

San Diego Gas and Electric R&D Involving Distributed Generation Bill Torre

Integrated Energy Policy Report Sacramento, California May 9, 2011

© 2001 San Diego Gas and Electric. All copyright and trademark rights reserved.

High DG Penetration Concerns

- Operational Concerns (PV Variability / Intermittency)
 - Monitoring and Ensuring resource adequacy
 - Frequency regulation
 - Voltage regulation
 - Impact is highly location dependent (urban vs rural)
 - O&M impacts

Engineering / Planning

- Production assumptions for capacity planning (size, location, time, guaranteed production)
- Volt/ VAr planning
- Conservation Voltage Reduction impacts

Mitigation Measures

- Smart PV Inverters (IEEE 1547.8)
- Dynamic voltage support
- Monitoring and control of PV Inverters

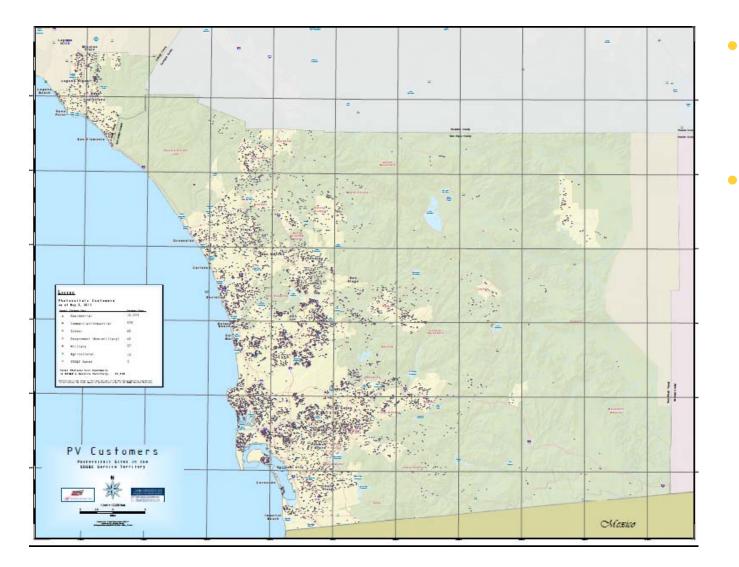
SDG&E R&D Technical Studies Simulating High Levels of Distributed Generation

- Technical Studies simulating high levels of distributed generation
 - EPRI High PV Penetration Study
 - Evaluates increasingly high levels of PV Penetration
 - Includes monitoring of PV generation along actual distribution circuits and simulation of actual intermittency
 - Models customer load and generation for all hours of the year
 - Includes evaluation and optimization of energy storage to mitigate impacts of high PV concentration
 - Evaluate benefits of using Smart Inverters for PV
 - Quanta Technologies Study Evaluates Transient and Dynamic Impacts of distributed generation (high PV concentrations)
 - PSCADD Detailed modeling of inverters
 - High PV Penetration study with DOE and UCSD
 - Simulates SDG&E distribution circuits
 - Conducted by EDSA

SDG&E R&D Demonstration Projects For Evaluating DG

- SDG&E Borrego Springs Microgrid Project
 - Demonstrate controlled islanding and load/DG balancing
 - Real Time Optimization and control of DG and energy storage
 - Automatic Volt/VAr control, feeder automation
- Power Quality Field Measurement and Analysis Project
 - Field data collection of distribution steady state and transient voltages on distribution circuits with high levels of DG
 - Data analysis and evaluation of DG impact
- Dynamic voltage support project on distribution circuit with known voltage regulation issues due to high levels of DG
 - Contracted General Electric to conduct analysis to size and locate dynamic voltage support devices
 - GE to install dynamic voltage support device to evaluate feasibility and benefits
- Energy Storage Projects to Mitigate Impacts of DG
 - CEC funded Projects
 - EPRI demonstration of CESS
 - SDG&E Smart Grid Energy Storage projects

SDG&E Future Planned Projects To Mitigate T&D Impact of DG*

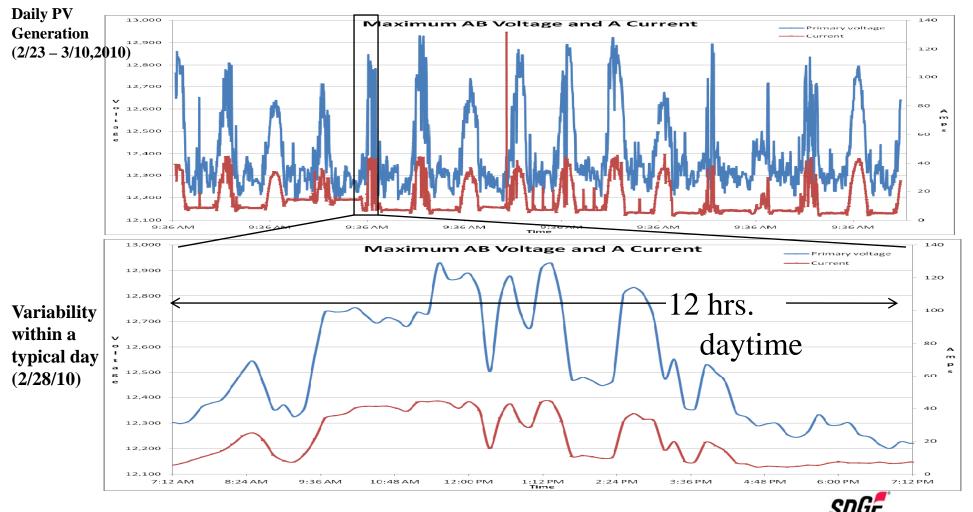

• General Rate Case Smart Grid Projects (\$ 54 Million* – Yr 2012)

- Distributed Energy Storage (\$ 34 Million*)
- Dynamic Line Ratings for distribution (\$ 4 Million*)
- Synchrophasors for distribution (\$ 8 Million*)
- Dynamic Voltage support (\$ 3 Million*)
- Distributed Energy Resource Management System (\$ 5 Million*)
- * Costs shown in 2009 dollars, unloaded. Cost to mitigate 120 130 MW of DG on SDG&E system in yr 2012, does not include T&D costs of meeting 12,000 MW DG goal by 2020.

Map of Current Roof Top Solar PV Installations

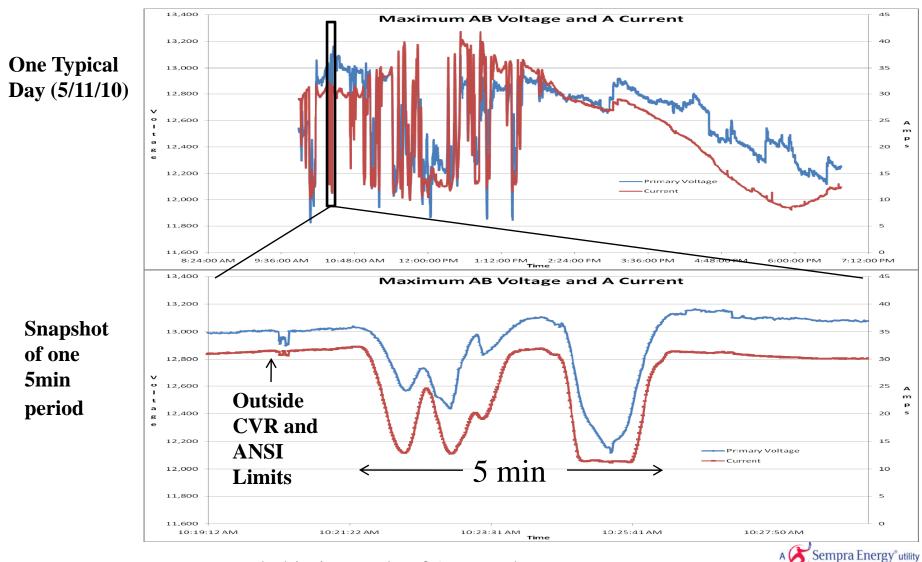
- Current level 99 MW, 12,798 customers with NEM
 - Current practice of uncontrolled site selection for DG could cause significant impacts to the T&D system with a more rapid increase in DG

Additional Impacts of High Levels of DG on the Grid


- Voltage
 - Overvoltage
 - Voltage fluctuations
 - LTC/regulator/cap bank impact
 - Unbalance
- Protection
 - Unintentional islanding "potential"
 - Load mismatch
 - Interconnect transformer connection
 - load rejection overvoltage
 - Reverse power (directional relaying)
 - Voltage events
 - Frequency events
- Operational
 - Intermittency/Variability
 - Observability/ Monitoring
 - Forecasting DG levels
 - Off Peak production

- Demand/Energy
 - PV impact on peak demand/load growth
 - Annual losses
 - Annual energy consumption
 - Impact on CVR
- Thermal overloads
- Power Quality
 - Harmonics
 - Flicker
 - CEBMA Violations
- Review of Utility Safety Practices
 - Lineman practices
 - Hotline/deadline work
 - Improved mapping and tracking of DG to ensure safety

Typical PV Intermittency SDG&E DG Causes Resource Forecasting Problems on a Daily Basis


Each data point recorded at 10 min intervals

8

A 💦 Sempra Energy[®] utility

Voltage Regulation Problems and Reduced System Efficiency and Increased Operational Cost Caused by Intermittency of PV

Data recorded in intervals of 1 second

Regulatory and Standard Changes Needed To Accommodate Higher DG Penetration

• Regulatory

- Interconnection Tariffs (Rule 21, WDAT) modification
 - Threshold for periods of low load high PV output
 - Low voltage ride through
 - Frequency droop requirements
- Rule 2 modification
 - Harmonics
 - Voltage
- Cost Causation
 - Rates & incentives
- Smart Inverters
 - IEEE 1547.8
 - Modify WDAT to accept smart inverters

- Increased DG Levels are expected to have significant impacts and resulting costs for the Electric T&D System
- Technical studies and demonstration projects are underway to quantify impacts of additional DG, and help design mitigation of impacts
- Actual field measurements indicate significant impacts to system performance on distribution circuits with high levels of conventional DG
- Changes in Regulatory and Technical standards are also required to accommodate increased levels of DG
- Adopt lessons learned in European countries

Questions ?

Mr. William V. Torre

San Diego Gas and Electric Co.

Electric Transmission and Distribution Engineering

wtorre@semprautilities.com

858-654-8349

