BINGHAM

Doug Larson

Direct Phone: 415.393.2796 doug.larson@bingham.com Our File No.: 0000354112

May 26, 2011

Via FedEx

Casey W. Weaver, CEG Engineering Geologist California Energy Commission 1516 Ninth Street, MS-46 Sacramento, CA 95814

Re: Calico Solar Project Amendment, Docket Number 08-AFC-13C - Geotechnical Report and Boring Map

Dear Mr. Weaver:

Enclosed for docketing, please find the following:

- Two (2) bound copies of the Geotechnical Engineering Report prepared by Terracon Consultants, Inc. for Tessera Solar, dated January 4, 2010
- Two (2) color copies of a map depicting previous and current boring layouts; and

DATE 5-26 11

• Two (2) CDs containing electronic versions of the two documents above.

We will transmit copies to the POS distribution list upon acknowledgement of your receipt of the enclosures.

Sincerely yours,

Doug Larson
Senior Paralegal

Enclosures

Hartford
Hong Kong
London
Los Angeles
New York
Orange County
San Francisco
Santa Monica
Silicon Valley
Tokyo
Washington

Boston

Bingham McCutchen LLP Three Embarcadero Center San Francisco, CA 94111-4067

> T +1.415.393.2000 F +1.415.393.2286 bingham.com

A/74299324.1

Solar One Pisgah, California

January 4, 2010 Terracon Project No. 60095029

Prepared for:

Tessera Solar Phoenix, Arizona

Prepared by:

Terracon Consultants, Inc. Irvine, California

Offices Nationwide Employee-Owned

Established in 1965 terracon.com

January 4, 2010

Tessera Solar 4800 N. Scottsdale Road, Suite 5500 Scottsdale, Arizona 85251 Phoenix, AZ 85016

Attn: Mr. Robert Byall

PH: 602.773.4537 FAX: 602.421.5519

email: bob.byall@tesserasolar.com

Re: Geotechnical Engineering Report

Solar One Project Pisgah, California

Terracon Project No. 60095029

Terracon Consultants, Inc. (Terracon) has completed the geotechnical engineering services for the above referenced project. These services were performed in general accordance with our proposal number D6009028, dated June 3, 2009. This geotechnical engineering report presents the results of the subsurface exploration and provides geotechnical recommendations concerning earthwork and the design and construction of foundations and pavements for the proposed project.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report, or if we may be of further service, please contact us.

Sincerely,

Terracon Consultants, Inc.

Jinny Park

Senior Staff Engineer

60095029 Solar One Geotech Report.doc

Copies to:

Addressee (1 via email, 3 via mail)

Paul J. "Jeff" Ernst, P.E., G.E.

Office Manger

Geotechnical Engineering Report
Solar One ■ Pisgah, California
January 4, 2010 ■ Terracon Project No. 60095029

Table of Contents

1.0			; IION	
2.0	PF	ROJECT	INFORMATION	. 2
	2.1	Project	Description	. 2
	2.2	Site Lo	cation and Description	. 2
3.0	Sl	JBSURF.	ACE CONDITIONS	. 3
	3.1	Site Ge	ology	. 3
	3.2	Soil Co	nservation Service - Soil Maps	. 3
	3.3		Subsurface Profile	
	3.4	Field So	oil Resistivity Test Results	. 4
	3.5	Therma	ll Resistivity Test Results	. 5
	3.6	Seismic	Shear Wave Tests	. 5
	3.7		water	
4.0	RE	ECOMME	ENDATIONS FOR DESIGN AND CONSTRUCTION	. 6
	4.1	Geotec	hnical Considerations	. 6
	4.2	Earthwo	ork	3
		4.2.1	Site Preparation	. 7
		4.2.2	Subgrade Preparation	. 7
		4.2.3	Fill Materials and Placement	. 8
		4.2.4	Compaction Requirements	. 9
		4.2.5	Grading and Drainage	. 9
		4.2.6	Corrosion Potential	. 9
		4.2.7	Construction Considerations	10
	4.3	Four	dations	
		4.3.1	SunCatcherTM Foundation Design Recommendations	
		4.3.2	Preliminary Bridge Foundation Design Recommendations	
		4.3	.2.1Driven Pile Construction Recommendations	
		4.3.3	Spread Footing Design Recommendations (Zone 1)	15
			.3.1Spread Footing Construction Considerations	
	4.4	Seisı	mic Considerations	16
	4.5		^r Slab	
		_	Design Recommendations (Zone 1)	_
	4.6	Late	ral Earth Pressures	
		4.6.1	Design Recommendations	
		4.6.2	Construction Considerations	
	4.7	Pave	ments	
		4.7.1	Design Recommendations	
		4.7.2	Construction Considerations	
5.0	GI	ENERAL	COMMENTS	20

Geotechnical Engineering Report
Solar One Pisgah, California
January 4, 2010 Terracon Project No. 60095029

TABLE OF CONTENTS- continued

TABLE OF CONTENTS— continued	
	Exhibit N
Appendix A – Field Exploration	
Site Plan and Boring Location Diagram	A1 thru A2
Dispersion Curves and Shear Wave Velocity Plots	A3 thru A-8
Boring Logs	A-9 thru A-54
Field Exploration Description	A-55 thru A-56
General Notes	A-57
Unified Soil Classification System	A-58
Appendix B – Laboratory Testing	
Laboratory Test Description	B-1
Atterberg Limits Results	B-2
Grain Size Distribution	B-3
Consolidation Test Results	B-4 to B-9
Direct Shear Results	B-10 to B-11
Expansion Index Test Results	B-12 to B-14
Collapse Potential	
Moisture-Density Relationship	
Resistance Value of Compacted Soil	
Corrosion Test Results	B-29
Thermal Resistivity Test Results	
Appendix C – ASFE Insert	
ASFE Insert	C-1 to C-2

Solar One Pisgah, California

January 4, 2010 Terracon Project No. 60095029

GEOTECHNICAL ENGINEERING REPORT SOLAR ONE PROJECT PISGAH, CALIFORNIA

Terracon Project No. 60095029 January 4, 2010

EXECUTIVE SUMMARY

This geotechnical executive summary should be used in conjunction with the entire report for design and/or construction purposes. It should be recognized that specific details were not included or fully developed in this section, and the report must be read in its entirety for a comprehensive understanding of the items contained herein. The section titled General Comments should be read for an understanding of the report limitations.

A geotechnical exploration has been performed for the Solar One Project located approximately 35 miles east of Barstow in the Pisgah area of San Bernardino County, California. Terracon's geotechnical scope of work included the advancement of 32 test borings and 14 test pits to approximate depths of 8 to 51½ feet below existing site grades. It should be noted that the numbering of the test borings and test pits were based off the BLM permit and included two long trenches across mapped earthquake fault (Alquist Priolo) zones. The fault trenches were not part of this scope of investigation and as such Trench 2 and Trench 22 were not excavated. Two of the test pits were advanced in locations determined by a URS geo-archeologist (TP-050 and TP-051). Proposed boring B-021 was also not advanced as a result of its proposed location between a utility easement and private property without right of entry. Terracon was unable to access proposed boring B-043 with a 4x4 rig and, therefore, did not advance a boring at this location. B-030 was depicted in the same location as B-031 on the permit and therefore only B-031 was excavated.

Based on the information obtained from our subsurface exploration, the site is suitable for development of the proposed project. The following geotechnical considerations were identified:

<u>Site Soils:</u> The site surface soils consisted of silty sands, poorly graded sands with silt and gravel and poorly graded sands in Zone 1 to the maximum depth explored, 51 ½ feet bgs. Zone 2, a smaller area east of Hector Road, consisted of fat clays to the maximum depth explored in this area, 26½ feet bgs. Groundwater was not encountered in any test boring at the time of drilling. On-site soils (excluding the fat clays) are suitable for use as engineered fill beneath foundations and floor slabs, pavements, and backfill.

<u>Foundations:</u> The SunCatcherTM units (the main feature at the site) are proposed to be supported by driven pipe piles, consisting of a 3/8"-thick, hollow steel pipe that is vibrated into the ground. The proposed bridge that crosses over the existing BNSF railroad will most likely be supported by driven piles. Any light-weight buildings at the site may be supported by shallow spread footings or mat foundations bearing on approved undisturbed soils. Pole mounted equipment may be supported by drilled shaft foundations.

<u>Floor Slabs:</u> The on-site surface and near surface soils over most of the site are expected to exhibit low expansion potentials when compacted and subjected to light loading conditions such as those imposed by floor slabs. Construction of floor slabs directly on compacted fills

Solar One Pisgah, California

January 4, 2010 Terracon Project No. 60095029

composed of approved non-expansive on-site soils or approved imported soils are considered acceptable for the project.

<u>Pavement Sections:</u> Automobile parking areas – 3" AC over 3" ABC or 5.5" PCC over 4" ABC; truck drives and drive lanes – 4" AC over 4" ABC or 6" PCC over 6" ABC.

Earthwork on the project should be observed and evaluated by Terracon. The evaluation of earthwork should include observation and testing of engineered fill, subgrade preparation, foundation bearing soils, and other geotechnical conditions exposed during construction

GEOTECHNICAL ENGINEERING REPORT SOLAR ONE PROJECT PISGAH, CALIFORNIA

Terracon Project No. 60095029 January 4, 2010

1.0 INTRODUCTION

This report presents the results of our geotechnical engineering services performed for the proposed Solar One Project to be located approximately 35 miles east of Barstow in the Pisgah area of San Bernardino County, California. The purpose of these services is to provide information and geotechnical engineering recommendations relative to:

subsurface soil conditions

groundwater conditions

earthwork

foundation design and construction

seismic considerations

floor slab design and construction

lateral earth pressure

pavement design and construction

Our geotechnical engineering scope of work for this project included the following field exploration.

SUBSURFACE EXPLORATION						
Exploration Type	Quantity	Depth				
Test Boring	32	12½ to 51½ feet				
Test Pit	14	8 to 14 feet				
Field Soil Resistivity Test	9	1 foot				
Seismic Shear Wave Test	3	1 foot (interpretation to 100 feet)				

Logs of the borings along with a Site Plan (Exhibit 1) and Boring Location diagram (Exhibit 2) are included in Appendix A of this report. The results of the laboratory testing performed on soil samples obtained from the site during the field exploration are included in Appendix B of this report. Descriptions of the field exploration and laboratory testing are included in their respective appendices.

2.0 PROJECT INFORMATION

2.1 Project Description

ITEM	DESCRIPTION			
Site layout	Refer to the Site Plan (Exhibit 1) and Boring Location Diagram (Exhibit 2 in Appendix A)			
Structures	SunCatcher [™] Differentiators (solar dishes) – Founded on two-foot diameter driven pipe foundations with 3/8"-thick walls			
Structures	Bridge over railroad, approximately 30-feet wide			
	Maintenance & storage buildings – slab-on-grade foundation.			
	SunCatchers [™] :			
	Overturning Moment – 252 kip-ft			
Maximum loads	Torsion – 15.5 kip/ft			
Maximum loads	Dead Load – 7.2 tons			
	Factored Dead Load + Wind Load – 15.1 tons			
	Seismic Overturning Moment – 230 kip⋅ft			
Maximum allowable settlement	1-inch (assumed)			
Traffic loading	Assumed Traffic Index = 5.0 for Light Automobile Parking			
Traine loading	Assumed Traffic Index = 7.0 for Heavy Parking and Drive Areas			

2.2 Site Location and Description

ITEM	DESCRIPTION
Location	Approximately 35 miles east of Barstow in the Pisgah area of San
Location	Bernardino County, California
	T8N R5E Sections 1,2,8-15; T8N R6E Sections 4-6,7-9,17,18,
Section, Township, Range	T9N R5E Sections 35,36; T9N R6E Sections 31-33
	(San Bernardino Meridian)
	Native desert bisected by an east-west trending railroad line, a
	Southern California Edison (SCE) electrical substation in the
Existing site features	southeastern portion of the site, two SCE and Southern California
(site interior)	Gas Company natural gas substations along the southern
	boundary of the site, and several natural gas utility lines trending
	east-west through the southern portion of the site.
	North: Undeveloped native desert and hills.
	East: Undeveloped native desert with one apparent residence.
Surrounding developments	West: Undeveloped native desert.
	South: Interstate 40 and National Trails Highway (Route 66),
	beyond which is undeveloped native desert.
Current ground cover	Light to moderate growth of grass, weeds, and cacti.

Solar One Pisgah, California

January 4, 2010 Terracon Project No. 60095029

west.

3.0 SUBSURFACE CONDITIONS

According to Mr. Jim Shearer, Biologist for the California Bureau of Land Management, the site has been undeveloped native desert and cattle graze land. The existing railroad was constructed between the years of 2002 and 2005. The Pacific Gas & Electric gas pipelines were constructed in the 1950s and the Mohave gas pipeline was constructed in 1986.

3.1 Site Geology

The site is situated within the south central portion of the Mojave Desert Geomorphic Province in Southern California. Geologic structures within the Mojave Desert tend to consist of isolated mountain ranges separated by vast expanses of desert plains, with a predominate northwest-southeast faulting trend, with a secondary trend of east-west (parallel to the Transverse Ranges Province). Principal bounding faults include the San Andreas Fault to the southwest and the Garlock Fault to the north.^{1, 2}

Surficial geologic units mapped at the site³ consist mainly of alluvium of Holocene to Pleistocene age. The southeastern portion of thee site consists of basalt lava flow deposits from the Pisgah Crater. Rock outcrops in the northern portion of the site consist of Miocene volcanic rock.

Two Alquist-Priolo Earthquake Fault Zones intercept the site, one along the westerly edge of the property, and one in the east-central portion of the site. It should be noted that fault trenches to evaluate the location and activity levels of the faults were not within the scope of this investigation.

3.2 Soil Conservation Service - Soil Maps

The soils in the vicinity of the site have not been surveyed and classified by the U.S. Soil Conservation Service. The online soil survey indicated that a survey of the area of interest had not yet been completed.

⁻

¹ Harden, D. R., "California Geology, Second Edition," Pearson Prentice Hall, 2004.

Norris, R. M. and Webb, R. W., "Geology of California, Second Edition," John Wiley & Sons, Inc., 1990.

³ Shawn Biehler, R.W. Tang, D.A. Ponce, H.W. Oliver, 1988, *Bouger Gravity Map of the San Bernadino Quadrangle, California*, California Division of Mines and Geology.

January 4, 2010 Terracon Project No. 60095029

3.3 Typical Subsurface Profile

Specific conditions encountered at each boring location are indicated on the individual boring logs. Stratification boundaries on the boring logs represent the approximate location of changes in soil types; in-situ, the transition between materials may be gradual. Details for each of the borings can be found on the boring logs included in Appendix A of this report. Based on the results of the borings, subsurface conditions on the project site were generalized into two major "zones" as follows:

Description Approximate Depth to Bottom of Stratum (feet		Material Encountered	Consistency/Density
Zone 1	0 to 51½	Silty sand, poorly graded sand with silt and gravel, and poorly graded sand. The gravel and cobble content varied as did the sand with varying amounts of silt and gravel.	Loose to Very Dense
70	0 to 2	Silty sand with gravel	Loose
Zone 2	2 to 26½	Fat clay	Stiff to Very Stiff

Zone 1 includes over 90 percent of the project site and represents the typical conditions encountered within the project. Zone 2 is a comparatively small area near Hector Road in the southwest corner of the site. The approximate boundaries of Zone 1 and 2 are depicted on Exhibit 2. These boundaries of the zone are estimated and should be verified in the field during construction.

The silty sand and sand with silt soils in Zone 1 were non-plastic. The fat clay soils in Zone 2 had high plasticities with medium to high expansion potentials. The approximate locations of these zones are depicted on Exhibit 2.

Laboratory tests were conducted on selected soil samples and the test results are presented in Appendix B.

3.4 Field Soil Resistivity Test Results

Field resistivity testing was performed using a Nilsson Model 400 soil resistance meter and in general accordance with ASTM G57-95a. Tests were conducted by driving five test rods up to 12 inches deep into the ground and recording measurements using a uniform distance of 2, 4, 8, 16 and 20 feet in the same line. The testing was performed at nine boring/test pit locations (B-003, B-014, B-025, B-029, B-033, B-043, TP-044, and B-048) around the site. Test results and the field reports are enclosed in Appendix C. The test results indicate soil resistivity readings ranging from 0 to 1.7x10⁹ ohm-cm.

Solar One Pisgah, California

January 4, 2010 ■ Terracon Project No. 60095029

3.5 Thermal Resistivity Test Results

Soil thermal resistivity was determined for selected soils samples. We recommend that the thermal resistivity results be discussed with an electrical design team to determine the influence on cable type and backfill materials. Typically, a resistivity value of less than 200 °C-cm/Watt is considered acceptable for standard cable design without a need for engineered backfill. However, the design value is based on data obtained from multiple tests. The test results are presented in Appendix B.

3.6 Seismic Shear Wave Tests

In order to determine the Site Class of the project site, as outlined in the 2006 International Building Code (IBC), three geophysical surveys were conducted on the project site. The survey consisted of three 600-foot long seismic lines with 24 equally spaced geophones along each line. One line was located in the northwest portion of the project site (near B-005), the second line was located in the south-central portion of the project site (near B-031), and the last line was located in the northeast corner of the project site (near TP-044).

In each survey, seven sets of background micro-tremor data were collected. The data sets were processed using computer program SeisOpt[®]-Remi[™] to determine the shear wave velocity profile of the upper 100 feet of the soil. Based on this profile, the average shear wave velocity of the upper 100-foot soil was calculated to range from 1,313 ft/s to 2,018 ft/s. In accordance with Section 1613.5.2, Site Class Definitions of the 2006 IBC, these values classify the project site as Site Class C.

The p-f image with dispersion modeling picks, modeled dispersion curves, and shear wave velocity profiles of the upper 100 feet of soil are shown on Exhibits 3 through 8.

3.7 Groundwater

Groundwater was not observed in any test boring or test pit at the time of field exploration. These observations represent groundwater conditions at the time of the field exploration and may not be indicative of other times, or at other locations. Groundwater conditions can change with varying seasonal and weather conditions, and other factors.

Based upon review of State of California's Groundwater Bulletin 118 for the South Lahontan Hydrologic Region, Lower Mojave River Valley Groundwater Basin, regional groundwater predominates in water bearing Pliocene and younger alluvial fan deposits and an overlying Pleistocene and younger river channel and floodplain deposits. According to the bulletin, regional groundwater was encountered at estimated depths ranging from approximately 50 to 80 feet below the existing ground surface.

Zones of perched and/or trapped groundwater may also occur at times in the subsurface soils overlying bedrock, on top of the bedrock surface or within permeable fractures in the bedrock

Solar One Pisgah, California

January 4, 2010 Terracon Project No. 60095029

materials. The location and amount of perched water is dependent upon several factors, including hydrologic conditions, type of site development, irrigation demands on or adjacent to the site, fluctuations in water features, seasonal and weather conditions.

4.0 RECOMMENDATIONS FOR DESIGN AND CONSTRUCTION

4.1 Geotechnical Considerations

The site appears suitable for the proposed construction based upon geotechnical conditions encountered in the test borings and test pits provided that the findings and recommendations presented herein are incorporated into project design and construction.

The vast majority of the site is underlain by silty sands and poorly graded sand with varying amounts of gravel. However, clayey soils were encountered in an area in the southwest portion of the site (borings B-005 through B-008) near Hector Road (Zone 2 discussed herein). Foundation design parameters for the SunCatcherTM units have been developed for each of these two major soil types. No building structures are planned in the areas underlain by clayey soils (Zone2) at this time. If the proposed layout of the solar development changes and lightly loaded buildings are planned near Hector Road, we would be pleased to discuss other construction alternatives with you upon request.

It appears that the majority of the on-site soils will be suitable for use as engineered fill beneath foundations, and pavements. Imported soils which may be required for the project must have potential expansion values in the "very low" range and they should satisfy the requirements contained in this report for low volume change soils.

Geotechnical engineering recommendations for foundation systems and other earth connected phases of the project are outlined below. The recommendations contained in this report are based upon the results of field and laboratory testing (which are presented in Appendices A and B), engineering analyses, and our current understanding of the proposed project.

4.2 Earthwork

The following presents recommendations for site preparation, excavation, subgrade preparation and placement of engineered fills on the project. The recommendations presented for design and construction of earth supported elements including foundations, slabs and pavements are contingent upon following the recommendations outlined in this section. All grading for each building structure should incorporate the limits of the proposed structure plus a minimum of five feet beyond proposed perimeter building walls and any exterior columns.

Earthwork on the project should be observed and evaluated by Terracon. The evaluation of earthwork should include observation and testing of engineered fill, subgrade preparation,

Solar One Pisgah, California

January 4, 2010 ■ Terracon Project No. 60095029

foundation bearing soils, and other geotechnical conditions exposed during the construction of the project.

No grading plans were reviewed as part of the scope of work for this report. Terracon should be retained to evaluate the grading plans as they are developed, and to provide updated recommendations based on review of those plans.

4.2.1 Site Preparation

Strip and remove existing vegetation, debris, and other deleterious materials from proposed building and pavement areas. Exposed surfaces should be free of mounds and depressions which could prevent uniform compaction.

Stripped materials consisting of vegetation and organic materials should be wasted from the site, or used to revegetate landscaped areas or exposed slopes after completion of grading operations. If it is necessary to dispose of organic materials on-site, they should be placed in non-structural areas, and in fill sections not exceeding 5 feet in height.

If fill is placed in areas of the site where existing slopes are steeper than 5:1 (horizontal:vertical), the area should be benched to reduce the potential for slippage between existing slopes and fills. Benches should be wide enough to accommodate compaction and earth moving equipment, and to allow placement of horizontal lifts of fill.

4.2.2 Subgrade Preparation

Subsequent to the surface clearing, grubbing and fill removal efforts, the exposed subgrade soils beneath proposed structures (not including SunCatcherTM units), exterior slabs, and pavement areas should be prepared to a minimum depth of 10 inches. Subgrade preparation should generally include some form of scarification (or removal), moisture conditioning, and compaction. The moisture content and compaction of subgrade soils should be maintained until slab or pavement construction. In the area of the SunCatcherTM units, the surface should be stripped of any existing vegetation, scattered trash and debris, and other deleterious materials.

Exposed areas which will receive fill, once properly cleared and benched where necessary, should be scarified to a minimum depth of ten inches, conditioned to near optimum moisture content, and compacted.

Areas of loose soils may be encountered at foundation bearing depth after excavation is completed for footings. When such conditions exist beneath planned footing areas, the subgrade soils should be surficially compacted prior to placement of the foundation system. If sufficient compaction can not be achieved in-place, the loose soils should be removed and replaced as engineered fill. For placement of engineered fill below footings, the excavation should be widened laterally, at least eight inches for each foot of fill placed below footing base elevations.

Solar One Pisgah, California

January 4, 2010 Terracon Project No. 60095029

Large cobbles or boulder sized materials may be encountered beneath footing areas. Such conditions could create point loads on the bottom of footings, increasing the potential for differential foundation movement. If such conditions are encountered in the footing excavations, the cobbles and/or boulders should be removed and be replaced with engineered fill, conditioned to near optimum moisture content and compacted.

Subgrade soils beneath interior and exterior slabs, and beneath pavements should be scarified, moisture conditioned and compacted to a minimum depth of ten inches. The moisture content and compaction of subgrade soils should be maintained until slab or pavement construction.

4.2.3 Fill Materials and Placement

All fill materials should be inorganic soils free of vegetation, debris, and fragments larger than six inches in size. Pea gravel or other similar non-cementitious, poorly-graded materials should not be used as fill or backfill without the prior approval of the geotechnical engineer.

Clean on-site soils or approved imported materials may be used as fill material for the following:

- general site grading
- foundation areas
- interior floor slab areas
- exterior slab areas
- pavement areas
- foundation backfill

Imported soils for use as fill material within proposed building and structure areas should conform to low volume change materials as indicated in the following specifications:

Gradation	Percent Finer by Weight (ASTM C 136)
6"	
3"	70-100
No. 4 Sieve	50-100
No. 200 Sieve	59 (max)
Liquid Limit	30 (max)
Plasticity Index	15 (max)
■ Maximum Expansion Index*	20 (max)

^{*}ASTM D 4829

Engineered fill should be placed and compacted in horizontal lifts, using equipment and procedures that will produce recommended moisture contents and densities throughout the lift. Fill lifts should not exceed ten inches loose thickness.

Solar One Pisgah, California

January 4, 2010 ■ Terracon Project No. 60095029

4.2.4 Compaction Requirements

Recommended compaction and moisture content criteria for engineered fill materials are as follows:

	Per the Standard Proctor Test (ASTM D 1557)			
Material Type and Location	Minimum Compaction	Range of Moisture Contents for Compaction (% over optimum)		
	Requirement (%)	Minimum	Maximum	
On-site granular or approved imported fill soils:				
Beneath foundations:	90	0%	+4%	
Beneath slabs:	90	0%	+4%	
Beneath asphalt pavements:	95	0%	+4%	
Beneath concrete pavements:	95	0%	+4%	
Aggregate base (beneath slabs)	95	-3%	+3%	
Aggregate base (beneath pavements)	95	-3%	+3%	
Miscellaneous backfill	90	0%	+4%	

4.2.5 Grading and Drainage

Positive drainage should be provided during construction and maintained throughout the life of the development. Infiltration of water into utility trenches or foundation excavations should be prevented during construction. Planters and other surface features which could retain water in areas adjacent to the building or pavements should be sealed or eliminated. In areas where sidewalks or paving do not immediately adjoin the structure, we recommend that protective slopes be provided with a minimum grade of approximately five percent for at least 10 feet from perimeter walls. Backfill against footings, exterior walls, and in utility and sprinkler line trenches should be well compacted and free of all construction debris to reduce the possibility of moisture infiltration.

Downspouts, roof drains or scuppers should discharge into splash blocks or extensions when the ground surface beneath such features is not protected by exterior slabs or paving. Sprinkler systems should not be installed within five feet of foundation walls. Landscaped irrigation adjacent to the foundation systems should be minimized or eliminated.

4.2.6 Corrosion Potential

Results of soluble sulfate testing indicate that ASTM Type I/II Portland cement is suitable for all concrete on and below grade. Foundation concrete should be designed for low to moderate

Solar One Pisgah, California

January 4, 2010 Terracon Project No. 60095029

sulfate exposure in accordance with the provisions of the ACI Design Manual, Section 318, Chapter 4.

Laboratory test results indicate that on-site soils have resistivities ranging from 360 to 8,000 ohm-centimeters, and pH values ranging from 8.16 to 8.93. These values should be used to determine potential corrosive characteristics of the on-site soils with respect to contact with the various underground materials which will be used for project construction.

Refer to Summary of Laboratory Results contained in Appendix B for the complete results of the various corrosivity testing conducted on the site soils in conjunction with this geotechnical exploration.

4.2.7 Construction Considerations

It is anticipated that excavations for the proposed construction can be accomplished with conventional earthmoving equipment.

Some additional effort may be necessary to extract boulder sized materials, particularly in deep narrow excavations such as utility trenches. Consideration should be given to obtaining a unit price for difficult excavation in the contract documents for the project.

Based upon the subsurface conditions determined from the geotechnical exploration, subgrade soils exposed during construction are anticipated to be relatively stable. However, the stability of the subgrade may be affected by precipitation, repetitive construction traffic or other factors. If unstable conditions develop, workability may be improved by scarifying and drying. During and after periods of heavy rain, overexcavation of wet zones and replacement with granular materials may be necessary. Lightweight excavation equipment may be required to reduce subgrade pumping.

The individual contractor(s) is responsible for designing and constructing stable, temporary excavations as required to maintain stability of both the excavation sides and bottom. Excavations should be sloped or shored in the interest of safety following local, and federal regulations, including current OSHA excavation and trench safety standards.

4.3 Foundations

Where applicable, structures can be supported by driven pile foundations or spread footings. It is our understanding that the SunCatcherTM units are planned to be supported on driven pipe pile foundations. The bridge crossing the railroad tracks should be supported on a driven pile foundation system. Any light weight building structures may be supported by spread footings. Design recommendations for foundations for the proposed structures and related structural elements are presented in the following paragraphs.

4.3.1 SunCatcher[™] Foundation Design Recommendations

DESCRIPTION	VALUE	
Foundation Type	Driven pipe piles	
Structures	SunCatcher [™] solar dishes	
Bearing Material	Undisturbed soils below surface clearing and grubbing efforts	

Foundations for the SunCatchers[™] will consist of a driven pipe pile foundation. The controlling factor to consider during design will be the amount of lateral support the foundation element can transfer to the surrounding soil.

Recommended soil parameters for lateral load analysis of driven pipe pile foundations have been developed for use in LPILE or COM624 computer programs. Engineering properties have been estimated as outlined below:

Zone 1:

Lateral Load Analysis Estimated Engineering Properties of Soils						
Top Depth	Unit Weight	USCS Soil Type	Internal Friction φ	Modulus of Subgrade Reaction K _s (pci) ¹		
Bottom Depth	(pcf)					
2	115	115 SM	28º	90 ²		
5						
5	110	SP-SM	32º	225 ²		
15						

¹ Note: These values are based upon parameters for LPILE or COM624P analyses.

Zone 2:

Lateral Load Analysis						
Estimated Engineering Properties of Soils						
Top Depth Unit Weight USCS Soil Cohesion						
Bottom Depth	(pcf)	Туре	(psf)			
2	100	СН	750	0.010		
15	100	OH	700	0.010		

^{2.} Note: This value increases linearly with depth an amount equal to the modulus and is independent of shaft diameter.

January 4, 2010 Terracon Project No. 60095029

Based on these soil parameters, L-Pile analyses were conducted for a 24-inch %-inch wall steel pipe pile. These values are preliminary and will change if the diameter of the foundation element or wall thickness for the steel pipe piles varies from what was used in the analysis.

Zone 1:

L-PILE ANALYSES RESULTS			
Foundation Element	Depth of Installation (ft)	Pile Head Deflection Required to obtain 252 kip-ft of Moment in the Pile (in)	
2/"\\\ 04" OD O(1D'	12	11⁄4	
%" Wall, 24" OD Steel Pipe Pile	14	3/4	
	16	1/2	

Zone 2:

L-PILE ANALYSES RESULTS			
Foundation Element	Depth of Installation (ft)	Pile Head Deflection Required to obtain 252 kip-ft of Moment in the Pile (in)	
¾" Wall, 24" OD Steel Pipe Pile	14	>1½	
	16	1	
	18	3/4	
	20	3/4	
	22	1/2	

4.3.2 Preliminary Bridge Foundation Design Recommendations

DESCRIPTION	VALUE	
Foundation Type	Driven Piles	
Structures	Proposed bridge crossing over railroad	

The following preliminary geotechnical design recommendations are for driven pile foundations at the proposed bridge abutment and pier locations. As we understand it, the bridge will consist of two abutments placed within proposed fill slopes, and two piers positioned on each side of the existing railroad and will provide a means for crossing the railroad tracks during and after construction of the solar field. Design information regarding the bridge abutments and piers have been provided by Tessera Solar.

Preliminary Design recommendations are based on:

Preliminary design drawings prepared by URS

Solar One Pisgah, California

January 4, 2010 Terracon Project No. 60095029

- Design information provided by Tessera Solar
- Subsurface information obtained by Terracon

The recommendations in this section are considered preliminary in nature and need to be further refined as the bridge designs become finalized. The preliminary design drawings indicate that the abutments will be supported on a pile group having 2 rows with 8 piles in each row. The interior row of piles will be installed at a batter. The piers are shown to be supported on a pile group having 6 rows with 7 piles in each row, per pier. Crash walls are also proposed on the interior of the piers, adjacent to the railroad.

A driven pile foundation system has been analyzed for support of the proposed bridge abutments and piers, based upon the geotechnical data gathered from the borings. Driven pile capacities for compressive loads have been developed for the project based upon the procedures outlined in Section 4.5 of AASHTO Standard Specifications for Highway Bridges, 17th Edition (2002) and the computer program AllPile.

The results of our analyses for selected driven piles are shown below. The pile spacing is unknown a this time; however, if the pile spacing is greater than 3 pile diameters, no reduction in capacity is needed to account for group effects. Otherwise, a reduction in capacity will need to be accounted for.

Pile Type	Location	Applicable Borings	Pile Length	Allowable Capacity (tons)
North of Railro		B-009	50	61
HP 10x57	South of Railroad	B-011	50	41
HP 12x63	North of Railroad	B-009	50	81
HP 12X03	South of Railroad	B-011	50	52
LID 14v00	North of Railroad	B-009	50	104
HP 14x89	South of Railroad	B-011	50	68

An aggressive subsurface environment where corrosion can deteriorate the piles over their design life can generally identified by soil resistivity and pH tests. According to the FHWA-HI-97-013 Manual, Design and Construction of Driven Pile Foundations (1998), a pH value less than 4.5 or resistivity less than 2000 ohms-cm should be treated as an aggressive environment. If resistivity results are between 2000 and 5000 ohms-cm then chloride ion and sulfate ion content tests should be performed. If these tests indicate chloride ion content greater than 100 parts per million (ppm) or sulfate ion content greater than 200 ppm, then the soil should be classified as aggressive. Resistivity values greater than 5000 ohms-cm are considered non-aggressive.

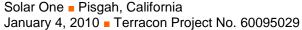
Solar One Pisgah, California

January 4, 2010 Terracon Project No. 60095029

Preliminary corrosion testing was conducted on one selected sample retrieved from boring B-009, with the results presented in the table below. Based on the FHWA (1998) corrosion criteria and the preliminary test results, the subsurface materials at the bridge location may be considered non-aggressive; however, additional corrosion testing should be conducted to confirm these results.

Boring	Sample Depth (feet)	рН	Chlorides (ppm)	Sulfates (ppm)	Resistivity (ohms-cm)
B-009	0 to 5	8.18	61	1	5,900

4.3.2.1 Driven Pile Construction Recommendations


The most effective means of verifying pile capacities for either tension or axial loads is through pile load tests. Preliminary foundation design can be based upon calculated capacities utilizing soil strength criteria determined from the field and laboratory testing conducted during exploration.

Lateral resistance to horizontal forces can be enhanced by battered piles. The vertical and horizontal components of the load will depend on the batter inclinations. Batters should not exceed 1:4 (horizontal:vertical).

The contractor should select a driving hammer and cushion combination which is capable of installing the selected piling without overstressing the pile material. The contractor should submit the pile driving plan and the pile hammer-cushion combination to the engineer for evaluation of the driving stresses in advance of pile installation.

Some ground heave may be experienced as a result of pile driving at each site. Therefore, it is recommended that the top elevations of the initial piles driven be surveyed. If any heave is noted after the driving of subsequent piles, the piles should be redriven to their original top elevation. This problem can be particularly acute in pile groups.

All piles should be provided with driving shoes to protect the pile tip from damage when penetrating the dense granular soils. A representative of the geotechnical engineer should observe pile driving operations on a full-time basis. Each pile should be observed and checked for buckling, crimping and alignment in addition to recording penetration resistance, depth of embedment, and general pile driving operations.

4.3.3 Spread Footing Design Recommendations (Zone 1)

DESCRIPTION	VALUE	
Foundation Type	Conventional Shallow Spread Footing	
Structure	Light-weight Buildings	
Bearing Material	Undisturbed Soils	
Allowable Bearing Pressure	2,000 psf	
Minimum Width for Continuous and Column Footings	16 inches and 24 inches, respectively	
Minimum Embedment Depth Below Finished Grade	2 feet	
Total Allowable Settlement	1-inch (assumed)	
Estimated Differential Settlement	½ to ¾ inch over 100 feet	

The allowable foundation bearing pressures apply to dead loads plus design live load conditions. The design bearing pressure may be increased by one-third when considering total loads that include wind or seismic conditions. The weight of the foundation concrete below grade may be neglected in dead load computations.

The general bearing capacity equation developed by Terzaghi was used to obtain the ultimate bearing pressure for the value provided in the table above.

Footings should be proportioned to reduce differential foundation movement. Proportioning on the basis of equal total settlement is recommended; however, proportioning to relative constant dead-load pressure will also reduce differential settlement between adjacent footings. Additional foundation movements could occur if water from any source infiltrates the foundation soils; therefore, proper drainage should be provided in the final design and during construction.

The above recommendations pertain to shallow slab-on-grade foundations in Zone 1. If buildings are planned in the area of Zone 2 (where expansive soils are present), then Terracon should be consulted and modified recommendations should be prepared.

4.3.3.1 Spread Footing Construction Considerations

For shallow spread footings bearing on undisturbed soil, the foundation excavations must be observed by a geotechnical engineer or a qualified representative to evaluate the bearing conditions prior to the placement of reinforcing steel and concrete. If undesirable (e.g., soft, loose, water softened, low density) materials are encountered in the foundation excavations, the excavations should be deepened to extend completely through the undesirable bearing materials. A lean concrete (slurry ABC with a minimum cement content of 2 sacks per cubic yard) material may be used as backfill to obtain a shallow, uniform footing depth for those foundation excavations that have been deepened. Alternatively, for the case where only a

Solar One Pisgah, California

January 4, 2010 Terracon Project No. 60095029

minor amount (i.e., less than six inches in thickness) of soft, loose, or disturbed soil is encountered at the base of a foundation excavation, the bottom could be mechanically compacted (hand tamped) to densify and improve this limited thickness of unsuitable soil, with the approval of the geotechnical engineer.

Foundations should be reinforced as necessary to reduce the potential for distress caused by differential foundation movement. The use of joints at openings or other discontinuities in masonry walls is recommended.

4.4 Seismic Considerations

DESCRIPTION	VALUE
2006 International Building Code Site Classification (IBC) ¹	С
Site Latitude	N 34° 48' 56"
Site Longitude	W 116° 25' 40"
S _s Spectral Acceleration for a Short Period	1.18
S _s Spectral Acceleration for a 1-Second Period	0.40
F _a Site Coefficient for a Short Period	1.0
F _v Site Coefficient for a 1-Second Period	1.4

¹ Note: In general accordance with the *2006 International Building Code*, Table 1613.5.2. IBC Site Class is based on seismic shear wave tests.

4.5 Floor Slab

4.5.1 Design Recommendations (Zone 1)

DESCRIPTION	VALUE
Interior floor system	Slab-on-grade concrete.
Floor slab support	On-site soils or approved imported soils placed and compacted in accordance with Earthwork section of this report.

Provided they are relatively lightly loaded (<100 psf), construction of floor slabs directly on firm, undisturbed soils or compacted fills composed of on-site granular soils are considered acceptable for the project. Where buildings are planned, the on-site soils, on most of the site, generally have no to low plasticity and low expansive potential under light loading conditions such as those imposed by floor slabs.

In areas of exposed concrete, control joints should be saw cut into the slab after concrete placement in accordance with ACI Design Manual, Section 302.1R-37 8.3.12 (tooled control joints are not recommended). Additionally, dowels should be placed at the location of proposed construction joints. To control the width of cracking (should it occur) continuous slab reinforcement should be considered in exposed concrete slabs.

Solar One Pisgah, California

January 4, 2010 Terracon Project No. 60095029

Positive separations and/or isolation joints should be provided between slabs and all foundations, columns or utility lines to allow independent movement. Interior trench backfill placed beneath slabs should be compacted in accordance with recommendations outlined in the Earthwork section of this report. Other design and construction considerations, as outlined in the ACI Design Manual, Section 302.1R are recommended.

The above recommendations pertain to lightly loaded floor slabs in Zone 1. If buildings are planned in the area of Zone 2 (where expansive soils are present) or heavier floor slabs are anticipated, then Terracon should be consulted and modified recommendations should be prepared.

4.6 Lateral Earth Pressures

4.6.1 Design Recommendations

The lateral earth pressure recommendations herein are applicable to the design of rigid retaining walls subject to slight rotation, such as cantilever, or gravity type concrete walls, with a level ground surface behind the wall. These recommendations are not applicable to the design of modular block - geogrid reinforced backfill walls. Recommendations covering these types of wall systems are beyond the scope of services for this assignment. However, we would be pleased to develop recommendations for the design of such wall systems upon request.

ITEM	VALUE ¹
Active Case	40 psf/ft
Passive Case	300 psf/ft
At-Rest Case	40 psf/ft
Coefficient of Base Friction or Adhesion at Base of Footing	0.35 ² psf

¹Note: The values are based on the on-site soils used as backfill.

Fill against foundation and retaining walls should be compacted to densities specified in the Earthwork section of this report. Compaction of each lift adjacent to walls should be accomplished with hand-operated tampers or other lightweight compactors.

4.6.2 Construction Considerations

To control the water level behind walls, we recommend a perimeter drain be installed at the foundation level as shown on the adjacent conceptual sketch and described in the following notes.

²Note: The coefficient of base friction should be reduced to 0.30 when used in conjunction with passive pressure.

- Free-draining granular backfill in this case should consist of ASTM D448 No.
 57 Stone or other coarse granular material with less than 5 percent passing the No. 200 sieve. The freedraining material should be encapsulated in a filter fabric.
- Perforated pipe should be rigid PVC, sized to transport the expected water.
- Slope to drain away from building Layer of cohesive fill Foundation wall Backfill (see report requirements) Free-draining graded granular filter material or non-graded free-draining material encapsulated in an appropriate filter Native, undisturbed fabric (see report) soil or engineered fill Perforated drain pipe (Rigid PVC unless stated otherwise in report)
- Drainage pipe could be omitted if weep holes that are hydraulically connected to the granular drainage material are installed through the face of the wall, and the discharge water is conveyed away from the wall or other structures.
- Exterior ground surface should consist of a 12 inch clay cap sloped to drain from walls.
- The clay cap can be replaced by a pavement section

4.7 Pavements

4.7.1 Design Recommendations

A design R-Value of 50 was used to calculate the asphaltic concrete pavement thickness sections and a modulus of subgrade reaction value (k) of 175 pounds per cubic inch (pci) was used in calculating the Portland cement concrete pavement sections. R-value testing should be completed prior to pavement construction to verify the design R-value.

Assuming the pavement subgrades will be prepared as recommended within this report, the following pavement sections should be considered minimums for this project for the traffic indices assumed in the table below. As more specific traffic information becomes available, we should be contacted to reevaluate the pavement calculations.

Solar One Pisgah, California

January 4, 2010 Terracon Project No. 60095029

	Recommended Pavement Section Thickness (inches)*		
	Light (Automobile) Parking Assumed Traffic Index (TI) = 5.0	Heavy Parking and Drive Areas Assumed TI = 7.0	
Section I Portland Cement Concrete (4,000 psi, Air Entrained)	5.5" Concrete 4.0" Class II Aggregate Base	6.0" Concrete 6.0" Class II Aggregate Base	
Section II	3" Asphaltic Concrete over	4" Asphaltic Concrete over	
Asphaltic Concrete	3" Class II Aggregate Base 4" Class II Aggregate Base		
* All materials should meet the CALTRANS Standard Specifications for Highway Construction.			

These pavement sections are considered minimal sections based upon the expected traffic and the existing subgrade conditions. However, they are expected to function with periodic maintenance and overlays if good drainage is provided and maintained.

All concrete for rigid pavements should have a minimum 28-day compressive strength of 4,000 psi (i.e. MAG AA or equivalent), and be placed with a maximum slump of four inches. Although not required for structural support, the base course layer is recommended to help reduce potentials for slab curl, shrinkage cracking, and subgrade "pumping" through joints. Proper joint spacing will also be required to prevent excessive slab curling and shrinkage cracking. All joints should be sealed to prevent entry of foreign material and dowelled where necessary for load transfer.

4.7.2 Construction Considerations

Materials and construction of pavements for the project should be in accordance with the requirements and specifications of the State of California Department of Transportation, or other approved local governing specifications.

Base course or pavement materials should not be placed when the surface is wet. Surface drainage should be provided away from the edge of paved areas to minimize lateral moisture transmission into the subgrade.

Preventative maintenance should be planned and provided for through an on-going pavement management program in order to enhance future pavement performance. Preventative maintenance activities are intended to slow the rate of pavement deterioration, and to preserve the pavement investment.

Preventative maintenance consists of both localized maintenance (e.g. crack sealing and patching) and global maintenance (e.g. surface sealing). Preventative maintenance is usually

Solar One Pisgah, California

January 4, 2010 Terracon Project No. 60095029

the first priority when implementing a planned pavement maintenance program and provides the highest return on investment for pavements.

5.0 GENERAL COMMENTS

Terracon should be retained to review the final design plans and specifications so comments can be made regarding interpretation and implementation of our geotechnical recommendations in the design and specifications. Terracon also should be retained to provide observation and testing services during grading, excavation, foundation construction and other earth-related construction phases of the project.

The analysis and recommendations presented in this report are based upon the data obtained from the borings performed at the indicated locations and from other information discussed in this report. This report does not reflect variations that may occur between borings, across the site, or due to the modifying effects of construction or weather. The nature and extent of such variations may not become evident until during or after construction. If variations appear, we should be immediately notified so that further evaluation and supplemental recommendations can be provided.

The scope of services for this project does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.

This report has been prepared for the exclusive use of our client for specific application to the project discussed and has been prepared in accordance with generally accepted geotechnical engineering practices. No warranties, either express or implied, are intended or made. Site safety, excavation support, and dewatering requirements are the responsibility of others. In the event that changes in the nature, design, or location of the project as outlined in this report are planned, the conclusions and recommendations contained in this report shall not be considered valid unless Terracon reviews the changes and either verifies or modifies the conclusions of this report in writing.

APPENDIX A FIELD EXPLORATION

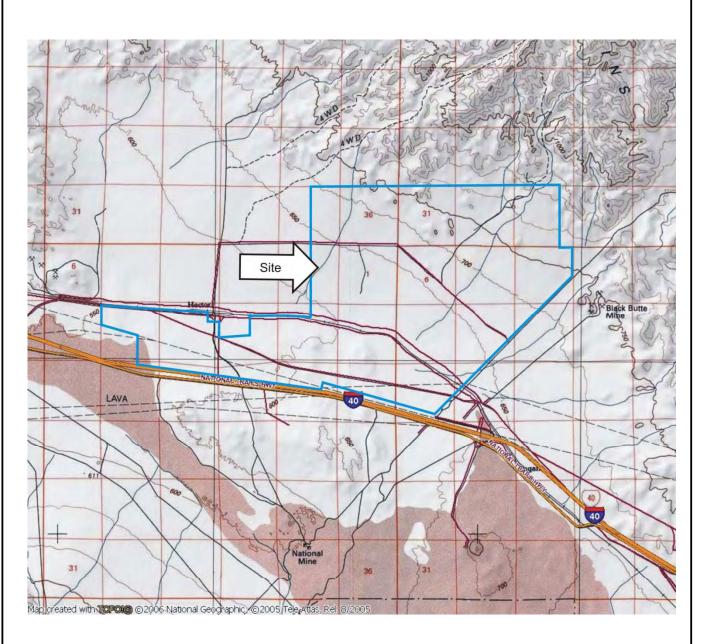
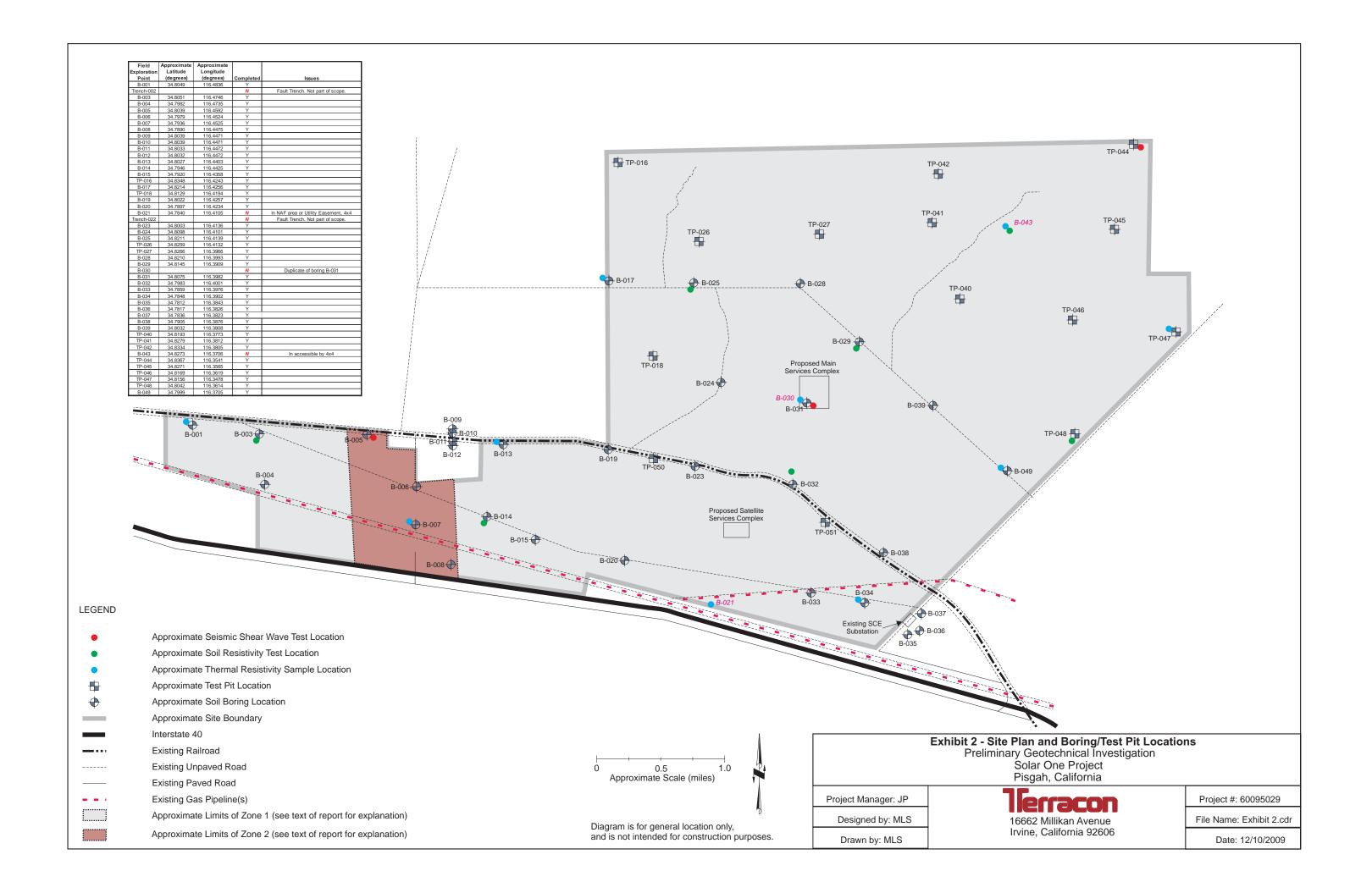


DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

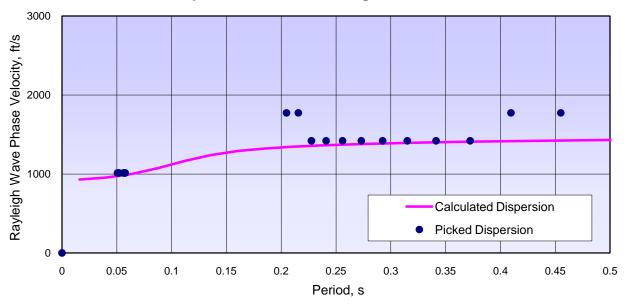
Project Manag	er:
	JP
Drawn by:	JP
Checked by:	PJE
Approved by:	PJE

Project No. 60095029
Scale: See scale bar
File Name: Exhibit A-1
Date: 12/10/2009

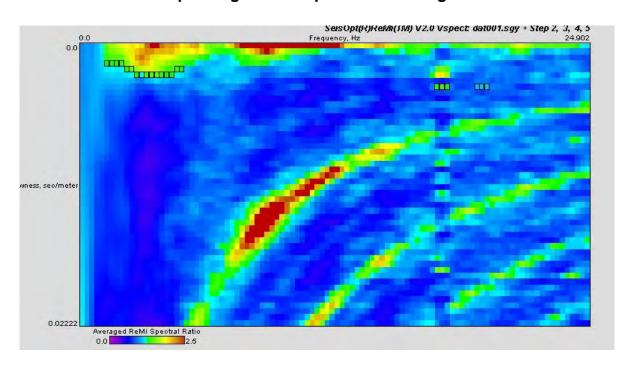

Terracon
Consulting Engineers & Scientists

16662 Millikan Avenue Irvine, California 92606
PH. (949) 660-9718 FAX. (949) 660-9732

SITE VICINITY MAP
Solar One Project
Pisgah, California

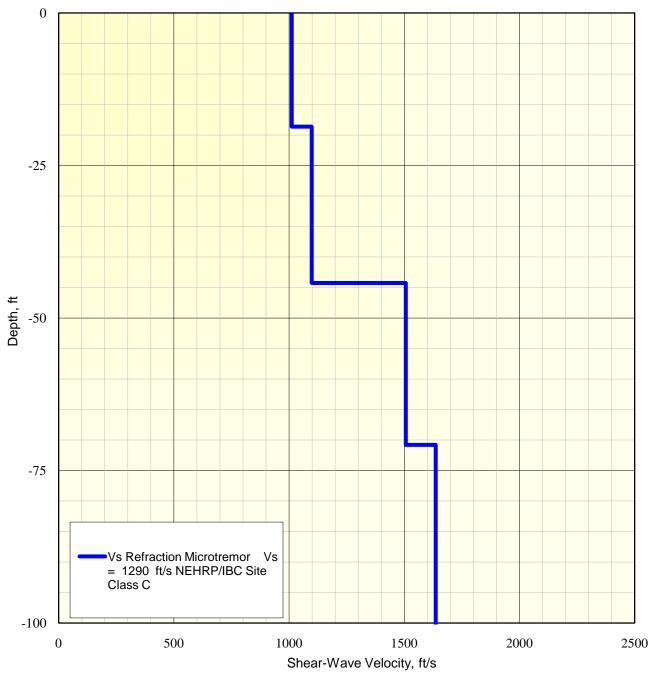

Exhibit No.

1

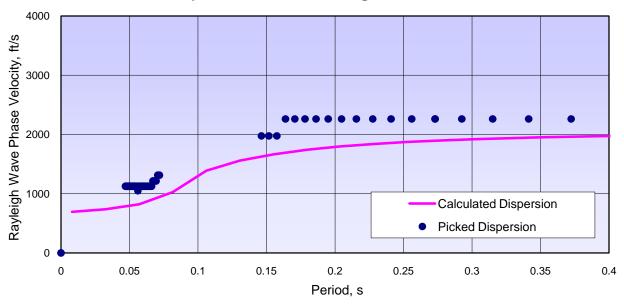


Stirling Energy System Calico - Solar One B-005 Terracon Project No. 60095029

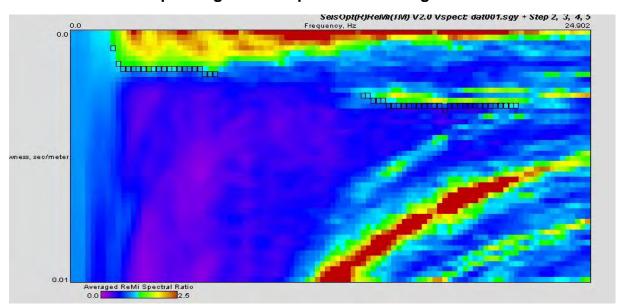
Dispersion Curve Showing Picks and Fit



p-f Image with Dispersion Modeling Picks

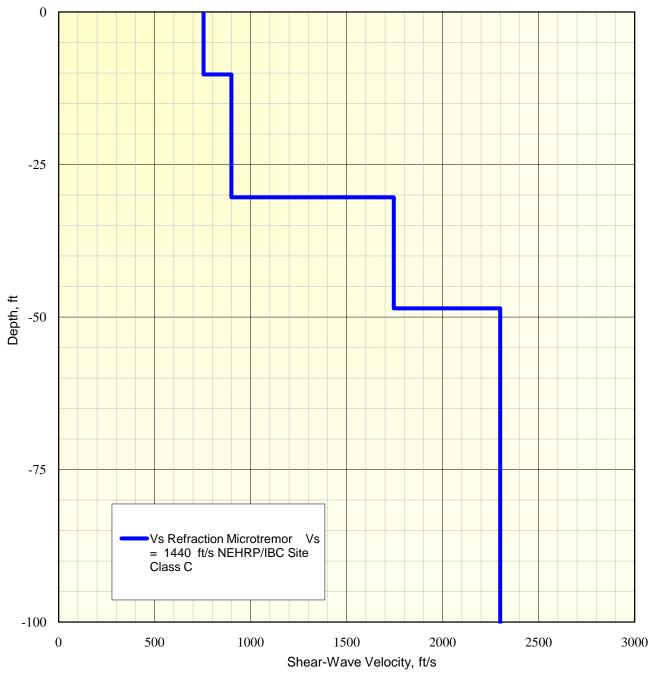

Stirling Energy System Calico - Solar One B-005 Terracon Project No. 60095029

Shear-Wave Velocity Profile from SeisOpt ReMi Software Analysis

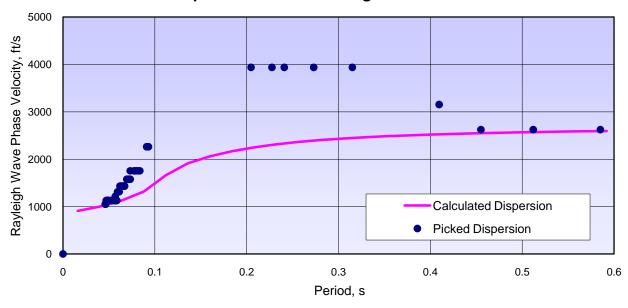


Stirling Energy System Calico - Solar One B-031 Terracon Project No. 60095029

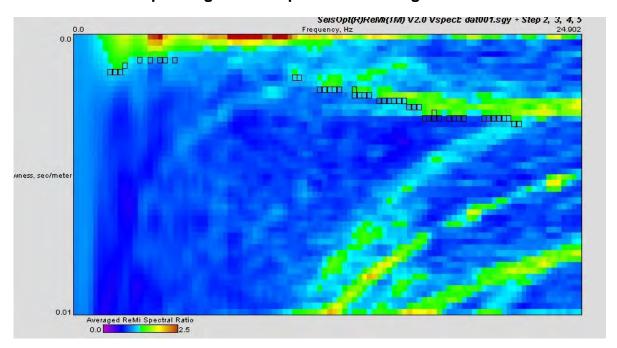
Dispersion Curve Showing Picks and Fit



p-f Image with Dispersion Modeling Picks


Stirling Energy System Calico - Solar One B-031 Terracon Project No. 60095029

Shear-Wave Velocity Profile from SeisOpt ReMi Software Analysis



Stirling Energy System Calico - Solar One T-044 Terracon Project No. 60095029

Dispersion Curve Showing Picks and Fit

p-f Image with Dispersion Modeling Picks

Stirling Energy System Calico - Solar One T-044 Terracon Project No. 60095029

Shear-Wave Velocity Profile from SeisOpt ReMi Software Analysis

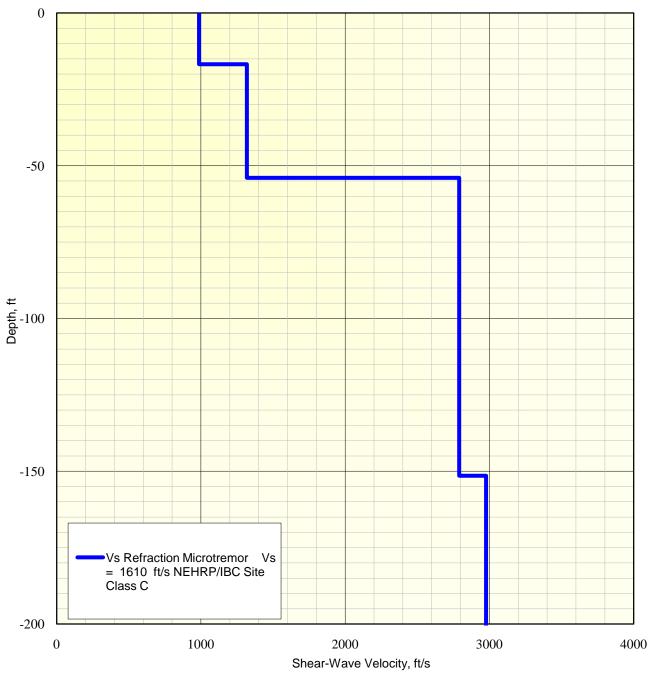


Exhibit 8

		LOG	OF BORI	NG I	10 .	В	-00°	1				F	age 1	of 1
CLI	ENT Stirling F	nergy Systems											. J -	
SIT		lergy Systems		PRO	JEC	Γ								
	East of Bar	stow, California					0.	A A 4 D L F		r One		TEOTO		
							SA	AMPLE	=			TESTS		
GRAPHIC LOG	DESC Approx. Surface Elev.: 180	CRIPTION 17 ft		DEPTH, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	SILTY SAND Beige, fine to medium grain- grained sand, and fir	ed sand, some coa	h arse	2—	SM		BS							
	POORLY GRADED S Beige, medium dens	AND WITH SILT	1804 ne		SP- SM	X	RS		55	3	93			
	to medium grained s grained sand and tra	and, some coarse ce fine gravel.		6—	SP- SM	X	RS		79	3	96			
				8—										
				=	SP- SM	X	RS		73	7	98			
				12										
				16-	SP- SM	X	RS		65	11	92			
				18 —										
				22—	SP- SM	X	RS		79	8	103			
60				24-										
GDT 12/11/	26 Bottom of boring. Groundwater not end	equatored	1781		SP- SM	X	SPT		50/5"	5				
BOREHOLE 2000 60095029 BORING LOGS.GPJ TERR2000.GDT 12/1/10g Whand The Management of	Boring backfilled with	n soil cuttings.												
The betw	stratification lines represent the ap	proximate boundary line e transition may be grad	es dual.									•		
WA	TER LEVEL OBSERVATIO	NS, ft						BOF	RING S	TARTE	ED.		10	-5-09
WL 200	Ÿ NE ¥]]		-					RING C	OMPL	ETED		10	-5-09
WL	$ar{ar{ar{\Lambda}}}$		<u> </u>	JL	.L	J		RIG		CME		OREM		JP
ML WL											JO	OB#	6009	5029

	LOG OF BOR	ING	NO	. B	-00	3				F	Page 1	of 1
CLI	ENT Stirling Energy Systems											
SIT		PRO	JEC	T								
	East of Barstow, California							r One		TEOTO		
					SF	AMPLI	=			TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 1824 ft	DEPTH, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	SILTY SAND Beige, loose with fine to coarse grained sand and some sub-angular 1822.	5 -	SM	M	SPT		8					
	\fine gravel.	2-	SP	X	RS		34	4	99			
	<u>POORLY GRADED SAND</u> Beige, medium dense to very dense with fine to coarse grained sand.	4-	SP	X	SPT		65					
	grained Sand.		SP	X	RS		50/5"	2	112			
	7.5 1816.	6 -	SP	X	SPT		55					
	SILTY SAND Beige, dense with fine to coarse grained sand and trace sub-angular	8-	SM	X	RS		78	10	99			
	9.5 fine gravel. SANDY SILT Beige, hard with fine	10—	SM	X	SPT		23	4	109			
	grained sand.		ML	X	RS		80					
		12	ML	X	SPT		53					
11.	14.5 1809.	14	ML	X	SPT		26					
	POORLY GRADED SAND WITH SILT Beige, very dense with fine to coarse	16—	SP- SM	X	RS		50/5"	3	112			
	grained sand.		Oivi									
		18—										
	20 180 SANDY SILT Beige, hard with fine	20 _	ML		RS		50/4"	3	107			
	grained sand.	22—										
11/09		24—	N A I		SPT		54	14				
12,	26.5 1797. Bottom of boring.	26	ML	X	SPI		54	14				
HOLE 2000 60095029 BORING LOGS, GPJ TERRESOUG. GDJ 12/17/09 PW BORN BORN BORN BORN BORN BORN BORN BORN	Groundwater not encountered. Boring backfilled with soil cuttings.											
The	stratification lines represent the approximate boundary lines een soil and rock types: in-situ, the transition may be gradual.											
WA	TER LEVEL OBSERVATIONS, ft					BOF	RING S	TARTE	ED .		10	-5-09
WL			= _			BOF	RING C					-5-09
WL	Y NE Y TELL	حال	_[J		RIG		CME		OREM		MLS
ML									J(OB#	6009	5029

	LOG OF BOR	ING	NO	. B	-00	4				P	age 1	of 1
CLI	ENT Stirling Energy Systems											
SIT	E	PRO	JEC	T				_				
	East of Barstow, California				S	AMPI I		r One		TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 1830 ft SILTY SAND WITH GRAVEL Beige, loose with fine to coarse grained sand and some sub-angular fine gravel. 4.5 POORLY GRADED SAND Beige, medium dense to very dense with fine to coarse grained sand. Calcium carbonate observed around 8 feet bgs. Calcium carbonate observed around 8 feet bgs. SILTY SAND WITH GRAVEL Beige, dense with fine to coarse grained sand and some sub-angular fine gravel. POORLY GRADED SAND Beige, dense to very dense with fine to coarse grained sand. POORLY GRADED SAND WITH SILT AND GRAVEL Beige, very dense with fine to coarse grained sand and some sub-angular gravel.	6— 8— 10— 10— 12—	SM SP-SM	X	RS RS RS RS	RECOVERY (in)		**CONTENT; % CONTENT; % 11	115 113 117 113	TESTS	PLASTICITY INDEX	
BORING LOGS, GPJ 1ERKZ000. GDI 12.	Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.	5	SP- SM		SPT		50/6"					
The betv	stratification lines represent the approximate boundary lines veen soil and rock types: in-situ, the transition may be gradual.											
WA	TER LEVEL OBSERVATIONS, ft					BOF	RING S	TARTE	D		10	-5-09
WL						BOF	RING C	OMPL	ETED			-5-09
WL	A ME A JELL	عد	ַַ			RIG		CME	-75 F	OREM	AN	MLS
K WL									J(OB#	6009	95029

	LOG OF E	30RI	NG I	VО	. B	-00	5				F	Page 1	of 1
CLI	ENT Stirling France Systems											- J -	
SIT	Stirling Energy Systems		PRO	JEC	т								
	East of Barstow, California								r One				
						SA	AMPLE	<u> </u>			TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 1852 ft		DEPTH, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	SILTY SAND WITH GRAVEL Beige, loose with fine to coarse grained sand and		=	SM	M	SPT		13					
	2.5 some sub-angular fine gravel.	1849.5	2-	SM		RS		21	22	96			
	FAT CLAY Red-brown, stiff with low to medium plasticity fines. Calcium Carbonate observed around 3 feet		4	СН	X	SPT		14					
	bgs.		=	СН	X	RS		32	27	92	58	31	
	Contains fine grained sand and is very stiff.		6	СН	A	SPT		10					
			8-	СН	X	RS		38	27	98			
			10-	СН	X	SPT		14					
			=	СН	X	RS		42	27	96			
			12	СН	X	SPT							
			14-	СН	X	SPT							
	Trace fine sub-angular gravel observed around 15 feet bgs.		16—	СН	X	RS		29	26	95			
	·		18—										
			20—										
			20 	СН	X	RS		36	28	97			
			22—										
			24-										
	26.5	1825.5	26—	СН	X	SPT		20	29				
The betw WA WL WL	Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.												
The	stratification lines represent the approximate boundary lines			<u> </u>									
betw	reen soil and rock types: in-situ, the transition may be gradual. TER LEVEL OBSERVATIONS, ft						R∩⊏	RING S	ΤΔΡΤΕ	-D		10)-5-09
WL								RING S)-5-09)-5-09
WL	Ā NE Ā Ā	rr;	30	ַ		Π	RIG		CME		OREM		MLS
WL					_	_				J	OB#	6009	5029

	LOG OF BO	ORII	NG I	NO	. B	-00	6				F	Page 1	of 1
CLI	ENT Stirling Energy Systems										-	<u> </u>	
SIT			PRO	JEC	T								
	East of Barstow, California						A A A D L F		r One		TE0T0		
						SA	AMPLE	=			TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 1878 ft		DEPTH, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	SILTY SAND WITH GRAVEL Beige, loose with fine to coarse grained sand and		_	SM	X	SPT		47					
	2.5 some sub-angular fine gravel.	375.5	2-	SM	X	RS		50/5"	4	105			
	FAT CLAY Red-brown, stiff to very stiff with low to medium plasticity fines.		4	СН	X	SPT		35					
			Ξ	СН		RS		38	12				
			6—	СН	X	SPT		33	12				
			8-	СН		RS		45	23	90			
			10-	СН	X	SPT		26					
			=	СН		RS		65	26	98			
			12	СН	X	SPT		19					
			14-	СН	X	SPT		30					
			16—	СН	X	RS		54	24	101			
			18— —										
			20 —	СН		RS		42	25	94			
			22-										
			24—										
				СН	A	BS		22	24				
	26.5 Bottom of boring.	851.5	26—	0	 	ВО							
Hore 2000 60095029 BORING LOGS GFU TERREMONGED WAR	Groundwater not encountered. Boring backfilled with soil cuttings.												
The The	stratification lines represent the approximate boundary lines												
betw	reen soil and rock types: in-situ, the transition may be gradual.												
WA WL	TER LEVEL OBSERVATIONS, ft							RING S					5-09
WL WL	Y NE Y Y	' [])r				RIG	RING C	CME		OREM		-5-09 JP
K WL		- 4							JL		OR #		95029

\bigcap	LOG OF I	BORI	NG I	NO	. B	-00	7				F	Page 1	of 1
CLI	ENT Stirling Energy Systems											- J -	
SIT	Stirling Energy Systems E		PRO	JEC	T								
	East of Barstow, California								r One				
						SA	AMPLI	<u> </u>			TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 1895 ft		DEPTH, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	SILTY SAND WITH GRAVEL Beige, loose with fine to coarse grained sand and		_	SM	M	SPT		16					
	some sub-angular fine gravel.	1892.5	2-	SM		RS		29	3				
	CLAYEY SAND Red-brown, medium dense with fine to medium grained sand.			sc	X	SPT		25					
	Lightly cemented.		-	sc		RS		43					
	FAT CLAY Red-brown, stiff to hard with	1889	6-	СН		SPT		25	24	93			
	low to medium plasticity fines and trace fine to medium grained sand.		8-	СН		RS		46	29	84			
	Ğ			СН		SPT		25					
	Crystalline mica observed at 10 feet bgs.		10 —	СН		RS		50	27	97	69	41	
	Increasingly plastic.		12-	СН		SPT		22					
			14	СН		SPT		60					
			=	СН		RS		50/5"	22	104			
			16— —										
			18-										
			20-										
			=	СН	X	RS		73	23	105			
			22—										
			24-										
			26—	СН	M	SPT		37	26				
The betw WA WL	Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.	1868.5	20 _										
KING LO													
The	stratification lines represent the approximate boundary lines							I	ı		ı	ı	
WA	reen soil and rock types: in-situ, the transition may be gradual. TER LEVEL OBSERVATIONS, ft						BOF	RING S	TARTE	ΞD		10	-5-09
WL		 -						RING C					-5-09
WL	A NE A A A A A A A A A A A A A A A A A A						RIG		CME	-75 F	OREM	AN	JP
WL										J	OB#	6009	5029

	LOG OF	BORI	NG I	10	. B	-00	8				F	Page 1	of 1
CLI	ENT Stirling Energy Systems												
SIT			PRO	JEC	T								
	East of Barstow, California								r One				
						SA	AMPLI	Ī			TESTS	; 	
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 1921 ft		DEPTH, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	SILTY SAND WITH GRAVEL Beige, loose with fine to coarse grained sand and some sub-angular fine gravel. FAT CLAY Red-brown, very stiff to hard	1918.5	2—	CM		DC		27	22	05			
	with low to medium plasticity fines.		4-	SM	X	RS		37	22	95			
			6—	СН	X	RS		40	22	99	66	38	
			8-	СН	X	RS		44	27	96			
			10-										
			12-	СН	X	RS		51	30	92			
			14										
			16—	СН	X	RS		47	26	98			
			18										
			20	СН	X	RS		50/6"	26	100			
			22—										
	26.5	1894.5	26—	СН	X	SPT		23	27				
The betw WL WL WL	Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.												
The	stratification lines represent the approximate boundary lines												
betw WA	reen soil and rock types: in-situ, the transition may be gradual. TER LEVEL OBSERVATIONS, ft						BOF	RING S	TARTE	ΞD		10	-6-09
WL	Ÿ NE ¥	~~	7					RING C					-6-09
WL WL	Ā NE Ā		IJL		J		RIG		CME		OREM. OB#		MLS 95029

	LOG OF BOR	ING I	NO.	В	-00	9				F	Page 1	of 2
С	LIENT Stirling Energy Systems											
S	TE	PRO	JEC	Т								
	East of Barstow, California				9	AMPLE		r One		TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 1882 ft	DEPTH, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	POORLY GRADED SAND Beige, medium dense with fine to coarse grained sand and some fine sub-angular gravel.	2—	SP		BS	ш.	_				<u> </u>	
		4-	SP	X	RS		28	1	114			
	POORLY GRADED SAND WITH SILT AND GRAVEL Beige to light-brown, dense with fine grained sand and some fine	6—	SP- SM	X	RS		71	3	119			
	sub-angular gravel. Very dense with calcium carbonate observed around 8 feet bgs.	8-	SP- SM	X	RS		50/5"	3	122			
	Dense with decreased gravel size around 10 feet bgs	10-	SP- SM	X	RS		71	5	115			
		12										
	Increased fines around 16 feet bgs.	16-	SP- SM	X	RS		90	3	102			
		18—										
		22-	SP- SM		RS		50/5"	4	111			
6		24-										
BOREHOLE 2000 60095029 BORING LOGS.GPJ TERR2000.GDT 12/11/09		26-	SP- SM	X	RS		70	10				
TERR2000.	29 1853 SILT Beige, hard with fine grained sand	28-										
OGS.GPJ	and coarse sub-angular gravel.	30-	ML	×	RS		50/6"	13	90			
ORING L	Continued Next Page	32										
95029 Pe	e stratification lines represent the approximate boundary lines tween soil and rock types: in-situ, the transition may be gradual.											
000 W	ATER LEVEL OBSERVATIONS, ft					BOF	RING S	TARTE	ED		10	-8-09
W 500	L Y NE Y TOPE	-					RING C	OMPL	ETED		10	-8-09
W SEE		حال	_L	J		RIG		CME		OREM OB#		MLS 95029

	LOG OF E	BOR	NG	NO	. B	-00	9				F	Page 2	of 2
CLI	ENT Stirling Energy Systems												
SIT	E		PRO	JEC	Т			0-1-					
	East of Barstow, California					S	AMPLI		r One		TESTS	;	
GRAPHIC LOG	DESCRIPTION		DEPTH, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	SILT Beige, hard with fine grained sand and coarse sub-angular gravel.		34-										
	No gravel observed in 35 foot sample.	1845	36—	ML	X	RS		46	13				
	POORLY GRADED SAND WITH SILT AND GRAVEL Beige to light-brown, dense to very dense with fine grained sand and some fine sub-angular gravel.	1040	38— 40— 42— 44—	SP- SM		RS		50/5"	19	83			
			46—	SP- SM	X	RS		56	11				
	51	1831	48	SP-	X	SPT		50/4"	28	73			
BOREHOLE 2000 60085029 BORING LOGS.GPJ TERR2000.GDT 12/11/09 AM TAM AM AM TAM AM AM TAM AM AM TAM AM AM TAM AM AM TAM AM	Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.		_	SM									
The betv	stratification lines represent the approximate boundary lines veen soil and rock types: in-situ, the transition may be gradual.												
WA	TER LEVEL OBSERVATIONS, ft		_	_				RING S)-8-09
WL WL	Ā Ā Ā Ā	CC	٦ſ	- _			BOF	RING C			DREM		0-8-09 MLS
WL		 '		_					CIVIL)B #		95029

	L	OG OF BORI	NG I	NO.	В.	-01	0				F	Page 1	of 1
CLI	ENT Stirling Energy Syste	ms											
SIT	E		PRO	JEC ⁻	Τ								
	East of Barstow, Califo	ornia				SA	AMPLE		r One		TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 1882 ft		DEPTH, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	POORLY GRADED SAND WITH S AND GRAVEL Beige to light-brow dense with fine grained sand and sub-angular gravel.	vn,	2	SP- SM	X	RS		41	1	95			
			6—	SP- SM		RS		50/6"	3	113			
		40.5	10-	SP- SM		NR		50/5"					
	Increased gravel content around bgs.	TO leet	12—	SP- SM		RS		50/2"	5	113_			
			16—	SP- SM		RS		50/3"	2	122			
6			20—————————————————————————————————————	SP- SM		RS		50/6"	4	118			
R2000.GDT 12/11/0	26.5 Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings	1855.5	26	SP- SM	X	SPT		50/3"	11				
BOREHOLE 2000 60095029 BORING LOGS.GPJ TERR2000.GDT 12/1/1/09 MP AM MP WL MP	stratification lines represent the approximate boun												
betw	een soil and rock types: in-situ, the transition may	be gradual.					D 0 =	W.C. 5					
WA WL	TER LEVEL OBSERVATIONS, ft ☐ NE ☐ ▼ NE	3F						RING S					-8-09 -8-09
WL	▼	Tlerra	36				RIG	uive C	CME		OREM		MLS
WL WL											OB#		95029

\bigcap	LOG OF BOR	ING	NO	. B	-01	1				F	age 1	of 2
CL	ENT Stirling Energy Systems										uge .	
SI	Stirling Energy Systems	PRO	JEC	T								
	East of Barstow, California					AMPLE		r One		TESTS		
					3/	AIVIPLE	=			IESIS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 1883 ft	DEPTH, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	POORLY GRADED SAND Beige, medium dense with fine to medium grained sand.	=	SP	X	SPT		14					
	Fine to coarse grained sand and trace sub-angular gravel.	2—	SP SP	X	RS SPT		47	2	115			
	4.5 1878.5 SILTY SAND Beige to light-brown, very	4-	SM		RS		50/4"	4	114			
	dense with fine to coarse grained sand and trace sub-angular gravel.	6-	SM	X	SPT		50/5"					
	No gravel observed at 8 feet bgs.	8-	SM	×	RS		50/5"	4	114			
	9.5 1873.5 POORLY GRADED SAND WITH SILT	10-	SM	M	SPT		50/3"					
	AND GRAVEL Beige, very dense with fine to coarse grained sand, some	-	SP-	X	RS		50/3"	3	117			
	sub-angular gravel, and non-plastic fines.	12-	SM SP-	M	SPT		50/6"					
		14—	SM SP-		SPT		77					
		16	SM SP-		RS		50/6"	7	114			
		16— ———————————————————————————————————	SM									
	Calcium carbonate observed at 20 feet bgs.	22—	SP- SM	X	RS		50/4"	5	107			
	24 1859 SILTY SAND Beige to light-brown, very	24-										
VL 1/21 10	dense with fine to coarse grained sand and trace sub-angular gravel.	26-	SM	X	SPT		50/6"	4	99			
The Sound Broaders Brown of Locas, Groun Ferreson of Sound Broaders Broader		28-										
8 8 8 8		30-	SM	X	RS		50/5"	15	94			
9 0 1		32—										
Th/	Continued Next Page											
bet	stratification lines represent the approximate boundary lines veen soil and rock types: in-situ, the transition may be gradual.				-							
W/	TER LEVEL OBSERVATIONS, ft						RING S					-6-09
WL WL		٦r	-6			RIG	RING C	OMPL CME		OREM		-6-09 MLS
K WL			_•			1110		CIVIE		OREIVI OB#		95029

		L	OG OF BOF	VIIIG	INU	. 0)-U I	1				F	Page 2	of 2
CLI	ENT St i	irling Energy Syste	ems											
SIT	E			PRO	JEC	Т								
	Eas	t of Barstow, Calif	ornia		_	1		AMPLI		r One		TESTS		
							3,	HIVIF LI	_			ILSIS		
GRAPHIC LOG				世	USCS SYMBOL			RECOVERY (in)	ΨŦ.	% ,TZ	NSITY		YTIC	
GRAPH		DESCRIPTION		DEPTH, ft.	USCS S		TYPE	RECOVI	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	SILTY SAND dense with fi trace sub-an	Beige to light-browne to coarse grained gular gravel.	n, very d sand and	34-										
		3 3		36-	SM	X	SPT		59	21				
				38-										
				40	SM	X	RS		50/2"	14	103			
				42-										
				44	SM		SPT		69	21				
				46—										
				50										
	51.5		1831.	5	SM	X	RS		75	21	98			
		ring. not encountered. illed with soil cutting	S.											
The betw	stratification lines repres een soil and rock types:	ent the approximate bour in-situ, the transition ma	ndary lines y be gradual.											
	TER LEVEL OBSE							BOF	RING S	TARTI	ΞD		10	-6-09
WL	Ÿ NE	<u>¥</u>	Jerr		_,				RING C					-6-09
WL	Ā	▼	IICII		_L			RIG		CME		OREM.		MLS
WL											JC	OB#	6009	<i>3</i> 502

		LOG OF	BORI	NG I	NO.	. B	-012	2				F	Page 1	of 1
CLI	ENT Stirling	Energy Systems												
SIT	E			PRO	JEC	Т								
	East of E	Barstow, California					S/	AMPLE		r One		TESTS		
GRAPHIC LOG	DE Approx. Surface Elev.:	SCRIPTION		DEPTH, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	SILTY SAND Beig	e to light-brown, very			SM	M	SPT	_	19					
	trace sub-angular	coarse grained sand and gravel.		2-	SM	X	RS		82	3	119			
				4-	SM	X	SPT		35					
	6		1877	Ξ	SM	X	RS		50/4"	4	120			
	POORLY GRADEI	SAND WITH SILT ige, very dense with	1077	6—	SP- SM	X	SPT		50/6"					
	fine to coarse grai	ned sand, some I, and non-plastic fines.			SP- SM	X	RS		50/6"	4	117			
	ous angular grave	i, and non plactic inico.			SP- SM	X	SPT		50/6"					
				_	SP-	×	RS		50/6"	3	114			
	13.5		1869.5	12	SM SP-	M	SPT		72					
	POORLY GRADEI	D SAND Beige, medium		14 —	SM SP	X	SPT		77					
	SILTY SAND Beig	coarse grained sand. te to light-brown, very coarse grained sand and gravel.	1868	16— 18—	SM		RS		50/6"	3	112			
1/09				22	SM		RS		50/2"	12	84			
12/1	26.5		1856.5	26-	SM	M	SPT		66	8				
BORHOLE 2000 60085029 BORING LOGS.GPJ TERR2000.GDT 12/1/109 AM Page AM ML WL WILLIAM WAS AM ML WAS AM ML WAS AM ML WAS AM ML WL WAS AM ML WAS AND ML WAS AM ML WAS AND ML WAS AM ML WAS AND ML WAS AM ML WAS AM ML WAS AND ML WAS AND ML WAS AM ML WAS AND ML WAS AM ML WAS AM ML WAS AND ML WAS AND ML WAS AM ML WAS AND ML WAS AM ML WAS AND ML WAS AN	Bottom of boring. Groundwater not e Boring backfilled v													
ที่ The	stratification lines represent the	approximate boundary lines , the transition may be gradual.												
6009 WA	TER LEVEL OBSERVAT							BOF	RING S	TARTE	ΞD		10	-5-09
WL	Ÿ NE		.	7-			_		RING C	OMPL	ETED			-5-09
WL WI	$ar{ar{ar{\Lambda}}}$	116	266	عال	L	J		RIG		CME		OREM		MLS
WL WL											J(OB#	6008	5029

	LOG OF BO	RING	NC). E	3 - 01	3				F	Page 1	of 1
CLI	ENT Stirling Energy Systems											
SIT	E	PR	OJE	СТ			0-1-	. 0				
	East of Barstow, California				S	AMPLI		r One		TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 1903 ft	DEPTH, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	POORLY GRADED SAND Beige, medium dense with fine to medium grained sand.	2-			DC		50	2	100			
		4-	SI	X	RS		58	2	129			
		6-	SI		RS		87	3	110			
	POORLY GRADED SAND WITH SILT AND GRAVEL Beige, very dense with	8-	SF		RS		50/5"	2	115			
	fine to coarse grained sand, some sub-angular gravel, and non-plastic fines.	10	SN	4								
		10-	SF		RS		50/3"	5	108			
		12 ⁻										
		16- 18-	SF SN	<u>ь_</u> И	RS		50/6"	2	106			
		20-	SF		RS		50/4"	4	112			
	SILTY SAND Beige to light-brown, very dense with fine to coarse grained sand and trace sub-angular gravel.	22-	SM		SPT		47	4				
BORHOLE 2000 60085029 BORING LOGS.GPJ TERR2000.GDT 12/1/09 AM TM T	Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.	6.5 26-		7	311		47	4				
รัก อุก The	stratification lines represent the approximate boundary lines											
betw	reen soil and rock types: in-situ, the transition may be gradual. TER LEVEL OBSERVATIONS, ft					R∩⊏	RING S	ΤΔΡΤ	-D		10	-5-09
WL							RING C					1-5-09 1-5-09
WL	Ā Ā Ā Ā TĒLI	7			N	RIG		CME		OREM		MLS
WL					_				J(OB#	6009	5029

	LOG OF I	BORI	NG I	VO	. B	3 - 014	4				F	Page 1	of 1
CL	ENT Stirling Energy Systems												
SIT	E		PRO	JEC	Т								
	East of Barstow, California				Ι	S/	AMPLI		r One		TESTS	<u> </u>	
GRAPHIC LOG	DESCRIPTION		H, H	SYMBOL			RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf		PLASTICITY INDEX	
3RAP	Approx. Surface Elev.: 1918 ft		DEPTH, ft.	nscs		TYPE	ZECC	3LOM	WATE	ORY I	LIQUID	PLAS'	
	SILTY SAND Beige to light-brown, medium dense with fine grained sand.			SM	1	BS	ш.	ш	70	<u> </u>			
	4.5	1913.5	2— — 4—	SM	X	RS		30	7	107			
	POORLY GRADED SAND WITH SILT AND GRAVEL Beige, medium dense with fine to medium grained sand.		6-	SP- SM	X	RS		82	5	111			
	Red-brown.		8-	SP- SM	X	RS		84	5	118			
	Calcium carbonate observed around 11		10	SP- SM	X	RS		50/4"	5	116			
	feet bgs.		12— — — 14—										
			16— — — 18—	SP- SM	X	RS		50/6"	5	112			
			20	SP- SM	X	RS		50/6"	9	105			
1/09			24-										
BOREHOLE 2000 60085029 BORING LOGS.GPJ TERR2000.GDT 12/1/109 AM	Increased silt content and trace gravel. 26.5 Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.	1891.5	26	SP- SM	X	SPT		85	5				
BORING LOGS.GF													
50505 betv	stratification lines represent the approximate boundary lines veen soil and rock types: in-situ, the transition may be gradual.	_				_							
WA	ATER LEVEL OBSERVATIONS, ft							RING S					-6-09
WL WI	A NE A A A A A A A A A A A A A A A A A A	ce:	٦ſ		7			RING C			055		0-6-09
Mr Mr			IJL		J		RIG		CME		OREM. OB#		MLS 95029

	OF BORI		•0	. D	-01	o				P	age 1	of 1
ENT Stirling Energy Systems												
		PRO	JEC	T								
East of Barstow, California	a				SA	AMPLE		r One		TESTS		
DESCRIPTION Approx. Surface Elev.: 1948 ft	Nium.	DEPTH, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
		2-	SP		RS		40	4	111			
4.5 POORLY GRADED SAND WITH SILT Beige, medium dense with fine graine sand.	1943.5 ed	4— — 6—	SP-	X	RS		50/4"	18	86			
9.5 carbonate observed around 8 feet bgs	s. <u>1938.5</u>			X	RS		50/4"	9	105			
<u>SILTY SAND</u> Beige to light-brown, ver dense with fine grained sand.	ry	10	SM		RS		50/5"	9	101			
		14	SM		RS		50/5"	7	103			
		16—————————————————————————————————————	Olvi		NO		30/3	,	100			
		22	SM	X	RS		50/5"	25	84			
		24	SM		SPT		32	18				
Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.	1921.5	20										
een soil and rock types: in-situ, the transition may be gr	ines radual.											
												-6-09 -6-09
Ž Ž	Jeu	30				RIG	anvo C		-75 F		AN	MLS
	DESCRIPTION Approx. Surface Elev.: 1948 ft POORLY GRADED SAND Beige, meddense with fine to coarse grained sand. POORLY GRADED SAND WITH SILT Beige, medium dense with fine graine sand. Trace sub-angular gravel and calcium carbonate observed around 8 feet bgs SILTY SAND Beige to light-brown, verdense with fine grained sand. Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.	East of Barstow, California DESCRIPTION Approx. Surface Elev.: 1948 ft POORLY GRADED SAND Beige, medium dense with fine to coarse grained sand. 1.5 POORLY GRADED SAND WITH SILT Beige, medium dense with fine grained sand. Trace sub-angular gravel and calcium carbonate observed around 8 feet bgs. SILTY SAND Beige to light-brown, very dense with fine grained sand. 1938.5 SILTY SAND Beige to light-brown, very dense with fine grained sand. 1921.5 Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.	East of Barstow, California DESCRIPTION Approx. Surface Elev.: 1948 ft POORLY GRADED SAND Beige, medium dense with fine to coarse grained sand. POORLY GRADED SAND WITH SILT Beige, medium dense with fine grained sand. Trace sub-angular gravel and calcium carbonate observed around 8 feet bgs. SILTY SAND Beige to light-brown, very dense with fine grained sand. 12 14 16 18 20 22 24 24 24 24 25 Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.	East of Barstow, California DESCRIPTION Approx. Surface Elev.: 1948 ft POORLY GRADED SAND Beige, medium dense with fine to coarse grained sand. 1.5 POORLY GRADED SAND WITH SILT Beige, medium dense with fine grained sand. Trace sub-angular gravel and calcium carbonate observed around 8 feet bgs. SILTY SAND Beige to light-brown, very dense with fine grained sand. 10 SM 12 14 16 SM 20 SM 22 SM 24 18 SM 22 SM 25 SM 26.5 Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.	East of Barstow, California DESCRIPTION Approx. Surface Elev.: 1948 ft POORLY GRADED SAND Beige, medium dense with fine to coarse grained sand. POORLY GRADED SAND WITH SILT Beige, medium dense with fine grained sand. Trace sub-angular gravel and calcium carbonate observed around 8 feet bgs. SILTY SAND Beige to light-brown, very dense with fine grained sand. SILTY SAND Beige to light-brown, very dense with fine grained sand. 10 SM 12 SM 14 SM 16 SM 18 SP SM 10 SM 11 SM 12 SM 11 SM 12 SM 12 SM 12 SM 13 SM 14 SM 15 SM 16 SM 18 SP 18 SP 1921.5 SM 18 SP 1921.5 SM 1921.5 SM 18 SM 18 SM 18 SP 1921.5 SM 1921.5 SM 1921.5 SM 18 SM 1921.5 SM 1921.5 SM 18 SM 1921.5 SM 1921.5 SM 18 SM 19 SM 19 SM 10 SM 1	East of Barstow, California DESCRIPTION Approx. Surface Elev.: 1948 ft POORLY GRADED SAND Beige, medium dense with fine to coarse grained sand. Trace sub-angular gravel and calcium carbonate observed around 8 feet bgs. SILTY SAND Beige to light-brown, very dense with fine grained sand. SILTY SAND Beige to light-brown, very dense with fine grained sand. 18 SM RS 1933.5 SILTY SAND Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.	Stirling Energy Systems East of Barstow, California PROJECT PROJECT SAMPLE PROJECT PR	East of Barstow, California PROJECT Sola Sola Approx. Surface Elev:: 1948 ft POORLY GRADED SAND Beige, medium dense with fine to coarse grained sand. POORLY GRADED SAND Beige, medium dense with fine grained sand. Trace sub-angular gravel and calcium carbonate observed around 8 feet bgs. SILTY SAND Beige to light-brown, very dense with fine grained sand. SILTY SAND Beige to light-brown, very dense with fine grained sand. Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.	East of Barstow, California PROJECT Solar One SAMPLE SAMPLE SAMPLE SAMPLE	East of Barstow, California PROJECT Solar One SAMPLE DESCRIPTION Approx. Surface Elev: 1948 ft POORLY GRADED SAND Beige, medium dense with fine to coarse grained sand. 1.5 POORLY GRADED SAND WITH SILT Beige, medium dense with fine grained sand. Trace sub-angular gravel and calcium carbonate observed around 8 feet bgs. SILTY SAND Beige to light-brown, very dense with fine grained sand. 10 SM RS 50/5* 9 101 10 SM RS 50/5* 7 103 Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.	East of Barstow, California PROJECT Solar One DESCRIPTION Approx. Surface Elev.: 1948 ft POORLY GRADED SAND Beige, medium dense with fine to coarse grained sand. 1.5 POORLY GRADED SAND WITH SILT Beige, medium dense with fine grained sand. 1.5 SILTY SAND Beige to light-brown, very dense with fine grained sand. SILTY SAND Beige to light-brown, very dense with fine grained sand. 10 SM RS 50/5" 7 103 18 SM RS 50/5" 7 103 SM RS 50/5" 25 84 SM SPT 32 18 SM SPT 32 18 SM SPT 32 18 SM SPT 32 18 Traitication lines represent the approximate boundary lines en sola and rock types: in-situ, the transition may be gradual. ER LEVEL OBSERVATIONS, ft BORING STARTED	East of Barstow, California PROJECT Solar One SAMPLE TESTS

	LOG OF I	BORI	NG I	10	. B	-01	7				F	Page 1	of 1
CLI	ENT Stirling Energy Systems												
SIT	E		PRO	JEC	Т								
	East of Barstow, California					9/	AMPLI		r One		TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 2122 ft		DEPTH, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	POORLY GRADED SAND WITH SILT AND GRAVEL Beige, medium dense with fine to medium grained sand. 4.5	2117.5	2— 4—	SP-	X	RS		37	1	118			
o ()	POORLY GRADED SAND WITH GRAVEL Beige, dense with fine to coarse grained sand.	2117.5	6—	SP	X	RS		38	1	114			
, О . О	Decreased gravel content.		88	SP	X	RS		47	1	112			
) Ø O			10-	SP	X	RS		55	1				
。() () ()			12										
	Very dense with an increased gravel content.		16— 18— 20—	SP		RS		50/3"	1	116			
	24	2098	22	SP	X	RS		50/6"	1	125			
0.GDI 12/11/09	SILTY SAND Beige to light-brown, dense with fine grained sand and trace sub-angular gravel. Bottom of boring.	2095.5	26 —	SM	X	SPT		90	1				
BORHAULE 2000 60085029 BORING LOGS.GPJ LERREZ000.GDJ 12/17/109 Petw Body WL	Groundwater not encountered. Boring backfilled with soil cuttings.												
The betw	stratification lines represent the approximate boundary lines een soil and rock types: in-situ, the transition may be gradual.						.						0.55
WA WL	TER LEVEL OBSERVATIONS, ft Very NE Very NE							RING S)-8-09)-8-09
WL	¥	CC:	36				RIG	VIING C	CME		OREM		MLS
ML WL		\									OB#		95029

	LOG OF BOR	NG I	NO	. B	-01	9				P	age 1	of 1
CLI	ENT Stirling Energy Systems											
SIT	E	PRO	JEC	Т				_				
	East of Barstow, California				S	AMPL		r One		TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 1943 ft SILTY SAND Beige to light-brown, very dense with fine grained sand.	DEPTH, ff.	M NSCS SYMBOL		LYPE SS	RECOVERY (in)	BLOWS/FT.	ω WATER CONTENT, %	DRY DENSITY	QINDITION	PLASTICITY INDEX	
	7.5 1935.5	6-	SM	X	RS		54	5	113			
	POORLY GRADED SAND WITH SILT Beige, medium dense with fine grained sand. 1933.5	8	SP- SM	X	RS		43	3	113			
	POORLY GRADED SAND Beige, very	10-	SP	X	RS		50/3"	2	112			
	dense with fine to coarse grained sand. POORLY GRADED SAND WITH SILT Beige, dense with fine grained sand.	12										
		16— 	SP- SM		RS		50/6"	4	101			
60/1		22-	SP-		RS		50/6"	3	109			
The bety WL WL WL WL WL W WL W W W W W W W W W	Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.	26-	SP-		NR		50/5"					
The bety	stratification lines represent the approximate boundary lines /een soil and rock types: in-situ, the transition may be gradual.											
WA	TER LEVEL OBSERVATIONS, ft						RING S					-6-09
WL	A A A A A A A A A A A A A A A A A A A		-6				RING C			005.		-6-09
WL WL	$\bar{\mathbf{x}}$	JL	_L	J		RIG		CME		OREM OB#		MLS 95029

\bigcap	LOG OF B	ORI	NG I	10 .	В	-02	0				P	age 1	of 1
CLI	ENT Stirling Energy Systems											. J -	
SIT			PRO	JEC	Т								
	East of Barstow, California								r One				
						SA	AMPLE	=			TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 2039 ft		DEPTH, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	SILTY SAND Beige, medium dense with fine grained sand. 2.5	2036.5	2—	SM	_	BS							
\circ \circ	POORLY GRADED SAND WITH GRAVEL Beige, medium dense with fine to medium grained sand and some sub-angular gravel.	2034.5	4-	SP	X	RS		52	1	98			
	SILTY SAND WITH GRAVEL Beige to light-brown, dense with fine to coarse grained sand and some sub-angular gravel.		6-	SM	X	RS		49	6	123			
			8-	SM	X	RS		55	11	104			
			10-	SP-		RS		50/5"	7	104			
	12	2027	_	SM		RS		50/5	1	104			
	POORLY GRADED SAND WITH SILT AND GRAVEL Red-brown, dense with fine to coarse grained sand.	2021	12										
			16-	SP- SM	X	RS		78	7	114			
	19 SILTY SAND WITH GRAVEL Red-brown,	2020	18										
	very dense with fine grained sand and some sub-angular gravel.		20—	SM	X	RS		50/6"	7	101			
60/			22—										
DT 12/11		2012.5	26-	SM	X	SPT		30					
BOREHOLE 2000 60095029 BORING LOGS.GPJ TERR2000.GDT 12/1/1/09 What and American Amer	Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.												
The betw	stratification lines represent the approximate boundary lines ween soil and rock types: in-situ, the transition may be gradual.												
WA	TER LEVEL OBSERVATIONS, ft						BOF	RING S	TARTE	D		10-	22-09
% WL	Ā Ā Ā Ā		3 6		7			RING C					22-09
로 WL	v v liCi		JL	.L	J		RIG		B		OREM		MLS
WL WL										J(OB#	6009	5029

		LOG OF BOR	ING	NO	. В	-02	3				F	Page 1	of 1
	CLI	ENT Stirling Energy Systems											
r	SIT	E	PRO	JEC	Т								
ŀ		East of Barstow, California				S	AMPLI		r One		TESTS	<u> </u>	
	90			30L					%	≽			
	GRAPHIC LOG	DESCRIPTION	DЕРТН, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
:.	<u>15</u>	Approx. Surface Elev.: 1986 ft SILTY SAND Beige, medium dense with	<u> </u>	🖺			R.	В	≩ઇ	<u> </u>	==	굽롣	
		fine to coarse grained sand and some sub-angular gravel.	2—										
			_ =	SM	X	RS		42	3	115			
		4.5 POORLY GRADED SAND WITH SILT	5 4 -										
		Beige, very dense with fine grained sand and some sub-angular gravel.	6	SP- SM	X	RS		74	3	120			
			8-	SP-	V	RS		41	3	113			
		9.5		SM									
		<u>SILTY SAND WITH GRAVEL</u> Beige, very dense with fine grained sand.	10-	SM	V	RS		62	3	117			
		G	12-										
			14-										
		Contains some sub-angular gravel.	16-	SM	X	RS		50/5"	4	111			
		19 1967	18—										
		POORLY GRADED SAND WITH SILT Beige, very dense with fine grained sand.	20-										
		Bolgo, vory define with time grained carra.	=	SP-	X	RS		50/3"					
			22-										
60/			24-										
12/11	:111:	25.5 1960.8 Bottom of boring.		SP-	M	SPT		50/4"	2				
.GDT		Groundwater not encountered. Boring backfilled with soil cuttings.		SM									
R2000		Borning backnined with soil cuttings.											
TER													
S.GPJ													
ř LOĞ													
ORING													
30REHOLE_2000_60095029 BORING LOGS.GPJ_TERR2000.GDT_12/11/09	The betw	stratification lines represent the approximate boundary lines ween soil and rock types: in-situ, the transition may be gradual.											
0 600	WA	TER LEVEL OBSERVATIONS, ft					BOF	RING S	TARTE	ΞD		10	-6-09
200	WL	Ÿ NE Ÿ T_GG					BOF	RING C	OMPL	ETED		10	-6-09
HOLE	WL	¥ ¥ IEII	عال				RIG		CME	-75 F	OREM	AN	MLS
30RF	WL									J	OB#	6009	5029

		L	OG OF BOR	RING	NO	. B	-02	4				F	Page 1	of 1
CLI	ENT Sti	rling Energy Syst	ame											
SITI	E			PRC	JEC	Т								
	East	t of Barstow, Calif	ornia				S	AMPLI		r One		TESTS	;	
GRAPHIC LOG	Approx. Surface Ele	DESCRIPTION		DЕРТН, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	3LOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	POORLY GR	ADED SAND WITH (-brown, dense with		2— 2— 4—	SP	X	RS		56	2	127			
(°. ()) (°. () (°. () (°. ()	Less gravel.		20:	6— 39	SP	X	RS		42	2	117			
	AND GRAVE dense with fir	ADED SAND WITH S L Beige, dense to whene to coarse grained	ery d sand,	8	SP-	X	RS		42	1	117			
	fines.	gular gravel, and no	•	10-	SP- SM	X	RS		56	2	119			
				14— 	SP-		RS		50/5"	1	120			
	Increased silt	t content.		18— 	SP-		RS		50/4"	3	118			
12/11/09	26.5		2019	22	SP-		SPT		50/5"	1				
BORHOLE 2000 60085029 BORING LOGS.GPJ TERR2000.GDT 12/1/109 AM Pag and Terrace	Bottom of bo Groundwater	ring. not encountered. lled with soil cutting	·	.0.	SM									
The betw	stratification lines represe een soil and rock types:	ent the approximate bour in-situ, the transition ma	ndary lines y be gradual.											
WA	TER LEVEL OBSEF								RING S					-8-09
WL	Ā NE	<u>¥</u>	Jeu	<u>ا</u>		7			RING C					-8-09
MF MF	$ar{ar{ar{\Lambda}}}$	<u> </u>	IICII		_L	ال		RIG		CME		OREM OB#		MLS 95029
~ ~	1										00	<i>-</i> υπ	0008	وعورر

\bigcap	LOG OF BOR	ING I	NO	. B	-02	5				F	age 1	of 1
CL	ENT Stirling Energy Systems											
SI	E	PRO	JEC	Т								
	East of Barstow, California			<u> </u>	S	AMPLI		r One		TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 2164 ft	DEPTH, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
<u>،</u>	POORLY GRADED SAND WITH GRAVEL Beige, dense with fine to coarse grained	 						, ,				
。() ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	sand and some sub-angular gravel.	2	SP	X	RS		65	2	127			
	4.5 2159.5 POORLY GRADED SAND WITH SILT	4 =										
	AND GRAVEL Beige, dense to very dense with fine to coarse grained sand, some sub-angular gravel, and non-plastic	6	SP- SM	X	RS		67	1				
	fines.	8—	SP- SM	X	RS		88	2	127			
<u>ال</u> ه	9.5 2154.5 POORLY GRADED SAND WITH GRAVEL	10-										
o ()	Beige, very dense with fine to coarse grained sand and some sub-angular gravel.	12—	SP	X	RS		50	2	119			
	14 2150 POORLY GRADED SAND WITH SILT	14-										
	AND GRAVEL Beige, dense to very dense with fine to coarse grained sand,		SP-	X	RS		50/6"	1				
	some sub-angular gravel, and non-plastic fines.	16—	SM									
		20-	SP-		RS		50/5"	1	116			
		22-	SM		RS		50/5	I	116			
	24 <u>2140</u> SILTY SAND WITH GRAVEL Beige, very	24-										
	dense with fine grained sand and some 26 sub-angular gravel. 2138	26—	SM	M	SPT		50/6"	2				
	Increased fines and less gravel. Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.	20										
	stratification lines represent the approximate boundary lines											
	veen soil and rock types: in-situ, the transition may be gradual. ATER LEVEL OBSERVATIONS, ft					R∩⊏	RING S	ΤΔΡΤΙ	-D		10	-8-09
WL							RING S					1-8-09 1-8-09
WL		a r				RIG	10 0	CME		OREM		MLS
WL								-		OB #		95029

Š

\bigcap	LOG OF BOR	ING I	NO	. B	-02	8				F	Page 1	of 1
CLI	ENT Stirling Energy Systems										_ J _	
SIT		PRO	JEC	T								
	East of Barstow, California					A B 4 D L F		r One				
					SA	AMPLE	=			TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 2209 ft	DEPTH, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	POORLY GRADED SAND WITH SILT AND GRAVEL Beige, dense with fine to coarse grained sand.	2—										
			SP- SM	X	RS		44	1	85			
	4.5 2204.9 SILTY SAND Beige, dense with fine											
	grained sand and trace sub-angular gravel.	6-	SM	X	RS		37	1				
	7.5 2201.9 POORLY GRADED SAND WITH GRAVEL		00									
· 🔿	Beige, very dense with fine to coarse	8-	SP	X	RS		68					
) Ø	grained sand and some sub-angular gravel.	10-	SP		RS		71	1	122			
, O			51	Ă	110		, ,	'	122			
))		12-										
, O		14-	1									
· . ()			SP		RS		61	1	120			
, O		16—										
٥ ٥ (<i>\</i>		18—										
)::: Ø												
• O		20-	SP	X	RS		67	1	122			
· . ()		22—										
, O	24 218											
	POORLY GRADED SAND WITH SILT	24—										
12/1	AND GRAVEL Beige, dense with fine to coarse grained sand, some sub-angular 2182.6	26—	SP- SM	M	SPT		78	1				
00.60	gravel, and non-plastic fines. Bottom of boring.											
KK200	Groundwater not encountered. Boring backfilled with soil cuttings.											
Z	Borning backlined with soil cuttings.											
0.85.0												
SING L												
in The	stratification lines represent the approximate boundary lines											
betw	reen soil and rock types: in-situ, the transition may be gradual.					n						
WA WL	TER LEVEL OBSERVATIONS, ft						RING S					7-09
WL WL	Y Y I	ar	- [RIG	and C	CME		OREM		0-7-09 MLS
BOREHOLE 2000 60095029 BORING LOGS.GPJ LERRE2000.GDJ 12/17/109			-•					OIVIL		ORLIVII OB#		95029

\bigcap	LOG O	F BORI	NG I	VO.	В	-029	9				F	Page 1	of 1
CLI	ENT Stirling Energy Systems												
SIT	E		PRO	JEC	Г								
	East of Barstow, California					S	AMPLE		r One		TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 2188 ft		DЕРТН, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	POORLY GRADED SAND WITH GRAVEL Beige to light-brown, medium dense with fine to medium grained sand.		2— 2—	SP	<u> </u>	BS RS		43	1	122			
	7 POORLY GRADED SAND WITH SILT	2181	6	SP		NR		55	2	100			
	AND GRAVEL Beige, dense to very dense with fine to coarse grained sand,		8	SP- SM	X	RS		70	1	117			
	some sub-angular gravel, and non-plastic fines. Fine grained sand and decreased gravel.			SP- SM	X	RS		50/6"	2	124			
			14-										
			16— —	SP- SM	X	RS		50/6"	2	147			
			18— — — 20—	SP-		RS		50/6"	3	117			
			22	SM									
000.GDT 12/11/09	25 26 SILTY SAND Beige, very dense with fine grained sand. Bottom of boring. Groundwater not encountered.	2163 2162	26—	SM		SPT		50/2"	2				
BOREHOLE 2000 60085029 BORING LOGS.GPJ TERR2000.GDT 12/1/1/09 AM LDG AM	Boring backfilled with soil cuttings.												
The betw	stratification lines represent the approximate boundary lines reen soil and rock types: in-situ, the transition may be gradua	il.											
WA	TER LEVEL OBSERVATIONS, ft							RING S					7-09
WL WL	Ţ NE Ţ Ţ	211	ar	-			BOF	RING C	OMPL CME		OREM		0-7-09 MLS
WL WL	"						0		OIVIL		OREW OB#		95029

		L	OG OF BOR	NG I	NO	. B	-03	1				F	Page 1	of 2
CLI	ENT Sti	rling Energy Syst	ems											
SIT	E			PRO	JEC	Т								
	Eas	t of Barstow, Calif	ornia				S	AMPLI		r One		TESTS	<u> </u>	
GRAPHIC LOG	Approx. Surface Ele	DESCRIPTION		DEPTH, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	POORLY GR Beige to light	ADED SAND WITH (t-brown, medium de m grained sand.		2-	SP	X	RS		32	1	113			
。 () ()	<u>'</u>	es and gravel size.	2070	4— — — 6— —	SP	X	RS		37	2	109			
٠	8.5 dense with fine sub-angular (d some 2068.5	8	SM	X	RS		28	3	109			
。() () ()	Beige to light dense with fi	ADED SAND WITH (-brown, medium de ne to medium graine	nse to very	10-	SP	X	RS		44	2	112			
	and sub-ang	ular gravel.		12—										
。 。 〉				16-	SP	X	RS		53	2	121			
ø • () • ()				18— ———————————————————————————————————	0.0		DO		0.5					
, O				22-	SP	X	RS		65	1	111			
				24-										
[]				26-	SP	0	NR		50/6"					
The betw WA WL				28-										
). Ø				30-	SP	0	NR		50/5"					
OKING LC	С	ontinued Next Paç	je	32—										
The betw	stratification lines represented soil and rock types:	ent the approximate boul in-situ, the transition ma	ndary lines y be gradual.											
WA	TER LEVEL OBSEF		· · · · · · · · · · · · · · · · · · ·					BOF	RING S	TARTE	ΞD		10-	22-09
WL	Ÿ NE	¥	Jeu	7	-,				RING C					22-09
WL WL	$ar{ar{ar{\Lambda}}}$	<u> Y</u>		حال	_L	J		RIG		В		OREM. OB#		MLS 95029

01 :=	NIT.	LOG OF BO	, i XI				. 55	•				F	Page 2	of 2
CLIE	NT Stirling Energ	gy Systems												
SITE				PRC	JEC	Т			Cala	O				
	East of Barsto	w, California					S	AMPL		r One		TESTS	<u> </u>	
GRAPHIC LOG	DESCRIF	PTION		DEPTH, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	POORLY GRADED SANI	WITH GRAVEI			Ď		Ĺ	~	▣	>0	۵	==	ੋਵ	
Δ , , , , ,	Beige to light-brown, medense with fine to mediu	dium dense to very		34	SP	0	NR		50/5"					
				38— - - 40— - - 42—	SP	X	RS		50/5"	2	123			
) (0)				44	SP		SPT		50/4"	2	116			
O	1		2026	48 —	SP		RS		50/6"					
	Bottom of boring. Groundwater not encoun Boring backfilled with so	tered.		_										
The st	ratification lines represent the approxi	mate boundary lines												
	en soil and rock types: in-situ, the tra ER LEVEL OBSERVATIONS,							BOF	RING S	TARTI	ED.		10-	22-0
	¥ NE ¥								RING C					22-0
	<u>Ā</u>	1[er	ſ					RIG			-	DREM.		MLS
WL	1		_ `				- -				JC)B#	6009	9502

\bigcap	LOG OF BO	RING	NO.	В.	-03	2				F	Page 1	of 1
CL	ENT Stirling Energy Systems											
SIT		PRO	JEC	Τ			Solo	r One				
	East of Barstow, California				S	AMPLI		rone		TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 2024 ft	DЕРТН, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	3LOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	POORLY GRADED SAND Beige, loose with fine grained sand and trace sub-angular gravel.	2-				ш.	-					
	4.5	19.5	SP	X	RS		14	1	107			
	POORLY GRADED SAND WITH SILT AND GRAVEL Beige, medium dense with fine to coarse grained sand, trace	6—	SP- SM	X	RS		51	2	122			
	sub-angular gravel, and non-plastic fines. Calcium carbonate observed around 8 feet bgs.	8	SP- SM	X	RS		53	3	110			
	Dense.	10—	SP- SM	X	RS		50/5"	3	95			
		14-										
		16—	SP- SM	X	RS		80	2	113			
		18—										
		003	SP-	0	NR		50/5"					
	Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.		SM									
betv	stratification lines represent the approximate boundary lines veen soil and rock types: in-situ, the transition may be gradual.											
	TER LEVEL OBSERVATIONS, ft						RING S					22-09
WL WL	A A A A A A A A A A A A A A A A A A A	رکر		71			RING C			0051		22-09
WL			-L	J		RIG		В		OREM OR #		MLS 95029

Š

	LOG C	F BORI	NG I	VO.	. B	-03	3				F	Page 1	of 1
CLI	ENT Stirling Energy Systems												
SIT	E		PRO	JEC	T								
	East of Barstow, California					S/	AMPLI		r One		TESTS		
GRAPHIC LOG	DESCRIPTION		DEPTH, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
Ē	Approx. Surface Elev.: 2040 ft SILTY SAND Beige, medium dense with fine to coarse grained sand and trace sub-angular gravel.			Š		Ĺ	<u>~</u>	18	≥ŏ	<u> </u>	55	<u> </u>	
	oub diligular gravol.		4-	SM	X	RS		47	4	111			
	Some sub-angular gravel.		6	SM	X	RS		57	5	105			
	9 Very dense.	2031	8-	SM	X	RS		91	4	110			
	POORLY GRADED SAND WITH SILT AND GRAVEL Beige, very dense with fine to coarse grained sand, some		10	SP- SM	X	RS		67	3	116			
	sub-angular gravel, and non-plastic fines		12										
			16—	SP- SM	X	RS		50/6"	3	122			
	Little to no gravel.			SP- SM	X	RS		50/4"	5	115			
2/11/09			24 —	SP-		SPT		69	3				
BOREHOLE 2000 60095029 BORING LOGS.GPJ TERR2000.GDT 12/1/109 AM Log Management of the Company of	Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.	2013.5	26—	SM									
วัน Deg Si The	stratification lines represent the approximate boundary lines	<u> </u>											
betw	een soil and rock types: in-situ, the transition may be gradu TER LEVEL OBSERVATIONS, ft						R∩⊏	RING S	ΤΔΡΤ	-D		10	-6-09
WL								RING C					1-6-09 1-6-09
WL	<u>Λ</u>	611					RIG		CME		OREM		MLS
WL WL										J	OB#	6009	5029

	L	OG OF BOR	NG I	10	. B	-03	4				F	Page 1	of 2
CLI	ENT Stirling Energy Syst	ome											
SIT	E		PRO	JEC ⁻	Т								
	East of Barstow, Calif	ornia				S	AMPLE		r One		TESTS	<u> </u>	
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 2061 ft		DЕРТН, ft.	USCS SYMBOL		ТУРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	POORLY GRADED SAND WITH: AND GRAVEL Beige, dense with coarse grained sand and some signavel.	n fine to	2-	SP-		RS		65	4	115			
			4-	SM		No		05	7	113			
	Calcium carbonate observed ard bgs.	ound 5 feet	6-	SP- SM	X	RS		58	6	113			
	Decreased gravel size and conte	ent.	8 = 8	SP- SM	X	RS		50/6"	5	119			
			10-	SP- SM	X	RS		67	4	112			
			12										
			16—	SP- SM	X	RS		50/5"	4	111			
	Fine grained sand.		20	SP- SM		RS		50/5"	3	117			
12/11/09			24	SP- SM		SPT		71	3				
IERR2000 GDI			28-	OIVI									
BOREHOLE 2000 60085029 BORING LOGS.GPJ TERR2000.GDT 12/1/1/09 APP	Beige to light-brown. Calcium ca observed around 31 feet bgs. Continued Next Pa		30	SP- SM		RS		50/5"	4	116			
The	stratification lines represent the approximate bou	ndary lines	l						I		1	I	
WA	veen soil and rock types: in-situ, the transition ma	iy be gradual.					BOF	RING S	TARTE	ΞD		10	-7-09
WL	Ÿ NE ¥	76					BOF	RING C					-7-09
WL WL	Ā Ā	11em	عال	.C	J		RIG		CME		OREM OB#		MLS 95029

	LOG OF	BOR	NG I	NO	. B	-03	4				F	Page 2	of 2
CLI	ENT Stirling Energy Systems												
SIT	E		PRO	JEC ⁻	T								
	East of Barstow, California					S	AMPLI		r One		TESTS		
GRAPHIC LOG	DESCRIPTION		DEPTH, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	POORLY GRADED SAND WITH SILT AND GRAVEL Beige, dense with fine to coarse grained sand and some sub-angular gravel.		34-36-38-38-	SP-				50/4"	5				
	Increased gravel content.		40-42-	SP- SM		RS		50/5"	4	108			
	Decreased gravel content.		44 —	SP- SM		SPT		50/4"	5				
SOREHOLE 2000 60095029 BORING LOGS GPJ TERR2000.GDT 12/1/09	Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.	2010	50	SP- SM		RS		50/4"	3				
The betw	stratification lines represent the approximate boundary lines veen soil and rock types: in-situ, the transition may be gradual. TER LEVEL OBSERVATIONS, ft						BOF	RING S	TARTE	ΞD		10	1-7-09
WL	¥ ¥ ¥ Telestrian Tele				ار			RING C					-7-09
Mr Mr	$ar{\mathbf{x}}$		عال	_L	J		RIG		CME		OREM OB#		MLS 95029

		L	OG OF BORI	NG I	NO.	В.	-03	5				F	Page 1	of 1
CLI	ENT Stir	rling Energy Syst	ems											
SIT	E			PRO	JEC	Γ			•					
	East	of Barstow, Calif	rornia				SA	AMPLE		r One		TESTS		
GRAPHIC LOG	Approx. Surface Ele	DESCRIPTION v.: 2085 ft		DЕРТН, f t.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	POORLY GRA	ADED SAND WITH S Beige, medium d grained sand and	ense with	2—	SP- SM	A	BS							
	sub-angular g	ravei.		4-	SP- SM	X	RS		40	6	110			
	Dense.			6-	SP- SM	X	RS		65	5	106			
				8-	SP- SM	X	RS		79	3	115			
	Very dense.			10-	SP-	0	NR		50/5"					
				12— ———————————————————————————————————	SM									
				16— 18—	SP- SM	×	RS		50/3"	4	118			
				20	SP- SM	X	RS		50/5"	5	122			
2/11/09				24-	SP-		SPT		59	4				
BOREHOLE 2000 60095029 BORING LOGS.GPJ TERR2000.GDT 12/1/1/09 M		ing. not encountered. led with soil cutting	2058.5 IS.	26	SM		3. 1		33	•				
The	stratification lines represe /een soil and rock types:	ent the approximate boulin-situ, the transition ma	ndary lines ay be gradual.											
WA	TER LEVEL OBSER							BOF	RING S	TARTE	ED_		10	-7-09
WL WL		Ϋ́ Ϋ́	7 Terra	٦ſ		71			RING C			005.		7-09
WL WL	-	-		<u> </u>	_ L	ار _		RIG		CME		OREM OB#		MLS 95029

		L	OG OF BORI	NG I	NO.	. B	-03	6				F	age 1	of 1
CLI	ENT St ir	ling Energy Syst	ems											
SIT	E			PRO	JEC ⁻	Τ								
	East	of Barstow, Calif	rornia				SA	AMPLE		r One		TESTS		
GRAPHIC LOG	Approx. Surface Ele	DESCRIPTION v.: 2090 ft		DЕРТН, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	AND GRAVEL	ADED SAND WITH: Beige, medium d grained sand and ravel.	ense with	2-	SP-	X	RS		49	2	121			
				4—————————————————————————————————————	SM SP- SM	X	RS		47	3	115			
	Very dense.			8-	SP- SM	X	RS		50/4"	2	129			
	Dense.			10-	SP- SM	X	RS		73	3	117			
				12	Sivi									
	Light-brown.			16-	SP- SM	X	RS		74	3	113			
				18—	SP-		RS		50/5"	4	111			
				22—	SM		_KS		50/5	4	111			
Т 12/11/0	26.5		2063.5	26-	SP- SM	X	SPT		75	3				
BOREHOLE 2000 60095029 BORING LOGS.GPJ TERR2000.GDT 12/1/1/09 MP AM MP WL MP		ing. not encountered. led with soil cutting	IS.											
The betw	stratification lines represe een soil and rock types:	nt the approximate bou in-situ, the transition ma	ndary lines ny be gradual.		'									
WA	TER LEVEL OBSER							BOF	RING S	TARTE	D		10	-7-09
WL 500	1.12	<u>Y</u>	Terra	3 /					RING C					-7-09
ML ML	$ar{ar{ar{A}}}$	<u>V</u>		IJL	_L	J		RIG		CME		OREM OB#		MLS 95029
× ··-	1										0(<i>-</i> υπ	0008	,0023

\bigcap	LOG OF BOI	RING	NO	. B	-03	7				F	Page 1	of 1
CL	ENT Stirling Energy Systems										_ J _	
SIT	E	PRC	JEC	T								
	East of Barstow, California			1	SA	AMPI F		r One		TESTS	<u> </u>	
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 2086 ft SILTY SAND Beige to light-brown, medium dense to dense with fine grained sand and trace sub-angular gravel. Calcium carbonate observed around 3 feet bgs. POORLY GRADED SAND WITH SILT AND GRAVEL Beige, very dense with fine to coarse grained sand, sub-angular gravel, and non-plastic fines. SILTY SAND WITH GRAVEL Beige to light-brown, very dense with fine to coarse grained sand and sub-angular gravel. POORLY GRADED SAND WITH SILT AND GRAVEL Beige, very dense with fine to coarse grained sand, sub-angular gravel, and non-plastic fines. 2075 Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.	10— 10— 12— 14— 16— 20— 22— 24—	TORWAS SOSN SM SM SP-SM	X X X X	SPT RS SPT RS SPT RS SPT RS SPT	RECOVERY (in)		** One % NATER 3 3 3 5 4	115 114 117 111 111	TESTS GINOIT	PLASTICITY INDEX	
	stratification lines represent the approximate boundary lines											
betv	veen soil and rock types: in-situ, the transition may be gradual.					DOF	DINIC C	тлртг	ED.		4.0	7.00
WL	TER LEVEL OBSERVATIONS, ft						RING S)-7-09)-7-09
WL	A NE A A JEU	'ar				RIG	MING C	CME		OREM		MLS
WL					•			_		OB #		95029

Š

	LOG OF B	BORI	NG N	10	. В	-03	8				F	Page 1	of 1
CLI	ENT Stirling Energy Systems												
SIT	E		PRO	JEC	Т								
	East of Barstow, California					S	AMPI F		r One		TESTS	<u> </u>	
	Approx. Surface Elev.: 2065 ft POORLY GRADED SAND Beige. medium dense with fine to coarse grained sand. 4.5 POORLY GRADED SAND WITH SILT AND GRAVEL Beige, dense with fine to coarse grained sand and sub-angular gravel. POORLY GRADED SAND WITH GRAVEL Red-brown, very dense with fine to coarse grained sand and sub-angular gravel.	2060.5 2058 2052.5	2 DEPTH, ft. D	TORWAS SOSN SP		S S S TYPE	RECOVERY (in)		r One % 'MATER CONTENT' %	115 118 117	TESTS	PLASTICITY INDEX	
30RING													
The betw	stratification lines represent the approximate boundary lines reen soil and rock types: in-situ, the transition may be gradual.												
WA	TER LEVEL OBSERVATIONS, ft							RING S					22-09
WL 30	¥ ¥ ¥ Tel	rr:	٦r		71			RING C					22-09
ML ML	Y Y IICI		IJL	_L	J		RIG		В		OREM OB#		MLS 95029

					OG OF BOR		NO.	. 0	1- 03	7				F	Page 1	of 1
	:LI	ENT	St	irling Energy Syst	ems											
S	IT	E				PRO	JEC	Т			•	_				
			Eas	st of Barstow, Cali	rornia				S/	AMPLI		r One		TESTS	<u> </u>	
GRAPHIC LOG		Appr	ox. Surface El	DESCRIPTION		DEPTH, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	3LOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
		, кррг	POORLY GR	RADED SAND WITH	SILT	- -	_		Ė							
			grained sand	um dense with fine to d and trace sub-ango	o coarse ular gravel.	2—	SP-		RS		22	1	106			
						4-	SM									
			Increased gr	ravel content. Less fi	nes.	6-	SP- SM	X	RS		54	2	122			
			Dense with i	ncreased coarse sa	nd.	8-	SP- SM	X	RS		48	1	122			
			Very dense.			10-	SP-		RS		69	2	117			
						12-	SM		110		00		117			
						14-										
						16-	SP-	X	RS		50/5"	1	118			
						18—										
						20-	SP-	X	RS		50/5"	1	125			
						22-	SM									
g						24-										
12/11/		25.5 26.5	POORLY GR	RADED SAND Light-	2152.5 brown, 2151.5		SP	H	SPT		57	2				
BOREHOLE 2000 60095029 BORING LOGS.GPJ TERR2000.GDT 12/11/09		20.0	Bottom of bo Groundwate	se with fine grained oring. r not encountered. filled with soil cutting	sand.											
GS.GPJ TE			Borning Buokk	miod With Con Cutting	G.											
30RING LO																
95029 E	he etw	stratific veen sc	cation lines repres	sent the approximate bou in-situ, the transition ma	ndary lines ny be gradual.											
00 W		TER		RVATIONS, ft						BOF	RING S	TARTE	ED		10	-7-09
W 200		Ā N	E	Ţ	Jeu	7	-,				RING C					-7-09
W WEHOL		Ā		<u> </u>		حال	_L	J		RIG		CME		OREM OB#		MLS 95029

			L	OG OF B	ORI	NG I	NO.	В	-049	9				F	age 1	of 1
	CLII	ENT Stirling	g Energy Syste	ems												
ľ	SIT	E				PRO	JEC	Т				_				
H		East of I	Barstow, Calif	ornia					SA	AMPLE		r One		TESTS		
	GRAPHIC LOG	DE Approx. Surface Elev.: :	ESCRIPTION			DEPTH, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
		POORLY GRADE	D SAND WITH S				SP-		RS	_						
		AND GRAVEL Be fine to medium gr sub-angular grave	ained sand and	e with		2-	SM SP-	X	RS		50/6"	1	125			
						4	SM									
		Increased coarse sub-angular grave		nd fine		6-	SP- SM	X	RS		55	0	124			
						8	SP- SM	X	RS		64	2	117			
		Thin zone of incre	eased fines.			10 —	SP-		RS		69	2	116			
						12	SM									
		Increased gravel	content.			16—	SP- SM	X	RS		50/5"	1	111			
		Degraped grave	Looptont			18—			PG		50/0"		444			
		Decreased gravel	r content.			22-	SP- SM		RS		50/3"	3	114			
11/09		25.5			2488.5	24—										
BOREHOLE 2000 60095029 BORING LOGS.GPJ TERR2000.GDT 12/11/09	9.11	Bottom of boring. Groundwater not Boring backfilled	encountered. with soil cutting			26	SP- SM	0	NR		50/5"					
BORING LOGS																
95029	The betw	stratification lines represent the veen soil and rock types: in-situ	e approximate bour u, the transition ma	ndary lines y be gradual.												
0 600	WA	TER LEVEL OBSERVAT	ΓΙΟΝS, ft							BOF	RING S	TARTE	ED		10	-7-09
E 200	۸L	Ÿ NE ¥		7 [e:		7-	-	7			RING C					-7-09
게 되	NL M	$ar{ar{\Lambda}}$				JL	.L	J		RIG		CME		OREM.		MLS
٥Ĺ	٨L												J(OB#	6008	5029

	LOG OF TES	ST PI	T N	10.	T	P-0	16				F	Page 1	of 1
CLIE													
SITE	Stirling Energy Systems	P	ROJ	IFC									
OIIL	East of Barstow, California	'	1100	LO	•			Sola	r One				
						S	AMPLE				TESTS	5	
	DESCRIPTION Approx. Surface Elev.: 2187 ft	, i	DEPIH, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	POORLY GRADED SAND WITH GRAVEL Beige with fine grained POORLY GRADED SAND WITH GRAVEL Beige with fine to coarse grained sand and sub-angular gravel and cobble. Intermittent layers of increased fines and increased gravels.	86.5	2		1	BS			1				
	Calcium carbonate buildup observed on test pit walls at 5, 6, and 7 feet bgs.	1, 1, 2173			•								
	Bottom of test pit. Groundwater not encountered. Test pit backfilled with soil cuttings.												
betwe WA7	stratification lines represent the approximate boundary lines seen soil and rock types: in-situ, the transition may be gradual. TER LEVEL OBSERVATIONS, ft						TES	T PIT S	START	ED		10-	21-0
	Ÿ NE ¥ T									LETED		10-	21-0
WL	A NE A JEL			J	J		BAC	KHOE	В	-95 F	OREM	AN	ML
٧L										J	OB#	6009	9502

	LOG OF TEST	PIT I	10.	Т.	P-0	18				F	age 1	of 1
CL	ENT Stirling Energy Systems											
SIT		PRO	JEC	Т								
	East of Barstow, California							r One				
					S/	ampli 				TESTS		
	Approx. Surface Elev.: 2281 ft 9.5 SILTY SAND Beige with fine grained sand and some sub-angular gravel. POORLY GRADED SAND WITH GRAVEL Beige with fine to coarse grained sand and sub-angular gravel and cobble. Intermittent layers of increased fines and increased gravels. Calcium carbonate buildup observed on test pit walls at 5 feet bgs. 14 2267 Bottom of test pit. Groundwater not encountered. Test pit backfilled with soil cuttings.	2— 4— 6— 8— 10—	USCS SYMBOL		BS BS BS	RECOVERY (in)	BLOWS/FT.	T WATER CONTENT, %	DRY DENSITY pcf	QINDITI I	PLASTICITY INDEX	
betv	stratification lines represent the approximate boundary lines veen soil and rock types: in-situ, the transition may be gradual. TER LEVEL OBSERVATIONS, ft						T PIT S		ED LETED			21-09 21-09
遺 WL	A A A A A A A A A A A A A A A A A A A	ال			П		KHOE			OREM		MLS
WL			_						JO	OB#	6009	5029

	LOG OF TEST	PIT I	10.	. T	P-02	26				F	age 1	of 1
CLI	ENT Stirling Energy Systems											
SIT		PRO	JEC	T								
	East of Barstow, California					4 4 4 D U 1		r One		TEOTO		
					Si	AMPLE	<u> </u>			TESTS		
S G GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 2049 ft 0.5 — SILTY SAND Beige with fine grained / 2048.5 yand and some sub-angular gravel. POORLY GRADED SAND WITH GRAVEL	DEPTH, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	Beige with fine to coarse grained sand and sub-angular gravel and cobble. Calcium carbonate buildup observed on test pit walls at 5 feet bgs.	4		<u> </u>	DC			2				
	Intermittent layers of increased fines and increased gravels.	6— — 8—		 	BS			2				
		10—										
。 O	14 2035	14-		1	BS			2				
BOREHOLE 2000 60095029 BORING LOGS.GPJ 1ERR2000.GDJ 12/11/09 TAM TAM TAM TAM TAM TAM TAM TAM	Bottom of test pit. Groundwater not encountered. Test pit backfilled with soil cuttings.											
The	stratification lines represent the approximate boundary lines reen soil and rock types: in-situ, the transition may be gradual.	1			1			ı		1		
WA	TER LEVEL OBSERVATIONS, ft					TES	T PIT S	START	ED		10-:	21-09
WL									 LETED			21-09
WL	Σ NE Σ TELL	عال			П	BAC	KHOE	В	-95 F	OREM	AN	MLS
WL									JO	DB#	6009	5029

	LOG OF TEST	PIT I	10	. T	P-0	27				F	Page 1	of 1
CLI	ENT Stirling Energy Systems											
SIT		PRO	JEC	Т								
	East of Barstow, California					A N A D L F		r One		TECTO		
3 € € 6 € 6 € 6 € 6 € 6 € 6 € 6 € 6 € 6		DEPTH, ft.	USCS SYMBOL	1	BS BS	RECOVERY (in)		NATER CONTENT, %	DRY DENSITY pof	TESTS GINOIT	PLASTICITY INDEX	
betw	stratification lines represent the approximate boundary lines reen soil and rock types: in-situ, the transition may be gradual. TER LEVEL OBSERVATIONS, ft V NE V V V V V V V V V V V V V V V V V	36				TES	T PIT S T PIT G	COMP	LETED -95 F	OREM.	10- AN	21-09 21-09 MLS 95029

SITE East of Barstow, California DESCRIPTION Approx. Surface Elev: 2341 ft POORLY GRADED SAND WITH GRAVEL Begin with fine to coarse grained sand and sub-angular gravel and cobble sand increased gravels. Calcium carbonate buildup observed on test pit Groundwater not encountered. Test pit backfilled with soil cuttings. The stratification lines represent the approximate boundary lines between soil and rock types: in-sibu. the transition may be gradual. WATER LEVEL DOSSERVATIONS, ft WATER LEVEL DOSSERVATIONS, ft VALUE IN TEST PIT STARTED 10-19 SAMPLE TEST PIT STARTED TEST PIT STARTED 10-19 SAMPLE TEST PIT STARTED TEST PIT STARTED 10-19 TEST PIT STARTED 10-19 TEST PIT COMPLETED 10-19	SITE	Stirling Energy Systems	PRO	JEC	T						
East of Barstow, California PROJECT Solar One SAMPLE TESTS TESTS			PRO	JEC [*]	Т						
DESCRIPTION Approx. Surface Elev.: 2341 ft POORLY GRADED SAND WITH GRAVEL Beige with fine to coarse grained sand and sub-angular gravel and cobble. Intermittent layers of increased fines and increased gravels. Calcium carbonate buildup observed on test pit walls at 5.5 feet bgs. Bottom of test pit. Groundwater not encountered. Test pit backfilled with soil cuttings. The stratification lines represent the approximate boundary lines between soil and rock types: in-situ, the transition may be gradual. WATER LEVEL OBSERVATIONS, ft TEST PIT STARTED 10-10-10-10-10-10-10-10-10-10-10-10-10-1	PHIC LOG	East of Barstow, California		1				Cala	0		
POORLY GRADED SAND WITH GRAVEL Beige with fine to coarse grained sand and sub-angular gravel and cobble. Intermittent layers of increased fines and increased gravels. Calcium carbonate buildup observed on test pit walls at 5.5 feet bgs. Bottom of test pit. Groundwater not encountered. Test pit backfilled with soil cuttings. The stratification lines represent the approximate boundary lines between soil and rock types: in-situ, the transition may be gradual. WATER LEVEL OBSERVATIONS, ft TEST PIT STARTED 10-19-	PHIC LOG			1		S/	AMPLE		r One	TESTS	
between soil and rock types: in-situ, the transition may be gradual. WATER LEVEL OBSERVATIONS, ft TEST PIT STARTED 10-19-		POORLY GRADED SAND WITH GRAVEL Beige with fine to coarse grained sand and sub-angular gravel and cobble. Intermittent layers of increased fines and increased gravels. Calcium carbonate buildup observed on test pit walls at 5.5 feet bgs. Bottom of test pit. Groundwater not encountered.	2— 4— 6— 8— 10— 12—	USCS SYMBOL		SB TYPE			NATER CONTENT, %		
WL Y NE WL Y WL Y BACKHOE B-95 FOREMAN M											

Stirling Energy Systems SITE East of Barstow, California DESCRIPTION Approx. Surface Elev: 2452 ft SILTY SAND Beige with fine grained 1.5 Sand and some sub-angular gravel. POORLY GRADED SAND WITH GRAVEL Beige with fine to coarse grained sand and sub-angular gravel cobble. Intermittent layers of increased fines and increased gravels. Calcium carbonate buildup observed on test pit walls at 4 feet bgs. Bottom of test pit. Groundwater not encountered. Test pit backfilled with soil cuttings. The stratification lines represent the approximate boundary lines between soil and rock types: in-situ, the transition may be gradual. WATER LEVEL OSSERVATIONS, ft ML IV NE TEST PIT STARTED 10-20-04 TEST PIT COMPLETED 10-20-04		LOG OF TEST	PIT I	NO.	. T	P-04	41				F	Page 1	of 1
East of Barstow, California DESCRIPTION Approx. Surface Elev: 2452 ft SILTY SAND Beige with fine grained Its Sand and some sub-angular gravel. PROJECT SOIAT ONE SAMPLE	CLI												
DESCRIPTION Approx. Surface Elev: 2452 ft SILTY SAND Beige with fine grained sand and stone sub-angular gravel. POORLY CRADED SAND WITH CRAVEL. Beign with fine to coarse grained sand and sub-angular gravel cobble intermittent layers of increased fines and increased gravels. Calcium carbonate buildup observed on test pit walls at 4 feet bgs. The stratification lines represent the approximate boundary lines between soil and rock types: in-situ, the franction may be gradual. The stratification lines represent the approximate boundary lines between soil and rock types: in-situ, the franction may be gradual. WATER LEVEL OBSERVATIONS, ft NL V NE Y TEST PIT STARTED 10-20-04 TEST PIT STARTED 10-20-04 TEST PIT COMPLETED 10-20-04	SIT		PRO	JEC	Т								
DESCRIPTION Approx. Surface Elev. 2452 ft 15 SiLTY SAND Beige with fine grained sand and sub-angular gravel cobble. Intermittent layers of increased fines and increased gravels. Calcium carbonate buildup observed on test pit. Groundwater not encountered. Test pit backfilled with soil cuttings. The stratification lines represent the approximate boundary lines between soil and rock types. In-situ, the transition may be gradual. The stratification lines represent the approximate boundary lines between soil and rock types. In-situ, the transition may be gradual. WATER LEVEL OBSERVATIONS, ft NL V NE V TEST PIT STARTED 10-20-0 TEST PIT COMPLETED 10-20-0		East of Barstow, California							r One				
SILTY SAND Beige with fine grained sand and some sub-angular gravel. 2450.5						SA	AMPLE	<u>=</u>			TESTS	; 	
Beige with fine to coarse grained sand and sub-angular gravel cobble. Intermittent layers of increased fines and increased gravels. Calcium carbonate buildup observed on test pit walls at 4 feet bgs. Bottom of test pit. Groundwater not encountered. Test pit backfilled with soil cuttings. The stratification lines represent the approximate boundary lines between soil and rook types: in-situ, the transition may be gradual. WATER LEVEL OBSERVATIONS, ft NL Y NE Y TEST PIT STARTED 10-20-0 TEST PIT STARTED 10-20-0 TEST PIT COMPLETED 10-20-0 TEST PIT COMPL		Approx. Surface Elev.: 2452 ft	DЕРТН, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
Bottom of test pit. Groundwater not encountered. Test pit backfilled with soil cuttings. Test pit started to 10-20-0 Test pit started to 10-20-0 Test pit started to 10-20-0 Test pit completed to 10-20-0 Test pit complete		SILTY SAND Beige with fine grained 1.5 sand and some sub-angular gravel. 2450.5 POORLY GRADED SAND WITH GRAVEL Beige with fine to coarse grained sand and sub-angular gravel cobble. Intermittent layers of increased fines and increased gravels.	=										
Bottom of test pit. Groundwater not encountered. Test pit backfilled with soil cuttings. Be stratification lines represent the approximate boundary lines ween soil and rock types: in-situ, the transition may be gradual. ATER LEVEL OBSERVATIONS, ft V V TEST PIT STARTED 10-20-0 TEST PIT COMPLETED 10-20-0 BACKHOE B-95 FOREMAN ML	ς 	Calcium carbonate buildup observed on test pit walls at 4 feet bgs.	=	-	<u> </u>	BS			3				
Bottom of test pit. Groundwater not encountered. Test pit backfilled with soil cuttings. Test pit started to the transition may be gradual. Test pit started to 10-20-0 to 10-2) 			-	1								
between soil and rock types: in-situ, the transition may be gradual. WATER LEVEL OBSERVATIONS, ft WL V NE WL V DE WL		Groundwater not encountered.	1-1										
WL Y NE WL Y TEST PIT COMPLETED 10-20-0 BACKHOE B-95 FOREMAN ML	The betw	stratification lines represent the approximate boundary lines veen soil and rock types: in-situ, the transition may be gradual.											
WL Y NE Y TEST PIT COMPLETED 10-20-0 BACKHOE B-95 FOREMAN ML													
MI SACKHOE R-95 FOREMAN MI	WL	Y NE Y TOTAL	٦r	-6									
			UL	_L			RAC	KHUL	В				MLS

	LO	G OF TEST	PIT N	NO.	. T l	P-04	42				F	Page 1	of 1
CLIE		me											
SITE	Stirling Energy Syste	1115	PRO	JFC	т —								
	East of Barstow, Califo	ornia							r One	!			
						SA	AMPLE				TESTS	; 	
,				ب ا			<u></u>						
:				USCS SYMBOL			RECOVERY (in)	<u>.</u>	WATER CONTENT, %	DRY DENSITY pcf		≥	
፤	DESCRIPTION		Ŧ,	SYI			VEF	'S/F	R.E.	EN			
GKAPHIC LUG			DЕРТН, ft.	SCS		TYPE		BLOWS/FT	ATE	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	LIQUID	PLASTICITY INDEX	
<u>5</u> /	Approx. Surface Elev.: 2572 ft SILTY SAND Beige with fine grain	and		Š		1	₩.	BI	≯ŏ	<u> </u>	==	급몰	
	sand and some sub-angular grave	el.	Ξ]									
] 	POORLY GRADED SAND WITH G	2570	2-	1									
\bigcirc	Beige with fine to coarse grained:	sand and	_	1									
	sub-angular gravel and cobble. Intermittent layers of increased fin	ies and	4	1									
0	increased gravels.		6-		1	BS			3				
\bigcirc	Calcium carbonate buildup observest pit walls at 6 feet bgs.	ed on		-			_						
· · · ·	test pit walls at 0 leet bys.		8-										
0			_	1									
			10-										
) O:			_										
			12										
	14	2558	14 —		1	BS			2				
	Test pit backfilled with soil cutting	S.											
betwe WA	stratification lines represent the approximate bounceen soil and rock types: in-situ, the transition may	be gradual.						T PIT S					20-0
	Λ NE Λ Λ	Terra	D r	-6	71					LETED			20-0
	<u>-</u>		IJL	_L	J		BAC	KHOE	В		OREM		ML
WL										J(OB#	6009	J502

	LOG OF TEST	PIT I	10	. T	P-04	44				F	age 1	of 1
CLI	ENT Stirling Energy Systems									-	<u> </u>	
SIT	Stirling Energy Systems	PRO	JFC									
	East of Barstow, California	110	0_0	•			Sola	r One				
					S/	AMPLE				TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 2865 ft	DEPTH, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	SILTY SAND Beige with fine grained sand and some sub-angular gravel. POORLY GRADED SAND WITH GRAVEL Beige with fine to coarse grained sand and sub-angular gravel and cobble. Intermittent layers of increased fines and increased gravels.	2— 2— 4—		•								
· ()	Calcium carbonate buildup observed on test pit walls at 3.5 feet bgs.	6-		↓	BS			2				
	toot pit wane at o.o loot ago.	8— 8— 10—										
· ()		12-		1	BS			2				
). Ø		'- =		1	BS			2				
BOREHOLE 2000 60095029 BORING LOGS.GPJ TERR2000.GDT 12/11/09 M	Bottom of test pit. Groundwater not encountered. Test pit backfilled with soil cuttings.	14										
The betw	stratification lines represent the approximate boundary lines reen soil and rock types: in-situ, the transition may be gradual.	•								1		
WA	TER LEVEL OBSERVATIONS, ft					TES	T PIT S	START	ED		10-	20-09
WL							T PIT (1		20-09
WL	$\bar{\mathbf{A}}$ $\bar{\mathbf{A}}$ $\bar{\mathbf{A}}$	عال			П	BAC	KHOE	В	-95 F	OREM	AN	MLS
WL									J(OB#	6009	5029

CLIE	LOG OF TEST	PIT N	O	. T	P-04	45				F	Page 1	of 1
_	NT Stirling Energy Systems											
SITE		PRO	JEC	Т								
J11 L	East of Barstow, California	1110	ULO				Sola	r One				
	·				S	AMPLI	Ē		T	TESTS		
	DESCRIPTION Approx. Surface Elev.: 2654 ft SILTY SAND Beige with fine grained	DEPTH, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
. :	<u>.5</u> sand and some sub-angular gravel. <u>2652.5</u>		1									
>	POORLY GRADED SAND WITH GRAVEL Beige with fine to coarse grained sand and	2		1	BS			1				
:::1	sub-angular gravel and cobble. Calcium carbonate buildup observed on	4		+	ВО			'				
5 ()	test pit walls from 1.5 to 3 feet bgs.			1	BS			2				
\bigcirc	Intermittent layers of increased fines and increased gravels.	6-		 	ь							
5		8	-									
0		12—			BS			2				
	Groundwater not encountered. Test pit backfilled with soil cuttings.											
betwe WAT	tratification lines represent the approximate boundary lines sen soil and rock types: in-situ, the transition may be gradual. TER LEVEL OBSERVATIONS, ft						T PIT S					
WAT	en soil and rock types: in-situ, the transition may be gradual.	76				TES		COMP	LETED	DREM	10-	20-0 20-0 ML

<u> </u>	LOG OF TEST	PIT N	10.	. T	P-04	46				F	age 1	of 1
CL	ENT Control Control									-	g	
SIT	Stirling Energy Systems	PRO	JFC	Т								
	East of Barstow, California							r One				
					S/	AMPLE	Ξ			TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 2447 ft POORLY GRADED SAND WITH GRAVEL	DЕРТН, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
\Diamond	Beige with fine to coarse grained sand and			•								
 	sub-angular gravel and cobble.	2		Ų.	BS			1				
Ο.	Calcium carbonate buildup observed on test pit walls at 3 feet bgs.	4-		1	BS			3				
	Intermittent layers of increased fines and increased gravels. 14 2433 Bottom of test pit. Groundwater not encountered. Test pit backfilled with soil cuttings.	6— 8— 10— 12— 14—			BS			2				
betv	stratification lines represent the approximate boundary lines veen soil and rock types: in-situ, the transition may be gradual. TER LEVEL OBSERVATIONS, ft						T PIT S					20-09
betv WA	veen soil and rock types: in-situ, the transition may be gradual.				n	TES	T PIT S T PIT (KHOE	COMP	LETE	OREM.	10-	20-09 20-09 MLS

SITE East of Barstow, California SAMPLE O SAMPLE	WATER CONTENT, % DRY DENSITY	TESTS	ge 1 of 1
SITE PROJECT Solar SAMPLE			
SAMPLE			
	ENT, % DENSITY		
0	ENT, %		
DESCRIPTION Approx. Surface Elev.: 2474 ft DESCRIPTION Approx. Surface Elev.: 2474 ft	WATE CONT DRY I	LIQUID LIGHT	PLASTICITY INDEX
SILTY SAND Beige with fine grained			
POORLY GRADED SAND WITH GRAVEL Beige with fine to coarse grained sand and sub-angular gravel and cobble.	4		
Calcium carbonate buildup observed on test pit walls at 1.5 feet bgs. Intermittent layers of increased fines and increased gravels.			
8— 8— 8— 8— 8— 8— 8— 8— 8— 8— 8— 8— 8— 8			
12 12 BS	3		
Bottom of test pit. Groundwater not encountered. Test pit backfilled with soil cuttings. The stratification lines represent the approximate boundary lines between soil and rock types: in-situ, the transition may be gradual. WATER LEVEL OBSERVATIONS, ft WL V NE			
The stratification lines represent the approximate boundary lines between soil and rock types: in-situ, the transition may be gradual.			
WATER LEVEL OBSERVATIONS, ft TEST PIT ST	TARTED		10-19-09
WL YNE TEST PIT CO	OMPLETE	D	10-19-09
WL Y NE Y TEST PIT CO BACKHOE WL Y		FOREMAN JOB#	MLS 60095029

	LOG OF TEST	PIT I	NO.	. Т	P-0	48				F	age 1	of 1
CLI	ENT Catalina Errannu Suntanna									<u> </u>	ago .	<u> </u>
SIT	Stirling Energy Systems	PRO	JFC	T								
	East of Barstow, California							r One				
					S	AMPLI	<u> </u>			TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 2280 ft	DEPTH, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
O.	POORLY GRADED SAND WITH GRAVEL Beige with fine to coarse grained sand and	=										
. U	sub-angular gravel and cobble.	2-		•	- DO							
О. Л	Calcium carbonate buildup observed on test pit walls at 3 feet bgs.	4-	-	 	BS			1				
0 0 0 0	Intermittent layers of increased fines and increased gravels.	8— 8— 10—										
, O		12-										
in Ax	Bottom of test pit. Groundwater not encountered. Test pit backfilled with soil cuttings.	14—		*	BS							
The betw	stratification lines represent the approximate boundary lines veen soil and rock types: in-situ, the transition may be gradual.											
	TER LEVEL OBSERVATIONS, ft						T PIT S					19-09
WL	A A A A A A A A A A A A A A A A A A A		-6				T PIT (19-09
WL WL	\bar{x} IICL		_L	ال		BAC	KHOE	В		OREM		MLS
v v L									J	OB#	9009	95029

	LOG OF TEST	PIT I	NO.	. T	P-0	50				F	Page 1	of 1
CLIE											- 9	
SITE	Stirling Energy Systems	PRO	IEC	т								
SIIL	East of Barstow, California	Solar One										
	·				S/	AMPLI	E			TESTS	;	1
GRAPHIC LOG	DESCRIPTION	DEPTH, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
<u>ا .</u> ب	POORLY GRADED SAND WITH GRAVEL	_										
) ()	Beige with fine to coarse grained sand and sub-angular gravel and cobble.	2-										
).				1	BS			2				
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Calcium carbonate buildup observed on test pit walls at 4 feet bgs. Intermittent layers of increased fines and	6-								INDI LINE		
C	increased gravels.	-	_	1								
(<u>)</u> [8	Bottom of test pit.	8-	1	+	BS			2			-	
The s	stratification lines represent the approximate boundary lines een soil and rock types: in-situ, the transition may be gradual.					TEO	T DIT	OT 4 D 7			40	10.0
	ΓER LEVEL OBSERVATIONS, ft					IES	T PIT	STARI	בט		10-	19-0
WAT						TES	TPIT	CUND	IFTER)	10	10.0
WAT WL	v ve	ar					T PIT		LETEC	OREM.		19-09 MLS

	LO	G OF TEST	PIT N	10.	T	P-0	51				F	Page 1	of 1
CLI	ENT Stirling Energy Syster	ms											
SIT	East of Barstow, Califo	rnia	PRO	JEC [°]	Τ			Sola	r One				
	Lust of Burstow, Guino	1111 u				SA	AMPLE		One		TESTS		
GRAPHIC LOG	DESCRIPTION		DЕРТН, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
۰	POORLY GRADED SAND WITH G	RAVEL	_										
	Beige with fine to coarse grained s sub-angular gravel and cobble.	sand and	2		1	BS			1				
o. ()			4—										
). ro	Intermittent layers of increased finincreased gravels.	es and	6—		1	BS			3				
, O	•												
): :::::			8		1	BS			2				
\circ	Calcium carbonate buildup observ test pit walls at 9 feet bgs.	ed on	10-			BS			5				
SOREHOLE 2000 60095029 BORING LOGS GPJ TERR2000.GDT 12/11/09	Bottom of test pit. Groundwater not encountered. Test pit backfilled with soil cuttings												
The betw	stratification lines represent the approximate bound reen soil and rock types: in-situ, the transition may						TEO	T DIT (TADT	ED		40	10.00
9 WA	TER LEVEL OBSERVATIONS, ft ☐ NE ☐ ▼							T PIT S					19-09 19-09
WL WL	▼ NE	7 Jerr	ar	-6				KHOE			OREM		19-09 MLS
WL WL	- -			_ •			שאט	IN IOE	D		OREIVI OB#		05029

December 10, 2009 Terracon Project No. 60095029

Field Exploration Description

A total of 32 test borings and 14 test pits were drilled/excavated at the site between October 5 and October 22, 2009. The borings were drilled to depths ranging from approximately 12½ to 51 feet below the ground surface and the test pits were excavated to depths ranging from 8 to14 feet bgs at the approximate locations shown on the attached Field Exploration Locations diagram, Exhibit 2. The test borings and test pits were located as follows:

Boring	Approximate Latitude (degrees)	Approximate Longitude (degrees)	Completed	Issues
B-001	34.8049	116.4836	Y	
Trench- 002			N	Fault Trench. Not part of scope.
B-003	34.8051	116.4746	Y	<u> </u>
B-004	34.7982	116.4735	Υ	
B-005	34.8039	116.4592	Υ	
B-006	34.7979	116.4524	Y	
B-007	34.7936	116.4525	Y	
B-008	34.7890	116.4475	Y	
B-009	34.8039	116.4471	Y	
B-010	34.8039	116.4471	Y	
B-011	34.8033	116.4472	Y	
B-012	34.8032	116.4472	Y	
B-013	34.8027	116.4403	Y	
B-014	34.7946	116.4425	Y	
B-015	34.7920	116.4358	Y	
TP-016	34.8348	116.4243	Y	
B-017	34.8214	116.4256	Υ	
TP-018	34.8129	116.4194	Υ	
B-019	34.8022	116.4257	Y	
B-020	34.7897	116.4234	Υ	
B-021	34.7840	116.4105	N	In NAF area or Utility Easement, 4x4
Trench- 022			N	Fault Trench. Not part of scope.
B-023	34.8003	116.4136	Y	· ·
B-024	34.8098	116.4101	Υ	
B-025	34.8211	116.4139	Y	
TP-026	34.8259	116.4132	Y	
TP-027	34.8266	116.3966	Y	
B-028	34.8210	116.3993	Υ	
B-029	34.8145	116.3909	Y	
B-030			N	Duplicate of boring B-031
B-031	34.8075	116.3982	Υ	
B-032	34.7983	116.4001	Y	
B-033	34.7859	116.3976	Y	

Geotechnical Engineering Report

Solar One Pisgah, California

December 10, 2009 Terracon Project No. 60095029

Boring	Approximate Latitude (degrees)	Approximate Longitude (degrees)	Completed	Issues
B-034	34.7848	116.3902	Y	
B-035	34.7812	116.3843	Y	
B-036	34.7817	116.3826	Y	
B-037	34.7836	116.3823	Y	
B-038	34.7905	116.3876	Υ	
B-039	34.8032	116.3808	Υ	
TP-040	34.8193	116.3773	Υ	
TP-041	34.8279	116.3812	Υ	
TP-042	34.8334	116.3805	Υ	
B-043	34.8273	116.3706	N	In accessible by 4x4
TP-044	34.8367	116.3541	Υ	
TP-045	34.8271	116.3565	Υ	
TP-046	34.8169	116.3619	Υ	
TP-047	34.8156	116.3478	Υ	
TP-048	34.8042	116.3614	Υ	
B-049	34.7999	116.3705	Υ	

The test borings were advanced with a truck-mounted CME-75 drill rig utilizing 8-inch diameter hollow-stem augers and the test pits were excavated with a backhoe.

The borings and test pits were located in the field using the proposed site plan and an aerial photograph of the site, and a handheld gps unit. The accuracy of field exploration locations should only be assumed to the level implied by the method used.

Continuous lithologic logs of each boring were recorded by the field geologist during the drilling operations. At selected intervals, samples of the subsurface materials were taken by driving split-spoon or ring-barrel samplers. Bulk samples of subsurface materials were also obtained.

Penetration resistance measurements were obtained by driving the split-spoon and ring-barrel samplers into the subsurface materials with a 140-pound automatic hammer falling 30 inches. The penetration resistance value is a useful index in estimating the consistency or relative density of materials encountered.

Groundwater conditions were evaluated in each boring at the time of site exploration.

GENERAL NOTES

DRILLING & SAMPLING SYMBOLS:

SS:	Split Spoon - 1-3/8" I.D., 2" O.D., unless otherwise noted	HS:	Hollow Stem Auger
ST:	Thin-Walled Tube - 2" O.D., unless otherwise noted	PA:	Power Auger
RS:	Ring Sampler - 2.42" I.D., 3" O.D., unless otherwise noted	HA:	Hand Auger
DB:	Diamond Bit Coring - 4", N, B	RB:	Rock Bit

BS: Bulk Sample or Auger Sample WB: Wash Boring or Mud Rotary

The number of blows required to advance a standard 2-inch O.D. split-spoon sampler (SS) the last 12 inches of the total 18-inch penetration with a 140-pound hammer falling 30 inches is considered the "Standard Penetration" or "N-value". For 3" O.D. ring samplers (RS) the penetration value is reported as the number of blows required to advance the sampler 12 inches using a 140-pound hammer falling 30 inches, reported as "blows per foot," and is not considered equivalent to the "Standard Penetration" or "N-value."

WATER LEVEL MEASUREMENT SYMBOLS:

WL:	Water Level	WS:	While Sampling	N/E:	Not Encountered
WCI:	Wet Cave in	WD:	While Drilling		
DCI:	Dry Cave in	BCR:	Before Casing Removal		
AB:	After Boring	ACR:	After Casing Removal		

Water levels indicated on the boring logs are the levels measured in the borings at the times indicated. Groundwater levels at other times and other locations across the site could vary. In pervious soils, the indicated levels may reflect the location of groundwater. In low permeability soils, the accurate determination of groundwater levels may not be possible with only short-term observations.

DESCRIPTIVE SOIL CLASSIFICATION: Soil classification is based on the Unified Classification System. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; their principal descriptors are: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are principally described as clays if they are plastic, and silts if they are slightly plastic or non-plastic. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse-grained soils are defined on the basis of their in-place relative density and fine-grained soils on the basis of their consistency.

CONSISTENCY OF FINE-GRAINED SOILS

RELATIVE DENSITY OF COARSE-GRAINED SOILS

Unconfined	<u>Standard</u>		Standard		
Compressive	Penetration or		Penetration or		
Strength, Qu.	N-value (SS)		N-value (SS)	Ring Sampler	
psf	Blows/Ft.	Consistency	Blows/Ft.	(RS) Blows/Ft.	Relative Density
< 500	<2	Very Soft	0 – 3	0-6	Very Loose
500 - 1,000	2-3	Soft	4 – 9	7-18	Loose
1,001 - 2,000	4-6	Medium Stiff	10 – 29	19-58	Medium Dense
2,001 - 4,000	7-12	Stiff	30 - 49	59-98	Dense
4,001 - 8,000	13-26	Very Stiff	50+	99+	Very Dense
8,000+	26+	Hard			

RELATIVE PROPORTIONS OF SAND AND GRAVEL

GRAIN SIZE TERMINOLOGY

PLASTICITY DESCRIPTION

Descriptive Term(s) of other constituents	<u>Percent of</u> Dry Weight	Major Component	
constituents	Dry weight	<u>of Sample</u>	<u>Particle Size</u>
Trace	< 15	Boulders	Over 12 in. (300mm)
With	15 – 29	Cobbles	12 in. to 3 in. (300mm to 75 mm)
Modifier	> 30	Gravel	3 in. to #4 sieve (75mm to 4.75 mm)
		Sand Silt or Clay	#4 to #200 sieve (4.75mm to 0.075mm)

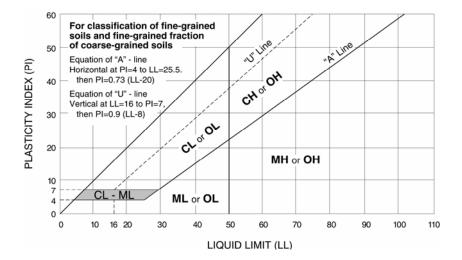
RELATIVE PROPORTIONS OF FINES

<u>Descriptive Term(s) of other</u> <u>constituents</u>	<u>Percent of</u> <u>Dry Weight</u>	<u>Term</u>	Plasticity Index
Trace	< 5	Non-plastic	0
With	5 – 12	Low	1-10
Modifiers	> 12	Medium	11-30
		High	30+

Form 111—6/98 Exhibit A-6

UNIFIED SOIL CLASSIFICATION SYSTEM (USCS)

Criteria for Assigning Group Symbols and Group Names Using Laboratory Tests^A


Soil Classification

				Group Symbol	Group Name ^B
		Clean Gravels	$Cu \ge 4$ and $1 \le Cc \le 3^E$	GW	Well-graded gravel ^F
	Gravels More than 50% of coarse	Less than 5% fines ^C	Cu < 4 and/or 1 > Cc > 3 ^E	GP	Poorly graded gravel ^F
	More than 50% of coarse fraction retained on No. 4 sieve	Gravels with Fines	Fines classify as ML or MH	GM	Silty gravel ^{F,G, H}
Coarse Grained Soils		More than 12% fines ^c	Fines classify as CL or CH	GC	Clayey gravel ^{F,G,H}
Nore than 50% retained on No. 200 sieve		Clean Sands Less than 5% fines ^D	$Cu \ge 6$ and $1 \le Cc \le 3^E$	SW	Well-graded sand
II No. 200 Sieve	Sands 50% or more of coarse		Cu < 6 and/or 1 > Cc > 3 ^E	SP	Poorly graded sand
	fraction passes No. 4 sieve	Sands with Fines	Fines classify as ML or MH	SM	Silty sand ^{G,H,I}
		More than 12% fines ^D	Fines Classify as CL or CH	sc	Clayey sand ^{G,H,I}
		inorganic -	PI > 7 and plots on or above "A" line ^J	CL	Lean clay ^{K,L,M}
	Silts and Clays	•	PI < 4 or plots below "A" line ^J	ML	Silt ^{K,L,M}
ine-Grained Soils	Liquid limit less than 50	organic	Liquid limit – oven dried	OL	Organic clay ^{K,L,M,N}
	_	organio	Liquid limit – not dried	02	Organic silt ^{K,L,M,O}
50% or more passes the No. 200 sieve	, 	inorganic	PI plots on or above "A" line	СН	Fat clay ^{K,L,M}
	Silts and Clays		PI plots below "A" line	MH	
	Liquid limit 50 or more	organic	Liquid limit – oven dried	ОН	Organic clay ^{K,L,M,P}
		organio	Liquid limit – not dried	311	Organic silt ^{K,L,M,Q}
Highly organic soils	Primarily of	organic matter, dark in color,	and organic odor	PT	Peat

^A Based on the material passing the 3-in. (75-mm) sieve

$$^{E} \; Cu = D_{60}/D_{10} \quad \ \ Cc = \; \frac{\left(D_{30}\right)^{2}}{D_{10} \; x \; D_{60}}$$

^Q PI plots below "A" line.

^B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.

C Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.

D Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with silt, SP-SC poorly graded sand with clay

 $^{^{\}text{F}}$ If soil contains \geq 15% sand, add "with sand" to group name.

 $^{^{\}rm G}\,\rm If$ fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

^H If fines are organic, add "with organic fines" to group name.

 $^{^{\}text{I}}\,$ If soil contains \geq 15% gravel, add "with gravel" to group name.

J If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.

K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.

 $^{^{\!\!}L}$ If soil contains \geq 30% plus No. 200 predominantly sand, add "sandy" to group name.

 $^{^{\}rm M}$ If soil contains \geq 30% plus No. 200, predominantly gravel, add "gravelly" to group name.

 $^{^{\}text{N}}$ PI \geq 4 and plots on or above "A" line.

 $^{^{\}text{O}}\,\text{PI} < 4$ or plots below "A" line.

P PI plots on or above "A" line.

APPENDIX B LABORATORY TESTING

Geotechnical Engineering Report

Solar One Pisgah, California

December 10, 2009 Terracon Project No. 60095029

Laboratory Testing

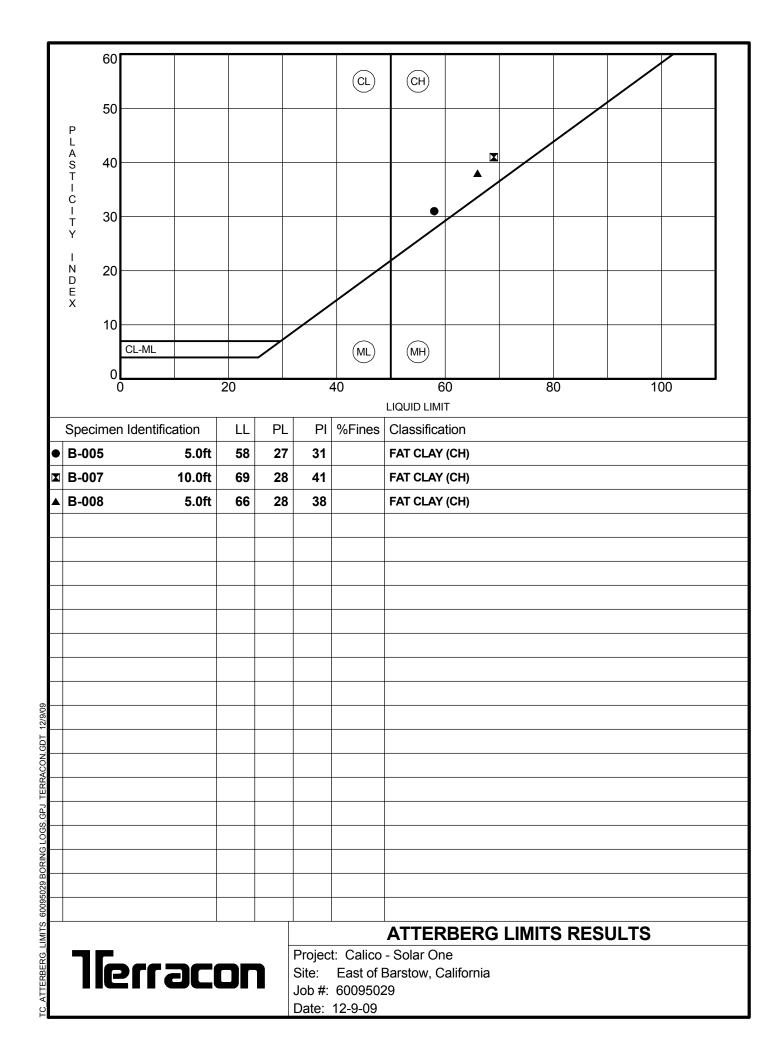
Samples retrieved during the field exploration were taken to the laboratory for further observation by the project geotechnical engineer and were classified in accordance with the Unified Soil Classification System (USCS) described in Appendix A. At that time, the field descriptions were confirmed or modified as necessary and an applicable laboratory testing program was formulated to determine engineering properties of the subsurface materials.

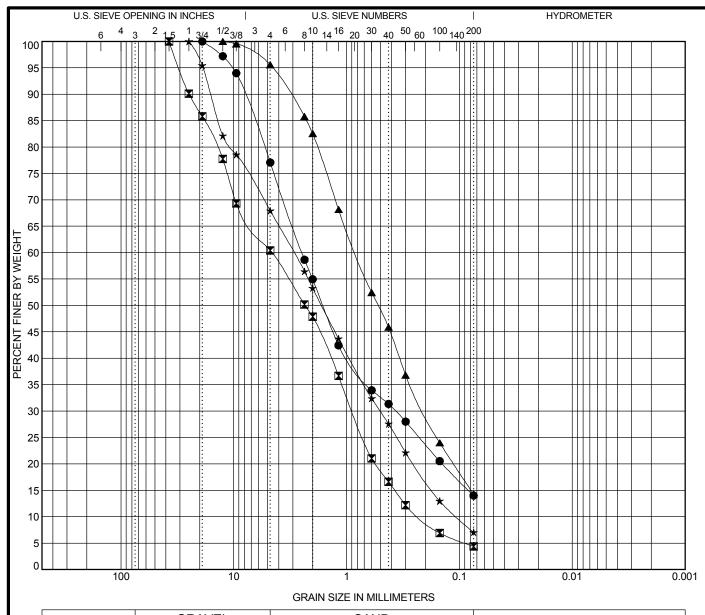
Laboratory tests were conducted on selected soil samples and the test results are presented in this appendix. The laboratory test results were used for the geotechnical engineering analyses, and the development of foundation and earthwork recommendations. Laboratory tests were performed in general accordance with the applicable ASTM, local or other accepted standards.

Selected soil samples obtained from the site were tested for the following engineering properties:

ConsolidationIn-situ Water Content

Sieve AnalysisIn-situ Dry Density


Atterberg Limits
 Moisture Density Relationship


Direct Shear
 Remolded Expansion/Swell

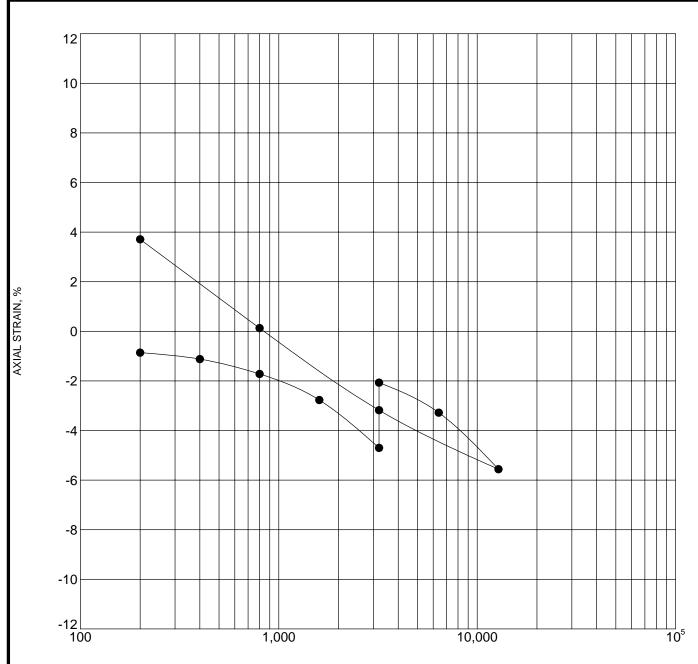
Soluble ChloridesSoluble Sulfates

pHMinimum Resistivity

Standard Proctor

CORRIES	GRA	VEL		SAND)	SILT OR CLAY
CODDLES	coarse	fine	coarse	medium	fine	SILT OR CLAY

?▮											
12/9/0	Specimen Ide	entification		Cla	assification		L	.L PL	PI	Сс	Cu
<u>.</u>	● B-009	7.5ft	(SILTY SAND with GRAVEL (SM)							
LYA.	▼ B-010	5.0ft	POOR	LY GRADED	SP)			0.8	20.5		
COSTA MESA: GD	▲ B-011	20.0ft		SILTY SAND (SM)							
	★ B-036	7.5ft	POORLY	GRADED S	AVEL			8.0	27.7		
I EKKACON											
사 사	Specimen Ide	entification	D100	D60	D30	D10	%Gravel	%Sand	%Sil	t 9	%Clay
	● B-009	7.5ft	19	2.5	0.4		23	63		14	
χ. 2	▼ B-010	5.0ft	37.5	4.6	0.9	0.2	40	56		4	
Ŏ Z	▲ B-011	20.0ft	12.5	0.8	0.2		4	81		14	
BORING LOGS.GPJ	★ B-036	7.5ft	25	2.9	0.5	0.1	32	61		7	
B E											

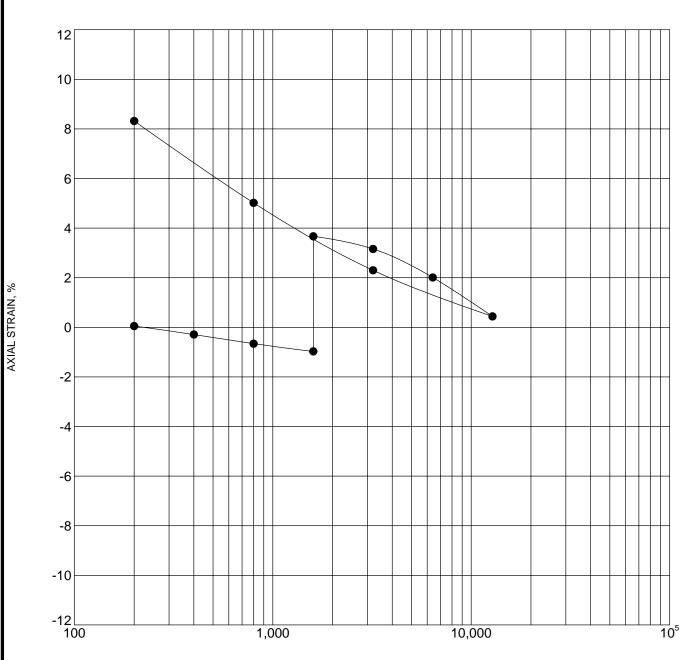


GRAIN SIZE DISTRIBUTION

Project: Calico - Solar One Site: East of Barstow, California

Job #: 60095029

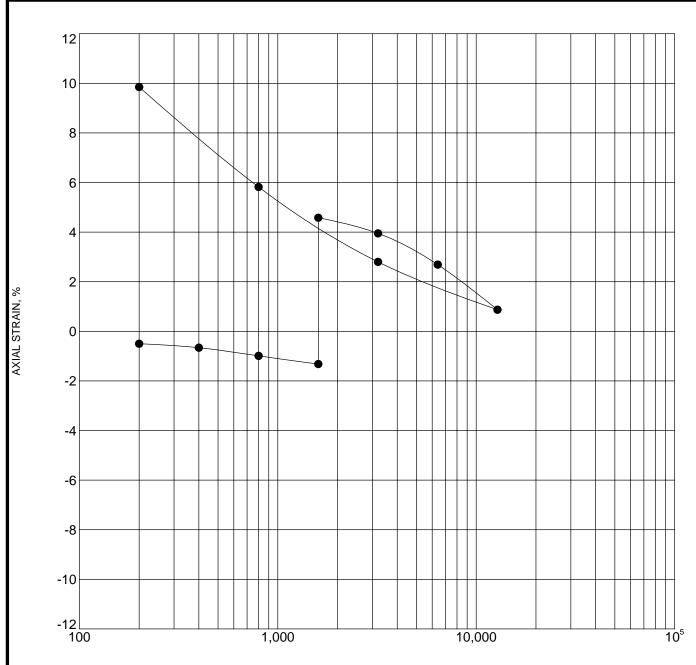
Date: 12-9-09 B-1


Specimen I	dentification	Classification	γ_d ,	pcf WC,%
B-006	20.0 ft	FAT CLAY (CH)	94	25

Notes:

CONSOLIDATION TEST RESULTS

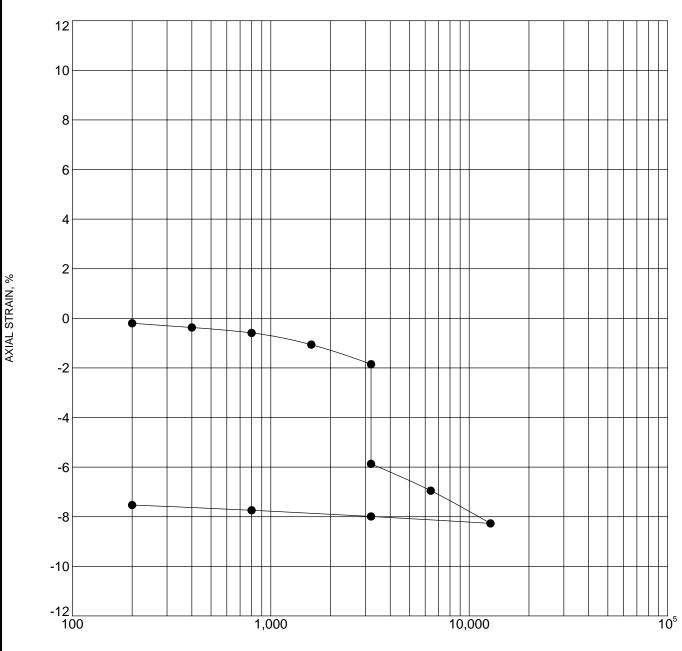
Project: Calico - Solar One Site: East of Barstow, California


	Specimen Identification	Classification	$\gamma_{\!\scriptscriptstyle d}$, pcf	WC,%
•	B-007 15.0 ft	FAT CLAY (CH)	104	22

Notes:

CONSOLIDATION TEST RESULTS

Project: Calico - Solar One Site: East of Barstow, California

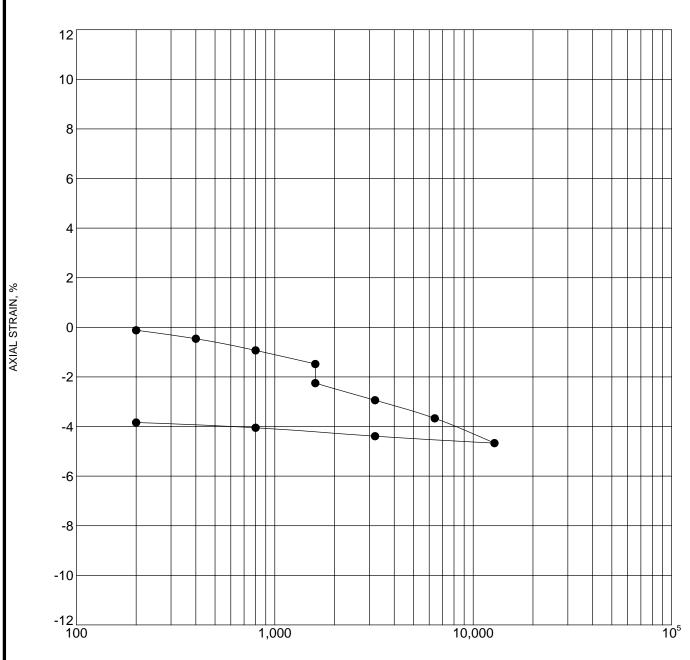

Specimen I	dentification	Classification	γ_{d} ,	, pcf WC,%
B-008	7.5 ft	FAT CLAY (CH)	96	27

Notes:

CONSOLIDATION TEST RESULTS

Project: Calico - Solar One Site: East of Barstow, California

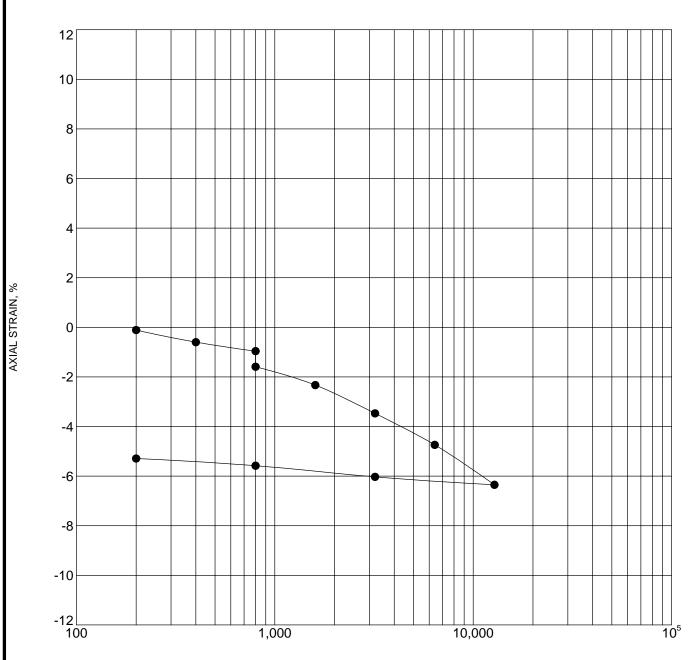
PRESSURE, psf


Specimen I	Identification	Classification	$\gamma_{\!\scriptscriptstyle d}$, pcf	WC,%
B-009	20.0 ft	SILTY SAND with GRAVEL (SM)	111	4

Notes:

CONSOLIDATION TEST RESULTS

Project: Calico - Solar One Site: East of Barstow, California


	Specimen Identification	Classification	γ_d , po	f WC,%
-	● B-029 10.0 ft	POORLY GRADED SAND with SILT and GRAVEL (SP-SM	n) 124	2

Notes:

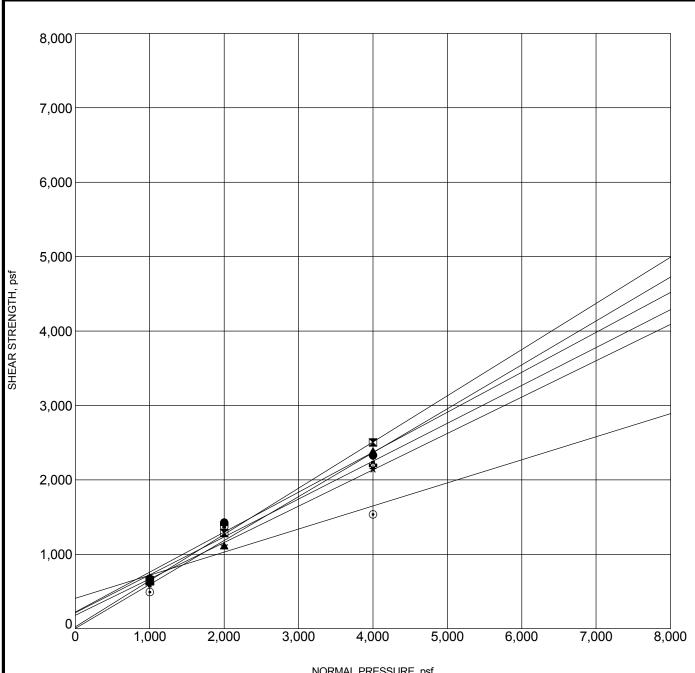
CONSOLIDATION TEST RESULTS

Project: Calico - Solar One Site: East of Barstow, California

Specimen I	dentification	Classification	$\gamma_{\!_{f d}}$, pcf	WC,%
B-033	5.0 ft	SILTY SAND (SM)	105	5

Notes:

CONSOLIDATION TEST RESULTS


Project: Calico - Solar One Site: East of Barstow, California

60/6/2			NONVIAL I NEGOVILE, poi				
•	Specimen Id	lentification	Classification	γ _d , pcf	WC,%	c, psf	φ°
•	B-001	5.0ft	POORLY GRADED SAND with SILT (SP-SM)	96	3	40	30
	B-005	20.0ft	FAT CLAY (CH)	97	28	78	30
X	B-009	2.5ft	POORLY GRADED SAND (SP)	114	1	0	28
*	B-009	5.0ft	SILTY SAND with GRAVEL (SM)	119	3	54	28
•	B-009	30.0ft	SILT (ML)	90	13	264	34
٥	B-009	40.0ft	SILTY SAND with GRAVEL (SM)	83	19	228	24
* 0		<u>.</u>	DIRECT SHE	EAR TES	ST		
	76		Project: Calico - Solar One				
	IIP	rrac	Site: East of Barstow, California				
			Job #: 60095029				
			Date: 12-9-09				

DIRECT SHEAR TEST

TERRACON	S	Specimen	Identification	Classification	γ_d , pcf	WC,%	c, psf	ф°
TERR	•	B-011	10.0ft	SILTY SAND (SM)	117	3	222	28
GBJ	X	B-013	10.0ft P	OORLY GRADED SAND with SILT and GRAVEL (SP-SM) 108	5	26	32
		B-015	7.5ft	POORLY GRADED SAND with SILT (SP-SM)	105	9	4	31
NGL	*	B-031	7.5ft	SILTY SAND with GRAVEL (SM)	109	3	180	26
95029 BORING LOGS	•	B-035	2.5ft P	OORLY GRADED SAND with SILT and GRAVEL (SP-SM) 110	6	408	17
95026	•	B-037	7.5ft	SILTY SAND with GRAVEL (SM)	113	3	216	27

DIRECT SHEAR TEST

Project: Calico - Solar One Site: East of Barstow, California

Expansion Index

Project: Solar One
Proj. No.: 60095029

Tested By: CP Date:

ie	Boring No.:	B-006
and Soil nation	Sample No.:	NA
le ar rma	Sample Depth:	10'
Sample Inforn	Soil Classification (USCS Symbol):	Fat Clay (CH)
Š		

ıdard	UBC 18-2 ASTM D 4829
Test Stan Used	

10/29/2009

Weight Prior to Screening	NA	g
Weight After Screening	NA	g
Percent Retained on #4 Sieve	NA	%

Moisture Determination	Units	Initial	Final
Assumed Moisture Content	%		
Tare Weight	g	214.1	105.3
Weight of Soil (Wet) + Tare	g	281.7	693.5
Weight of Soil (Dry) + Tare	g	270.1	575.3
Moisture Content	%	20.7%	43.1%
Density Determination			
Weight of Soil + Ring (Wet)	g	526.2	588.2
Weight of Ring	g	195.6	195.6
Wet Weight of Soil	g	330.6	392.6
Wet Density	pcf	100.5	
Final Sample Height	in		1.1037
Final Volume	ft ³		0.0080
Final Wet Density	pcf		107.9
Dry Density	pcf	83.3	75.4
Degree of Saturation (G _s = 2.7)	%	54.6	94.2

Initial Dry Density	83.3	pcf
Initial MC	20.7	%
Initial Saturation	54.6	%
Final Dry Density	75.4	pcf
Final Dry Density Final MC	75.4 43.1	pcf %

	Date	Time	Dial Reading	Deflection
Start	10/29/2009	9:50	0.0740	
Add Water (After 10 minutes)	10/29/2009	10:00	0.0881	0.0141
				-
				-
				_
				-
				-
				-
24 hours	10/30/2009	18:14	0.1777	0.0896

Expansion	Potential
Index, EI	Expansion
0-20	Very Low
21-50	Low
51-90	Medium
91-130	High
>130	Very High

EI	Measured Expansion Index =	88	Recommend to use EI = 93
EI ₅₀	Expansion Index =	93	

Expansion Index

Project: Solar One
Proj. No.: 60095029

Tested By: <u>CP</u> Date: <u>11/12/2009</u>

Soil	Boring No.:	B-007
nd So	Sample No.:	NA
E a	Sample Depth:	7.5'
풀풀	Soil Classification (USCS Symbol):	Fat Clay (CH)
Sal		

ıdard	UBC 18-2 ASTM D 4829
Test Stan Used	

Weight Prior to Screening	NA	g
Weight After Screening	NA	g
Percent Retained on #4 Sieve	NA	%

Moisture Determination	Units	Initial	Final
Assumed Moisture Content	%		
Tare Weight	g	214.1	105.3
Weight of Soil (Wet) + Tare	g	256.0	703.0
Weight of Soil (Dry) + Tare	g	248.7	572.8
Moisture Content	%	21.1%	47.9%
Density Determination			
Weight of Soil + Ring (Wet)	g	525.4	597.7
Weight of Ring	g	195.6	195.6
Wet Weight of Soil	g	329.8	402.1
Wet Density	pcf	100.3	
Final Sample Height	in		1.0890
Final Volume	ft ³	1	0.0079
Final Wet Density	pcf	1	112.0
Dry Density	pcf	82.8	75.7
Degree of Saturation (G _s = 2.7)	%	55.0	105.5

_		_
Initial Dry Density	82.8	pcf
Initial MC	21.1	%
Initial Saturation	55.0	%
		_
Final Dry Density	75.7	pcf
Final MC	47.9	%
Final Saturation	105.5	%
•		_

	Date	Time	Dial Reading	Deflection
Start	11/5/2009	15:42	0.0311	
Add Water (After 10 minutes)	11/5/2009	15:52	0.0300	-0.0011
				-
				-
				-
				-
				-
				-
24 hours	11/6/2009	14:36	0.1201	0.0901

Expansion	Potential
Index, EI	Expansion
0-20	Very Low
21-50	Low
51-90	Medium
91-130	High
>130	Very High

EI	Measured Expansion Index =	90	Recommend to use EI = 95
EI ₅₀	Expansion Index =	95	

Expansion Index

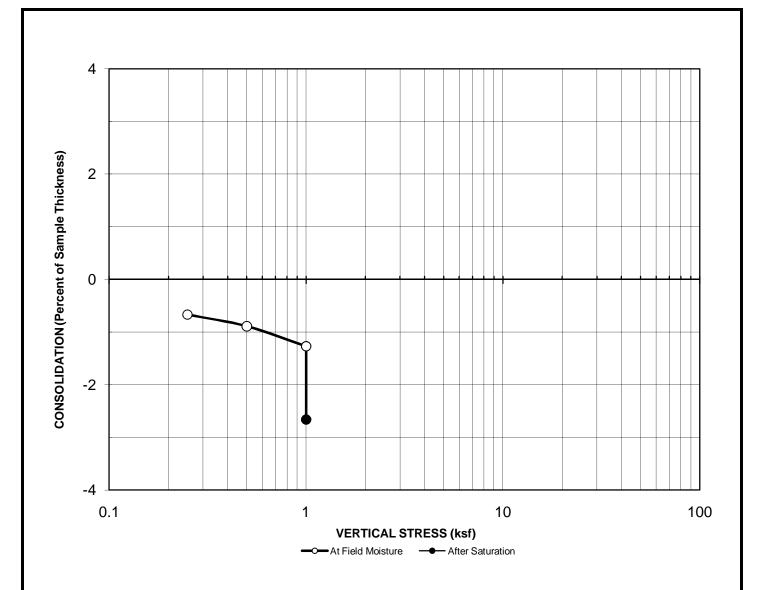
Project: Solar One
Proj. No.: 60095029

Tested By: CP Date: 11/5/2009

Soil	Boring No.:	B-008
- ფ. ი	Sample No.:	NA
a E	Sample Depth:	2.5'
ample	Soil Classification (USCS Symbol):	Fat Clay (CH)
Sal		

dard	UBC 18-2 ASTM D 4829
Test Stanc Used	

Weight Prior to Screening	NA	g
Weight After Screening	NA	g
Percent Retained on #4 Sieve	NA	%


Moisture Determination	Units	Initial	Final
Assumed Moisture Content	%		
Tare Weight	g	214.1	105.3
Weight of Soil (Wet) + Tare	g	289.3	703.0
Weight of Soil (Dry) + Tare	g	278.6	586.2
Moisture Content	%	16.6%	41.0%
Density Determination			
Weight of Soil + Ring (Wet)	g	555.7	597.7
Weight of Ring	g	195.7	195.7
Wet Weight of Soil	g	360.0	402.0
Wet Density	pcf	109.4	
Final Sample Height	in		1.0890
Final Volume	ft ³		0.0079
Final Wet Density	pcf		111.9
Dry Density	pcf	93.9	79.4
Degree of Saturation (G _s = 2.7)	%	56.4	98.6

Initial Dry Density	93.9	pcf
Initial MC	16.6	%
Initial Saturation	56.4	%
Final Dry Density	79.4	pcf
Final Dry Density Final MC	79.4 41.0	pcf %

	Date	Time	Dial Reading	Deflection
Start	11/5/2009	15:42	0.0311	
Add Water (After 10 minutes)	11/5/2009	15:52	0.0300	-0.0011
				-
				-
				-
				-
				-
				-
24 hours	11/6/2009	14:36	0.1201	0.0901

Expansion	Potential
Index, EI	Expansion
0-20	Very Low
21-50	Low
51-90	Medium
91-130	High
>130	Very High

EI	Measured Expansion Index =	90	Recommend to use EI = 96
EI ₅₀	Expansion Index =	96	

Boring No.:

Sample No.:

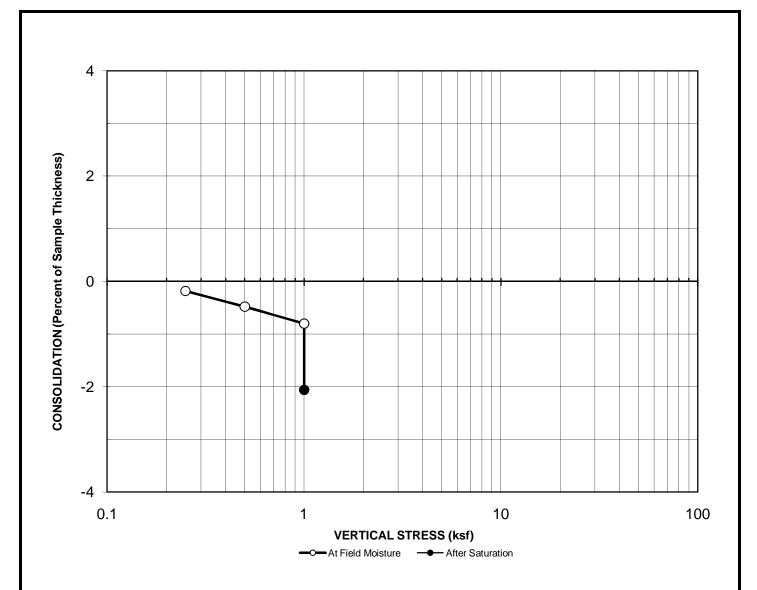
NA

Depth (feet):

Sample Type:

Undisturbed

Soil Description:


Silty Sand (SM)

Initial Dry Unit Weight (pcf): 112.6
Initial Moisture Content (%): 3.1
Final Moisture Content (%): 15.2
Assumed Specific Gravity: 2.7
Initial Void Ratio: 0.50

Collapse Potential (%): 1.4

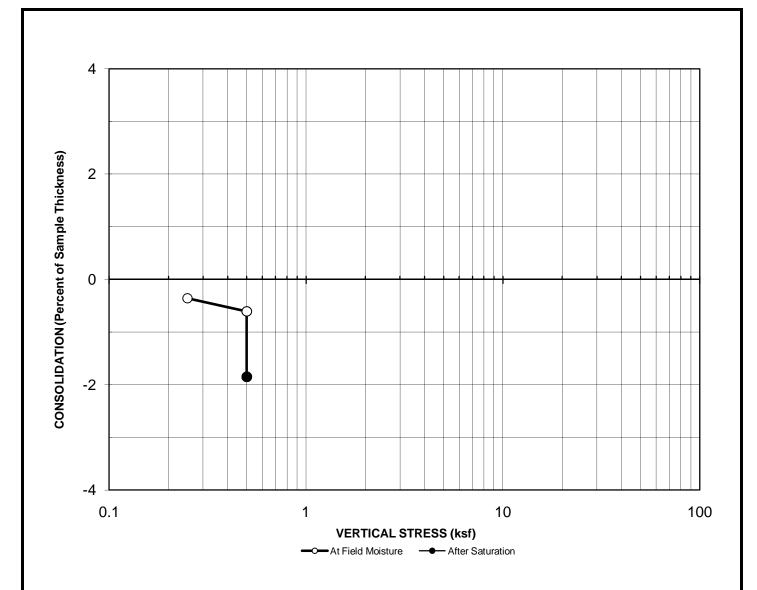
COLLAPSE POTENTIAL ASTM D 5333

Boring No.: B-032

Sample No.: NA

Depth (feet): 7.5

Sample Type: Undisturbed


Soil Description: Silty Sand (SM)

Initial Dry Unit Weight (pcf): 111.8
Initial Moisture Content (%): 2.8
Final Moisture Content (%): 15.1
Assumed Specific Gravity: 2.7
Initial Void Ratio: 0.51

Collapse Potential (%): 0.3

COLLAPSE POTENTIAL ASTM D 5333

 Boring No. :
 B-037

 Sample No.:
 NA

 Depth (feet):
 2.5

 Sample Type:
 Undisturbed

Soil Description: Silty Sand (SM)

Initial Dry Unit Weight (pcf): 114.1
Initial Moisture Content (%): 3.8
Final Moisture Content (%): 15.4
Assumed Specific Gravity: 2.7
Initial Void Ratio: 0.48

Collapse Potential (%): 1.2

COLLAPSE POTENTIAL ASTM D 5333

	00115	AOTION	TEAT				
	COMPA	ACTION	TEST				
Client Name : Tessera							
Project Name: Solar One			Tested By : Calculated By :	ZC	Date:		
-					Date:	10/14/0	
Location: Sample No. : B-001			CP O to 2.5	Date:	10/14/0		
·	n Brown Sand		Depth (ft):	0 to 2.5	-		
Visual Gample Description.	1 Blown Gana		Compaction Me	ethod	X ASTM C)1557	
					ASTM D		
_			Preparation Me	thod	X Moist		
MOLD VOLUME (CU.FT)	0.0333				Dry		
Trail No.	1	2	3	4	5	6	
Wt. Comp. Soil + Mold (gm.)	3651.8	3748.4	3836.0	3805.4			
Wt. of Mold (gm.)	1862.7	1862.7	1862.7	1862.7			
Net Wt. of Soil (gm.)	1789.1	1885.7	1973.3	1942.7			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1					
Container No.							
Wt. of Container (gm.)	214.1	214.1	214.1	214.1			
Wet Wt. of Soil + Cont. (gm.)	431.7	450.1	520.7	527.9			
Dry Wt. of Soil + Cont. (gm.)	418.9	432.0	489.1	487.6			
Moisture Content (%)	6.3	8.3	11.5	14.7			
Wet Density (pcf)	118.4	124.8	130.6	128.6			
Dry Density (pcf)	111.5	115.3	117.2	112.1			
Maximum Dry Density (pcf)		117.5	Optimum I	Moisture Co	ntent (%)	10.	
Assumed Specific Gravity = 2.70					100% sat. @ a	assumed Gs	
PROCEDURE USED	1;	30					
Method A							
Soil Passing No. 4 (4.75 mm) Sieve							
Mold: 4 in. (101.6 mm) diameter							
Layers: 5 (Five)	12	20 +		\longrightarrow			
Blows per layer: 25 (twenty-five) May be used if No.4 retained < 20%				\rightarrow			
Method B				\ 			
Soil Passing 3/8 in. (9.5 mm) Sieve							
Mold: 4 in. (101.6 mm) diameter	1	10	\mathcal{P}	4			
Layers: 5 (Five)	'	10		`			
Blows per layer: 25 (twenty-five)					\perp		
Use if + No.4 > 20% and - 3/8 " < 20%					+		
Method C							
Soil Passing 3/4 in. (19.0 mm) Sieve	10	00 ——					
Mold: 6 in. (152.4 mm) diameter		0.00	10.00	2	20.00	30.00	
Layers: 5 (Five) Blows per layer: 56 (fifty-six)							
Diows por layor. So (Ility-SIA)							

	COMPA	ACTION	ITEST				
Client Name : Tessera							
Project Name: Solar One			_	<u>2C</u>	Date:	11/26/09	
Project No. : 60095029 Location:			Calculated By : Checked By : Ch		Date:		
Sample No. : B-007			_)-1	•		
Visual Sample Description: Light Bro	own Sand W/ S		Compaction Met	hod	X ASTM D	11557	
			Compaction wet	nou	ASTM D		
Г	1		Preparation Meth	hod	X Moist		
MOLD VOLUME (CU.FT)	0.0333				Dry		
Trail No.	1	2	3	4	5	6	
Wt. Comp. Soil + Mold (gm.)	3725.1	3821.7	3881.1	3834.3			
Wt. of Mold (gm.)	1862.7	1862.7	1862.7	1862.7			
Net Wt. of Soil (gm.)	1862.4	1959.0	2018.4	1971.6			
Container No.							
Wt. of Container (gm.)	214.1 214.1		214.1	214.1			
Wet Wt. of Soil + Cont. (gm.)	420.6	424.9	406.1	412.9			
Dry Wt. of Soil + Cont. (gm.)	413.3	413.5	392.9	396.0			
Moisture Content (%)	3.7	5.7	7.4	9.3			
Wet Density (pcf)	123.3	129.7	133.6	130.5			
Dry Density (pcf)	118.9	122.7	124.4	119.4			
Maximum Dry Density (pcf)	Г	124.6	Optimum M	oisture Co	ntent (%)	6.5	
Assumed Specific Crouity 260	<u> </u>	<u> </u>	100% sat. @ assumed Gs				
Assumed Specific Gravity = 2.60 PROCEDURE USED	14	10	100% sat. @ assumed Gs				
Method A							
Soil Passing No. 4 (4.75 mm) Sieve							
Mold: 4 in. (101.6 mm) diameter Layers: 5 (Five)							
Blows per layer: 25 (twenty-five)	13	30					
May be used if No.4 retained < 20%							
Method B							
Soil Passing 3/8 in. (9.5 mm) Sieve Mold: 4 in. (101.6 mm) diameter	4.0	20					
Layers: 5 (Five)	12	\mathcal{L}^{20}	8 9				
Blows per layer: 25 (twenty-five)		/	\				
Use if + No.4 > 20% and - 3/8 " < 20%							
Method C Soil Passing 3/4 in. (19.0 mm) Sieve	4.4			++			
Mold: 6 in. (152.4 mm) diameter	11	10 +	10.00		20.00	20.00	
Layers: 5 (Five)		0.00	10.00	2	20.00	30.00	
Blows per layer: 56 (fifty-six)							

	COMPA	ACTION	TEST			
Client Name : Tessera Project Name: Solar One Project No. : 60095029 Location: Sample No. : B-013	Solar One Tested By : ZC oject No. : 60095029 Calculated By : ZC cation: Checked By : CP					
Visual Sample Description: Reddish MOLD VOLUME (CU.FT)	0.0333	C	SC) Compaction Me Preparation Me		X ASTM D ASTM D X Moist Dry	
Trail No.	1	2	3	4	5	6
Wt. Comp. Soil + Mold (gm.)	3725.9	3840.4	3990.3	3956.8		
Wt. of Mold (gm.)	1862.7	1862.7	1862.7	1862.7		
Net Wt. of Soil (gm.)	1863.2	1977.7	2127.6	2094.1		
Container No.						
Wt. of Container (gm.)	214.1	214.1	214.1	214.1		
Wet Wt. of Soil + Cont. (gm.)	423.8	467.5	427.5	422.5		
Dry Wt. of Soil + Cont. (gm.)	416.2	454.7	412.1	404.1		
Moisture Content (%)	3.8	5.3	7.8	9.7		
Wet Density (pcf)	123.4	130.9	140.9	138.6		
Dry Density (pcf)	118.9	124.3	130.7	126.4		
Maximum Dry Density (pcf) Assumed Specific Gravity = 2.70		130.5	Optimum I	Moisture Co	ntent (%)	7.0
PROCEDURE USED Method A Soil Passing No. 4 (4.75 mm) Sieve Mold: 4 in. (101.6 mm) diameter Layers: 5 (Five) Blows per layer: 25 (twenty-five) May be used if No.4 retained < 20% Method B Soil Passing 3/8 in. (9.5 mm) Sieve Mold: 4 in. (101.6 mm) diameter Layers: 5 (Five) Blows per layer: 25 (twenty-five) Use if + No.4 > 20% and - 3/8 " < 20% Method C Soil Passing 3/4 in. (19.0 mm) Sieve Mold: 6 in. (152.4 mm) diameter Layers: 5 (Five) Blows per layer: 56 (fifty-six) Use if + 3/8 in >20% and + in <30%	12	30	10.00	2	20.00	30.00

	COMP	ACTION	ITEST			
Client Name : Tessera Project Name: Solar One Project No. : 60095029 Location: Sample No. : B-017	Open d City Clay (Calculated By : Checked By :	ZC ZC CP 0-1	Date: Date: Date:	11/26/09
Visual Sample Description: Brown S MOLD VOLUME (CU.FT)	Sand Silt Clay (Compaction Me		X ASTM D ASTM D X Moist Dry	
Trail No.	1	2	3	4	5	6
Wt. Comp. Soil + Mold (gm.)	3794.1	3898.6	3934.2	3895.6		
Wt. of Mold (gm.)	1862.7	1862.7	1862.7	1862.7		
Net Wt. of Soil (gm.)	1931.4	2035.9	2071.5	2032.9		
Container No.						
Wt. of Container (gm.)	214.1	214.1	214.1	214.1		
Wet Wt. of Soil + Cont. (gm.)	387.7	431.5	389.6	423.5		
Dry Wt. of Soil + Cont. (gm.)	375.2	411.4	369.8	396.3		
Moisture Content (%)	7.8	10.2	12.7	14.9		
Wet Density (pcf)	127.9	134.8	137.1	134.6		
Dry Density (pcf)	118.7	122.3	121.7	117.1		
Maximum Dry Density (pcf) Assumed Specific Gravity = 2.75		123.2	Optimum I	Moisture Co	ontent (%)	11.5 assumed Gs
PROCEDURE USED Method A Soil Passing No. 4 (4.75 mm) Sieve Mold: 4 in. (101.6 mm) diameter Layers: 5 (Five) Blows per layer: 25 (twenty-five) May be used if No.4 retained < 20% Method B Soil Passing 3/8 in. (9.5 mm) Sieve Mold: 4 in. (101.6 mm) diameter	1	30				
Layers: 5 (Five) Blows per layer: 25 (twenty-five) Use if + No.4 > 20% and - 3/8 " < 20% Method C Soil Passing 3/4 in. (19.0 mm) Sieve Mold: 6 in. (152.4 mm) diameter Layers: 5 (Five) Blows per layer: 56 (fifty-six) Use if + 3/8 in >20% and + in <30%		10 0.00	10.00	2	20.00	30.00

	COMP	ACTION	TEST				
Client Name : Tessera Project Name: Solar One Project No. : 60095029 Location: B-021 Sample No. :			Calculated By : Checked By :	CP CP CP	Date: 11/04/09 Date: 11/04/09 Date: 11/04/09		
Visual Sample Description: Silty Sand MOLD VOLUME (CU.FT)	0.0333		Compaction Met		X ASTM D1557 ASTM D698 X Moist Dry		
Trail No.	1	2	3	4	5	6	
Wt. Comp. Soil + Mold (gm.)	3738.8	3834.8	3864.4	3822.1			
Wt. of Mold (gm.)	1862.1	1862.1	1862.1	1862.1			
Net Wt. of Soil (gm.)	1876.7	1972.7	2002.3	1960.0			
I (gill.)	10/0./	1312.1	2002.3 I	1300.0			
Container No.							
Wt. of Container (gm.)	214.1 214.1		214.1	214.1			
Wet Wt. of Soil + Cont. (gm.)	382.9 41		499.0	483.6			
Dry Wt. of Soil + Cont. (gm.)	371.7			450.0			
Moisture Content (%)	7.1	10.3	12.1	14.2			
Wet Density (pcf)	124.2	130.6	132.6	129.8			
Dry Density (pcf)	116.0	118.4	118.2	113.6			
Maximum Dry Density (pcf)		119.0	Optimum M	Noisture Co	ntent (%)	11.0	
Assumed Specific Gravity = 2.61 PROCEDURE USED	1	40			100% sat. @ a	assumed Gs	
Method A Soil Passing No. 4 (4.75 mm) Sieve Mold: 4 in. (101.6 mm) diameter Layers: 5 (Five) Blows per layer: 25 (twenty-five) May be used if No.4 retained < 20% Method B	1:	30					
Soil Passing 3/8 in. (9.5 mm) Sieve Mold: 4 in. (101.6 mm) diameter Layers: 5 (Five) Blows per layer: 25 (twenty-five) Use if + No.4 > 20% and - 3/8 " < 20% Method C Soil Passing 3/4 in. (19.0 mm) Sieve		20					
Mold: 6 in. (152.4 mm) diameter Layers: 5 (Five) Blows per layer: 56 (fifty-six) Use if + 3/8 in >20% and + in <30%	1	0.00	10.00	2	0.00	30.00	

	COMP	ACTION	TEST			
Client Name : Tessera Project Name: Solar One Project No. : 60095029 Location: Sample No. : B-031 Visual Sample Description: Yellowis	sect Name: Solar One Tested By : ZC sect No. : 60095029 Calculated By : ZC ation: Checked By : CP sple No. : B-031 Depth (ft) : 0-1					11/26/09 11/26/09 11/26/09
MOLD VOLUME (CU.FT)	0.0333		Compaction Me		X ASTM D ASTM D X Moist Dry	
Trail No.	1	2	3	4	5	6
Wt. Comp. Soil + Mold (gm.)	3708.4	3776.9	3825.9	3851.9		
Wt. of Mold (gm.)	1862.7	1862.7	1862.7	1862.7		
Net Wt. of Soil (gm.)	1845.7	1914.2	1963.2	1989.2		
Container No.						
Wt. of Container (gm.)	214.1	214.1 214.1		214.1		
Wet Wt. of Soil + Cont. (gm.)	386.8	428.4	431.3	449.2		
Dry Wt. of Soil + Cont. (gm.)	381.9	418.1	416.2	428.0		
Moisture Content (%)	2.9	5.0	7.5	9.9		
Wet Density (pcf)	122.2	126.7	130.0	131.7		
Dry Density (pcf)	118.7	120.6	120.9	119.8		
Maximum Dry Density (pcf)		122.4	Optimum	Moisture Co	ntent (%)	6.0
Assumed Specific Gravity = 2.65	1,	40			100% sat. @ a	assumed Gs
PROCEDURE USED Method A Soil Passing No. 4 (4.75 mm) Sieve Mold: 4 in. (101.6 mm) diameter Layers: 5 (Five)						
Blows per layer: 25 (twenty-five) May be used if No.4 retained < 20% Method B Soil Passing 3/8 in. (9.5 mm) Sieve	1;	30				
Mold: 4 in. (101.6 mm) diameter Layers: 5 (Five) Blows per layer: 25 (twenty-five) Use if + No.4 > 20% and - 3/8 " < 20% Method C	1:	20				
Soil Passing 3/4 in. (19.0 mm) Sieve Mold: 6 in. (152.4 mm) diameter Layers: 5 (Five) Blows per layer: 56 (fifty-six) Use if + 3/8 in >20% and + in <30%	1	0.00	10.00	2	20.00	30.00

	COMP	ACTION	N TEST				
Client Name : Tessera							
Project Name: Solar One Project No.: 60095029			Tested By : Calculated By :	ZC ZC	_ Date: _ Date:	11/26/09 11/26/09	
Location:				CP	Date:	11/26/09	
Sample No. : B-0034 Visual Sample Description: Light Br	rough Cilty Cono	I (CM)	Depth (ft):	0-1	-		
Visual Sample Description.	own Silty Sand	1 (SIVI)	Compaction Me	thod	X ASTM D	1557	
					ASTM D	698	
MOLD VOLUME (CU.FT)	0.0333		Preparation Met	hod	X Moist Dry		
•							
Trail No.	1	2	3	4	5	6	
Wt. Comp. Soil + Mold (gm.)	3827.3	3727.8	3883.1	3872.7			
Wt. of Mold (gm.)	1862.7	1862.7	1862.7	1862.7			
Net Wt. of Soil (gm.)	1964.6	1865.1	2020.4	2010.0			
Container No.							
Wt. of Container (gm.)	214.1	214.1	214.1 214.				
Wet Wt. of Soil + Cont. (gm.)	431.7	412.1	425.1	409.4			
Dry Wt. of Soil + Cont. (gm.)	404.6	398.4	406.9	389.3			
Moisture Content (%)	14.2	7.4	9.4	11.5			
Wet Density (pcf)	130.1	123.5	123.5 133.8				
Dry Density (pcf)	113.9	114.9	122.2	119.4			
Maximum Dry Density (pcf)		122.0	<u>.</u>	Moisture Co	` ' <u>L</u>	9.5	
Assumed Specific Gravity = 2.60	1	30					
PROCEDURE USED Method A							
Soil Passing No. 4 (4.75 mm) Sieve							
Mold: 4 in. (101.6 mm) diameter Layers: 5 (Five)			P \				
Blows per layer: 25 (twenty-five)	1	20					
May be used if No.4 retained < 20%							
Method B Soil Passing 3/8 in. (9.5 mm) Sieve			ϕ				
Mold: 4 in. (101.6 mm) diameter							
Layers: 5 (Five) Blows per layer: 25 (twenty-five)	1	10		+			
Use if + No.4 > 20% and - 3/8 " < 20%							
Method C							
Soil Passing 3/4 in. (19.0 mm) Sieve							
Mold: 6 in. (152.4 mm) diameter Layers: 5 (Five)	1	00					
Blows per layer: 56 (fifty-six)	,	0.00	10.00	2	0.00	30.00	

	COMP	ACTION	TEST			
Client Name : Tessera Project Name: Solar One Project No. : 60095029 Location: B-035		(Calculated By : Checked By :		Date: Date: Date	10/14/09 10/14/09 : 10/14/09
Sample No. : Visual Sample Description: Yellow-I	Brown Silty Sa		Depth (ft):	0-5'	-	
MOLD VOLUME (CU.FT)	0.0333	ilu (SF-Sivio	X ASTM D1557 ASTM D698 X Moist Dry			
Trail No.	1	2	3	4	5	6
Wt. Comp. Soil + Mold (gm.)	3872.6	3959.2	3966.2	3937.3		
Wt. of Mold (gm.)	1862.7	1862.7	1862.7	1862.7		
Net Wt. of Soil (gm.)	2009.9	2096.5	2103.5	2074.6		
Container No.						
Wt. of Container (gm.)	214.1	214.1	214.1	214.1		
Wet Wt. of Soil + Cont. (gm.)	433.1	436.1	436.2 430			
Dry Wt. of Soil + Cont. (gm.)	418.9	418.9	415.2	405.8		
Moisture Content (%)	6.9	8.4	10.4	12.8		
Wet Density (pcf)	133.1	138.8	139.3	137.3		
Dry Density (pcf)	124.4	128.0	126.1	121.7		
Maximum Dry Density (pcf)		128.0	Optimum I	Moisture Co	ntent (%)	9.5
Assumed Specific Gravity = 2.70	1	40			100% sat. @ a	ssumed Gs
PROCEDURE USED Method A Soil Passing No. 4 (4.75 mm) Sieve Mold: 4 in. (101.6 mm) diameter	,	40				
Layers: 5 (Five) Blows per layer: 25 (twenty-five) May be used if No.4 retained < 20% Method B Soil Passing 3/8 in. (9.5 mm) Sieve	1	30				
Mold: 4 in. (101.6 mm) diameter Layers: 5 (Five) Blows per layer: 25 (twenty-five) Use if + No.4 > 20% and - 3/8 " < 20% Method C	1	20				
Soil Passing 3/4 in. (19.0 mm) Sieve Mold: 6 in. (152.4 mm) diameter Layers: 5 (Five) Blows per layer: 56 (fifty-six) Use if + 3/8 in >20% and + in <30%	1	0.00	10.00	2	20.00	30.00

	COMPA	CTION	TEST			
Client Name : Tessera Project Name: Solar One Project No. : 6005029			ested By : 2	<u>ZC</u> ZC	Date:	
Location: Sample No. : B-043	N/ Sand (GP)	C	Checked By:		Date:	
MOLD VOLUME (CU.FT)	0.0333		Compaction Met		X ASTM D ASTM D X Moist Dry	
Trail No.	1	2	3	4	5	6
Wt. Comp. Soil + Mold (gm.)	3705.4	3764.1	3804.1	3774.0		
Wt. of Mold (gm.)	1862.7	1862.7	1862.7	1862.7		
Net Wt. of Soil (gm.)	1842.7	1901.4	1941.4	1911.3		
Container No.						
Wt. of Container (gm.)	214.1	214.1	1.1 214.1 2 ⁻¹			
Wet Wt. of Soil + Cont. (gm.)	412.8	401.8	435.3 418.9			
Dry Wt. of Soil + Cont. (gm.)	407.7	393.6	421.8 402.1			
Moisture Content (%)	2.6	4.6	6.5 8.9			
Wet Density (pcf)	122.0	125.9	128.5	126.5		
Dry Density (pcf)	118.9	120.4	120.7	116.2		
Maximum Dry Density (pcf)		121.0	Optimum N	Noisture Co	ntent (%)	5.
Assumed Specific Gravity = 2.60 PROCEDURE USED Method A Soil Passing No. 4 (4.75 mm) Sieve	14	40			100% sat. @ a	assumed Gs
Mold: 4 in. (101.6 mm) diameter Layers: 5 (Five) Blows per layer: 25 (twenty-five) May be used if No.4 retained < 20% Method B	13	30				
Soil Passing 3/8 in. (9.5 mm) Sieve Mold: 4 in. (101.6 mm) diameter Layers: 5 (Five) Blows per layer: 25 (twenty-five) Use if + No.4 > 20% and - 3/8 " < 20% Method C	12					
Soil Passing 3/4 in. (19.0 mm) Sieve Mold: 6 in. (152.4 mm) diameter Layers: 5 (Five) Blows per layer: 56 (fifty-six) Use if + 3/8 in >20% and + in <30%	11	0.00	10.00	2	0.00	30.00

	COMP	ACTION	TEST					
Client Name: Tessera Project Name: Solar One Project No.: 60095026 Location: B-049 Sample No.: Visual Sample Description: Gravel N	Solar One 60095026 B-049			Tested By : ZC Calculated By : ZC Checked By : CP Depth (ft) : 0-5				
MOLD VOLUME (CU.FT)	0.0333		Compaction Me		ASTM C X ASTM C X Moist Dry			
Trail No.	1	2	3	4	5	6		
Wt. Comp. Soil + Mold (gm.)	3695.2	3790.7	3823.8	3822.1				
Wt. of Mold (gm.)	1862.7	1862.7	1862.7	1862.7				
Net Wt. of Soil (gm.)	1832.5	1928.0	1961.1	1959.4				
Container No.								
Wt. of Container (gm.)	214.1	214.1	214.1	214.1				
Wet Wt. of Soil + Cont. (gm.)	434.1	471.2	520.9	483.6				
Dry Wt. of Soil + Cont. (gm.)	427.3	459.2	501.4	460.7				
Moisture Content (%)	3.2	4.9	6.8	9.3				
Wet Density (pcf)	121.3	127.6	129.8	129.7				
Dry Density (pcf)	117.6	121.7	121.6	118.7				
Maximum Dry Density (pcf)		122.5	Optimum I	Moisture Co	ntent (%)	6.0		
Assumed Specific Gravity = 2.63 PROCEDURE USED Method A Soil Passing No. 4 (4.75 mm) Sieve Mold: 4 in. (101.6 mm) diameter Layers: 3 (Three) Blows per layer: 25 (twenty-five) May be used if No.4 retained < 20% Method B Soil Passing 3/8 in. (9.5 mm) Sieve Mold: 4 in. (101.6 mm) diameter Layers: 3 (Three) Blows per layer: 25 (twenty-five) Use if + No.4 > 20% and - 3/8 " < 20% Method C Soil Passing 3/4 in. (19.0 mm) Sieve Mold: 6 in. (152.4 mm) diameter Layers: 3 (Three) Blows per layer: 56 (fifty-six) Use if + 3/8 in > 20% and + in < 30%	1:	30 20 10 0.00	10.00	2	100% sat. @ a	assumed Gs		

AP Engineering & Testing, Inc.

R-VALUE TEST DATA

ASTM D2844

Project Name: Solar One Tested By: ST/KM Date: 11/17/09

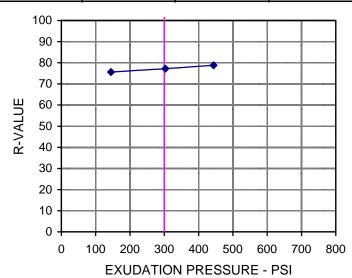
Project Number: 60095029 Checked By: AP Date: 11/18/09

Boring No.: B-020

Sample No.: Bulk Depth (ft.): 0-5

Location: N/A

Soil Description: Pale Red Silty Sand


Mold Number	В	С	D	
Water Added, g	10	107	104	
Compact Moisture(%)	2.3	12.2	11.9	
Compaction Gage Pressure, psi	200	200	200	
Exudation Pressure, psi	443	145	303	
Sample Height, Inches	2.7	2.7	2.7	
Gross Weight Mold, g	3065	3068	3071	
Tare Weight Mold, g	1967	1969	1971	
Net Sample Weight, g	1098	1099	1100	
Expansion, inchesx10 ⁻⁴	0	0	0	
Stability 2,000 (160 psi)	14/25	17/30	16/26	
Turns Displacement	4.25	4.19	4.57	
R-Value Uncorrected	76	72	74	
R-Value Corrected	79	76	77	
Dry Density, pcf	120.4	110.0	110.4	
Traffic Index	8.0	8.0	8.0	
G.E. by Stability	0.36	0.41	0.39	
G.E. by Expansion	0.00	0.00	0.00	

R-Value by Exudation = 77 R-Value by Expansion = N/A Equilibrium R-Value = 77

(by Exudation)

Remarks: $G_f = 1.5$

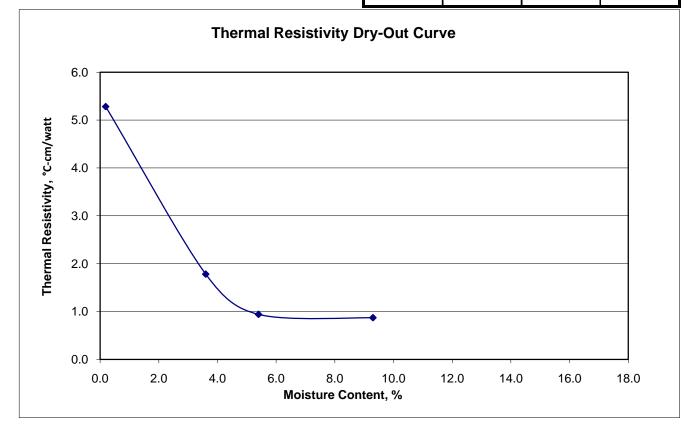
0.0 % Retained on the 3/4"

CORROSION TEST RESULTS

Client Name: Tessera

Project Name: Solar One Project No.: 60095029

Date: 11/6/2009

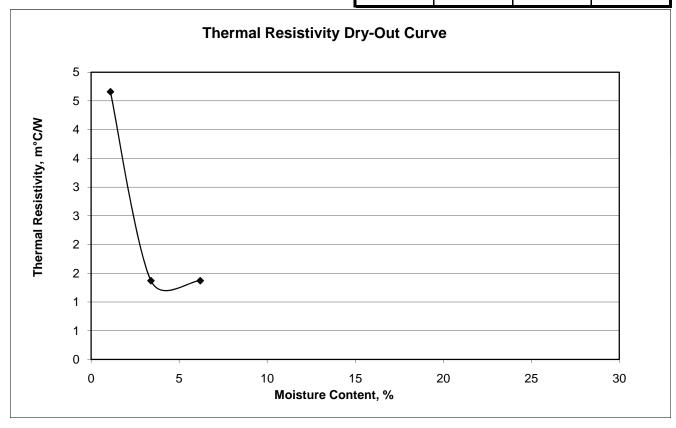

Boring No.	Sample No.	Depth (ft)	Soil Type	Minimum Resistivity (ohm-cm)	рН	Temp. (°C)	Sulfate Content (ppm	Chloride Content (ppm)
				•				
B-001	-	0 to 2	SM	1,300	8.93	14.6	25	61
B-009	-	0 to 5	SP	5,900	8.18	14.8	1	61
B-014	-	0 to 2	SM	360	8.23	14.8	715	62
B-035	-	0 to 5	SP-SM	3,900	8.30	14.8	6	65
B-049	-	0 to 1	SP-SM	8,000	8.28	14.7	2	62
TP-045	-	5	SM	4,000	8.16	14.8	20	61

NOTES: Resistivity Test and pH: California Test Methods 643

Sulfate Content : California Test Method 417 Chloride Content : California Test Method 422

ND = Not Detectable NA = Not Sufficient Sample NR = Not Requested

Project Name: Project Number:	Tessera Solar 60095029	Thermal Resistivity Test Results			
		Moisture Content (%)	Dry Unit Weight (pcf)	Meter- Degrees (°C-cm/watt)	Temperature (°C)
Sample ID:	B-01 0'-2.5'	0.2	116.6	5	46.4
Soil Type:		3.6	116.6	2	22.6
Standard/Modified Proctor:	Modified ASTM D-1557	5.4	112.9	1	22.3
Max Dry Density, pcf:	117.5	9.3	113.4	1	22.2
Opt. Moisture Content, %:	10.00%				
Target % Compaction:	95%				
Target Dry Density:	111.63				


Run By: Approved By:

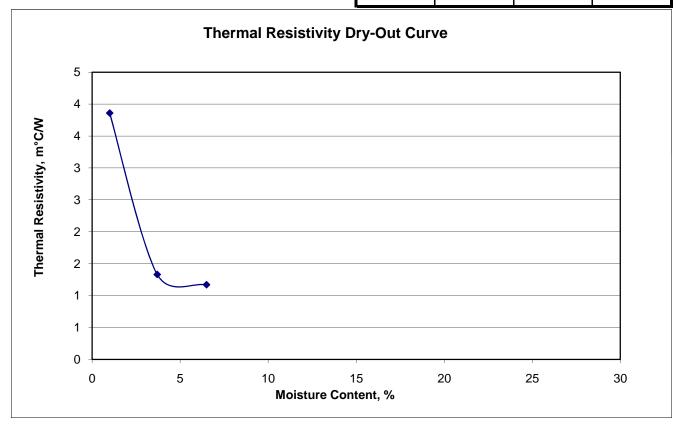
<u>llerracon</u>

Project Name: Solar One Project Number: 60095029

Thermal Resistivity Test Results

r roject Namber.	00000020	Average Moisture Content (%)	Compaction (%)	Meter- Degrees (°C-cm/watt)	Average Temperature (°C)
Sample ID:	B-007, 0,0' to 2.5'	6.2	98.0	1	22.5
Soil Type:	Br. Fat Clay	3.4	93.0	1	23.1
Standard/Modified Proctor:	Modified ASTM D-1557A	1.1	93.0	5	22.7
Max Dry Density, pcf:	124.6				
Opt. Moisture Content, %:	6.50%				
Target % Compaction:	95%				

Run By: GL


Approved By: MG

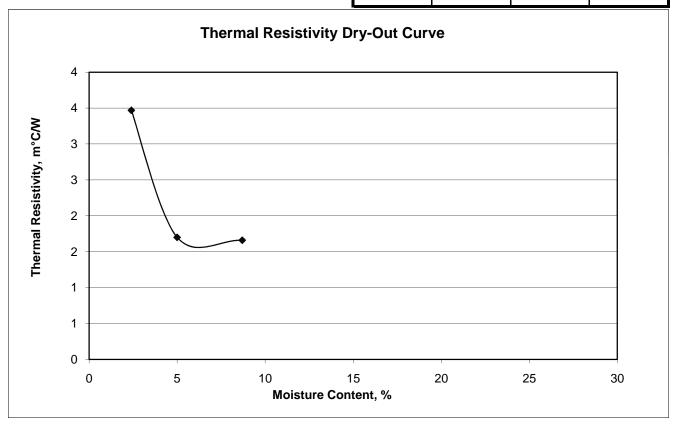
lerracon

Project Name: Solar One Project Number: 60095029

Thermal Resistivity Test Results

,		Average Moisture Content (%)	Compaction (%)	Meter- Degrees (°C-cm/watt)	Average Temperature (°C)
Sample ID:	B-013, 0,0' to 1'	6.5	94.0	1	22.6
Soil Type:	Br. Sand with Gravel	3.7	89.0	1	22.7
Standard/Modified Proctor:	Modified ASTM D-1557A	1.0	97.0	4	22.8
Max Dry Density, pcf:	130.5				
Opt. Moisture Content, %:	7.00%				
Target % Compaction:	95%				

Run By: GL

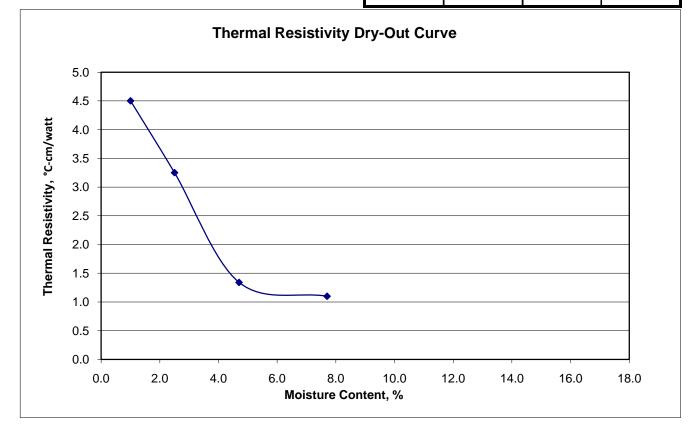

Approved By: MG

. Tierracon

Project Name: Solar One Project Number: 60095029

Thermal Resistivity Test Results

ŕ		Average Moisture Content (%)	Compaction (%)	Meter- Degrees (°C-cm/watt)	Average Temperature (°C)
Sample ID:	B-017, 0,0' to 1'	8.7	90.0	2	22.5
	Br. Sand with Gravel	5.0	91.0	2	24.1
Standard/Modified Proctor:	Modified ASTM D-1557A	2.4	96.0	3	23.4
Max Dry Density, pcf:	123.2				
Opt. Moisture Content, %:	11.50%				
Target % Compaction:	95%				
		_			

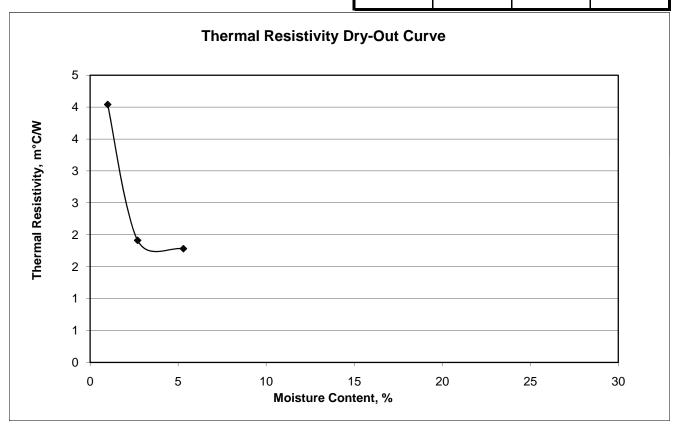


Run By: GL

Approved By: MG

. Tierracon

Project Name: Project Number:	Tessera Solar 60095029	Thermal Resistivity Test Results			
		Moisture	Dry Unit	Meter- Degrees	Temperature
		Content (%)	Weight (pcf)	(°C-cm/watt)	(°C)
Sample ID:	B-021 0'-1'	7.7	108.5	1	20.8
Soil Type:		4.7	109.8	1	20.8
Standard/Modified Proctor:	Modified ASTM D-1557	2.5	109.0	3	20.2
Max Dry Density, pcf:	119	1.0	110.9	5	21.4
Opt. Moisture Content, %:	11.00%				
Target % Compaction:	95%				
Target Dry Density:	113.05				

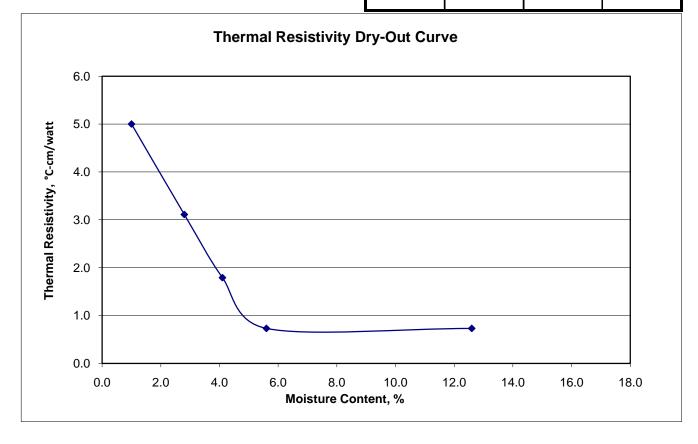


Run By: Approved By:

Project Name: Solar One Project Number: 60095029

Thermal Resistivity Test Results

		Average Moisture Content (%)	Compaction (%)	Meter- Degrees (°C-cm/watt)	Average Temperature (°C)
Sample ID:	B-031, 0,0' to 5'	5.3	96.0	2	22.8
	Br. Sand with Gravel	2.7	96.0	2	22.4
Standard/Modified Proctor:	Modified ASTM D-1557A	1.0	98.0	4	23.0
Max Dry Density, pcf:	122.4				
Opt. Moisture Content, %:	6.00%				
Target % Compaction:	95%				

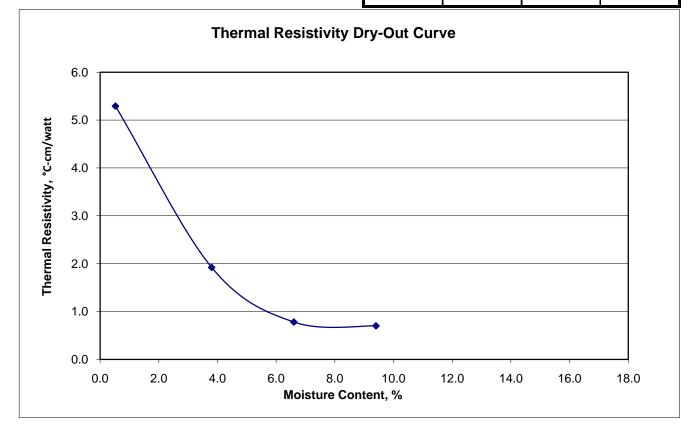


Run By: GL

Approved By: MG

. Tierracon

Project Name: Project Number:	Tessera Solar 60095029	Thermal Resistivity Test Results			
		Moisture Content (%)	Dry Unit Weight (pcf)	Meter- Degrees (°C-cm/watt)	Temperature (°C)
Sample ID:	B-034 0'-1'	12.6	120.1	1	22.1
Soil Type:		5.6	115.2	1	24.7
Standard/Modified Proctor:	Modified ASTM D-1557	4.1	114.9	2	24.5
Max Dry Density, pcf:	122	2.8	114.2	3	24.6
Opt. Moisture Content, %:	10.00%	1.0	117.9	5	47.8
Target % Compaction:	95%				
Target Dry Density:	115.9				

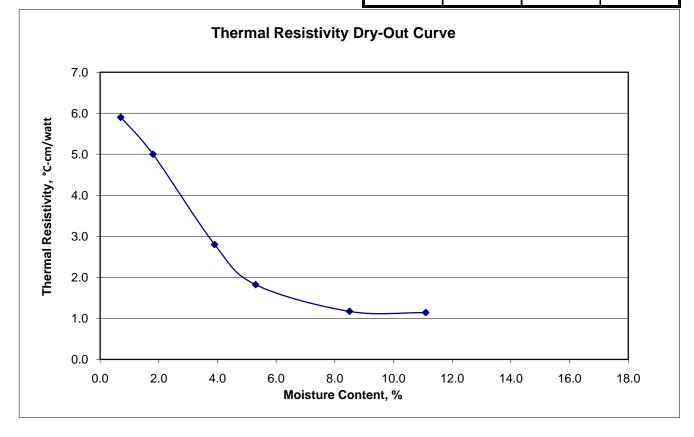


Run By:

Approved By:

<u>llerracon</u>

Project Name: Project Number:	Tessera Solar 60095029	Thermal Resistivity Test Results			
		Moisture Content (%)	Dry Unit Weight (pcf)	Meter- Degrees (°C-cm/watt)	Temperature (°C)
Sample ID:	B-035 0'-5'	0.5	122.1	5	41.9
Soil Type:		3.8	122.2	2	23.9
Standard/Modified Proctor:	Modified ASTM D-1557	6.6	125.1	1	22.2
Max Dry Density, pcf:	128	9.4	126.1	1	22.2
Opt. Moisture Content, %:	9.50%				
Target % Compaction:	95%				
Target Dry Density:	121.6				
_					



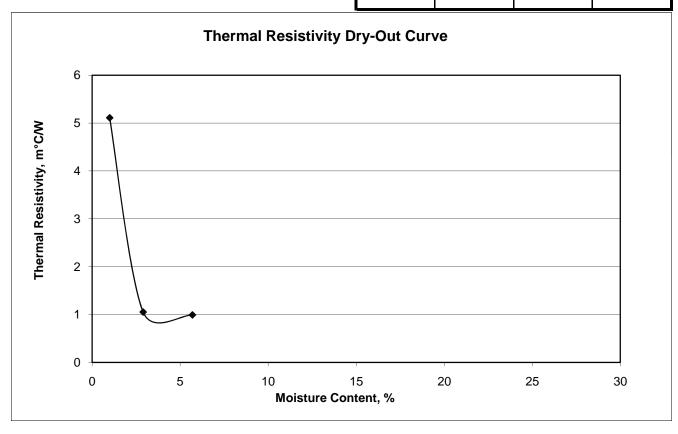
Run By:

Approved By:

lerracon

Project Name: Project Number:	Tessera Solar 60095029	Thermal Resistivity Test Results			
		Moisture Content (%)	Dry Unit Weight (pcf)	Meter- Degrees (°C-cm/watt)	Temperature (°C)
Sample ID:	B-043 0'-1'	11.1	113.6	1	21.8
Soil Type:		8.5	115.2	1	22.5
Standard/Modified Proctor:	Modified ASTM D-1557	5.3	115.2	2	23.5
Max Dry Density, pcf:	121	3.9	114.3	3	23.5
Opt. Moisture Content, %:	5.50%	1.8	118.6	5	23.4
Target % Compaction:	95%	0.7	124.2	6	47.3
Target Dry Density:	114.95				

Run By:


Approved By:

<u>llerracon</u>

Project Name: Solar One Project Number: 60095029

Thermal Resistivity Test Results

		Average Moisture Content (%)	Compaction (%)	Meter- Degrees (°C-cm/watt)	Average Temperature (°C)
Sample ID:	B-049 0' to 5'	5.7	96.0	1	22.7
Soil Type:	Br. Sand with Gravel	2.9	99.0	1	22.8
Standard/Modified Proctor:	Modified ASTM D-1557A	1.0	98.0	5	22.8
Max Dry Density, pcf:	122.5				
Opt. Moisture Content, %:	6.00%				
Target % Compaction:	95%				

Run By: GL

Approved By: MG

. Terracon

Site Name:	Solar One	Boring No.:	B-014
Site Address:	Hwy 40 and Hector Road, F	Pisgah, CA	
Report Prepared By:	CP	Field Test By:	CP
Description of the soil a	s seen at the site:		
Choose from the followi conditions:	ng descriptions that best d	escribe the ea	arth
Good clay earth	Solid Rock		
Sandy Soil	High Rise	Site	
Provide the following in	formation:		
Date of resistivity test:	10/21/2009	_	
Weather for the seven d (The last three days must have be	•	Clear and Su	nny
Model number of test in	strument:	Nilsson Mode	el 400
Serial number of test ins	strument:	4-7530	-
RESITIVITY TESTING DA	ATA AND RESULTS:		

A (ft) =	2	4	8	16	20
FORMULA D= (OHM-CM)	383*R	766*R	1532*R	3064*R	3830*R
AREA 1 MEASURED R	19	5.1	1.7	0.92	0.61
AREA 1 CALC D	7277	3907	2604	2819	2336

Site Name:	Solar One	Boring No. : B-014
Site Address:	Hwy 40 and Hector Road, F	Pisgah, CA
Report Prepared By:	СР	Field Test By: CP
Description of the soil a	s seen at the site:	
Choose from the followic conditions:	ng descriptions that best o	lescribe the earth
Good clay earth	Solid Rock	ζ.
Sandy Soil	High Rise	Site
Provide the following in	formation:	
Date of resistivity test:	10/21/2009	_
Weather for the seven d (The last three days must have be		Clear and Sunny
Model number of test in	strument:	Nilsson Model 400
Serial number of test ins	strument:	4-7530
RESITIVITY TESTING DA	ATA AND RESULTS:	

A (ft) =	2	4	8	16	20
FORMULA D= (OHM-CM)	383*R	766*R	1532*R	3064*R	3830*R
AREA 1 MEASURED R	20	6.7	3.2	3.2	3.2
AREA 1 CALC D	7660	5132	4902	9805	12256

Site Name:	Solar One	Boring No.: B-033
Site Address:	Hwy 40 and Hector Road, F	Pisgah, CA
Report Prepared By:	СР	Field Test By: CP
Description of the soil a	s seen at the site:	
Choose from the followic conditions:	ng descriptions that best d	describe the earth
Good clay earth	Solid Rock	k
Sandy Soil	High Rise	Site
Provide the following in	formation:	
Date of resistivity test:	10/21/2009	_
Weather for the seven d (The last three days must have be	•	Clear and Sunny
Model number of test in	strument:	Nilsson Model 400
Serial number of test ins	strument:	4-7530
RESITIVITY TESTING DA	ATA AND RESULTS:	

A (ft) =	2	4	8	16	20
FORMULA D= (OHM-CM)	383*R	766*R	1532*R	3064*R	3830*R
AREA 1 MEASURED R	660000	410000	740000	560000	200000
AREA 1 CALC D	252780000	314060000	1133680000	1715840000	766000000

Site Name:	Solar One	Boring No. : B-048	
Site Address:	Hwy 40 and Hector Road,	Pisgah, CA	
Report Prepared By:	СР	Field Test By: CP	
Description of the soil as	s seen at the site:		
Choose from the following conditions:	ng descriptions that best	describe the earth	
Good clay earth	Solid Roo	k	
Sandy Soil	High Rise	Site	
Provide the following inf	ormation:		
Date of resistivity test:	10/21/2009	_	
Weather for the seven do (The last three days must have be		Clear and Sunny	
Model number of test ins	strument:	Nilsson Model 400	
Serial number of test ins	trument:	4-7530	
RESITIVITY TESTING DA	TA AND RESULTS:		

A (ft) =	2	4	8	16	20
FORMULA D= (OHM-CM)	383*R	766*R	1532*R	3064*R	3830*R
AREA 1 MEASURED R	1600	1300	1900	1800	8900
AREA 1 CALC D	612800	995800	2910800	5515200	34087000

Site Name:	Solar One	Boring No.:	B-029
Site Address:	Hwy 40 and Hector Road, F	Pisgah, CA	
Report Prepared By:	CP	Field Test By:	CP
Description of the soil a	s seen at the site:		
Choose from the followi conditions:	ng descriptions that best d	escribe the ea	arth
Good clay earth	Solid Rock		
Sandy Soil	High Rise	Site	
Provide the following in	formation:		
Date of resistivity test:	10/21/2009	_	
Weather for the seven d (The last three days must have be	•	Clear and Su	nny
Model number of test in	strument:	Nilsson Mode	el 400
Serial number of test ins	strument:	4-7530	-
RESITIVITY TESTING DA	ATA AND RESULTS:		

A (ft) =	2	4	8	16	20
FORMULA D= (OHM-CM)	383*R	766*R	1532*R	3064*R	3830*R
AREA 1 MEASURED R	140000	130000	160000	71000	16000
AREA 1 CALC D	53620000	99580000	245120000	217544000	61280000

Site Name:	Solar One	Boring No.:	B-025
Site Address:	Hwy 40 and Hector Road, F	Pisgah, CA	
Report Prepared By:	CP	Field Test By:	: <u>CP</u>
Description of the soil a	s seen at the site:		
Choose from the followic conditions:	ng descriptions that best d	lescribe the ea	arth
Good clay earth	Solid Rock	(
Sandy Soil	High Rise	Site	
Provide the following in	formation:		
Date of resistivity test:	10/21/2009	_	
Weather for the seven d (The last three days must have be	•	Clear and Su	nny
Model number of test in	strument:	Nilsson Mode	el 400
Serial number of test ins	strument:	4-7530	_
RESITIVITY TESTING DA	ATA AND RESULTS:		

A (ft) =	2	4	8	16	20
FORMULA D= (OHM-CM)	383*R	766*R	1532*R	3064*R	3830*R
AREA 1 MEASURED R	310	300	4700	120	0
AREA 1 CALC D	118730	229800	7200400	367680	0

Site Name:	Solar One	Boring No.:	B-043
Site Address:	Hwy 40 and Hector Road, F	Pisgah, CA	
Report Prepared By:	CP	Field Test By:	: <u>CP</u>
Description of the soil a	s seen at the site:		
Choose from the followic conditions:	ng descriptions that best d	escribe the ea	arth
Good clay earth	Solid Rock		
Sandy Soil	High Rise	Site	
Provide the following in	formation:		
Date of resistivity test:	10/21/2009	_	
Weather for the seven d (The last three days must have be	•	Clear and Su	nny
Model number of test in	strument:	Nilsson Mode	el 400
Serial number of test ins	strument:	4-7530	-
RESITIVITY TESTING DA	ATA AND RESULTS:		

A (ft) =	2	4	8	16	20
FORMULA D= (OHM-CM)	383*R	766*R	1532*R	3064*R	3830*R
AREA 1 MEASURED R	1000	10900	12000	12000	0
AREA 1 CALC D	383000	8349400	18384000	36768000	0

Site Name:	Solar One	Boring No. : <u>B</u> -032			
Site Address:	Hwy 40 and Hector Road, Pisgah, CA				
Report Prepared By:	MLS	Field Test By: MLS			
Description of the soil a	s seen at the site:				
Choose from the following descriptions that best describe the earth conditions:					
Good clay earth	Solid Rock				
Sandy Soil	High Rise Site				
Provide the following information:					
Date of resistivity test:	10/23/2009	_			
Weather for the seven days preceding the test: (The last three days must have been clear and sunny.)		Clear and Sunny			
Model number of test instrument:		Nilsson Model 400			
Serial number of test instrument:		4-7530			
RESITIVITY TESTING DATA AND RESULTS:					

A (ft) =	2	4	8	16	20
FORMULA D= (OHM-CM)	383*R	766*R	1532*R	3064*R	3830*R
AREA 1 MEASURED R	120	20	400	20	11
AREA 1 CALC D	45960	15320	612800	61280	42130

Site Name:	Solar One	Boring No.:	TP-044	
Site Address:	Hwy 40 and Hector Road, Pisgah, CA			
Report Prepared By:	MLS	Field Test By:	MLS	
Description of the soil a	s seen at the site:			
Choose from the followi conditions:	ng descriptions that best d	escribe the ea	arth	
Good clay earth	Solid Rock			
Sandy Soil	High Rise Site			
Provide the following information:				
Date of resistivity test:	10/30/2009	_		
Weather for the seven days preceding the test: (The last three days must have been clear and sunny.)		Clear and Su	nny	
Model number of test in	strument:	Nilsson Mode	1 400	
Serial number of test instrument:		4-7530	-	
RESITIVITY TESTING DATA AND RESULTS:				

A (ft) =	2	4	8	16	20
FORMULA D= (OHM-CM)	383*R	766*R	1532*R	3064*R	3830*R
AREA 1 MEASURED R	56000	1800	2000	4600	6500
AREA 1 CALC D	21448000	1378800	3064000	14094400	24895000

APPENDIX C ASFE INSERT

Important Information about Your

Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one — not even you —* should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report Is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse.

- elevation, configuration, location, orientation, or weight of the proposed structure.
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final,* because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. The geotechnical engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, but preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. Be sure contractors have sufficient time to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

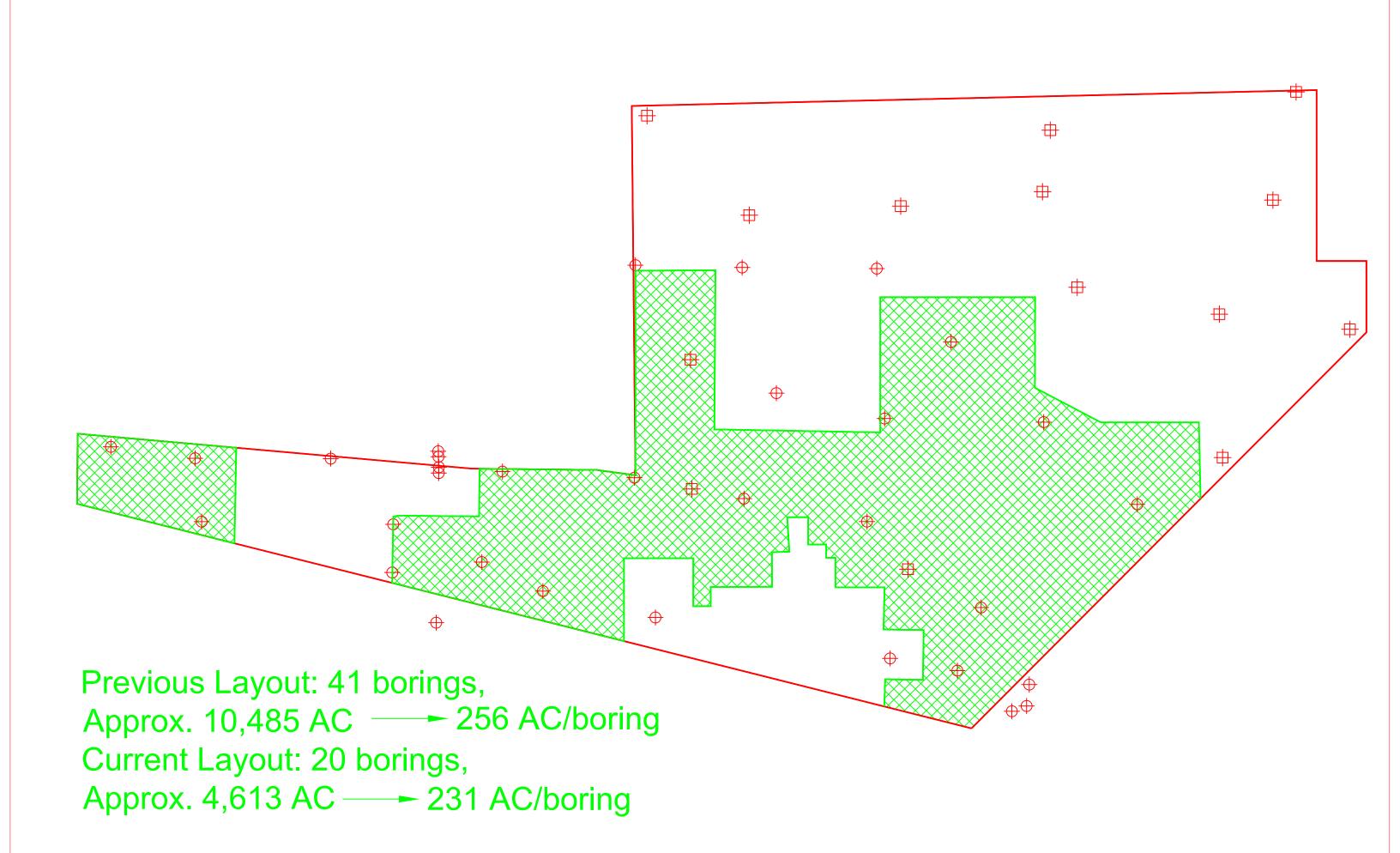
have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures*. If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else*.

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction. operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant; none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.


Rely, on Your ASFE-Member Geotechnical Engineer for Additional Assistance

Membership in ASFE/The Best People on Earth exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with you ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

