for trucks, ET
PCE for RVs, ER
Heavy-vehicle adjustment factor,
Two-way flow rate, (note-1) vp $1524 \mathrm{pc} / \mathrm{h}$
1.00
1.1
1.0

Highest directional split proportion (note-2) 1250 pc/h
Free-Flow Speed from Field Measurement:
Field measured speed, SFM - mi/h
Observed volume, Vf - veh/h
Estimated Free-Flow Speed:
Base free-flow speed, BFFS $60.0 \mathrm{mi} / \mathrm{h}$
Adj. for lane and shoulder width, fLS $0.0 \mathrm{mi} / \mathrm{h}$
Adj. for access points, fA
Free-flow speed, FFS
$58.0 \mathrm{mi} / \mathrm{h}$

Adjustment for no-passing zones, fnp
$0.0 \mathrm{mi} / \mathrm{h}$
$46.2 \mathrm{mi} / \mathrm{h}$

Notes:

1. If $\mathrm{vp}>=3200 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F .
2. If highest directional split $v p>=1700 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F.
```
HCS+: Two-Lane Highways Release 5.21
```

Phone:
Fax:
E-Mail:
\qquad Two-Way Two-Lane Highway Segment Analysis \qquad

Analyst	NVC
Agency/Co.	SD County
Date Performed	$8 / 10 / 2011$
Analysis Time Period	PM
Highway	Otay Mesa Road
From/To	SR 905 to Sanyo
Jurisdiction	SD County
Analysis Year	2013 No Project
Description Pio Pico Energy Center	

Grade adjustment factor, fG	1.00	
PCE for trucks, ET	1.1	
PCE for RVs, ER	1.0	
Heavy-vehicle adjustment factor,	0.986	
Two-way flow rate, (note-1) vp	1385	pc / h
Highest directional split proportion (note-2)	1094	pc / h

Free-Flow Speed from Field Measurement:		
Field measured speed, SFM	-	mi / h
Observed volume, Vf	-	$\mathrm{veh} / \mathrm{h}$
Estimated Free-Flow Speed:		
Base free-flow speed, BFFS	60.0	mi / h
Adj. for lane and shoulder width, fLS	0.0	mi / h
Adj. for access points, fA	2.0	mi / h
Free-flow speed, FFS		58.0
Adjustment for no-passing zones, fnp	mi / h	
Average travel speed, ATS		0.0

Grade adjustment factor, fG	1.00	
PCE for trucks, ET	1.0	
PCE for RVs, ER	1.0	
Heavy-vehicle adjustment factor, fHV	1.000	
Two-way flow rate, (note-1) vp	1366	pc / h
Highest directional split proportion (note-2)	1079	
Base percent time-spent-following, BPTSF	69.9	\%
Adj.for directional distribution and no-passing zones, fd/np	0.0	
Percent time-spent-following, PTSF	69.9	\%
Level of Service and Other Performance Measures		
Level of service, LOS	D	
Volume to capacity ratio, v/c	0.43	
Peak 15-min vehicle-miles of travel, VMTl5	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h

Notes:

1. If $\mathrm{vp}>=3200 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F .
2. If highest directional split $v p>=1700 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F.
```
Phone: Fax:
```

E-Mail:
Two-Way Two-Lane Highway Segment Analysis
\qquad

Analyst	NVC
Agency/Co.	SD County
Date Performed	$8 / 10 / 2011$
Analysis Time Period	AM
Highway	Otay Mesa Road
From/To	SR 905 to Sanyo
Jurisdiction	SD County
Analysis Year	2013 with Project
Description Pio Pico Energy Center	

Average Travel Speed \qquad
Grade adjustment factor, fG 1.00
PCE for trucks, ET I.1
PCE for RVs, ER 1.0
Heavy-vehicle adjustment factor, 0.986
Two-way flow rate, (note-1) vp $1829 \mathrm{pc} / \mathrm{h}$
Highest directional split proportion (note-2) 1555 pc/h
Free-Flow Speed from Field Measurement:
Field measured speed, SFM - mi/h
Observed volume, Vf - veh/h
Estimated Free-Flow Speed:
Base free-flow speed, BFFS $60.0 \mathrm{mi} / \mathrm{h}$
Adj. for lane and shoulder width, fLS $0.0 \mathrm{mi} / \mathrm{h}$
Adj. for access points, fA
Free-flow speed, FFS
$58.0 \mathrm{mi} / \mathrm{h}$
Adjustment for no-passing zones, fnp
$0.0 \mathrm{mi} / \mathrm{h}$
Average travel speed, ATS $43.8 \mathrm{mi} / \mathrm{h}$

Notes:

1. If $\mathrm{vp}>=3200 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F .
2. If highest directional split $\mathrm{vp}>=1700 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F.

Phone:
Fax:
E-Mail:
\qquad Two-Way Two-Lane Highway Segment Analysis \qquad

Analyst	NVC
Agency/Co.	SD County
Date Performed	$8 / 10 / 2011$
Analysis Time Period	PM
Highway	Otay Mesa Road
From/To	SR 905 to Sanyo
Jurisdiction	SD County
Analysis Year	2013 with Project
Description Pio Pico Energy Center	

Grade adjustment factor, fG	1.00	
PCE for trucks, ET	1.1	
PCE for RVs, ER	1.0	
Heavy-vehicle adjustment factor,	0.986	
Two-way flow rate, (note-1) vp	1748	pc / h
Highest directional split proportion (note-2)	1451	pc / h
Free-Flow Speed from Field Measurement:		
Field measured speed, SFM	-	mi / h
Observed volume, Vf	-	$\mathrm{veh} / \mathrm{h}$
Estimated Free-Flow Speed:		
Base free-flow speed, BFFS	60.0	mi / h
Adj. for lane and shoulder width, fLS	0.0	mi / h
Adj. for access points, fA	2.0	mi / h
Free-flow speed, FFS		58.0
Adjustment for no-passing zones, fnp	mi / h	
Average travel speed, ATS		

\qquad

Grade adjustment factor, fG	1.00	
PCE for trucks, ET	1.0	
PCE for RVs, ER	1.0	
Heavy-vehicle adjustment factor, fHV	1.000	
Two-way flow rate, (note-1) vp	1724	pc / h
Highest directional split proportion (note-2)	1431	
Base percent time-spent-following, BPTSF	78.0	$\%$
Adj.for directional distribution and no-passing zones, fd/np	0.0	
Percent time-spent-following, PTSF	78.0	$\%$

Level of service, LOS		
Volume to capacity ratio, v/c		
Peak 15 -min vehicle-miles of travel, VMT15	0.55	
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15 -min total travel time, TT15	0	veh-mi

Notes:

1. If $\mathrm{vp}>=3200 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F .
2. If highest directional split $v p>=1700 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F.

Phone:
E-Mail:

Fax:
\qquad Two-Way Two-Lane Highway Segment Analysis

Analyst	NVC
Agency/Co.	SD County
Date Performed	$8 / 10 / 2011$
Analysis Time Period	AM
Highway	Otay Mesa Road
From/To	Sanyo to Enrico Fermi
Jurisdiction	SD County
Analysis Year	2013 with Project
Description Pio Pico Energy Center	

Input Data \qquad

Highway class Class	1				
Shoulder width	6.0	$f t$	Peak-hour factor, PHF	0.88	
Lane width	12.0	ft	\% Trucks and buses	14	\%
Segment length	0.0	mi	\% Recreational vehicles	4	\%
Terrain type	Level		\% No-passing zones	0	\%
Grade: Length		mi	Access points/mi	8	/mi
Up/down		\%			
Two-way hourly volume	, V	1151	veh/h		
Directional split	83	/ 17	$\%$		

Average Travel Speed \qquad
Grade adjustment factor, fG
PCE for trucks, ET
1.00

PCE for RVs, ER
1.1

Heavy-vehicle adjustment factor,
1.0

Two-way flow rate, (note-I) vp $1326 \mathrm{pc} / \mathrm{h}$
Highest directional split proportion (note-2) 1101 pc/h
Free-Flow Speed from Field Measurement:
Field measured speed, SFM - mi/h
Observed volume, Vf - veh/h
Estimated Free-Flow Speed:
Base free-flow speed, BFFS
Adj. for lane and shoulder width, fLS
Adj. for access points, fA
Free-flow speed, FFS
$60.0 \mathrm{mi} / \mathrm{h}$
$0.0 \mathrm{mi} / \mathrm{h}$
$2.0 \mathrm{mi} / \mathrm{h}$
$58.0 \mathrm{mi} / \mathrm{h}$
Adjustment for no-passing zones, fnp $0.0 \mathrm{mi} / \mathrm{h}$
Average travel speed, ATS $47.7 \mathrm{mi} / \mathrm{h}$

Grade adjustment factor, fG	1.00	
PCE for trucks, ET	1.0	
PCE for RVs, ER	1.0	
Heavy-vehicle adjustment factor, fHV	1.000	
Two-way flow rate, (note-1) vp	1308	pc / h
Highest directional split proportion (note-2)	1086	
Base percent time-spent-following, BPTSF	68.3	\%
Adj.for directional distribution and no-passing zones, fd/np	0.0	
Percent time-spent-following, PTSF	68.3	\%
____-_Level of Service and Other Performance Measu	res	
Level of service, LOS	D	
Volume to capacity ratio, v/c	0.41	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h

Notes:

1. If $\mathrm{vp}>=3200 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F .
2. If highest directional split $\mathrm{vp}>=1700 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F.

Phone:
E-Mail:
\qquad Two-Way Two-Lane Highway Segment Analysis \qquad

Analyst	NVC
Agency/Co.	SD County
Date Performed	$8 / 10 / 2011$
Analysis Time Period	PM
Highway	Otay Mesa Road
From/To	Sanyo to Enrico Fermi
Jurisdiction	SD County
Analysis Year	2013 with Project
Description Pio Pico Energy Center	

Input Data				
Highway class Class 1				
Shoulder width 6.0	ft	Peak-hour factor, PHF	0.88	
Lane width 12.0	ft	\% Trucks and buses	14	\%
Segment length 0.0	mi	\% Recreational vehicles	4	\%
Terrain type Level		\% No-passing zones	0	\%
Grade: Length Up/down	$\begin{aligned} & \mathrm{mi} \\ & \frac{\circ}{\circ} \end{aligned}$	Access points/mi	8	/mi
Two-way hourly volume, V	1074	veh/h		
Directional split 87	/ 13	\%		

Grade adjustment factor, fG	1.00	
PCE for trucks, ET	1.1	
PCE for RVs, ER	1.0	
Heavy-vehicle adjustment factor,	0.986	
Two-way flow rate, (note-1) vp	1238	pc / h
Highest directional split proportion (note-2)	1077	pc / h
Free-Flow Speed from Field Measurement:		
Fieldmeasured speed, SFM	-	mi / h
Observed volume, Vf	-	$\mathrm{veh} / \mathrm{h}$
Estimated Free-Flow Speed:		
Base free-flow speed, BFFS	60.0	mi / h
Adj. for lane and shoulder width, fLS	0.0	mi / h
Adj. for access points, fA	2.0	mi / h
Free-flow speed, FFs		58.0
Adjustment for no-passing zones, fnp	mi / h	
Average travel speed, ATS		

Grade adjustment factor, fG	1.00	
PCE for trucks, ET	1.0	
PCE for RVs, ER	1.0	
Heavy-vehicle adjustment factor, fHV	1.000	
Two-way flow rate, (note-1) vp	1220	pc / h
Highest directional split proportion (note-2)	1061	
Base percent time-spent-following, BPTSF	65.8	\%
Adj.for directional distribution and no-passing zones, fd/np	0.0	
Percent time-spent-following, PTSF	65.8	\%
Level of Service and Other Performance Measures		
Level of service, LOS	D	
Volume to capacity ratio, v/c	0.39	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h

Notes:

1. If vp >= $3200 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F.
2. If highest directional split vp >= $1700 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F.

HCS+: Two-Lane Highways Release 5.21

Phone:
Fax:
E-Mail:
Two-Way Two-Lane Highway Segment Analysis \qquad

Analyst
Agency/Co.
Date Performed
Analysis Time Period
Highway
From/To
Jurisdiction
Analysis Year
Description

NVC
SD County
8/10/2011
AM
Otay Mesa Road
Enrico Fermi to Alta Road
SD County
2013 with Project
Pio Pico Energy Center

Input Data

Average Travel Speed
Grade adjustment factor, fG 1.00
PCE for trucks, ET 1.2
PCE for RVs, ER 1.0
Heavy-vehicle adjustment factor, 0.973
Two-way flow rate, (note-1) vp $1169 \mathrm{pc} / \mathrm{h}$
Highest directional split proportion (note-2) $1040 \mathrm{pc} / \mathrm{h}$
Free-Flow Speed from Field Measurement:
Field measured speed, SFM - mi/h
Observed volume, Vf - veh/h
Estimated Free-Flow Speed:
Base free-flow speed, BFFS
$60.0 \mathrm{mi} / \mathrm{h}$
Adj. for lane and shoulder width, fLS
$0.0 \mathrm{mi} / \mathrm{h}$
$2.0 \mathrm{mi} / \mathrm{h}$
Free-flow speed, FFS
$58.0 \mathrm{mi} / \mathrm{h}$
Adjustment for no-passing zones, fnp $0.0 \mathrm{mi} / \mathrm{h}$
Average travel speed, ATS $48.9 \mathrm{mi} / \mathrm{h}$

Grade adjustment factor, fG	1.00	
PCE for trucks, ET	1.1	
PCE for RVs, ER	1.0	
Heavy-vehicle adjustment factor, fHV	0.986	1153
Two-way flow rate, (note-1) vp	1026	
Highest directional split proportion (note-2)	63.7	$\%$
Base percent time-spent-following, BPTSF	0.0	
Adj.for directional distribution and no-passing zones, fd/np	0.0	
Percent time-spent-following, PTSF	63.7	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	C	
Volume to capacity ratio, v/c	0.37	
Peak l5-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15 -min total travel time, TT15	0.0	veh-h

Notes:

1. If $v p>=3200 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F .
2. If highest directional split vp >= $1700 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F.

HCS+: Two-Lane Highways Release 5.21

Phone: Fax:
E-Mail:
Two-Way Two-Lane Highway Segment Analysis \qquad

Analyst	NVC
Agency/Co.	SD County
Date Performed	$8 / 10 / 2011$
Analysis Time Period	AM
Highway	Otay Mesa Road
From/To	SR 905 to Sanyo
Jurisdiction	SD County
Analysis Year	2014 No Project
Description Pio Pico Energy Center	

Average Travel Speed \qquad
Grade adjustment factor, fG
1.00

PCE for trucks, ET
1.1

PCE for RVs, ER
1.0

Heavy-vehicle adjustment factor,
0.986

Two-way flow rate, (note-1) vp 1524
Highest directional split proportion (note-2) 1250 pc/h
Free-Flow Speed from Field Measurement:
Field measured speed, SFM - mi/h
Observed volume, Vf - veh/h
Estimated Free-Flow Speed:
Base free-flow speed, BFFS
Adj. for lane and shoulder width, fLS
$60.0 \mathrm{mi} / \mathrm{h}$
Adj. for access points, fA
$0.0 \mathrm{mi} / \mathrm{h}$

Free-flow speed, FFS
$58.0 \mathrm{mi} / \mathrm{h}$
Adjustment for no-passing zones, fnp
$0.0 \mathrm{mi} / \mathrm{h}$
Average travel speed, ATS $46.2 \mathrm{mi} / \mathrm{h}$
\qquad

Grade adjustment factor, fG	1.00	
PCE for trucks, ET	1.0	
PCE for RVs, ER	1.0	
Heavy-vehicle adjustment factor, fHV	1.000	
Two-way flow rate, (note-1) vp	1503	pc / h
Highest directional split proportion (note-2)	1232	
Base percent time-spent-following, BPTSF	73.3	$\%$
Adj.for directional distribution and no-passing zones, fa/np	0.0	
Percent time-spent-following, PTSF	73.3	$\%$

Level of Service and Other Performance Measures \qquad

Level of service, LOS	D	
Volume to capacity ratio, v/c	0.48	
Peak 15 -min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak $15-m i n ~ t o t a l ~ t r a v e l ~ t i m e, ~ T T 15 ~$	0.0	veh-h

Notes:

1. If $\mathrm{vp}>=3200 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F .
2. If highest directional split vp $>=1700 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F.
```
HCS+: Two-Lane Highways Release 5.21
```

Phone:
Fax:
E-Mail:

Two-Way Two-Lane Highway Segment Analysis \qquad

Analyst
Agency/Co.
Date Performed
Analysis Time Period
Highway
From/To
Jurisdiction
Analysis Year
Description Pio Pico Energy Center

Input Data

Highway class Class 1				
Shoulder width 6.0	ft	Peak-hour factor, PHF	0.8	
Lane width 12.0	ft	\% Trucks and buses	14	\%
Segment length 0.0	mi	\% Recreational vehicles	4	\%
Terrain type Level		\% No-passing zones	0	\%
Grade: Length Up/down	$\begin{aligned} & \mathrm{mi} \\ & \% \end{aligned}$	Access points/mi	8	/mi
Two-way hourly volume, V	1245	veh/h		
Directional split 78	122	\%		
	Average	Travel Speed		

Grade adjustment factor, fG	1.00	
PCE for trucks, ET	1.1	
PCE for RVs, ER	1.0	
Heavy-vehicle adjustment factor,	0.986	
Two-way flow rate, (note-1) vp	1435	pc / h
Highest directional split proportion (note-2)	1119	pc / h
Free-Flow Speed from Field Measurement:		
Fieldmeasured speed, SFM	-	mi / h
Observed volume, Vf	-	$\mathrm{veh} / \mathrm{h}$
Estimated Free-Flow Speed:		
Base free-flow speed, BFFS	60.0	mi / h
Adj. for lane and shoulder width, flS	0.0	mi / h
Adj. for access points, fA	2.0	mi / h
Free-flow speed, FFS		58.0
Adjustment for no-passing zones, fnp	mi / h	
Average travel speed, ATS		

Grade adjustment factor, fG	1.00	
PCE for trucks, ET	1.0	
PCE for RVs, ER	1.0	
Heavy-vehicle adjustment factor, fHV	1.000	
Two-way flow rate, (note-1) vp	1415	pc / h
Highest directional split proportion (note-2)	1104	
Base percent time-spent-following, BPTSF	71.2	\%
Adj.for directional distribution and no-passing zones, fd/np	0.0	
Percent time-spent-following, PTSF	71.2	\%
_______Level of Service and Other Performance Measur	es	
Level of service, LOS	D	
Volume to capacity ratio, v/c	0.45	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TT15	0.0	veh-h

Notes:

1. If vp $>=3200 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F .
2. If highest directional split $\mathrm{vp}>=1700 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F.
```
Phone:
Fax:
E-Mail:
```

Two-Way Two-Lane Highway Segment Analysis

Analyst	NVC
Agency/Co.	SD County
Date Performed	$8 / 10 / 2011$
Analysis Time Period	AM
Highway	Otay Mesa Road
From/To	SR 905 to Sanyo
Jurisdiction	SD County
Analysis Year	2014 with Project
Description Pio Pico Energy Center	

Input Data				
Highway class Class 1				
Shoulder width 6.0	$f t$	Peak-hour factor, PHF	0.88	
Lane width 12.0	ft	\% Trucks and buses	14	\%
Segment length 0.0	mi	\% Recreational vehicles	4	\%
Terrain type Level		\% No-passing zones	0	\%
Grade: Length	mi	Access points/mi	8	/mi
Up/down	\%			
Two-way hourly volume, V	1335	veh/h		
Directional split 82	/ 18	\%		

Average Travel Speed \qquad
Grade adjustment factor, fG
1.00

PCE for trucks, ET
1.1

PCE for RVs, ER 1.0
Heavy-vehicle adjustment factor, 0.986
Two-way flow rate, (note-1) vp $1538 \mathrm{pc} / \mathrm{h}$
Highest directional split proportion (note-2) $1261 \mathrm{pc} / \mathrm{h}$

Free-Flow Speed from Field Measurement:
Field measured speed, SEM - mi/h
Observed volume, Vf - veh/h
Estimated Free-Flow Speed:
Base free-flow speed, BFFS
$60.0 \mathrm{mi} / \mathrm{h}$
Adj. for lane and shoulder width, fLS
$0.0 \mathrm{mi} / \mathrm{h}$
Adj. for access points, fA
$2.0 \mathrm{mi} / \mathrm{h}$

Free-flow speed, FFS
$58.0 \mathrm{mi} / \mathrm{h}$

Adjustment for no-passing zones, fnp
$0.0 \mathrm{mi} / \mathrm{h}$
Average travel speed, ATS
$46.1 \mathrm{mi} / \mathrm{h}$
\qquad

Grade adjustment factor, fG	1.00	
PCE for trucks, ET	1.0	
PCE for RVs, ER	1.0	
Heavy-vehicle adjustment factor, fHV	1.000	
Two-way flow rate, (note-1) vp	1517	pc / h
Highest directional split proportion (note-2)	1244	73.6
Base percent time-spent-following, BPTSF	$\%$	
Adj.for directional distribution and no-passing zones, fd/np	0.0	73.6
Percent time-spent-following, PTSF	$\%$	

Level of Service and Other Performance Measures \qquad
Level of service, LOS D
Volume to capacity ratio, v/c
0.48
Peak 15-min vehicle-miles of travel, VMT15
0 veh-mi
Peak-hour vehicle-miles of travel, VMT60
0 veh-mi
$\begin{array}{ll}\text { Peak } 15-\mathrm{min} & \text { total travel time, TT15 } 0.0 \quad \text { veh-h }\end{array}$

Notes:

1. If $\mathrm{vp}>=3200 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F .
2. If highest directional split vp >= $1700 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F.

HCS+: Two-Iane Highways Release 5.21

Phone:
Fax:
E-Mail:

Grade adjustment factor, fG	1.00	
PCE for trucks, ET	1.0	
PCE for RVs, ER	1.0	
Heavy-vehicle adjustment factor, fHV	1.000	
Two-way flow rate, (note-1) vp	1428	pc / h
Highest directional split proportion (note-2)	1128	
Base percent time-spent-following, BPTSF	71.5	\%
Adj.for directional distribution and no-passing zones,	0.0	
Percent time-spent-following, PTSF	71.5	\%
Level of Service and Other Performance Measures		
Level of service, LOS	D	
Volume to capacity ratio, v/c	0.45	
Peak 15-min vehicle-miles of travel, VMT15	0	veh-mi
Peak-hour vehicle-miles of travel, VMT60	0	veh-mi
Peak 15-min total travel time, TTl5	0.0	veh-h

Notes:

1. If $\mathrm{vp}>=3200 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F .
2. If highest directional split $v p>=1700 \mathrm{pc} / \mathrm{h}$, terminate analysis-the LOS is F .

Before the Energy Resources Conservation and Development Commission of the State of California
 1516 Ninth Street, Sacramento, CA 95814 1-800-822-6228 -www.ENERGY.CA.GOV

Application for Certification
For the PIo PICO ENERGY CENTER, LLC

Docket No. 11-AFC-1
PROOF OF SERVICE
(Revised 5/12/11)

Pio Pico Energy Center, LLC
 Letter to Eric Solorio, Siting Project Manager, California Energy Commission, dated August 16, 2011 re Applicant's Supplemental Responses to Data Requests Related to Traffic and Transportation

APPLICANT	INTERESTED AGENCIES
Gary Chandler, President	California ISO
Pio Pico Energy Center	E-mail Preferred
P.O. Box 95592	e-recipient@caiso.com
South Jordan, UT 84095 grchandler@apexpowergroup.com	
David Jenkins, Project Manager	
Pio Pico Energy Center, LLC	
1293 E. Jessup Way	
Mooresville, IN 46158 dienkins@apexpowergroup.com	
APPLICANT'S CONSULTANTS	
Maggie Fitzgerald, Project Manager URS Corporation	
2020 East 1st Street, Suite 400	
Santa Ana, CA 92705	
maggie fitzgerald@urscorp.com	
COUNSEL FOR APPLICANT	
John A. McKinsey	
Melissa A. Foster	
Stoel Rives, LLP	
500 Capitol Mall, Suite 1600	
Sacramento, CA 95814	
jamckinsey@stoel.com	
mafoster@stoel.com	

mafoster@stoel.com

ENERGY COMMISSION

CARLA PETERMAN
Commissioner and Presiding Member cpeterma@energy.state.ca.us

Jim Bartridge Adviser to Commissioner Peterman ibartrid@energy.state.ca.us

KAREN DOUGLAS
Commissioner and Associate Member
kldougla@energy.state.ca.us
Galen Lemei
Adviser to Commissioner Douglas
glemei@energy.state.ca.us
Raoul Renaud
Hearing Officer
rrenaud@energy.state.ca.us
Eric Solorio
Siting Project Manager
esolorio@energy.state.ca.us
Kevin W. Bell
Staff Counsel
kwbell@energy.state.ca.us
Jennifer Jennings
Public Adviser
E-mail preferred
publicadviser@energy.state.ca.us

DECLARATION OF SERVICE

I, Judith M. Warmuth, declare that on August 16, 2011, I deposited copies of the aforementioned document in the United States mail at 500 Capitol Mall, Suite 1600, Sacramento, California 95814, with first-class postage thereon fully prepaid and addressed to those identified on the Proof of Service list above.

AND/OR

Transmission via electronic mail, personal delivery or first class U.S. mail were consistent with the requirements of California Code of Regulations, Title 20, sections 1209, 1209.5, and 1210. All electronic copies were sent to all those identified on the Proof of Service list above.

I declare under penalty of perjury that the foregoing is true and correct.

