

P.O. Box 346 Walnut Grove, CA 95690 ph: (916) 776-2727 www.allsaveinc.com

04/20/2011

California Energy Commission Dockets Office, MS-4 1516 Ninth Street Sacramento, CA 95814-5512

RE: Docket #: 02-REN-1038

Staff Workshop on Proposed Changes to the Emerging Renewables Program Guidebook

As a small, wind energy project developer, ALL SAVE ENERGY is encouraged by the recent discussions and debate surrounding the Emerging Renewables Program (ERP). It is this debate that allows the Commission to review the program objectives against current performance and integrate the necessary adjustments for continued the adoption of small wind energy in California.

As I meet with prospective customers, they consistently have three(3) questions:

- Your telling me this will produce energy at a given rate for 20+ years, how can I verify this?
- I'm not sure I have enough wind where I live, how do you verify this?
- A This is expensive, what incentives are available and how will they be paid?

A wind turbine, to be eligible for state incentives, must submit to independent 3rd party verification. There must not be provisions for self-certification potentially leading to untested claims. Of course this adds cost to the products offered which is passed on to the consumer. You wouldn't buy a car that wasn't subject to safety testing, we shouldn't offer incentives for turbines that haven't been tested. We must prevent a buyer-beware mentality. ALL SAVE ENERGY recommends adopting a national testing standard and referring to other quality programs such as the New York State Energy Research and Development Authority (NYSERDA).

Predictive wind resource applications exist for a low cost and should be used to verify each project. It is not costly, nor time consuming. Although localized wind energy is not measurable by utilizing these tools, they do provide an initial step to demonstrate viability. In the case where wind energy is not readily quantifiable and the client wishes to proceed, it is not unreasonable to require a short duration of wind resource testing to demonstrate viability.

For the small wind industry, certainty provides the foundation for market expansion. Up front incentives must be preserved and we encourage the commission to explore extending the incentive program. If the incentives do not continue, the program risks losing the Dealer base that supports the warranty and discourages the future of the program. Small Wind Turbine Dealers need the same opportunity as the Solar program utilizing progressive incentives. The ERP has recognized a certain amount of success and created the momentum needed to see a significant increase in quality installations.

ALL SAVE ENERGY urges the commission to:

- take quick, decisive action to modify the ERP to include only wind turbines subjected to independently verified energy production
- ▲ require the use of predictive wind maps ensuring a minimal level of available resources
- require estimated annual energy production based on the independently verified power curve
 seek to extend the incentives program providing long-term certainty to customers and the
- industry
- ▲ continue to provide the incentive as an initial payment to reduce up front costs

P.O. Box 346 Walnut Grove, CA 95690 ph: (916) 776-2727 www.allsaveinc.com

Poor quality, unproven claims, and additional delays in lifting the suspension will effectively cripple an industry that has just begun to gain momentum. It would be a mistake to dilute the available incentive pool by effectively accepting any product, any install in the name of job creation and wind energy adoption statistics. That may demonstrate short term gains as seen by the recent rush of incentive submissions, while severely damaging the future prospects of a sustainable industry.

Contained in the handbook, Section K. Audits and Inspections, provides the framework for resolving recent concerns. I quote, "In the event that a contractor, equipment seller, or purchases provides information in a reservation application or payment request that appears questionable, the Energy Commission may take the following steps to clarify the questionable information."

- 1. Stop review of the application containing the questionable information to investigate further.
- 2. Require additional documentation from the contractor, equipment seller, and/or purchaser to verify the accuracy of the questionable information.

I suggest the significant increase in applications related to specific equipment triggers the use of Section K allowing the program to resume immediately. This action prevents near term damage to the industry and allows the commission to carefully consider and construct a robust program going forward.

A swift, decisive response is required allowing reputable businesses such as ALL SAVE ENERGY to continue supporting local consumers and state renewable energy objectives. Implementing these recommendations will expand the adoption of small scale wind energy.

We are very committed to this effort and believe it is essential to increasing behind the meter distributed wind energy generation in California. We offer our continued support and look forward to working with all interested parties to adopt change.

ALL SAVE ENERGY is a small company aggressively pursuing quality job growth and adoption of wind energy in Central California. If you would like any additional information on our organization please visit our website at <u>www.allsaveinc.com</u>. Also, please feel free to call me at (916) 776-2727.

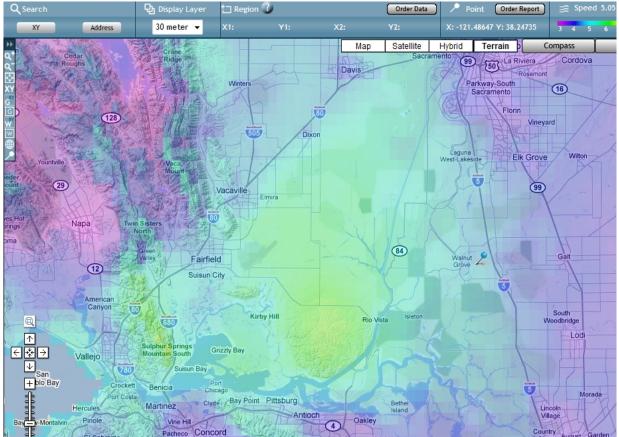
Sincerely,

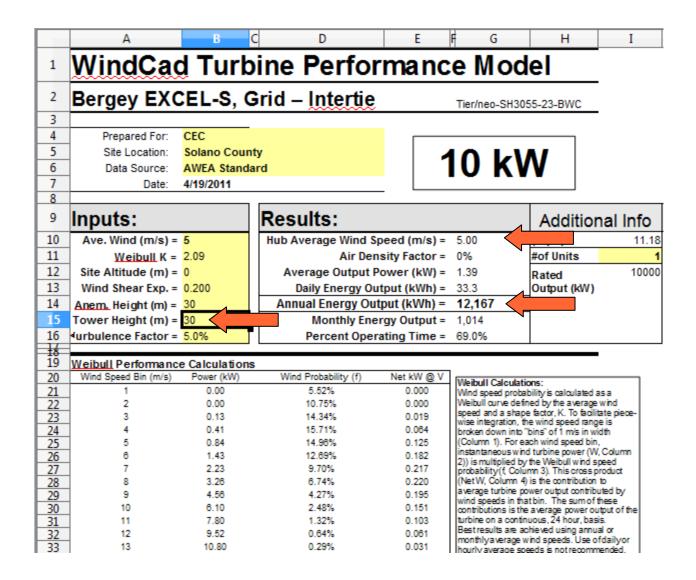
Larry Hamilton, President/CEO

included: Wind Resource Maps Energy Production Comparisons

Wind Resource Mapping

There are many resources available to predict the available wind energy at a location, two popular options are AWS Truepower¹ and 3Tier². These firms offer low-cost, easy to use predictive wind resource models providing reasonable insight into a projects viability. ALL SAVE ENERGY has always used these tools, and recommends the Commission require an estimate of available wind energy for each submission.




Illustration 1: WindNavigator : SiteAssessment Tool

²3TIER <u>http://www.3tier.com/en/</u>

Energy Production Comparison

Energy Production estimates are crucial to understanding project fiscal returns. It is unlikely a potential client would not evaluate the predicted energy output before purchasing, unless the incentive reduces the cost to nearly zero.

For illustrative purposes only, the Bergey WindCAD³ model clearly demonstrates the energy production differences are intentionally exaggerated with a comparison of a short 15' and the proper 100' tower. The exaggeration clearly indicates the second installation is not viable and should not qualify for incentives solely to promote wind energy use in California.

Energy Production Comparison

	А	В	C D	E	F	G	Н	I
1	WindCad Turbine Performance Model							
2	Bergey EXC		Tier/neo-SH3055-23-BWC					
3								
4	Prepared For:	CEC						
5	Site Location:	4						
6	Data Source: AWEA Standard			10 kW				
7	Date: 4/19/2011						-	
8								
9	Inputs:		Results:				Addition	al Info
10	Ave. Wind (m/s) =	5	Hub Average Wind S	peed (m/s) =	3.49	< =		7.82
11	Weibull K =	2.09	Air Der	sity Factor =	0%		#of Units	1
12	Site Altitude (m) =	0	Average Output F	ower (kW) =	0.48		Rated	10000
13	Wind Shear Exp. =	0.200	Daily Energy Ou	tput (kWh) =	11.5	4	Output (kW)	
14	Anem. Height (m) =	30	Annual Energy Ou	tput (kWh) =	4,212			
15	Tower Height (m) =	Monthly Ene	rgy Output =	351				
16	urbulence Factor =		Percent Operating Time = 45.4%					
±8								
	Weibull Performance Calculations							
20	Wind Speed Bin (m/s)	Power (kW)	Wind Probability (f)	Net kW @ V	Weibul	l Calculati	005:	
21	1	0.00	11.32%	0.000			bility is calculated a	
22	2	0.00	19.99% 22.48%	0.000	Weibull curve defined by the average wind speed and a shape factor, K. To facilitate piece-			
23 24	3	0.13	22.40%	0.030	wise int	egration, it	te wind speed range bins" of 1 m/s in wi	eis'
25	5	0.84	13.21%	0.110			ach wind speed bin,	
26	6	1.43	7.47%	0.107	instanta	ineous w in	d turbine power (W,	
27	7	2.23	3.51%	0.078	2)) is m probabi	lity(f, Colu	the Weibull wind sp mn 3). This cross p	roduct
28	8	3.26	1.38%	0.045			is the contribution	
29 30	9	4.56	0.46%	0.021	a verage turbine power output contributed by wind speeds in that bin. The sum of these			
30	10	6.10 7.80	0.13%	0.008	contribu	tions is the	e average power ou wous, 24 hour, basi	tput of the
31 32	11	9.52	0.03%	0.002	Bestres	sults are ad	chieved using annua	alor
33	13	10.80	0.00%	0.000			vind speeds. Use of eeds is not recomm	