

EPEI ELECTRIC POWER RESEARCH INSTITUTE

Energy Storage Applications and Economics

Costs, Benefits, Revenue

Dan Rastler Program Manager

California Energy Commission IEPR Committee Workshop Energy Storage for Renewable Integration Sacramento, CA

April 28, 2011

Panel Questions

- What are the costs estimates for the increased use of energy storage?
- How can the benefits of energy storage best be quantified?
- What revenue mechanisms are available to ensure energy storage plays the appropriate role in the California grid of the future?
- What will be the specific economics and cost-benefit data that needs to be developed to support the implementation of the Assembly Bill 2514 Energy Storage development, demonstration, and deployment plan activities?

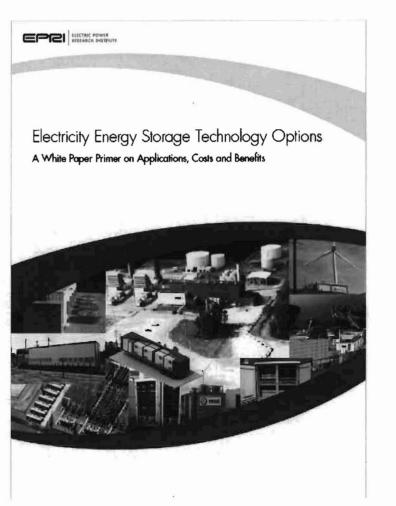
EPRI Research: See: EPRI 1020676 **Applications, Benefits and Costs of Energy Storage Systems**

An FPRI Executive Summary Electric Energy Storage Technology Options A Primer on Applications, Costs & Benefits

Introduction

A confluence of industry drivers-including increased deployment of recessible generation, the high capital cost of managing as harriers to the wide-pread dephymeon of energy storage sys-grid peed demonds, and large investments in grid infrastructure terms, where multi-functional characteristics also complicate rules grid peak demonds, and large investments in grid infrastructure for reliability and smart grid initiatives----ts creating new interest in electric energy storage systems. Just as transmission and distribution (T&D) ambents more electricity over distances to end warn, energy stoenge wittens can more electricity through time, providing i when and where it is needed. Energy storage restorat exclusion in a storage and analysis, application assuments, and input from system; can help balance variable renewable generation and, properly deployed and integrated, can help increase electric grid reliability and aner utilization. With improvements in the cost and commercial availability of energy storage technologies, electricity statuge systems should play a pixonal role in influencing the impact of these industry drivers.

This white paper was prepared to inform industry executives, policyeraliers, and other industry arakeholders of the various types of electric energy surage usinems back available and energinas one approach to estimating the value of energy storage systems types the rescue using the approximate and the and the approximate capture the range of benefits potentially offered by energy storage


uibuted generation or energy efficiency, in key respects: they do assumptions and calculations made to reach the conclusions prenot have a typical openning profile or load shape that can be sented. A number of the high-value benefits identified in this re-applied prospectively they are "limited energy" ensurces with port can vary widely across regions and will depend to a great a narrow band of dispatch and operation; and they can partici-panies, and end-use customers. These characteristics, plus the

difficulty in monetizing multiple stakeholder benefits, often act for ownership and operation among various stakeholders

In producing this report, EPRI's Energy Storage research pr and capital costs. The full paper provides an overview of energy storage applications and technology options, and the potentia range of value of storage systems in the applications presented. Updated capital cost and performance information is also presented for storage systems available within the next one to three years. In addition, longer-term trends in energing systems are highlighted. The full report also outlines a framework and meth-olidary that electric utilities and industry stakeholders may use

The conclusions of this work are the result of modeling efforts and calculations conducted at EPRI: Assumptions and estimates for many of these calculations have been developed by industry experts and vetted by stakeholders, but real-world needs, costs, and benefits can vary considerably. The objective of this study is to provide information and data that are timely and relevant, Storage applications differ from other DER options, such as dis- but with the consideration that readers carefully understand the extent on the operational guidelines, market rules and tatiffs account the substantial impact of local and site-specific condi-

a service the Execution Summary of the FBC White Source Flactor Press, Secure A Secure 4 New

EPCI ELECTRIC POWER RESEARCH INSTITUTE

Capital Costs of Energy Storage Options – Examples

See: EPRI 1020676

Note: Today's Costs; Site Specific Application Cost can Vary

Storage Option	Application	Level of Maturity	Energy Duration hrs (cycles)	Efficiency ac/ac %	Total Installed Capital Cost \$ / kW	Total Installed Cost \$/kW-h
Pumped Hydro	ISO Services Wind Integration	Mature	10-20 (>13000)	80-82	\$1500- \$4300	250-430
Compressed Air	ISO services Wind Integration	Demo	10-20 (>13000)	4000 Btu/kWh 0.7 ER	\$960- \$1250	60-125
NAS	Grid Support Wind Integration	Mature	6 (4500)	80	\$3200- \$4200	445-555
Lead Acid Battery Adv. Lead Acid Battery	Grid Support ISO Services Wind / PV	Mature Demo	4 (2200- 4500)	85-90	\$2020- \$3040	505-760
Flow Battery (Various Types)	Grid Support Wind / PV Integration	Demo	4 (>10000)	60-70	2350-4500	470-1125
Li-ion Battery	ISO Services Grid Support	Demo	0.25 (>10000)	90 .	1200-1500	4800- 6000
	C&I Energy Mgt PV Integration		(5000)		2100-4650	1050- 1550
	ISO Services	Demo	0.25 (>>20,000)	90	1900-2250	7800- 7900

ELECTRIC POWER RESEARCH INSTITUTE

EPRI Ref. Designs: Bulk Storage Options for Renewable Integration

Storage System Characteristics and Costs – 2010 Findings

Technology Option/ Characteristics	CAES Above Ground	NAS	A-Pb Adv. Lead Acid	Zn/Br Redox	Vanadium Redox	Fe/Cr Redox	Zn/Air Redox
Unit Capacity MW MWH	50 250	50 300	50 250	50 250	50 250	50 250	50 250
Ac-Ac Efficiency,% (heat rate)* Energy Ratio**	 (4000) 1.0	.75-80	85-90	60-65	75-78	70-75	70-75
Foot print Ft2/kW	1.6	2.0	1.9 - 5.1	0.9	2.0	1.1	1.3
Total Capital Costs (\$/kW)	1700- 1950	3060- 3200	1750-4900	1660- 1800	3500- 3700	1800	1400- 1700
Technical Maturity and readiness	Demo	Commercial	Commercial- Demo	Demo	Demo	R&D Lab	R&D Lab

*Heat rate is Btu/ kWh, LHV

**Energy ratio is kWh - in / kWh-out

Other Emerging Storage Systems Also Need Consideration

Business Case Analysis of Applications

Benefit Analysis: Total Recovery Cost Method

Sum of Value Streams: Capacity, CapEx Deferral, Regulation, etc...

Calculate Present Value of Value Streams (PV)

10% Discount Rate

Present Value of Benefits = Proxy for Total Installed Cost which can be justified for rate base

Value = Present Value of Benefits / kWh delivered from storage asset expressed as \$/kWh (\$ / kW-h)

Life Cycle Analysis: Cost per kWh Delivered

Capital Cost; Discount Rate Efficiency (ac/ac)

Cost of off-peak power

O&M

Life: years

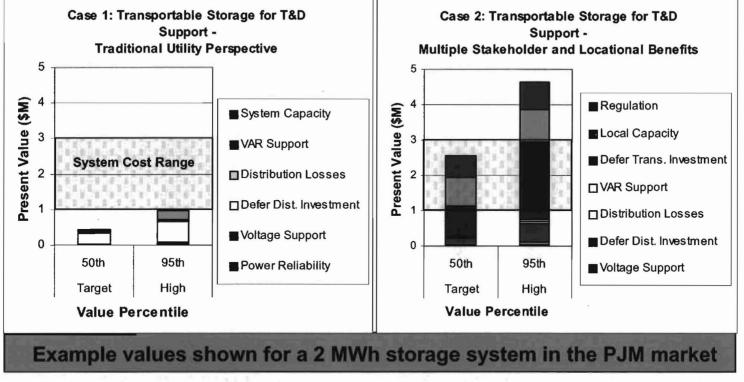
kWh / Cycle and total cycles over life (depth of discharge, begin or end of life considerations)

Life Cycle Cost expressed as \$/kWh delivered

Both Methods Needed to Support Business Case

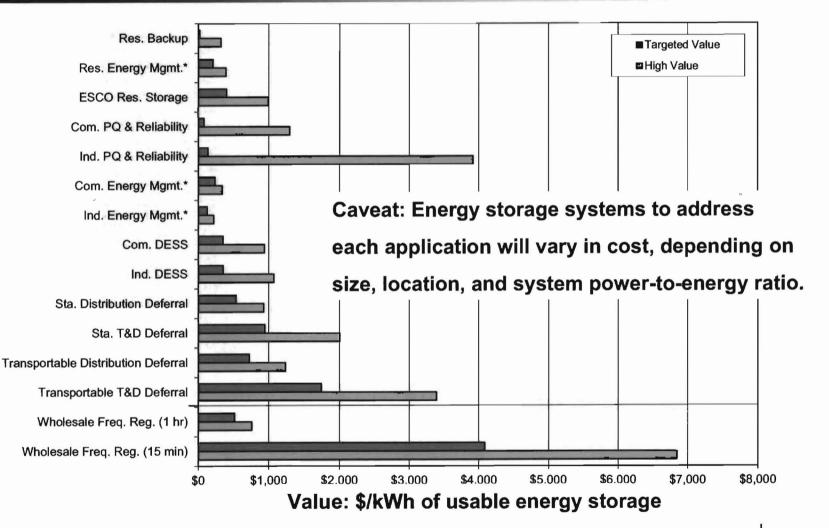
Estimated Range of Benefits \$/kW-h and \$/kW

Target (Average) and High (95th percentile) Estimates across 5 ISO Regions Studied


	e Chain Benefit		PV \$/kW-h		PV \$/kW	
Value Chain			Target	High	Target	High
End User	1	Power Quality	19	96	571	2,854
	2	Power Reliability	47	234	537	2,686
	3	Retail TOU Energy Charges	377	1,887	543	2,714
	4	Retail Demand Charges	142	708	459	2,297
Distribution	5	Voltage Support	9	45	24	119
	6	Defer Distribution Investment	157	783	298	1,491
	7	Distribution Losses	3	15	5	23
Transmission	8	VAR Support	4	22	17	83
	9	Transmission Congestion	38	191	368	1,838
	10	Transmission Access Charges	134	670	229	1,145
	11	Defer Transmission Investment	414	2,068	1,074	5,372
System	12	Local Capacity	350	1,750	670	3,350
	13	System Capacity	44	220	121	605
	14	Renewable Energy Integration	104	520	311	1,555
ISO Markets	15	Fast Regulation (1 hr)	1,152	1,705	1,152	1,705
	16	Regulation (1 hr)	514	761	514	761
	17	Regulation (15 min)	4,084	6,845	1,021	1,711
	18	Spinning Reserves	80	400	110	550
	19	Non-Spinning Reserves	6	30	16	80
	20	Black Start	28	140	54	270
	21	Price Arbitrage	67	335	100	500

Modeling Benefits – Approach

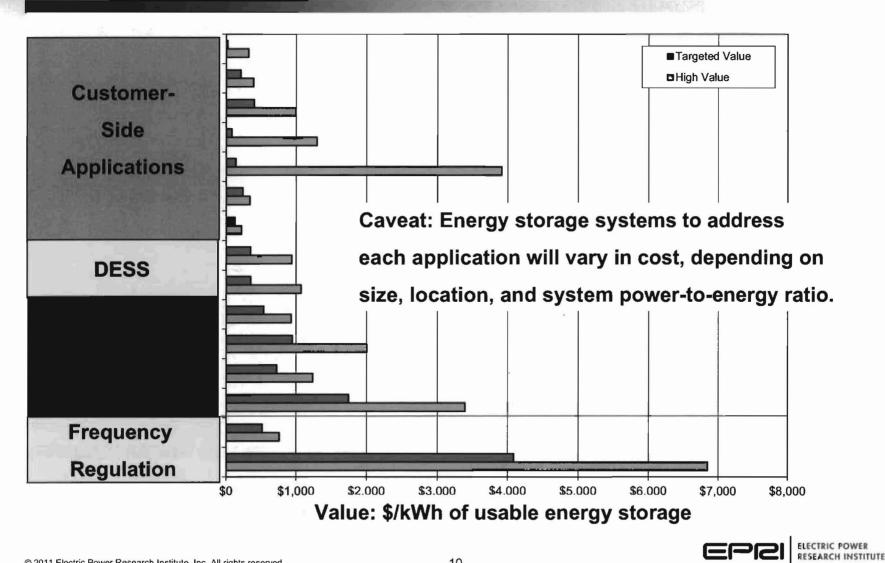
Total Resource Cost Test (TRC)¹


- "Bottom's Up"- Application-based value analysis across five (5) ISO regions
- "Stacked" benefits aggregate multiple stakeholders
- Target (50th percentile) and High (95th percentile) values defined
- Compare against total cost of ownership for energy storage system

1. TRC is Proxy for maximum allowable installed capital cost of energy storage system

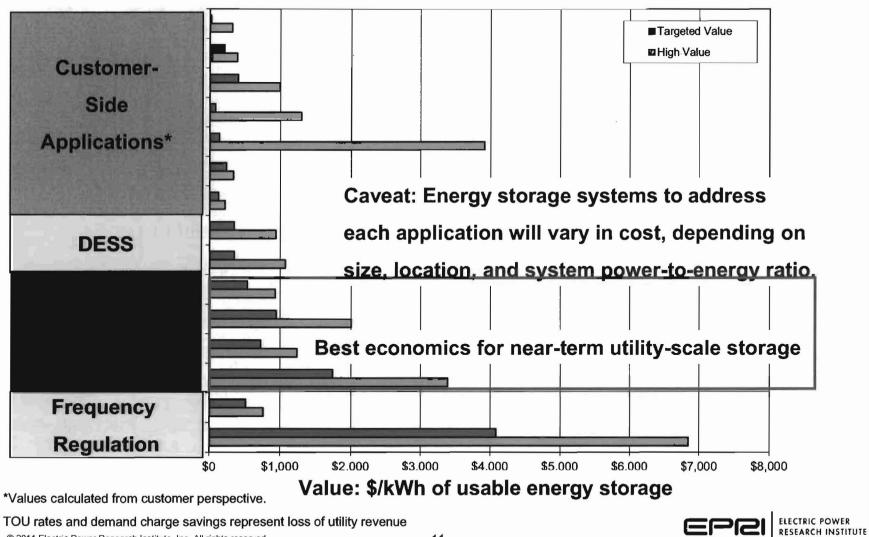
ELECTRIC POWER

Summary of Application Value Analysis Total Resource Cost Test (TRC)



© 2011 Electric Power Research Institute, Inc. All rights reserved.

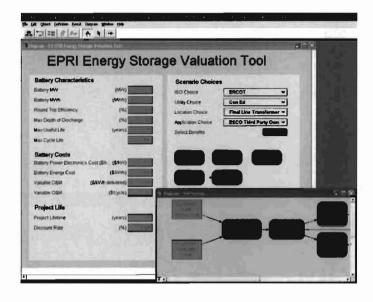
9

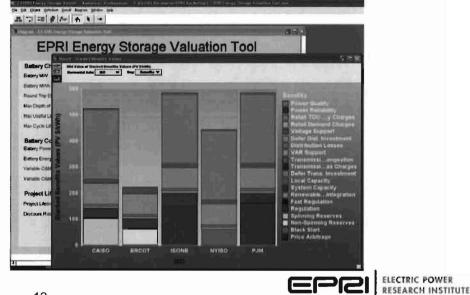

Summary of Application Value Analysis

Total Resource Cost Test (TRC)

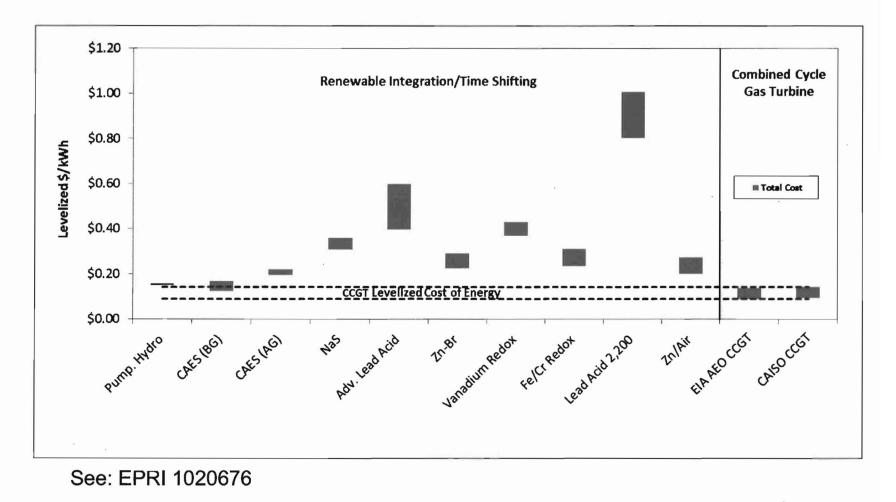
Summary of Application Value Analysis

Total Resource Cost Test (TRC)

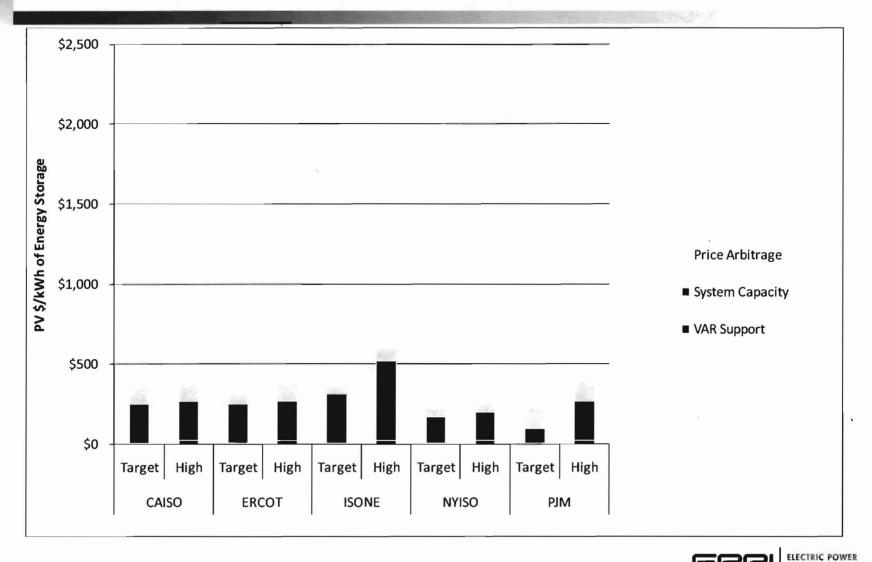

TOU rates and demand charge savings represent loss of utility revenue


Energy Storage Valuation Tool 2011 (V3.0)

Based on Analytica software platform

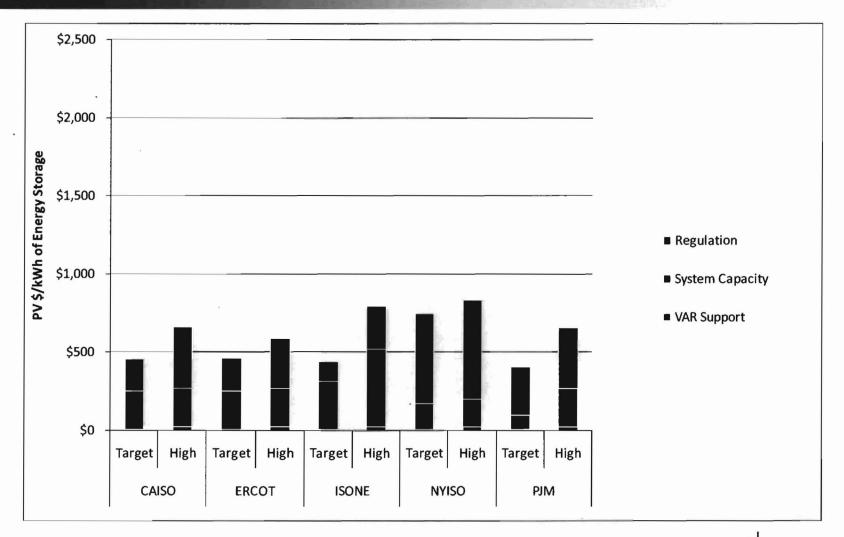

• EPRI Storage Program Goals for 2011:

- Deliver User-friendly, robust platform for future enhancements
- Enable deep understanding of 2010 energy storage value analysis and embedded assumptions
- Ability to tailor site-specific analysis on any utility system
- Cost / benefit analysis
- Transparent assumptions and analysis for future public stakeholder use


Levelized Cost of Delivered Energy for Energy Storage Technologies

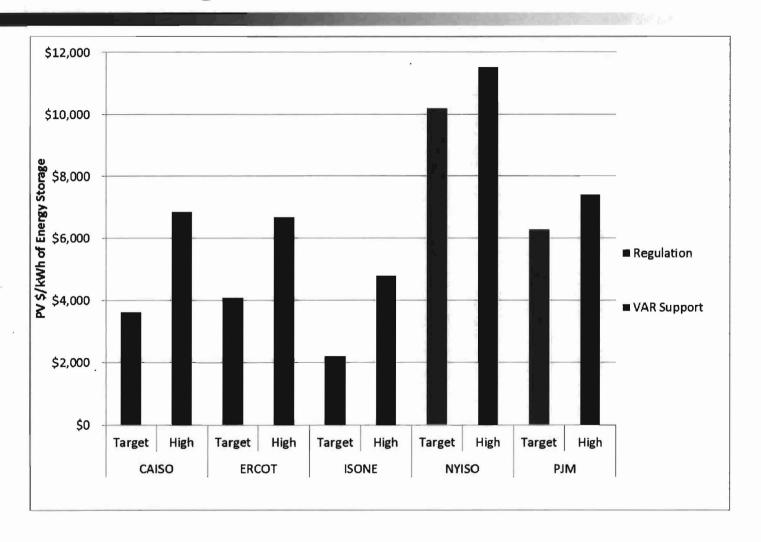
© 2011 Electric Power Research Institute, Inc. All rights reserved.

13


Application, Whole Sale Energy Services Value based on Benefit Revenue Mechanisms

© 2011 Electric Power Research Institute, Inc. All rights reserved.

RESEARCH INSTITUTE

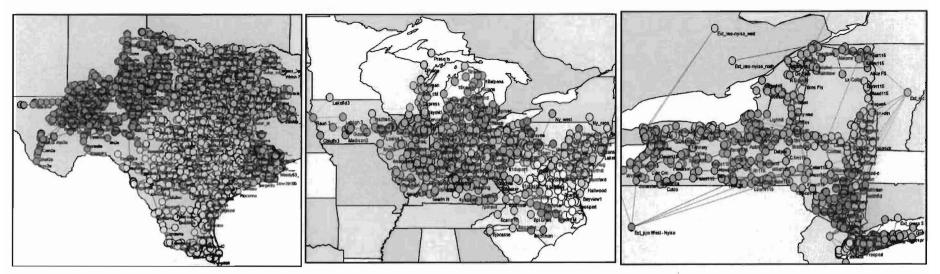

Application, Whole Sale Energy Services

© 2011 Electric Power Research Institute, Inc. All rights reserved.

ELECTRIC POWER RESEARCH INSTITUTE

Application: Wholesale Services – 15 Min. Regulation

Economic and Societal value of Storage for Wind Integration, Benefits, and Revenue Streams


Simulations of Storage Systems in ERCOT, PJM and NYISO

ERCOT

PJM & Eastern Interconnect

NYISO

RESEARCH INSTITUTE

Study Year 2015	Study Year: 2015	Study Year: 2013
CREZ 2 Scenario	Demand / Generation Mix	Demand / Generation Mix
	Transmission Topology	Transmission Topology
\$ 4.9 B in new Transmission	Commodity Prices	Commodity Prices
Wind Additions: 18 GW	Wind Additions: 12.8 GW	Wind Additions: 4.2 GW

Conduct Simulations of Storage Portfolios in CA Example: Assess R&D of Energy Storage Portfolios

Compressed Air Energy Storage	Bulk Battery System	Distributed Battery
400 MW	100 MW × 4	1 MW x 400
20-30 hrs	6 hrs	2 hrs
3950 Btu kWh*	80% ac-ac eff.	85% ac-ac eff.
0.75 Energy Ratio		
\$ 700 - \$ 1000 / kW	\$ 1200-\$1500/kW	\$ 1200-\$1500/ kW

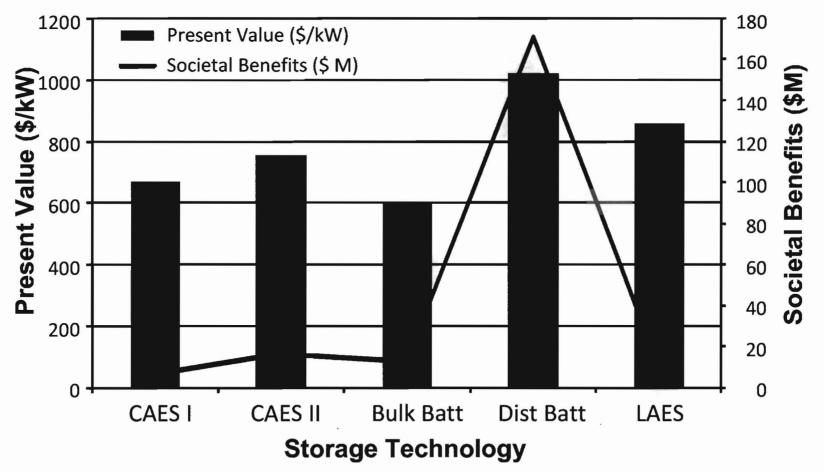
The study objective was to understand and estimate the role and impacts of various energy storage options under the assumed wind penetration and grid network configuration

* A non-fuel CAES cycle was also analyzed

Example Regional Case Study – ERCOT 2015

Results are dependent on Location, Commodity Prices, Generation Mix, Wind Penetration and Grid Topology

35% 12 CAESI(B/C) CAES II (B/C) Bulk Batt (B/C) Set Batt (B/C) LAES (B/C) -CAESI(IRR) -LAES (IRR) CAES II (IRR) Bulk Batt (IRR) Source Dist Batt (IRR) 30% Internal Rate of Return (%) 10 25% 20% 8 15% 6 10% Dist Batt CAES II LAES 5% 4 0% 0 Bulk Batt CAESI 2 5% 10% 0 1200 1400 1600 1800 600 700 900 1000 500 800 Capital Cost (\$/kW)


Internal Rate of Return & B/C Ratio vs. Capital Cost

© 2011 Electric Power Research Institute, Inc. All rights reserved

ELECTRIC POWER RESEARCH INSTITUTE

Example Regional Case Study – ERCOT 2015

Results are dependent on Location, Commodity Prices, Generation Mix, Wind Penetration and Grid Topology

Present Value & Societal Benefit

ELECTRIC POWER RESEARCH INSTITUTE

Recommendations: Conduct Detailed Statewide Modeling and Simulations to Assess Economic Value and Impact of Energy Storage Options

- Criteria for evaluating the efficacy of the storage should be based on
 - System Benefits/Costs,
 - Producers and consumers benefits,
 - Societal benefits, Congestion mitigation, GHG impact,
 - Congestion management,
 - Operational impact on other generators

Note: ERRI Plans to Conduct Limited Simulations in CA in 2011

Recommendations for CA

Top Down and Bottom Up Market Assessments Needed

Energy Storage to Support Wind Integration (Top Down)

- Conduct Integrated California Market and Grid Simulations (Supply, T&D, Demand) under RPS to better define the Role, Location, Optimal Mix of Storage Options which can contribute to CA Policy Goals;
- Use above Analytics to establish a Road Map and Application / Solution (s) for CA which are cost effective and achieve desired impacts;
- Define Functional Requirements and Technically Specify Storage Solutions / Requirements

Energy Storage to support Load Serving Entities and Communities

- LSE's near and long-term planning to investigate use of storage as part of Smart Grid; Distribution infrastructure support; end-use peak mgt.
- Distribution and Smart Grid Planning Efforts
- Analysis to assess impacts and operational value
- Analysis of benefits and costs to support business case
- Policy to accommodate cost recovery and alternative business models

Together...Shaping the Future of Electricity

