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Abstract

New road cut and mass-grading excavations in the north coastal area of San Diego County, California expose heretofore

generally unrecognized, probable late Holocene tsunami deposits and paleoseismically deformed sediments. Remnant tsunami

deposits occur up to 100 + m in elevation around the margins of modern coastal lagoons and estuaries and, combined with local

mima mounds of possible sand blow origin, provide indirect but compelling evidence for the late Quaternary activity of onshore

and offshore faults in the immediate study area. Probable paleoliquefaction features are regionally widespread and range from

fissures filled with sediments derived from overlying marine terrace sand and soil, to the more traditional sand-filled injection

dikes and sills, lateral spreads, and filled craterlets. The source of most liquefied sediment is underlying Tertiary bbedrock sandQ
and local, Quaternary marine-terrace deposits. A paleoseismic liquefaction origin rather than soft-sediment loading is deduced for

these features based on morphology, internal stratigraphy, field setting, and near proximity to known seismogenic sources.

Some paleoseismic events impacted late Holocene Indian middens and burial sites. The last seismic event probably occurred

within the past 1 to 3 ka, and possibly even records the historic earthquakes of either November 22, 1800 or May 27, 1862. The

liquefaction features also affect marine terrace sediments tens of meters above modern regional water levels, inferentially

brecordingQ paleoseismic events in this Mediterranean-type climatic region during winter rains when high-level, perched water

saturates the several meter thick source sediments.

Based on their regional extent, the paleoseismic features were likely caused by M~7+ tectonic events inferentially generated

by the nearby offshore Newport–Inglewood/Rose Canyon fault system, or possibly by smaller, recently exposed, related and

localized faults. Accordingly, the seismic hazard of the north coastal area of San Diego County may be substantially higher than

previously assumed, and hence of concern owing to the rapid ongoing and projected population increase.
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1. Introduction

The population of southern California is now

approximately 20 million and increasing. Much
(2005) 115–150



Fig. 1. Map showing location of paleoseismic features along the

north San Diego County coast. Los Angeles (LA), San Diego (SD)

and the study area (hatchured) are shown for reference.

Table 1

Local and regional onshore geology

Blake, 1856a,b; Goodyear, 1888; Fairbanks, 1893; Ellis and Lee

1919; Hertlein and Grant, 1944, 1954; Larson, 1948; Emery

1950a; Wilson, 1972; Hannan, 1973; Moyle, 1973; Barrows

1974; Crowell, 1974; Kennedy, 1975; Kennedy et al., 1975

Shepard and Kuhn, 1977; Sieh, 1978; Guptill and Heath

1981; Emery and Kuhn, 1982; Weber, 1982; Hall, 1984

Kuhn and Shepard, 1984; Eisenberg, 1985; Weldon and

Sieh, 1985; Tan, 1986; Harden and Matti, 1989; U.S. Geo-

logical Survey [USGS], 1990a; Lajoie et al., 1991; Prentice

and Schwartz, 1991; Aydin et al., 1992; Kern and Rockwell

1992; USGS, 1992, 1998; USGS and Southern California

Earthquake Center [SCEC], 1994; Lindvall and Rockwell

1995; Sims and Garvin, 1995; Tan and Kennedy, 1996

Grant et al., 1999, 2002; Vaughan et al., 1999; Baldwin e

al., 2000; Franklin and Kuhn, 2000; Kuhn, 2000; Kuhn et al.

2000, 2004; Lienkaemper, 2001; Grant and Rockwell, 2002

Stone et al., 2002.
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new growth is taking place along the coastal area

of northern San Diego County (Fig. 1). Here, from

the shoreline to about 18 km inland, thousands of

new houses and commercial centers have been, and

are being, constructed. Combined with related road

and infrastructure excavation, the new exposures

now reveal hundreds of heretofore unrecognized

paleotsunami and seismically-induced liquefaction

features. Detailed mapping, both in vertical cuts

and in continuous, grading-excavations, shows that

these features are regionally widespread and recur-

rent. Accordingly, they provide stratigraphic evi-

dence of late Quaternary, prehistoric earthquakes

and possible harbingers of future earthquakes and

risk in this part of California. The north coastal

area of San Diego County has a typical Mediterra-

nean climate: average annual precipitation is ap-

proximately 250 mm; mostly occurring during the

winter months of November through March. Much

natural vegetation has long been removed, and is
now supplanted by exotic introduced species such

as eucalyptus, palms, and a host of other decorative

plants associated with rapid, post-WW II urban

spread.

The presence of people and active faults often

form a deadly combination, well demonstrated in

California by recent, high-magnitude earthquakes

and related damage in the 1971 San Fernando earth-

quake (Oakshott, 1975), and the 1994 Northridge

earthquake (Woods and Seiple, 1995). Neotectonic

investigations in California traditionally focus on on-

shore surface rupture associated with geomorphically

well defined fault systems as documented by many

workers for the San Andreas and its various splays

(Table 1). New investigations now show that many

seismic sources are bso-calledQ blind faults, which can

generate high-magnitude earthquakes and yet have

only subtle or broadly distributed surface geomorphic

expression (Namson and Davis, 1988; Davis et al.,

1989; Shaw and Shearer, 2000). Similar blind thrusts

and other seismic sources occur immediately offshore

the southern California coast as deduced from inter-

pretation of geophysical data (Bohannon and Geist,

1998; Rivero et al., 2000; Figs. 1 and 2; Table 2).

Because of their offshore location, the earthquake

history of these faults is poorly known; however, it

now appears that at least some are recorded by on-

shore tsunami deposits and related paleoliquefaction

features.
,
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Fig. 2. Major fault zones in the immediate offshore and onshore area of the southern California coast from Los Angeles on the north to near

Ensenada in Baja, California on the south. Modified from Legg (1985).
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The north coastal paleoliquefaction features are

particularly well preserved on flights of marine terraces

and within their underlying regressive sands (Figs. 3

and 4). These have been mapped, albeit discontinuous-

ly, from approximately San Diego on the south to north

of Los Angeles (Fig. 2). Locally, the wave-cut plat-

forms and overlying marine deposits are capped by

beach ridges, former dune fields now somewhat lithi-

fied. Recent mass-grading (excavations for new houses

and commercial development) now exposes hundreds

of banomalousQ sedimentary features, which are rea-
sonably judged to be of paleoseismic origin. Accord-

ingly, this paper initially sets forth the geomorphic and

neotectonic setting of the study area. This is followed

by description of the inferred paleoliquefaction fea-

tures and the reasons why they are not a result of local

loading and soft-sediment deformation. Also discussed

is indirect evidence supporting the paleoseismic hy-

pothesis; namely, the inferred seismic origin of local

mima mounds, and the character and presence of tsu-

nami deposits. This is followed by interpretation of

data concerning paleoseismic recurrence and magni-



Table 2

Offshore geology

Shepard and Emery, 1941; Shepard, 1948; Emery, 1960; Hand and

Emery, 1963; Moore, 1969; Moore, 1972; Western Geophysical,

1972; Legg and Kennedy, 1979; 1991; Field and Richmond,

1980; Kennedy et al., 1980a,b, 1985, 1987; Graham and Bach-

man, 1983; Clarke et al., 1985, 1987, Legg, 1985, 1987, 1991;

Darigo and Osborne, 1986; Greene and Kennedy, 1987; Fischer

and Mills, 1991, Fischer et al., 1992; Legg et al., 1992, 1994,

2003, 2004; Crouch and Suppe, 1993; Astiz and Shearer, 2000;

Rivero et al., 2000; Sliter et al., 2001; Legg and Kamerling, 2003.
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tude, seismic source area, and earthquake-hazard im-

pact in this part of California.

This paper also summarizes local technical reports

and other papers of limited distribution that initially
Fig. 3. Marine terraces in the study area. Terrace 1 is topographically lowe

shown on Fig. 4 (after Tan and Kennedy, 1996; topographic base map fro
pointed to and support the paleoseismic hypothesis for

the now-documented sand blows, sand dikes, crater-

lets, sand laccoliths, filled fissures (that is, fissures

filled with materials from overlying sediments), and

lateral spreads. These reports and other documents

bearing upon neotectonics and earthquake hazards in

the area are cited in specific categories pertaining to

local onshore and offshore geology, liquefaction,

paleoseismites, tsunamigenic, and engineering impli-

cations (Tables 1–7).
2. Geomorphic and tectonic setting

The geomorphic and tectonic setting of the north

coastal, San Diego County area has been described
st and youngest; terrace 4 is highest and oldest. Cross-section A-A’

m U. S. Geological Survey, 1901).



Fig. 4. Schematic cross-section near Encinitas, California (Fig. 3) showing major marine terraces and wave-cut platforms (Qt1 through Qt4).

Approximate age of terrace sediments deduced from association with the marine-isotope stage chronology (Shackleton and Opdike, 1976),

substage 5a through stage 11. Basal regressive marine sand and cobbles deposited denoted by bdotsQ; fault zone (FZ); terrace thickness

exaggerated.
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and refined over the past 100 years (Table 1). In

addition to published papers and informal guidebook

articles, there is a plethora of pertinent unpublished

reports and data compilations, many pertaining to

neotectonism and earthquake hazards in the area

(Table 6). Some data were originally proprietary,

obtained for the mid-1970s geologic investigations

at and near the San Onofre Nuclear Generating Station

in the northwest corner of the Camp Pendleton Marine
Table 3

Liquefaction issues

Atwater et al., 2001; Obermeier and Dickenson, 2000. [Regarding

U. S. Northwest Cascadian Earthquake of 1700 A.D.]

Fuller, 1912; Morse, 1941; Saucier, 1987; 1991a,b; Obermeier,

1987, 1989, 1996a,b; USGS, 1990b; Obermeier et al., 1991,

1993, 2004; Marple and Schweig, 1992; Su and Follmer, 1992;

Munson et al., 1995; Li et al., 1996; Tuttle et al., 1996; Obermeier

and Pond, 1999; Cox et al., 2001; Hough, 2001. [Regarding

Midwestern U. S. Earthquakes.]

Dutton, 1889; Obermeier et al., 1985, 1990, 2002; Talwani and Cox,

1985; Peters and Hermann, 1986; Amick and Gelinas, 1991;

Marple and Talwani, 2000. [Regarding Charleston, South Car-

olina Earthquakes.]

Lawson, 1908; Holzer et al., 1989; 2004; Holzer and Clark, 1993;

Meisling, 1979; Jachens et al., 2002; Michael et al., 2002; Rymer

et al., 2002a,b; Sylvester et al., 2002. [Regarding California

Earthquakes.]

Harp et al., 2003. [Regarding Denali, Alaska Earthquake of 2002.]

Rajendran and Rajendran, 2003. [Regarding Kachchh Region, India

Earthquakes.]
Corps Base (Fig. 1). Many associated reports dealt

with the origin, relative age and deformation history

of coastal marine terraces (Table 6), the same as those

in the San Diego County north-coastal area that harbor

the postulated paleoseismic features described herein

(Table 1).

In 1991, LaJoie et al. summarized marine terrace

evolution for this part of California, and dated several

erosion platforms using amino-acid and uranium-se-

ries techniques. Tan and Kennedy (1996) compiled

prior geological mapping for the study area and ap-

plied local names for the lower four marine terraces

that range in elevation from about 3 to 130 m. Based on

associationwith themarine, oxygen-isotope stage chro-

nology, on local radiocarbon and uranium-series dating,

and on relative soil (pedogenic) profile development,

the terraces are designated and inferentially dated

as: Qt1 (lowest), ~80–125 ka (marine, oxygen-isotope

substages 5a through 5e, respectively); Qt2, ~200 ka

(stage 7); Qt3, ~320 ka (stage 9), andQt4, ~440 ka (stage

11; Figs. 3 and 4).
Table 4

Paleoseismites

Lamont, 1936; Galli and Ferreli, 1995; Landuzzi et al., 1995; Lucci

1995; Michetti et al., 1995; Reiter, 1995; Bartholomew et al.

2002; Ettensohn et al., 2002; Greb and Dever, 2002; Mariotti e

al., 2002; Merriam and Forster, 2002; Moretti et al., 2002

Obermeier et al., 2002; Stewart et al., 2002; Wheeler, 2002
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Table 5

Tsunamis

Emery, 1950b; Shepard et al., 1950; Natland and Kuenen, 1951;

Reimnitz and Marshall, 1965; Coleman, 1968; Eiby, 1982; Foster

et al., 1991; Shi et al., 1993; Daag et al., 1995; Dawson, 1994,

1995, 1999; Minoura et al., 1994; Bondevik et al., 1995; Bour-

geois, 1995; Carver and Gilpin, 1995; Kelsey et al., 1995; Moore

and Lewis, 1995; Nishimura and Miyaji, 1995; Peterson and

Priest, 1995; Tuttle et al., 1995; Dawson et al., 1996; Morner,

1996; Borrero et al., 1997; Imamura et al., 1997; Synolakis et al.,

1997; Ortiz et al., 1998; Clague et al., 1999; Hindson and

Andrade, 1999; Kawata et al., 1999; Takashimizu and Masuda,

2000; Atwater et al., 2001; Carey et al., 2001; Zitellini et al.,

2001; Okal et al., 2002a,b; Pratt, 2002; Legg et al., 2003, 2004;

Scheffers and Kelletat, 2003; Brookfield, 2004; Costa, 2004.

Table 7

Engineering-geology publications

Housner, 1958; Seed and Lee, 1966; Lee and Seed, 1967; Seed

1968; Scott and Zuckerman, 1973; Youd, 1973, 1984, 1985

Lowe, 1975, 1976; Youd et al., 1978; Seed and Idress, 1983

National Research Council, 1985; Owen, 1987; Holzer et al.

1989; Meier, 1993; Nichols, 1995.
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The marine abrasion platforms are typically se-

quentially overlain by ~1-m-thick veneer of cobbles

(former beach gravel), several meters of regressive

marine sand, and locally by prograding continental

deposits. Locally, the terrace surfaces are covered by

bbeach ridges,Q former coastal dunes now topograph-

ically rounded and often relatively lithified. These

beach ridge dune sands and the underlying marine

sands are prone to seismically-induced liquefaction

when saturated, this typically occurring during winter

rains when local perched water levels are common

(Kuhn et al., 2000, 2004).

From a tectonic standpoint, several prominent ae-

rial-photographic lineaments trend across the study

area (Kuhn et al., 2004). These lineaments form a

general rhombohedral pattern, with prominent axes

oriented northwest and northeast, respectively (Fig.

5). Some lineaments coincide with NW-trending

valleys that define the back edge of the terraces;

these are now demonstrably fault related as exposed

in road and grading cuts and locally in the sea cliffs

(Seitz, 1983; Shepard and Kuhn, 1977; Kuhn and

Shepard, 1984). The lineaments and related fault pat-

terns are now identified as possible major ancient

tectonic shear zones (Slosson et al., 2000), that are

probably re-activated. Additionally, new offshore,
Table 6

Unpublished reports

Euge et al., 1972; Western Geophysical, 1972; Fugro, 1975a,b,

1977a,b; Anderson et al., 1977; Ehlig, 1977; Shlemon, 1977,

1978a,b, 1979a,b,c,d.
,

;

;

,

seismic reflection profiles document the nearby pres-

ence and transtensional and transpressional character

of the Newport–Inglewood/Rose Canyon fault

(NIRC), a major component of the San Andreas

fault system (Fig. 2). The new urban exposures also

show that many onshore lineaments are aligned with

concentrations of sand dikes and boils, filled fissures

and lateral spreads, features herein interpreted to be of

paleoliquefaction origin.
3. Description of interpreted paleoliquefaction

features

In this section, North San Diego County’s lique-

faction-induced features are discussed according to

their morphology and genesis. The most widespread

and common are dikes, sills, and laccoliths. These

intrusions occur on marine terraces Qt1 through Qt4.

Craterlets are common, but principally occur only on

two terraces. Likewise abundant are lateral spreads

and filled fissures. One terrace has a very irregular and

undulating surface topography caused by liquefaction

at depth (Fig. 5).

3.1. Sand dikes, sills, and laccoliths

3.1.1. Field observations

Railroad and urban-excavation cuts now expose

many dikes filled with fine sand that pierce terrace

sediments (Figs. 6 and 7), and such terrace sediments

range in age from 100 to over 300 ka. The dikes

vary from about a few mm to ~10-cm wide, and

often taper upward and locally form cross-cutting

patterns (Fig. 8). A trench across prominent aerial

lineaments on the lowest coastal terrace (Fig. 5)

exposed unmatched soil and stratigraphic units, sug-

gesting that this particular lineament is fault con-

trolled (Franklin and Kuhn, 2000; Fig. 9). The

trench also exposed paleoliquefaction features such



Fig. 5. 1953 vertical aerial view of the coastal lagoons and terraces at Carlsbad, California. The circular features located in the center of the

photograph are bmima mounds;Q many are now confirmed to be bsand blowQ deposits. Thus several lineaments include lateral spread surfaces or

fissure fills (photograph from U.S. Department of Agriculture Photograph #AXN-8M-100, taken on 11 April, 1953).
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as sand dikes, lateral spreads, and a sand laccolith.

Locally, the source sands, as exposed in the trench,

are traced to the underlying Tertiary marine sand

(Fig. 10).

Of particular relevance to origin is the relation-

ship of the sand laccolith and the overlying topog-

raphy (Fig. 11). Here the sand laccolith is

demonstrably fed by several sand dikes, which in

turn had locally pierced and or otherwise given rise

to an irregular, micro-topography. The overlying

surface bears a soil likely no more than about 2 to

3 ka old profile and perhaps much younger (Shle-

mon, 1999, pers. com.) based on the relative degree

of development. The liquefied sediments exposed in

this trench vary in age from late Holocene to prob-
ably late Pleistocene, and demonstrate that two and

perhaps several seismic events occurred in this area.

The Tertiary source sands here are still relatively

cemented and therefore prone to liquefy under seis-

mic loading (Fig. 10). Terrace sediments containing

the dikes vary widely in origin, ranging from Pleis-

tocene (?) regressive marine and clay-rich marsh and

lagoon deposits to prograding continental and eolian

deposits.

Other trenches on the same marine terrace exposed

more sand sills, dikes, laccoliths, and warped argillic

soil horizons (Fig. 12), as well as highly contorted

lateral spreads that flowed over deformed, tilted sand-

flat and marsh sediments (Fig. 13). Also observed

were liquefied and offset channel-lag deposits in



Fig. 6. View (1994) of a railroad cut exposure showing fine grain, tan and white sand dikes cutting into and through continental deposits and

into an overlying Bt argillic soil horizon at Carlsbad, California (15.24 m el. MSL).
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which the adjacent horizontal bedding had been

uplifted and eroded (Fig. 14).

Likewise evident are irregularly shaped clay beds

with entrained sand, showing that the sand had moved

laterally and upward. Implicitly the contorted clay and
Fig. 7. View (1994) of sand dikes cutting vertically through clay-rich es

Numerous multi-colored bsource sand sillsQ are confined by clay layers, f
sand probably moved plastically to nearby swales,

ultimately giving rise to the undulating, modern

ground topography.

On adjacent terraces, urban grading cuts exposed

polygonal, reticulated, and sand-filled features (Fig.
tuarine deposits at Carlsbad, California (13.41 m el. MSL). Note:

orming sand dikes that fine upward.



Fig. 8. A vertical cut exposing sand-dikes cutting coastal terrace

sands at Carlsbad, California (46.63 m el. MSL). Note: The scale is

resting on a lateral spread surface which has cutoff the underlying

sand dikes, which are injected from below.
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15). Where exposed vertically the sand fillings proved

to be tabular dikes, which often trended along pre-

existing tectonically-related stress fractures. The dikes

are filled with upward-fining, loosely-packed, clean
Fig. 9. 1994 color aerial photograph taken along the lowest coastal terrace

with depressions.
and cohesionless sands. And here, too, some sands are

traced to their source in their underlying Tertiary

marine beds. Also, as exposed in the various cuts,

the dikes are horizontally sheared by lateral spreads

(Fig. 8); and where coalescing, the sand dikes are

injected into overlying coastal terrace sediments and

often form sand laccoliths (Fig. 12).

Terrace Qt2 exposures show the local presence of

gravel-bearing sands at, and near, the tops of vents (Fig.

16). These gravels are similarly traceable into the un-

derlying source sediments, where they have been

dragged upward and truncated by lateral spreads. The

gravel at the top of the dike may well stem from gravel

entrainment during eruption of the liquefied sediment,

a phenomenon resulting from strong seismic shaking

(Prentice et al., 1992; Meier, 1993; Yegian et al., 1994).

3.1.2. Source mechanism

The geometry and character of the sand-filled dikes

observed in the study area is very similar to those

reported to have originated as a result of seismic

liquefaction as documented by Obermeier (1996b)

Also, north San Diego County dikes are associated

with sand-filled laccoliths, similar to the seismic-in-

duced features of Obermeier (1996a). Accordingly,

the sand dikes, sills, and laccoliths are most likely,

heretofore, unrecognized paleoseismic features.
at Carlsbad, California. Note: The strong, dark lineament coincides



Fig. 10. Trench cut into a coastal terrace at Carlsbad, California exposing liquefied sediments (light layer) overlying the Eocene-age Santiago

Formation (B member) with numerous sand dikes emanating from below.
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3.2. Craterlets

Obermeier (1996a) pointed out that liquefaction-

induced craterlets were extensively produced during

the 1886 Charleston, South Carolina earthquake. Sim-

ilar swarms of craterlets occur in the study area,

particularly in terrace Qt4 (Figs. 3 and 17) likewise

supporting a probable seismic origin.

In plan view, the filled craterlets are nearly circular

throughout their height and vary in diameter from
Fig. 11. Closeup view of warped Holocene colluvial sediments and san

California. Note: Location is the same as Fig. 9.
about 0.3 to 2.0 m (Fig. 18). Their heights vary

from about 2 to 10 m. At depth, their internal stratig-

raphy is characterized by vertical zones of upward-

fining, clean, fine- to medium-grained sands, locally

varying in color and texture (Fig. 19). These sands, as

recorded during field observations, are injected

through each other and locally into and through a

central core. The upper part of most craterlets appears

to be a collapse feature, creating depressions 0.5 to 1.3

m deep (Fig. 20). These craterlets are confined to an
d dikes exposed in a trench cut into a coastal terrace at Carlsbad,



Fig. 12. Exposure of a storm-drain cut into the lowest coastal terrace (15.54 m el. MSL) at Carlsbad, California. Note: Multi-colored sand dikes

are traceable from marsh source sands (located at base of brush), are upward-fining, and cut through, offset, and warped bbetaQ (argillic)
lamellae.
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ancient beach ridge, where the dike sand demonstra-

bly originated as fluidized sediment transported up-

ward from underlying Tertiary marine sands. Locally,

the internal stratigraphy of the craterlets shows that

they were likely produced during two or more discrete

episodes (Fig. 18).

The craterlets also occur in sediments filling lin-

ear swales along the back edge of terrace escarp-
Fig. 13. A construction trench in the lowest coastal terrace (15.84 m el. M

marsh sediments, overlain by remnant v-shaped wedges of bbetaQ (argillic
easterly, forming a depression. Note: These same sediments, as exposed in

near-horizontal.
ments and local beach ridges (Figs. 3, 4, and 17).

Here the craterlets are filled by fluidized sediment,

which later was replaced almost entirely by silica.

These features occur near the base of the wave-cut

platform and grade into a strongly cemented, 1- to 2-

m-thick silcrete duripan. Based on local geomorphic

and stratigraphic relations, it is deduced that the

craterlets similarly formed by seismic liquefaction,
SL) at Carlsbad, California exposing tilted paleosand flat sands and

) lamellae, and capped by a clay-rich lateral spread, which flowed

sea bluff exposures located 100 m to the west, dip to the west or are



Fig. 14. A construction trench exposing marsh and sand flat sediments vertically cut by sand dikes at Carlsbad, California (19.50 m el. MSL).

The liquefied, dragged, and offset channel-lag deposit and that the adjacent bedding has been eroded.
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comparable to that reported by Twidale (1976), in

Australia.

Elsewhere many craterlets in late Quaternary sedi-

ments are characterized by N30W to N70W filled
Fig. 15. A horizontally-graded terrace surface at Carlsbad, Califor-

nia (46.32 m el. MSL) exposing polygonal-shaped, breticulatedQ
multi-colored sand-filled features. Note: Vertical cuts of these same

polygonal features expose numerous, adjacent, coalescing, upward-

fining sand dikes demonstrably injected from below and not the

result of surface infill.
fissures. These craterlets were later offset by the filled

fissure deposits which, themselves, trend from N–S to

approximately E–W. These particular craterlets vary

in diameter from about 1.2 to 1.5 m, have a central
Fig. 16. Near-vertical exposure in a coastal terrace made for a major

highway cut at Carlsbad, California (33.52–35.05 m el. MSL)

Note: The gravel to boulder-bearing sands, deposited in a very

fine, well-sorted dark mineral-rich matrix, are observed at the top

of vents, and traceable to sand sills and dikes emanating from

underlying marine source sands.
.



Fig. 17. Schematic vertical section of ancient barrier bar (beach ridge) showing sediment types, filled craterlets, and approximate abrasion

platform contacts (former shorelines) at Encinitas, California (see Figs. 3 and 4). Adapted from Obermeier (1996b), his Fig. 13, p. 20.
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core, and are formed during at least two intrusive

episodes (Fig. 18).

3.2.1. Source mechanism

The craterlets in the study area are likewise inter-

preted as of paleoseismic liquefaction in origin, based

mainly on the similarity of their internal stratigraphy,

their morphology, and their occurrence in tectonic

regimes where such craterlets have been previously

described. For example, Dutton (1889), noted swarms

of similar appearing craterlets, and deduced them to

be liquefaction features associated with the 1886
Fig. 18. Near-circular paleoliquefaction features (craterlets) exposed on the

California (110.94 m el. MSL). Note: The boundary is outlined by scrapi
Charleston, South Carolina earthquake of M~7.2.

More recently, similar liquefaction-induced craterlets

were regenerated in the Kachchh Region of India

following the M~7.7 earthquake in 2001 (Rajendran

and Rajendran, 2003). A likely earthquake origin for

the study area craterlets is also indicated by the sand-

filled tabular fissures whose overall dimensions and

shapes suggest that they are bincipient craterletsQ
(features described by Obermeier, 1996b).

Although yet uncertain, the source of the strong

seismic shaking may well be bhiddenQ or bblindQ faults
directly beneath the site, locally enhanced by topo-
surface during construction grading on a coastal terrace at Encinitas,

ng tools and scales.



Fig. 20. Paleoliquefaction features exposed in a vertical escarpmen

along a coastal terrace at Encinitas, California (118.87 m el. MSL)

Several episodes of upward-fining, multi-colored, tonal and textured

sands are postulated to have been injected through each other, into

and through a central core, and exhibit a bcollapsedQ infilled cone a

the top.
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graphic amplification, a phenomenon observed during

the 1971 M~6.6 San Fernando, California earthquake

(Saul, 1975, p. 68–69), and during the 1886 M~7.2

earthquake at Charleston, South Carolina (Obermeier,

1996a, p. 345).

Also suggestive of local faulting is the apparent

displacement of terrace Qt4 (Fig. 17), which, to the

east, dramatically increases in dip (Fig. 4). Exposures

here show that Qt4 is apparently offset by a fault zone

3–4 m wide. Local faulting and regional tilting in this

area has been postulated by others, although few

urban and related grading cut exposures were then

available (Wilson, 1972; Hannan, 1973; Eisenberg,

1985; Lajoie et al., 1991; Tan and Kennedy, 1996).

Conceivably, although unlikely, the craterlets may

owe their origin to some unique, local artesian condi-

tion. This postulate, however, is rejected as a source

mechanism because the study area craterlets are

regionally extensive, and it occurs up-slope from

dune field swales where local perched water would

most likely occur. Additionally, the craterlets lack a

regional hydrogeologic recharge/source area to supply

the necessary head for their sole occurrence.
Fig. 19. Paleoliquefaction feature exposed in a vertical cut during

construction grading on a coastal terrace at Encinitas, California

(102.41 m el. MSL). Note: The multi-colored bflowering upwardQ
feature, cuts through marine terrace sands and underlies the

bcraterletQ seen in Fig. 18. The blue hue on the right was made

by the scraper blade on the terrace wall.
t

.

t

3.3. Lateral spreads

3.3.1. Field observations

The myriad of new road cuts and grading pads on

terraces Qt1 through Qt4 expose many dikes and other

ground failure features typically associated with seis-

mically-induced lateral spreads, features well described

by Seed (1968) and Youd (1984), and depicted graph-

ically by Obermeier (1996a, Fig. 7, part 3).

The new cuts now provide cross-section plan

views, thereby permitting above-average field docu-

mentation of lateral spread extent and morphology.

The lateral spreads are exemplified by large blocks

that are bordered by dikes, which are nearly linear in

plan view. The dike sidewalls and widths range from

about ~5 to about 45 cm; many have a left or right-

step, en-echelon plan-view pattern. In vertical cuts,

horizontal ground shifting is apparent by the trunca-

tion and general displacement of sand dikes and filled

fissures (Fig. 15).

The lateral spreads occur on 18–88 slopes, although
locally slopes may exceed 108 forming minor

blandslideQ topography (Fig. 13).



Fig. 21. Paleoliquefaction features (fissure fill and intruded sands)

exposed by construction grading on coastal terrace at Carlsbad,

California (16.45 m el. MSL). Note: The fissure fill, measuring

3.81–5.08 cm wide, consists of down-dropped colluvium in terrace

sands, is near-vertical to vertical below the surface, and becomes

wedge-shaped with depth.
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3.3.2. Source mechanism

According to Youd (1984), lateral spreads can take

place on slopes as low as 0.18 in the form of laterally

moving landslides of non-liquefied sediments moving
Fig. 22. Paleoliquefied features (fissure fills and lateral spreads exposed

California (71.32 m el. MSL). Note: Northwest, northeast, and east–west

strike-slip mode. Also note that a laterally-spread liquefied layer at the to
atop a liquefied layer. Such lateral spreads may also

form grabens at their headwall and thrusting shear

zones at the toe (Seed, 1968; Obermeier, 1987). The

study area features are morphologically similar to

those described by Seed, Youd, and Obermeier and,

because they are in direct association with tabular

sand dikes, sand laccoliths, and filled fissures, they

are therefore interpreted as similarly being of seismic

liquefaction origin (Fig. 13).

3.4. Filled fissures

3.4.1. Field observations

Hundreds of filled fissures are exposed in new

excavations on marine terraces. These fissures are

vertical to near-vertical fractures that widen near the

ground surface. Most pinch out at depth. They range

in height and width from about 5 to 35 cm and from 4

to 8 cm, respectively. Sediments filling the fissures

have two sources; some demonstrably emanated from

the ground surface and apparently moved downward

through gravitational flow (Fig. 21); but other fissures

are clearly filled with sand emplaced by fluidization

of underlying Tertiary sediments. In sectional view

many fissures are tabular and have laminations that

parallel fissure walls. Also, many filled fissures cross-

cut one another and thus may be highly contorted

(Fig. 22).
on a steeply dipping cut slope on a coastal terrace at Encinitas,

fissure fill sediments offset, drag, and even reverse themselves in a

p has cut off fissure fills.



Fig. 24. Colluvial wedges; inferred to be large fissure fills exposed

in Tertiary sandstone (fractured grey-white unit) at Carlsbad, Cali-

fornia (6.09–7.62 m el. MSL).

Fig. 23. Exposure displaying 3 epochs of Quaternary terrace fissure

fills (from 3.81 to 5.08 cm wide), down-dropped into the underly-

ing bparentQ Tertiary sandstone at Carlsbad, California (6.09–7.62

m el. MSL).
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The filled fissures occur on a wide age range of

sediments; and locally some appear to penetrate into

the underlying Tertiary parent sandstone (Fig. 23),

and even form wedge-shaped down-dropped blocks

(Fig. 24).

3.4.2. Source mechanism

Based on their widespread occurrence, on the mul-

tiple sources of fill, and on their association with

lateral spreads, the study-area, filled fissures probably

formed recurrently.

Locally some fissures may be associated with

landslides, themselves possibly induced by seismic

events. Indeed, it is also plausible that some filled

fissures reflect faulting at depth, for the surface

fissure pattern mimics bedrock fractures. Regional

faulting is largely strike-slip (Sylvester, 1988; Wel-

don et al., 1996), and this style of deformation

typically gives rise to reversal of throw, transten-

sional and transpressional fractures and thus to

widespread complex ground fissuring (Obermeier

et al., 2004).
4. Basis for a liquefaction origin

A proposed seismic liquefaction origin for the

filled fissures is similarly based on comparing the

morphology of these features with those described

elsewhere that are associated with documented seis-

micity (Tables 1–3). Specifically, the filled fissures in

the study area are very similar to those described by

Sims and Garvin (1995) who analyzed and described

liquefaction features associated with the M~7.1, 1989

Loma Prieta, California earthquake.

Alternative mechanisms for origin of the filled fis-

sures range from local artesian flow to wave-cutting

along paleo-shorelines. But these hypotheses are un-

tenable in the study area for artesian flow is not, and has

not occurred given the local geomorphic, hydrogeolo-

gic, and stratigraphic setting, and wave-cutting is sim-

ilarly ruled out owing to relative brecencyQ of

liquefaction in marine terrace sediments now tens of

meters above present sea level. Of particular interest,

however, is the nearby presence of the active Newport–

Inglewood/Rose Canyon fault zone, and a related blind

thrust immediately offshore (Fig. 2). According to

Rivero et al. (2000) and Legg (personal communica-

tion, 2004) the blind thrust extends directly under the

study area, and may be capable of generating seismic

events of M~7.0 or greater (Kuhn et al., 2000, 2004).
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5. Indirect paleoseismic evidence

Mima mound topography also characterizes much

of the North San Diego County study area. Although

these features alone do not provide incontrovertible

evidence for local-area paleoseismicity, their presence

compliments and otherwise supports major seismic

events in the late Quaternary. Extensive mound fields

were once in evidence (Orcutt, 1887) and visible on

aerial photography taken along the North San Diego

County coastal surfaces, prior to urbanization (USGS,

1947; USDA, 1953). Scattered mounds still occur in

Carlsbad and Encinitas and on the Camp Pendleton

Marine Base. As shown on aerial photographs and

originally noted in soil surveys (USDA, 1918, 1973),

continental and estuarine deposits located on coastal

terraces Qt1 at Carlsbad are mantled by a local micro-

relief or hummocky landscape of bmima mounds,Q
each of which is usually less than ~1 m high and 2

to 3 m in diameter (Fig. 5).

5.1. Field observations

Site-specific excavation of Carlsbad and Encinitas

coastal mound sites show that some mound fields are

aligned along fissure fills and laterally spread depres-

sions called bvernal poolsQ. The mound topography

and adjacent vernal pools are irregular. They appear

concentrated along some lineaments, possibly fault or

fracture zones, a phenomena reported elsewhere in

California (Shlemon et al., 1973). The mounds are

typically subrounded, are frequently confined by an

expansive clay cap, and are often filled by clean white

to tan sand, giving rise to a dramatic contrast in color

and grain-size, when compared with the generally

dark-colored clayey sediments characteristic of sur-

rounding continental or estuarine deposits. As ex-

posed in grading cuts, some mounds directly

coincide with sand dikes and sand laccoliths. These

sand dikes, which are tabular and tubular in plan view,

are traceable to underlying sand source beds derived

from Tertiary bedrock. Most terraces are burrowed,

and the sand dikes, sills and source sands are often

occupied by ground squirrels and gophers that indi-

cate an ongoing biogenic maintenance by rodents.

Similar-appearing mound complexes in the San Clem-

ente area, about 48 km to the north, have been inter-

preted to be mainly constructional (bioturbation), in
origin (Shlemon et al., 1997), however a paleoseismic

origin was not precluded.

5.2. Multiple origin of mounds

There are many hypotheses for the origin of

mounds: eolian deposits (Barnes, 1879); water-depos-

ited features (Dietz, 1945); water and glacial com-

bined (Newcomb, 1952; Washburn, 1997); physical

or chemical segregation (Ritchie, 1952); features cre-

ated by human agency (Aten, 1981); ants, ground

squirrels or pocket gophers (Dahlquist and Scheffer,

1942; Arkley and Brown, 1954; Cox, 1990, 1991);

seismogenic (Berg, 1990; Riefner and Pryor, 1996),

and bmultiple originsQ (Krinitzsky, 1949).

5.2.1. Source mechanism

Some of the Carlsbad and Encinitas mounds evi-

dently originated as sand blows, and were then later

colonized by fossorial rodents. Also some the mounds

apparently formed during genesis of sand laccoliths,

which hydraulically deformed the overlying clay ex-

pansive cap where fluidized sand could not escape to

the ground surface. Many of the associated vernal

pools were in part created by lateral spreads which

are linear in plan view (Kuhn et al., 2000).

The Carlsbad and Encinitas mima-mound topogra-

phy, is therefore a probable important indicator of

paleoseismicity because morphologically similar fea-

tures are associated with tabular sand dikes, sand lacco-

liths, sand blow deposits, lateral spreads, filled fissures

and plausible tsunami features (Kuhn et al., 1995a,b,c,

2000, 2004). This is contrary to observations from the

extensively studied New Madrid Seismic Zone where

seismicity apparently did not produce mima mounds

(Saucier, 1991a). It should be noted that from aerial

photos, the NewMadrid sand blows are similar in form

to mounds; however, agricultural leveling for almost

200 years has destroyed much of their relief.
6. Age of liquefaction features

6.1. Evidence for quaternary paleoseismic events

6.1.1. Field observations

Features interpreted to be of seismic liquefaction

origin in the Carlsbad to Encinitas area include
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extensive swarms of craterlets, principally found on

the ~ 440 ka terrace Qt4 (Fig. 4). Moreover, fissure

fills, sand dikes, lateral spreads and mounds occur

on all terraces, which vary in age from ~ 80 ka to

440 ka. A bclassicQ exposure at one location in

Carlsbad shows that 11 epochs of paleoliquefied

sand dikes, fissure fills, and lateral spreads probably

occurred during the past 120 ka (Figs. 25 and 26).

6.2. Evidence for Holocene paleoseismic events

6.2.1. Field observations

The north coastal area of San Diego County

contains widespread Paleo-Indian sites, some of
Fig. 25. Photograph of a vertical cut exposing sand dikes cutting

coastal terrace sands at Carlsbad, California (47.24–51.81 m el.

MSL) Note: The scale is resting on a lateral spread surface that

has cut-off the underlying sand dikes, which were injected from

below. At least 10 episodes of lateral spreads cut-off sand dikes.

Measured sections of multiple lateral spread surfaces in vertical cuts

are shown in Fig. 26.
which are radiocarbon-dated at more than 8 ka

(Breschini et al., 1992). These archaeological sites

consist of burials, bkitchen middens,Q and transitory

camps that contain diverse artifacts dated mainly by

shells and charcoal (Carter, 1957; Gallegos, 1987,

2002). Several early-to-late Holocene archaeological

sites have been affected by paleoseismic features.

For example, liquefied sand dikes and sills extend

upward, intrude and deform midden deposits located

on the Qt1–Qt4 terraces in the Carlsbad area (Fig.

3). Further, based on radiocarbon-dating, at least

one major event took place about 6 to 8 ka bp

(Smith, 1996). Some of these liquefaction-deformed

archaeological sites occur on uplifted 60-m high,

marine terrace deposits, well above Holocene re-

gional water levels (Shlemon and Kuhn, 1997;

Fig. 27). It is thus inferred that liquefaction likely

took place during the winter rainy season when the

high-level terrace sands contained perched water

(Kuhn et al., 2000).

Other archaeological evidence suggests that seis-

mically-induced liquefaction may have taken place as

recently as 2 to 3 ka ago (Franklin and Kuhn, 2000).

Indeed, an archaeological site at Batiquitos lagoon in

Carlsbad (Gallegos and Associates, 1997) exposed an

intact prehistoric hearth. One test pit in the center of

the site (feature 97-1) exposed artifacts and shells that

were apparently offset and locally dragged upward by

fissure fill sediments (Fig. 28). The deformed artifact

horizons yield radiocarbon dates of 0.9 to 1.3 ka,

documenting incontrovertible evidence for paleoseis-

mic liquefaction and ground deformations in late Ho-

locene time (Fig. 29).
7. Tsunamigenic features

The possible tsunamigenic features identified in

this investigation are based on comparison with strati-

graphic relations and internal characteristics of tsuna-

mi deposits recorded elsewhere (Table 5).

7.1. Field observations

Many abrupt, chaotic, convulsive sedimentary fea-

tures now exposed in the north coastal area of San

Diego County cannot be simply explained by non-

seismic soft-sediment deformation, nor by variations



Fig. 26. Measured sections of vertical cuts made 15 m apart showing multiple lateral spread surfaces. Same location as seen in Fig. 25.
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and cyclicity of storm deposits (btempestites,Q of

Aigner, 1985). Rather, the features are similar to

those formed by (1) ancient earthquakes [bseismitesQ
(Seilacker, 1969, 1984)]; 2), turbidity current deposits

[bturbiditesQ (SEPM, 1951; Kuenen, 1947, 1957, p.

231)], and; 3) modern tsunami deposits [btsunamitesQ
(Pratt, 2002)]. Many coastal features also show un-

usual chaotic variations here likewise inferred to be

caused by paleoliquefaction. Typically, a locally gen-

erated tsunami deposit can also be deformed by large

aftershocks.

The convulsive features in the north coastal Carls-

bad–Encinitas region have characteristics that are in

common with other tsunamis described elsewhere

(Table 5). Specifically:

(1) The presence of chaotic, turbid, sedimentary

debris (Fig. 30), commonly mixed with wood
fragments, shells, clay balls and pods of sharp,

angular pieces of terrace deposits and bedrock,

and locally capped by peat (Fig. 31).

(2) The initial event deposits grade from coarse to

landward-fining, rather than landward-coarsen-

ing, typical of btempestitesQ (storm deposits).

(3) The pebbles are imbricated (Fig. 32).

(4) The landward movement of sediment is blobe
formQ (Fig. 33), similar to those in the Philip-

pines Islands produced by the 1994 Mindoro

earthquake (Daag et al., 1995).

(5) The bv-shapedQ chaotic features were inferen-

tially caused by an abrupt bhydraulic jumpQ
when tsunami waves reach a bbedrock highQ
or very resistant surface feature (Fig. 34), a

phenomenon often associated with fluid-like

features exposed in the overlying sediments

(Morner, 1996; Fig. 35), and;



Fig. 27. Paleoliquefaction features exposed by grading deform, cut, and offset a shell (Argopecton sp., Chione sp.), charcoal, and artifact-rich,

Indian midden site located on a 60 m high, now well-drained terrace at Carlsbad, California. Note: Arrows point to sand dikes, fissure fills

(trending N20W and N80W), and lateral spreads that crosscut the terrace sands and offset each other.
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(6) The abrupt landward termination of sand

wedges has an angle similar to, but steeper

than dunes (Daag et al., 1995; Fig. 36).
Fig. 28. An archaeological site located along the north side of Batiquit

Paleoliquefaction features (fissure fill and liquefied sediments) appear to

ka year old, calibrated radiocarbon-dated shells (i.e. Argopecton sp

Gallegos).
Because of their similar internal stratigraphy and

occurrence on former abrasion platforms on mod-

ern bbedrock highs,Q the anomalous, chaotic, con-
os Lagoon at Carlsbad, California (5.18–5.48 m el. MSL). Note:

offset, dragged, and disrupted fire-affected rocks and 0.9 to 1.3

., Chione sp.) and charcoal (photograph: Courtesy of Dennis



Fig. 29. Paleoliquefaction features exposed in a cut slope on the north side of Batiquitos Lagoon at Carlsbad, California (6.09–7.62 m el. MSL),

located near the site seen in Fig. 26. Note: Shell horizons (Argopecton sp., Chione sp., and Ostrea lurida), charcoal, fire-affected rock

fragments, and cobbles are offset, dragged, and liquefied upward into pre-existing fractures and into sand dikes.
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vulsive, deposits in the Carlsbad to Encinitas area

were likely produced by paleoseismic events, and

hence are here deduced to be tsunamigenic in

origin.
Fig. 30. View looking south of a storm drain trench wall cut into a

California (15.54 m el. MSL). Note: Exposed are highly disturbed, cont

dragged Bt horizons resting on a Tertiary sandstone abrasion platform

origin, for it also displays a distinct bhydraulic jumpQ, markedly di

elsewhere.
7.2. Local tsunami mechanism

Although Emery (1960, p.124) indicated that

southern California was not immune to tsunamis,
coastal terrace exposing possible tsunami deposits at Carlsbad,

orted, chaotic, turbid sediments and debris overlying liquefied and

. The upper half of this exposure interpreted as tsunamigenic in

fferent from documented paleoliquefaction features documented



Fig. 31. bAnomalous sedimentsQ inferred to be tsunami deposits exposed in a vertical cut adjacent to a coastal lagoon at Carlsbad, California

(6.70–9.14 m el. MSL). Note: The Jacob staff (scaled in 1V increments), rests in highly disturbed, mudflat sediments containing shells (Chione

sp.), rock and clay fragments, overlain by chaotic, convulsive, turbid, sedimentary debris, including wood fragments, sharp angular pods of

terrace deposits and Tertiary sandstone bbedrockQ. These sediments are capped by lagoonal tidal flat organic-rich sands, bpeatQ, pieces of terrace
sands and other chaotic sediments.
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many considered that San Diego was relatively safe

owing to the bordering, wide continental shelf that

inhibits seismically-induced wave attack generated

outside the region (Van Dorn, 1965). Recently, how-

ever, geophysical research shows that the southern

California Continental Borderland is crossed by
Fig. 32. An abrupt, highly localized, disrupted, bchaoticQ imbrication of m

terrace showing possible tsunamigenic and/or paleoliquefaction features at

in.) for scale (1 in.=2.54 cm).
many active faults with characteristics capable of

producing large-scale, coseismic sea floor deforma-

tion during submarine earthquakes (Legg, 1991; Legg

and Kennedy, 1991; Rivero et al., 2000; Grant and

Rockwell, 2002). Additionally, local strong seismicity

generated by any potential local earthquake sources,
arine gravels exposed in a vertical excavation in the lowest coastal

Carlsbad, California (3.04–3.35 m el. MSL). Note: Tape measure (in



Fig. 33. View of landward-fining sand layers forming lobes on on-lapping coastal terrace sands at Carlsbad, California (20.72–21.33 m el.

MSL). Note: Putty knife rests against terrace sands for scale; also see irregular sharp contact with white sands at top of photo. These features are

morphologically similar to tsunami deposits photographically documented during the 1994 Mindoro event in the Philippine Islands (Daag et al.,

1995).

G.G. Kuhn / Engineering Geology 80 (2005) 115–150 137
both onshore and offshore, could trigger large-scale

slope failures and thereby generate local tsunamis

(McCarthy et al., 1993; Borrero et al., 2001; Legg et

al., 2003). Additionally, many large slope failures

have been mapped in the southern California Conti-

nental Borderland (Field and Richmond, 1980; Clarke

et al., 1985, 1987; Legg and Kamerling, 2003), even

off Carlsbad and Encinitas (Greene and Kennedy,

1987; Clarke et al., 1987; Fig. 37). Paleoseismic

investigations also show large coastal earthquakes

occurred within the Holocene, and historically at

least four measurable local tsunamis impacted the

southern California region in 1812, 1862, 1927, and
Fig. 34. North wall of a sewer-line trench cut into a terrace and exposing a

MSL). Note: The scale is located on a Tertiary-age sandstone abrasion pla

containing small angular pieces of terrace and bparentQ Tertiary sandstone

features interpreted to result from an abrupt bhydraulic jumpQ created whe
1930 (McCulloch, 1985; Lander et al., 1993). Accord-

ingly, evidence for paleotsunamis is abundant, and the

potential for future impact is high (McCarthy et al.,

1993; Legg et al., 2003, 2004).
8. Potential seismic sources

Based on the extent (730 km), character, and dis-

tribution of paleoseismic features and the residual

evidence afforded by mima-mound topography and

tsunamigenic deposits, it seems likely that the causa-

tive earthquakes were of at least M~7.0 (Kuhn et al.,
possible paleotsunami deposit at Encinitas, California (93.26 m el.

tform, which is unconformably capped by a chaotic, turbid deposit

and small rocks. Also note the bv-shaped upward climbingQ chaotic
n tsunami waves reached a bedrock high.



Fig. 35. North wall of a cut slope exposing possible tsunamigenic and/or paleoliquefaction features at Encinitas, California (95.09 m el. MSL).

Note: These features are the same as seen in Fig. 34 but are 3 m higher in the section.
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2000, 2004). The specific fault(s) that triggered the

liquefaction and likely secondary surface faulting is

not well constrained. However, the likely seismic

sources are the Newport–Inglewood/Rose Canyon

Fault Zone (NIRC), ~ 4–6 km offshore and possibly

under the study area (Kuhn et al., 2000, 2004), other

Continental Borderland faults (Legg, 1991), and pos-

sible site-specific faults (Figs. 1 and 2).
Fig. 36. View looking southwest at abnormally tilted bsand flatQ sediments

California (28.65–29.26 m el. MSL). Note: The bedding dip varies from ne

locally completely deformed. This exposure is morphologically a btwinQ
followed the 1994 Mindoro earthquake in the Philippine Islands (Daag et
8.1. Newport–Inglewood/Rose Canyon fault zone

The Newport–Inglewood/Rose Canyon fault zone

(NIRC) is the longest and most active in the north-

coastal San Diego County area (Figs. 2 and 37). It is

therefore the most likely seismogenic source for the

observed paleoseismic features (Lindvall and Rock-

well, 1995; Grant et al., 1999; Rivero et al., 2000;
exposed in a storm-drain trench cut into a coastal terrace at Carlsbad,

ar-vertical (left) to 75 to 80 degrees (middle) to 46 degrees (right), to

of deposits photographically documented during the tsunami that

al., 1995).



Fig. 37. Portion of a bGeologic map of the inner-southern California

Continental MarginQ. Note: The red square (located at the Carlsbad

Submarine Canyon) indicates sea floor faulting that cut strata of

Holocene age. Also note the adjacent large submarine landslide

(adapted from: Clarke et al., 1987).
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Grant and Rockwell, 2002). It has also been suggested

that the NIRC dips eastward beneath the coast (Kuhn

et al., 1994), possibly merging with a deep northeast-

dipping Neogene detachment fault system (Legg,

1991; Crouch and Suppe, 1993). Though presently

somewhat speculative, an east-dipping seismogenic

zone under Carlsbad to Encinitas may trap seismic

wave energy in the hanging wall (Legg et al., 1994;

Kuhn et al., 2000, 2004).

Approximately 1.5 km offshore lies the Carlsbad

Submarine Canyon (Shepard and Emery, 1941), char-

acterized by Holocene sea floor offset, and large

subsurface landslides (Kennedy et al., 1985, 1987;

Fig. 37). Similarly, Fischer et al. (1992) indicated

that a coastal btectonic damQ had beheaded the former

drainage in the Carlsbad area. These tectonic features

are directly offshore the Holocene liquefaction and

tsunamigenic, chaotic features described in this

paper (Kuhn et al., 2000).
North to northeast-trending branching and second-

ary fault zones also extend onshore from the NIRC

(Hannan, 1973; Adams and Frost, 1981). These are

exemplified by the Cristianitos fault zone near San

Onofre (Western Geophysical, 1972; Moyle, 1973),

and by an unnamed fault zone about 10 km north of

Carlsbad (Euge et al., 1972). The Carlsbad to Encinitas

area is located at a major transition in the NIRC, the

bCarlsbad–Encinitas OverstepQ of Fischer and Mills

(1991), where the offshore Rose Canyon fault zone

changes from a more northerly, transtensional trend to

a more westerly, transpressional trend along the South

Coast Offshore Zone (Kuhn et al., 2000). In sum, the

NIRC, other nearby offshore faults, plus possible local

onshore faults are all capable of generating relatively

high-magnitude earthquakes. These collectively can

produce the myriad of paleoseismic features now ex-

posed in the north San Diego County area.

8.2. Urbanization-caused increase in the hazards of

seismically-induced liquefaction

The population of coastal North San Diego County

is expected to triple over the next decade (SANDAG,

1991). Excavations of new residential tracts have

provided excellent exposures of the neotectonic fea-

tures described herein, and likely will continue largely

on the marine and non-marine terraces. Terrace sedi-

ments are typically fine to medium sands, which are

inherently susceptible to liquefaction when saturated.

Although permanent ground water levels are presently

low along the undeveloped coast, shallow perched

water tables occur locally. Also, surface water also

recharges perched and regional water levels via pre-

existing fractures and sand dikes (Fig. 38). Almost all

water for urban landscaping and recreational use is

imported, so that soil moisture and infiltration will

likely increase from the present 250 mm/year to an

anticipated 2000 mm/year in the coming decade

(Shlemon and Kuhn, 1997). Groundwater is typically

perched within the Quaternary sediments (terrace

deposits) on the underlying, relatively impermeable

bedrock surface or bhardpan.Q These bhigh-elevationQ
perched water levels will rise an expected ten-fold

owing to urban-water infiltration (Shlemon, 2000).

The active NIRC is within 4 to 6 km of the coast,

and if an east-dipping fault plane exists at depth,

coastal development will lie within the 5-km, near-



Fig. 38. Horizontal exposure made by grading on a coastal terrace at

Carlsbad, California (29.26 m el. MSL). Note: Rainfall-induced

surface runoff water flows into the subsurface along pre-existing

fractures and sand dikes, thus recharging groundwater levels.
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source zone for this active fault. Consequently, en-

hanced shaking may be expected from moderate to

large earthquakes along this portion of the NIRC.

Such strong shaking increases potential liquefaction

of late Pleistocene sands and in the overlying engi-

neered fills. Accordingly, the potential for coastal

area, liquefaction-induced ground failures will likely

increase during the coming decades. Structures may

then be subject to permanent ground displacements

associated with lateral spreading, as well as wide-

spread sand blows and fissuring. Such hazards have

heretofore been largely ignored.
9. Conclusions

Recent man-made exposures at Carlsbad and Enci-

nitas reveal late Pleistocene to probable Holocene

faults, tsunamigenic deposits, and ground-failure

hazards. Features interpreted to be of seismic lique-

faction origin are widespread and common in the

study area. Paleoliquefaction features include sand-

filled dikes and sills, lateral spreads, filled craterlets,

fissures fills, and other unconsolidated sand deforma-

tions derived from underlying Tertiary and Pleistocene
marine and dune sediments. A paleoseismic liquefac-

tion origin, rather than soft-sediment loading is de-

duced for these features based on internal stratigraphy,

morphology, field setting, and proximity to active

faults. The paleoliquefied sands are upward-fining,

penetrate and locally deform regressive marine and

prograding continental deposits and soils that mantle

marine-terrace platforms at elevations from about 3 m

to 130 m, and such marine-terrace platforms range in

age from about 80 ka (lowest) to 400 ka. Some

injection dikes and fissure fills are young, for they

displace Holocene, Native-American Indian middens,

burial grounds, and transitory camps, located on 60-m

high terraces, far above modern regional ground

levels. The paleoearthquakes were likely at least

M~7, and may have occurred during unusually wet

times, when perched groundwater saturated underly-

ing sediments. Many paleoseismic events probably

originated on the nearby Newport–Inglewood/Rose

Canyon fault system. Eastern dipping segments of

the NIRC project under the north coast of San Diego

County. Accordingly, the seismic hazard of this area

may be substantially higher than heretofore assumed.
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