2011 IEPR Committee Workshop on Energy Storage for Renewable Integration

Panel 2: Energy Storage Applications and Economics (Costs, Benefits and Revenue)

ICE ENERGY®

INTELLIGENT STORAGE AT WORK.

DOCKET

11-IEP-1N

DATE Apr 28 2011

RECD. May 03 2011

Smart, Distributed Thermal Energy Storage

Cost-effective and commercially viable

April 28, 2011

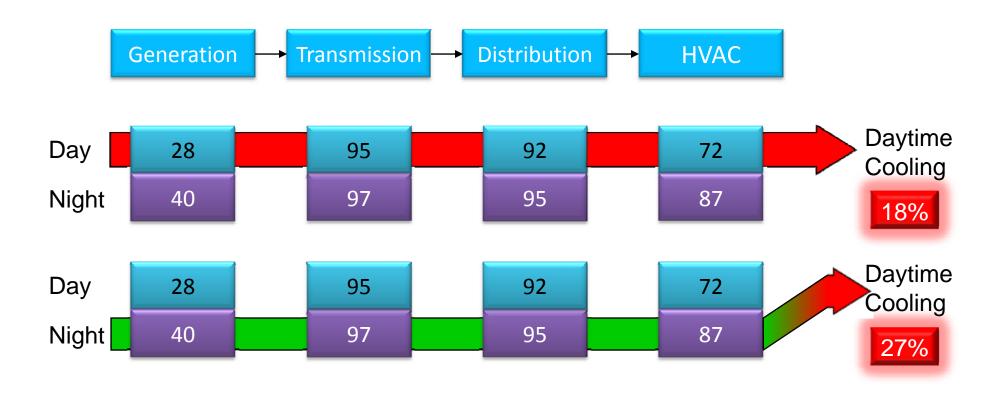
David Nemtzow dnemtzow@ice-energy.com



Smart, distributed energy storage is utility-scale

Distributed resources

Aggregated units managed as a single resource


Benefits of Distributed Energy Storage

Improves System Operations Ice Bear Energy Storage System Electric Utility Modeling Guide ☐ Improved system efficiency ☐ Improved system power factor & Prepared for: Ice Energy, Inc. voltage support ☐ Improved daily electric system load profile **Avoided Costs** □ Avoided or delayed peakers/generators ☐ Avoided or delayed T&D system expenses ☐ Avoided electric system losses October 8, 2010 **Enhances System Capacity** ☐ Increased system power transfer capability ☐ Enhanced integration of renewable resources

☐ Eliminates fault-induced delayed voltage recovery (AC stalling)

www.ice-energy.com/energy-storage-modeling-guide/

Power and Storage Efficiency and Cost Is Temperature- and Time-Sensitive

- Ice Bear thermal storage uses fuel ~50% more efficiently (18% * 1.5 = 27%)
- Ice storage avoids interconnection issues, safety concerns, and conversion losses uses water as a storage medium.

Avoided Utility Costs

Avoided Capital Facilities

Reduced Energy Costs

Reduced Costs of Market Transactions

Avoided System Losses

Reduced O&M Costs

Reduced Costs for Ancillary Services

- Future generating units
- Transmission facilities
- Distribution facilities
- Swap high cost generation for low cost generation
- Reduced emissions and costs
- Improved resource utilization and operation
- Avoided capacity purchases / demand charges
- Swap high on-peak market prices for low off-peak prices
- Reduced system losses
- Improved system power factor
- Improved voltage support
- Avoided O&M costs (avoided facilities)
- Reduced O&M costs on existing facilities
- Reduced ancillary services responsibilities / purchases
- Regulation service

Value of Avoided Capacity

Avoided Generation Fixed Costs	Avoided per-unit (\$/kW) capital cost of planned generating unit
	Avoided demand charges for power purchases
	Deferred generation expansion plan (with and without Ice Bear System)
	Fixed O&M costs of avoided/deferred generating units
Avoided T&D Fixed Costs	Average cost of historical or budgeted facilities (divided by load growth)
	Targeted T&D upgrades avoided or deferred by distributed storage
	Adjust for peak ambient conditions and losses
	Fixed O&M costs of avoided/deferred T&D facilities

Example of Equivalent Generating Capacity Calculation

	Adj. Factor	MW Rating
Ice Bear System Site Capacity at Design Conditions (95°F)		100
Ice Bear Rating at Peak Ambient Conditions (105°F)	15%	115
T&D Avoided Peak Demand Losses	12%	129
Capacity Planning Margin (Reserve Margin)	15%	148
Generator Rating at Peak Ambient Conditions (105°F vs. 60°F)	20%	178
Equivalent Generation Capacity (% of Ice Bear Capacity)	178%	

Example of Equivalent T&D Capacity Calculation

	Adj. Factor	MW Rating
Ice Bear System Site Capacity at Design Conditions (95°F)		100
Ice Bear Rating at Peak Ambient Conditions (105°F)	15%	115
Avoided Demand Losses (btwn site and avoided T&D facilities)	6%	122
Power Factor Adjustment (avoided load at 80% PF)	25%	152
T&D Design/Planning Margin	20%	183
Equivalent T&D Capacity (kVA as % of Ice Bear MW Capacity)	183%	

Other Utility Benefits

Enhanced integration of renewable resources

• Addition of more renewable resource capacity

• Augment operation / dependability of renewable resources

Improved system efficiency & reliability

• Reduced average system heat rate

• Improved system reliability

Increased potential for market sales

• Frees-up generation that can be sold during peak periods

• Surplus capacity sale

• Surplus energy sale

Natural hedge against power prices

• Swap high on-peak prices for low off-peak prices

• Swap high on-peak volatility for low off-peak volatility

Reduced costs for fuel procurement

- Higher utilization of base / intermediate resources
- Less reliance on peaking resources (higher cost fuel)
- Better utilization of fuel reservations

Considerations and Recommendations re: Cost, Benefits and Revenues of Storage

- Needs to be a widely recognized <u>cost-effectiveness methodology</u> (inc. recognizing variances among storage technol./applications)
- Challenge of optimally and cheaply <u>integrating renewables</u> has to be fully recognized
- Need appreciation of <u>Utility ownership</u> of storage to both decrease deployment costs and increase benefits
- □ Recognize that storage products often provide much more than just "traditional" storage services; the <u>value of the other services</u> such as EE, direct load control, etc. need to be factored in
- □ The multiple benefits of storage need to be <u>aggregated up</u> it touches many departments/silos including generation, transmission, distribution and demand-side