

Alan Bryce Blue Fuel Energy Corporation 100 - 9800 McDonald Park Road Sidney, BC V8L 5W5 Canada www.bluefuelenergy.com C 250.888.5951 T 250.655.0330 F 250.483.1577

10-ALT-01

2010-11 Investment Plan

Response public comments for the Alternative and

Renewable Fuel and Vehicle Technology Program

FY 2010-11

GHG EMISSIONS OF BLUE FUEL METHANOL PRODUCTION PROCESS

Prepared For:

Blue Fuel Energy Corporation 100-9800 McDonald Park Road Sidney, BC, Canada V8L 5W5

Prepared By

(S&T)² Consultants Inc.

11657 Summit Crescent Delta, BC Canada, V4E 2Z2

Date: March 18, 2010

EXECUTIVE SUMMARY

Blue Fuel Energy Corporation is developing a novel process for the production of methanol or DME (dimethyl ether). The process combines hydrogen produced via electrolysis of water with carbon dioxide from an industrial production process to produce methanol or DME.

The produced methanol or DME can be used to replace fossil fuel derived methanol or DME and therefore has the potential to result in products with a lower carbon footprint than the products currently on the market.

This work will focus on the lifecycle analysis of the production of methanol from the Blue Fuel process, as there are significant existing markets for methanol, including fuel markets in some countries.

The concept of life-cycle assessment (LCA) emerged in the late 1980's from competition among manufacturers attempting to persuade users about the superiority of one product choice over another. As more comparative studies were released with conflicting claims, it became evident that different approaches were being taken related to the key elements in the LCA analysis:

- boundary conditions (the "reach" or "extent" of the product system);
- data sources (actual vs. modeled); and
- definition of the functional unit.

LCA considers the entire life cycle stages of a product or service, including: extraction and acquisition of all relevant raw materials, energy inputs and outputs, material production and manufacturing, use or delivery, end-of-life treatment, and disposal or recovery. This systematic overview of the product "system" provides perspective on the potential differences in environmental burden between life cycle stages or individual processes.

The GHGenius lifecycle model has been developed for Natural Resources Canada over the past ten years. It is based on the 1998 version of Dr. Mark Delucchi's Lifecycle Emissions Model (LEM). GHGenius is capable of analyzing the energy balance and emissions of many contaminants associated with the production and use of traditional and alternative transportation fuels. The model has been developed using the principles established by the ISO 14000 series.

GHGenius is capable of estimating life cycle emissions of the primary greenhouse gases and the criteria pollutants from combustion sources. The specific gases that are included in the model include:

- Carbon dioxide (CO₂),
- Methane (CH₄),
- Nitrous oxide (N₂O),
- Chlorofluorocarbons (CFC-12),
- Hydro fluorocarbons (HFC-134a),
- The CO₂-equivalent of all of the contaminants above.
- Carbon monoxide (CO),
- Nitrogen oxides (NOx),
- Non-methane organic compounds (NMOCs), weighted by their ozone forming potential,
- Sulphur dioxide (SO₂),
- Total particulate matter.

The GHG emissions from the Blue Fuel methanol production process are expected to be heavily influenced by the emissions from the hydrogen production so it is important for the model to have significant flexibility in the type of electric power that is used in the process.

For this work, the existing biomass to methanol pathway in GHGenius has been modified to be able to model the Blue Fuel methanol process. This approach has been taken because the Blue Fuel process conceptually is similar to the use of biomass as a feedstock, carbon dioxide is essentially removed from the atmosphere for the production of the fuel and then is returned to the atmosphere when the fuel is combusted to release it's energy.

The process parameters used for modelling have been supplied by Blue Fuel and are based on a preliminary engineering analysis. The process has not been optimized with respect to energy efficiency nor has the process been demonstrated on a significant commercial scale before. The results can be easily updated with the model as the process moves through the engineering process.

A special GHGenius model has been developed to project the lifecycle energy balance, GHG and CAC emissions. The model is flexible and it can model a wide range of types of electric power that would be used in the process. A number of scenarios have been evaluated and it is apparent that the source of electrical energy that is used in the process strongly influences all of the results.

The overall primary energy balance of the process is strongly influenced by how the electric power is produced. The results from the four scenarios that have been evaluated are summarized in the following table.

Fuel	Methanol			
Feedstock	CO ₂ , H ₂			
	Wind	BC Grid	Alberta	Natural
Power Source			Grid	Gas
	Jo	ules Consum	ed/Joule Deli [,]	vered
Fuel dispensing	0.0039	0.0039	0.0039	0.0039
Fuel distribution, storage	0.0222	0.0222	0.0222	0.0222
Fuel production	1.8316	1.9457	4.3354	3.8827
Feedstock transmission	0.0000	0.0000	0.0000	0.0000
Feedstock recovery	0.0000	0.0000	0.0000	0.0000
Ag. chemical manufacture	0.0000	0.0000	0.0000	0.0000
Co-product credits	0.0000	0.0000	0.0000	0.0000
Total	1.8577	1.9718	4.3615	3.9088
Net Energy Ratio (J delivered/J consumed)	0.5383	0.5071	0.2293	0.2558

Table ES-1 Energy Balance Summary

The wind power scenario is closest to a secondary energy balance where the energy required to produce the energy is not include. This is the best measure of the efficiency of the process itself and in this case is influenced mostly by the efficiency of hydrogen production from electrolysis. When other sources of electricity are considered the overall energy efficiency drops considerably. The natural gas scenario is not as efficient as just producing the methanol directly from natural gas and thus it can be expected that this route would have higher GHG emissions than the direct natural gas to methanol route (and probably less attractive economics).

The GHG emissions from the process are related to the energy consumption and reflect both the quantity of energy used and the carbon intensity of the different energy sources. In the

following table, the GHG emissions of the four scenarios considered are compared. The lifecycle GHG emissions are attractive when Wind Power or the BC Grid power are used but if Alberta power or natural gas derived power were used, the emissions are higher than they are for gasoline or methanol produced from natural gas.

Fuel	Methanol			
Feedstock	CO ₂ , H ₂			
	Wind	BC Grid	Alberta Grid	Natural Gas
		g CO ₂	eq/GJ	
Fuel dispensing	40	40	40	40
Fuel distribution and storage	1,687	1,687	1,687	1,687
Fuel production	10,631	28,038	412,920	215,296
Feedstock transmission	0	0	0	0
Feedstock recovery	0	0	0	0
Land-use changes, cultivation	0	0	0	0
Fertilizer manufacture	0	0	0	0
Gas leaks and flares	0	0	0	0
CO ₂ , H ₂ S removed from NG	0	0	0	0
Emissions displaced	0	0	0	0
Total	12,359	29,766	414,648	217,024
Combustion emissions	1,911	1,911	1,911	1,911
Grand Total	14,271	31,670	416,559	218,935
% Change	-84.3	-65.1	+359	+141

 Table ES- 2
 GHG Emission Summary

The modelling results from the scenarios considered are not that different from other electricity based transportation fuels such as electric vehicles or fuel cells power by electrolytic hydrogen. In some locations in Canada, these pathways produce better GHG emissions than gasoline and in other regions; there is little or no benefit.

TABLE OF CONTENTS

EXECUTIVE SUMMARY	I
TABLE OF CONTENTS	V
LIST OF TABLES	.VII
LIST OF FIGURES	.VII
1. INTRODUCTION	1
 1.1 LIFECYCLE ANALYSIS	1 2 2 2 2 2 3 3 3 5
2. REFERENCE FUELS	7
2.1 GASOLINE 2.2 DIESEL FUEL	7 8
3. BLUE FUEL PRODUCTION PROCESS	9
 3.1 SYSTEM BOUNDARIES	. 10 . 10 . 11 . 12 . 12 . 12 . 12
4. MODELLING SCENARIOS AND RESULTS	. 13
 4.1 WIND POWER	. 13 . 13 . 14 . 15 . 16 . 17 . 17 . 19
4.2 BC POWER GRID 4.2.1 Lifecycle Energy Balance	. 20 . 20
4.2.2 GHG Emissions 4.2.2.1 M85 Vehicles 4.2.2.2 M100 HD Vehicles	. 20 . 21 . 22
4.2.3 CAC Emissions	. 23

M85 Vehicles	23
M100 HD Vehicles	
Berta Power Grid	
Lifecycle Energy Balance	
GHG Emissions	
M85 Vehicles	
M100 HD Vehicles	
CAC Emissions	
M85 Vehicles	
M100 HD Vehicles	
rural Gas Power	
Lifecycle Energy Balance	
GHG Emissions	
M85 Vehicles	
M100 HD Vehicles	
CAC Emissions	
M85 Vehicles	
M100 HD Vehicles	
SION	
	M85 Vehicles

LIST OF TABLES

TABLE 2-1	LIFECYCLE GHG EMISSIONS FOR GASOLINE	. 7
TABLE 2-2	LIFECYCLE GHG EMISSIONS FOR DIESEL	. 8
TABLE 3-1	MASS BALANCE – BLUE FUEL PROCESS	11
TABLE 3-2	NORMALIZED MASS BALANCE- BLUE FUEL PROCESS	11
TABLE 3-3	ENERGY BALANCE- BLUE FUEL PROCESS	11
TABLE 3-4	NORMALIZED ENERGY BALANCE- BLUE FUEL PROCESS	12
TABLE 4-1	ENERGY BALANCE - WIND SCENARIO	14
TABLE 4-2	GHG EMISSIONS - WIND SCENARIO	15
TABLE 4-3	LIFECYCLE GHG EMISSIONS LIGHT DUTY VEHICLES – WIND ENERGY	16
TABLE 4-4	LIFECYCLE GHG EMISSIONS HEAVY-DUTY VEHICLES – WIND ENERGY.	17
TABLE 4-5	LIFECYCLE CAC EMISSIONS LIGHT DUTY VEHICLES – WIND ENERGY	18
TABLE 4-6	LIFECYCLE CAC EMISSIONS HEAVY-DUTY VEHICLES - WIND ENERGY	19
TABLE 4-7		20
TABLE 4-8		21
TABLE 4-9	LIFECYCLE GHG EMISSIONS LIGHT DUTY VEHICLES – BC GRID	22
TABLE 4-10		23
TABLE 4-11		24
		20
TADLE 4-13		20
		21
		20
		20
TABLE 4-17 TABLE 1_18	LIFECYCLE CAC EMISSIONS LIGHT DUTT VEHICLES - ALBERTA GRID	30
TABLE $4-10$	ENERGY BALANCE - NATURAL GAS POWER SCENARIO	32
TABLE 4-10	GHG EMISSIONS - NATURAL GAS POWER SCENARIO	3.3
TABLE 4-20	LIEECYCLE GHG EMISSIONS LIGHT DUTY VEHICLES- NATURAL GAS	
	POWER	34
TABLE 4-22	LIFECYCLE GHG EMISSIONS HEAVY-DUTY VEHICLES- NATURAL GAS	
	POWER	35
TABLE 4-23	LIFECYCLE CAC EMISSIONS LIGHT DUTY VEHICLES- NATURAL GAS	_
	POWER	36
TABLE 4-24	LIFECYCLE CAC EMISSIONS HEAVY-DUTY VEHICLES- NATURAL GAS	
	POWER	37
TABLE 5-1	ENERGY BALANCE SUMMARY	39
TABLE 5-2	GHG EMISSION SUMMARY	40

LIST OF FIGURES

FIGURE 1-1	LIFECYCLE STAGES	5
FIGURE 3-1	BLUE FUEL PRODUCTION PROCESS	9

1. INTRODUCTION

Blue Fuel Energy Corporation is developing a novel process for the production of methanol or DME (dimethyl ether). The process combines hydrogen produced via electrolysis of water with carbon dioxide from an industrial production process to produce methanol or DME.

The produced methanol or DME can be used to replace fossil fuel derived methanol or DME and therefore has the potential to result in products with a lower carbon footprint than the products currently on the market.

This work will focus on the lifecycle analysis of the production of methanol from the Blue Fuel process, as there are significant existing markets for methanol, including fuel markets in some countries.

1.1 LIFECYCLE ANALYSIS

The concept of life-cycle assessment emerged in the late 1980's from competition among manufacturers attempting to persuade users about the superiority of one product choice over another. As more comparative studies were released with conflicting claims, it became evident that different approaches were being taken related to the key elements in the LCA analysis:

- boundary conditions (the "reach" or "extent" of the product system);
- data sources (actual vs. modeled); and
- definition of the functional unit.

In order to address these issues and to standardize LCA methodologies and streamline the international marketplace, the International Standards Organization (ISO) has developed a series of international LCA standards and technical reports under its ISO 14000 Environmental Management series. In 1997-2000, ISO developed a set of four standards that established the principles and framework for LCA (ISO 14040:1997) and the requirements for the different phases of LCA (ISO 14041-14043).

By 2006, these LCA standards were consolidated and replaced by two current standards: one for LCA principles (ISO 14040:2006); and one for LCA requirements and guidelines (ISO 14044:2006).

The ISO 14040:2006 standard describes the principles and framework for life cycle assessment including: definition of the goal and scope of the LCA, the life cycle inventory analysis (LCI) phase, the life cycle impact assessment (LCIA) phase, the life cycle interpretation phase, reporting and critical review of the LCA, limitations of the LCA, the relationship between the LCA phases, and conditions for use of value choices and optional elements. ISO 14040:2006 covers life cycle assessment (LCA) studies and life cycle inventory (LCI) studies. It does not describe the LCA technique in detail, nor does it specify methodologies for the individual phases of the LCA. The intended application of LCA or LCI results is considered during definition of the goal and scope, but the application itself is outside the scope of this International Standard.

It is useful to consider seven basic principles in the design and development of life cycle assessments as a measure of environmental performance. The seven principles outlined below are the basis of ISO Standard 14040:2006:

- Life Cycle Perspective (the entire stages of a product or service);
- Environmental Focus (addresses environmental aspects);
- Relative Approach and Functional Unit (analysis is relative to a functional unit);

- Iterative Approach (phased approach with continuous improvement)
- Transparency (clarity is key to properly interpret results)
- Comprehensiveness (considers all attributes and aspects)
- Priority of Scientific Approach (preference for scientific-based decisions)

1.1.1 Life Cycle Perspective

LCA considers the entire life cycle stages of a product or service, including: extraction and acquisition of all relevant raw materials, energy inputs and outputs, material production and manufacturing, use or delivery, end-of-life treatment, and disposal or recovery. This systematic overview of the product "system" provides perspective on the potential differences in environmental burden between life cycle stages or individual processes.

1.1.2 Environmental Focus

The primary focus of a LCA is on the environmental aspects and impacts of a product system. Environmental aspects are elements of an activity, product, or service that cause or can cause an environmental impact through interaction with the environment. Some examples of environmental aspects are: air emissions, water consumption, releases to water, land contamination, and use of natural resources. Economic and social aspects are typically outside the scope of an LCA, although it is possible to model some of these elements. Other tools may be combined with LCA for more extensive analysis.

1.1.3 Relative Approach and Functional Unit

LCA is a relative analytical approach, which is structured on the basis of a functional unit of product or service. The functional unit defines what is being studied and the life cycle inventory (LCI) is developed relative to one functional unit. An example of a functional unit is a light-duty gasoline vehicle driving an average distance (with other details of time, geography, trip characteristics, and potential fuels added). All subsequent analyses are then developed relative to that functional unit since all inputs and outputs in the LCI and consequently the LCIA profile are related to the functional unit.

An LCA does not attempt to develop an absolute inventory of environmental aspects (e.g. air emissions inventory) integrated over an organizational unit, such as a nation, region, sector, or technology group.

1.1.4 Iterative Approach

LCA is an iterative analytical approach. The individual phases of an LCA (Goal and Scope Definition; Inventory Analysis; Impact Assessment; and Interpretation) are all influenced by, and use the results from, the other phases. The iterative approach within and between phases contributes to a more comprehensive analysis and higher quality results.

1.1.5 Transparency

The value of an LCA depends on the degree of transparency provided in the analysis (for example: the system description, data sources, assumptions and key decisions). The principle of transparency allows users to understand the inherent uncertainty is the analysis and properly interpret the results.

1.1.6 Comprehensiveness

A well-designed LCA considers all stages of the product system (the "reach") and all attributes or aspects of the natural environment, human health, and resources. Tradeoffs between alternative product system stages and between environmental aspects in different media can be identified and assessed.

1.1.7 Priority of Scientific Approach

It is preferable to make decisions from an LCA analysis based on technical or science reasoning, rather than from social or economic sciences. Where scientific approaches cannot be established, consensual international agreement (e.g. international conventions) can be used. The power of the technical or scientific approach lies in the proper attribution of facts to sources and the potential reproducibility of these facts under scientific conditions. While the scientific approach is typically more objective than economic or social values, it does not preclude the use economic or social values for informing LCA decisions.

1.2 GHGENIUS

The GHGenius lifecycle model has been developed for Natural Resources Canada over the past ten years. It is based on the 1998 version of Dr. Mark Delucchi's Lifecycle Emissions Model (LEM). GHGenius is capable of analyzing the energy balance and emissions of many contaminants associated with the production and use of traditional and alternative transportation fuels. The model has been developed using the principles established by the ISO 14000 series.

GHGenius is capable of estimating life cycle emissions of the primary greenhouse gases and the criteria pollutants from combustion sources. The specific gases that are included in the model include:

- Carbon dioxide (CO₂),
- Methane (CH₄),
- Nitrous oxide (N₂O),
- Chlorofluorocarbons (CFC-12),
- Hydro fluorocarbons (HFC-134a),
- The CO₂-equivalent of all of the contaminants above.
- Carbon monoxide (CO),
- Nitrogen oxides (NOx),
- Non-methane organic compounds (NMOCs), weighted by their ozone forming potential,
- Sulphur dioxide (SO₂),
- Total particulate matter.

The model is capable of analyzing the emissions from conventional and alternative fuelled internal combustion engines or fuel cells for light duty vehicles, for class 3-7 medium-duty trucks, for class 8 heavy-duty trucks, for urban buses and for a combination of buses and trucks, and for light duty battery powered electric vehicles. There are over 200 vehicle and fuel combinations possible with the model.

GHGenius can predict emissions for past, present and future years through to 2050 using historical data or correlations for changes in energy and process parameters with time that are stored in the model. The fuel cycle segments considered in the model are as follows:

• Vehicle Operation

Emissions associated with the use of the fuel in the vehicle. Includes all greenhouse gases.

• Fuel Dispensing at the Retail Level

Emissions associated with the transfer of the fuel at a service station from storage into the vehicles. Includes electricity for pumping, fugitive emissions and spills.

• Fuel Storage and Distribution at all Stages

Emissions associated with storage and handling of fuel products at terminals, bulk plants and service stations. Includes storage emissions, electricity for pumping, space heating and lighting.

• Fuel Production (as in production from raw materials)

Direct and indirect emissions associated with conversion of the feedstock into a saleable fuel product. Includes process emissions, combustion emissions for process heat/steam, electricity generation, fugitive emissions and emissions from the life cycle of chemicals used for fuel production cycles.

• Feedstock Transport

Direct and indirect emissions from transport of feedstock, including pumping, compression, leaks, fugitive emissions, and transportation from point of origin to the fuel refining plant. Import/export, transport distances and the modes of transport are considered. Includes energy and emissions associated with the transportation infrastructure construction and maintenance (trucks, trains, ships, pipelines, etc.)

• Feedstock Production and Recovery

Direct and indirect emissions from recovery and processing of the raw feedstock, including fugitive emissions from storage, handling, upstream processing prior to transmission, and mining.

• Fertilizer Manufacture

Direct and indirect life cycle emissions from fertilizers, and pesticides used for feedstock production, including raw material recovery, transport and manufacturing of chemicals. This is not included if there is no fertilizer associated with the fuel pathway.

- Land use changes and cultivation associated with biomass derived fuels Emissions associated with the change in the land use in cultivation of crops, including N₂O from application of fertilizer, changes in soil carbon and biomass, methane emissions from soil and energy used for land cultivation.
- Carbon in Fuel from Air Carbon dioxide emissions credit arising from use of a renewable carbon source that obtains carbon from the air.
- Leaks and flaring of greenhouse gases associated with production of oil and gas Fugitive hydrocarbon emissions and flaring emissions associated with oil and gas production.
- Emissions displaced by co-products of alternative fuels

Emissions displaced by co-products of various pathways. System expansion is used to determine displacement ratios for co-products from biomass pathways.

- Vehicle assembly and transport Emissions associated with the manufacture and transport of the vehicle to
 - Emissions associated with the manufacture and transport of the vehicle to the point of sale, amortized over the life of the vehicle.
- Materials used in the vehicles

Emissions from the manufacture of the materials used to manufacture the vehicle, amortized over the life of the vehicle. Includes lube oil production and losses from air conditioning systems.

The main lifecycle stages for crude oil based gasoline or diesel fuel are shown in the following figure.

Figure 1-1 Lifecycle Stages

1.3 SCOPE OF WORK

The GHG emissions from the Blue Fuel methanol production process are expected to be heavily influenced by the emissions from the hydrogen production so it is important for the model to have significant flexibility in the type of electric power that is used in the process.

For this work, the existing biomass to methanol pathway in GHGenius has been modified to be able to model the Blue Fuel methanol process. This approach has been taken because the Blue Fuel process conceptually is similar to the use of biomass as a feedstock, carbon dioxide is essentially removed from the atmosphere for the production of the fuel and then is returned to the atmosphere when the fuel is combusted to release it's energy.

The converted model (GHGenius 3.16c) has been set up to include all of the Blue Fuel specific process and location data. The model has all of the flexibility and tools in the standard GHGenius model. In addition, it has the flexibility of being able to specify the

electric power mix that is used to drive the plant. This special model is not being shared with the general public.

The process parameters used for modelling have been supplied by Blue Fuel and are based on a preliminary engineering analysis. The process has not been optimized with respect to energy efficiency nor has the process been demonstrated on a significant commercial scale before. The results can be easily updated with the model as the process moves through the engineering process.

This report describes the modelled process and the results for a number of scenarios of power mix.

2. REFERENCE FUELS

An important principle in lifecycle analysis is that of using a relative approach, the emissions for a product or a process are presented relative to the emissions of a comparable product or process. Methanol, when used as a fuel is most often used to supplement or replace gasoline in spark ignited engines. Gasoline production and use is therefore the most appropriate reference fuel for comparing the Blue Fuel methanol to. Methanol has also been used in heavy-duty engines on a demonstration basis so a diesel fuel reference case has also been considered for some of the analyses.

If Blue Fuel were to produce DME then the most appropriate reference fuel would be diesel fuel, as DME has excellent combustion properties when use in a compression ignition engine.

2.1 GASOLINE

The GHG emissions for gasoline will depend on a number of factors including, the crude oil slate being refined, the refinery configuration, and the location, which influences the emissions associated with the distribution of the products that are produced. The results for three gasoline scenarios in the year 2010 are shown in the following table. All of the results are derived from the default values in GHGenius 3.16c. These cases were described in more detail in the recent report on the development of "Provincial Models" ((S&T)² Consultants, 2009).

	Canada Average	Western	BC Average
		Canadian	
		Average	
		g CO ₂ eq/GJ	
Fuel dispensing	109	198	20
Fuel distribution and storage	465	639	405
Fuel production	12,349	11,780	11,622
Feedstock transmission	1,030	228	81
Feedstock recovery	8,414	12,368	11,990
Land-use changes, cultivation	205	427	427
Fertilizer manufacture	0	0	0
Gas leaks and flares	1,848	2,582	2,582
CO ₂ , H ₂ S removed from NG	0	0	0
Emissions displaced	-122	-222	-198
Total	24,298	28,001	26,929
Combustion	63,778	63,778	63,778
Grand Total	88,076	91,779	90,707

Table 2-1Lifecycle GHG Emissions for Gasoline

The emissions form gasoline production in western Canada are higher than the national average because of the significant quantities of bitumen derived crude oil refined in this region.

The emissions for the gasoline system could increase or decrease in the future. Increasing quantities of bitumen derived gasoline will have a tendency to increase emissions, whereas efficiency improvements in refining and oil production systems could decrease emissions.

Given that over 70% of the emissions of gasoline are from the vehicle, the potential for large changes in lifecycle GHG emissions are relatively small.

2.2 DIESEL FUEL

The results for the three diesel fuel scenarios are shown in the following table. All of the results are derived from the default values in GHGenius. These cases were described in more detail in the recent report on the development of "Provincial Models" $((S\&T)^2 Consultants, 2009)$.

	Canada Average	Western Canadian Average	BC Average
		q CO ₂ eg/GJ	
Fuel dispensing	112	203	20
Fuel distribution and storage	477	653	414
Fuel production	8,436	8,063	7,954
Feedstock transmission	1,049	233	83
Feedstock recovery	8,717	12,639	12,253
Land-use changes, cultivation	212	427	427
Fertilizer manufacture	0	0	0
Gas leaks and flares	1,805	2,577	2,577
CO ₂ , H ₂ S removed from NG	0	0	0
Emissions displaced	-127	-222	-198
Total	20,681	24,574	23,531
Combustion	70,276	70,276	70,276
Grand Total	90,957	94,850	93,807

Table 2-2	Lifecycle GHG Emissions for Diesel

On an energy basis, the GHG emissions from diesel fuel are slightly higher than they are for gasoline. However, when the higher efficiency of the diesel engine is considered then the GHG emissions on a per distance travelled or per unit of work delivered are lower than the gasoline emissions.

3. BLUE FUEL PRODUCTION PROCESS

Blue Fuel Energy has developed a process and project for producing methanol from electrical energy, water, and recycled CO_2 from the Spectra Energy operated Pine River gas plant in the Peace Region of northern BC. Hydrogen is to be produced through the electrolysis of water and reacted with CO_2 to produce methanol, a product that is easily shippable through existing transportation methods.

A simplified process equation is as follows:

Water + Electricity → Hydrogen + Oxygen

Hydrogen + $CO_2 \rightarrow$ Methanol + Water

A simplified process schematic is shown in the following figure.

Figure 3-1 Blue Fuel Production Process

Benefits of producing methanol from green power near the Pine River gas plant include:

• Production of a commercial product in close proximity to a large existing hydroelectric dam and potential wind resource. The wind resource estimates in the Peace region far exceed local energy requirements and the distance from suitably sized markets make electrical transmission expensive; however Blue Fuel discussions with BC Hydro indicate that the hydroelectric dam would be able to

absorb power fluctuations from a large wind farm and provide a stable power supply to a future methanol or DME plant.

• Unlike other gas plants located further to the east, the Pine River plant is relatively far from any substantial oil fields that might provide attractive down well sequestration opportunities to enhance oil recovery. Blue Fuel provides an opportunity to actively recycle these "stranded" CO_2 emissions. Recent environmental legislation is providing financial incentives for the reduction of CO_2 emissions, which would be realized by the Pine River gas plant.

• Enhanced sulphur recovery, which would be required to purify the CO_2 prior to its use in the methanol plant would allow a capacity increase at the Pine River plant, which is presently limited to a sulphur production rate of 2000 TPD without significant upgrades to improve the overall sulphur capture efficiency.

• Close proximity to a rail spur.

3.1 SYSTEM BOUNDARIES

The system that is being analyzed starts with the collection and purification of waste stack gases from the gas plant and ends with the combustion of the methanol as a fuel. All of the process inputs are considered on a full lifecycle basis. The energy and emissions embedded in the transportation infrastructure, rail cars, trucks, pipelines, etc., is included in the analysis but the energy and emissions embedded in the fuel production plants is not included. Previous work has shown that these emissions are quite small ((S&T)² Consultants Inc., 2006).

3.2 MASS BALANCE

NORAM has prepared independent mass and energy balances based upon a target DME production rate of 300,000 tonnes per year (TPY), chosen by Blue Fuel Energy. The production of methanol instead of DME requires only minor modifications to the mass and energy balance. The plant would produce 417,500 tonnes per year of methanol based on the mass balance developed by NORAM. NORAM assumed that:

• Sufficient water resources are available. Due to electrical inefficiencies, the electrolysis process will require a substantial cooling water supply. The methanol production process from CO₂ and H₂ will also require cooling water and steam supplies.

• Constant electrical supply is available. Some of the unit operations involved in methanol production would be negatively affected by large swings in process duty, which would impact the overall system efficiency. In a purely wind-powered methanol production facility, significant hydrogen and CO₂ storage may be required to stabilize the process.

• Product shipment by rail once per week. It has been assumed that rail shipment would occur once per week; adequate storage has been provided for 10-days of production.

• 8,000 hours/year plant operation. This operating time has been used to provide plant downtime for equipment maintenance. This is believed to be quite conservative given the nature of the equipment and the number of electrolyzers, which reduces the amount of capacity that is likely to be offline at any given time.

There are five main parts to the process:

- 1. CO₂ purification from Pine River gas plant.
- 2. Hydrogen production through electrolysis.
- 3. Gas compression and storage (hydrogen, CO₂).
- 4. Methanol production from H_2 and CO_2 feeds.
- 5. Water management & utilities (steam, cooling water, wastewater treatment).

The overall mass balance for the process is summarized in the following table; additional water is required for the utilities and produced as wastewater in the process. As these don't have a direct impact on the energy balance or GHG emissions, they are omitted from the table for clarity.

Table 3-1Mass Balance – Blue Fuel Process

	Input	Output
Water, tonnes/hr	88.0	
CO ₂ , tonnes/hr	71.8	
Methanol, tonnes/hr		52.2

Normalized data is required for GHGenius and that is summarized in the following table.

Table 3-2 Normalized Mass Balance– Blue Fuel Process

	Input	Output
Water, kg	1.33	
CO ₂ , kg	1.09	
Methanol, litres		1.0

3.3 ENERGY BALANCE

Electrical energy is required for the production of hydrogen and for various utilities, and thermal energy is required for process utilities. Some of the utility load can be satisfied from thermal energy recycled from the process but some additional energy will be required to balance the system. It is assumed that this additional thermal energy is supplied by natural gas.

Table 3-3Energy Balance- Blue Fuel Process

	Input	Output
Electricity, MW	550	
Natural gas, GJ/hr	165	
Methanol, tonnes/hr		52.2

The normalized energy balance information is summarized in the following table. More than 90% of the process energy requirements are supplied by the electricity. The data in the following table has been confirmed by NORAM.

	Input	Output
Electricity, kWh	8.32	
Electricity, kj	29,952	
Natural gas, litres	66.0	
Natural gas, kj	2,498	
Methanol, litres		1.0

 Table 3-4
 Normalized Energy Balance– Blue Fuel Process

This information is entered on the Input Sheet, column N, rows 229 to 234 in GHGenius. Different system performance can be modelled by changing the power and natural gas use on this input sheet. The modified pathway for the Blue Fuel process has been identified in the model will the light green background.

3.4 PROCESS EMISSIONS

It has been assumed that the process emissions are similar to those from a natural gas to methanol production system. The process emissions include small amounts of methane and N₂O and result in a small amount of process related GHG emissions. There is significant uncertainty regarding these emissions and the assumptions may be conservative.

3.5 **PRODUCT DISTRIBUTION**

For the purposes of this lifecycle assessment, it will be assumed that the methanol is shipped by rail from Ft. St. John to Vancouver, a distance of 1,200 km. In addition, it is assumed that the product is moved by truck a distance of 80 km from the fuel distribution terminal to the retail service station.

3.6 PRODUCT USE

In GHGenius methanol can be used in blends of gasoline, as a neat fuel in diesel engines, and as a fuel for hydrogen production. Low level and high-level methanol blends were used in Canada in the 1980's (low level blends) and 1990's (M85) but the fuels have not been used commercially in Canada since about 1998. Methanol use as a fuel in diesel engines was demonstrated in transit buses and in class 8 trucks in the 1980's but was never used commercially in Canada.

The GHG emission performance of M85 in flex fuel vehicles and M100 in diesel engines is evaluated later in the report. The exhaust emission data in the model is based on the relative performance in the earlier demonstration work. The energy efficiency of the methanol fuels is also based on the relative performance of the earlier demonstration work, but the model projects the current relative performance based on the performance trends established in the 1990's. The exhaust emissions and energy efficiency results can be strongly influenced by the engine design parameters and the overall tuning philosophy of the vehicle manufacturer, but since there are no current commercial vehicles offered for M85 or M100 the only reasonable approach is to use the historical data.

4. MODELLING SCENARIOS AND RESULTS

The energy requirement data showed that the electrical energy inputs dominate the overall energy requirements. The overall system performance, both in terms of lifecycle energy balance, GHG emissions, and criteria air contaminant (CAC) emissions will therefore be dominated by how the electricity is produced. The special version of GHGenius that has been developed for this work has a large degree of flexibility in assessing different sources of electricity for use in the production process. Users can choose the power mix based on the average regional power mixes, for example, BC or Alberta, or the user can specify a specific type of electric power generation, such as natural gas fired turbines. The model will then calculate the primary energy balance, the GHG emissions performance, and the CAC emissions for the scenario.

The results for a number of scenarios are presented below.

4.1 WIND POWER

The initial Blue Fuel plant is expected to be located in the Peace River region of British Columbia. This is due to the availability of relatively concentrated CO_2 exhaust streams from gas plants in the region and the large wind potential that exists in the region. Thus, the initial concept is to utilize electric power that is generated by wind turbines. Due to the intermittent nature of wind power, it is expected that the project would be tied into the provincial grid so that the large hydroelectric reservoir capacity could be used to regulate the power supply to the plant.

In GHGenius, the GHG emissions for electric power production do include SF₆ emissions from power switch gear and a small amount of N₂O emissions related to corona discharge from power transmission, therefore there is no GHG emission free electric power in the model but wind power is very close with a carbon intensity of 1,471 g CO₂eq/GJ of electric power delivered.

4.1.1 Lifecycle Energy Balance

The model also assumes that wind power is 100% energy efficient. A similar assumption is made for hydro electricity. This is of course not true but it is not possible to assign an energy value to the wind or water that is not transformed into mechanical energy by the turbines. The overall lifecycle primary energy balance for the production of methanol from the Blue Fuel system is compared in the following table to the energy balance for methanol produced by natural gas and to gasoline produced from crude oil. The natural gas methanol is assumed to be produced offshore and transported to the market by ocean tanker.

	Gasoline		
Fuel	(Low S)	Methanol	Methanol
Feedstock	Crude oil	NG	CO ₂ , H ₂
	Joules C	onsumed/Joule I	Delivered
Fuel dispensing	0.0019	0.0039	0.0039
Fuel distribution, storage	0.0086	0.0419	0.0222
Fuel production	0.1619	0.3902	1.8316
Feedstock transmission	0.0025	0.0037	0.0000
Feedstock recovery	0.1797	0.0763	0.0000
Ag. chemical manufacture	0.0000	0.0000	0.0000
Co-product credits	-0.0030	0.0000	0.0000
Total	0.3517	0.5161	1.8577
Net Energy Ratio (J delivered/J consumed)	2.8436	1.9375	0.5383

Table 4-1 Energy Balance – Wind Scenario

There are a number of ways of presenting energy balance information and there are usually issues with most of them, particularly when the production systems can be very different. For gasoline and methanol produced from natural gas the energy balance information in the previous table does not include the energy imbedded in the feedstock, it only counts the additional energy put into the system to convert the feedstock energy into a more useful form of energy. For the Blue Fuel methanol process there is no energy embedded in the feedstocks (Water and CO_2) and thus the comparison is not made in the same basis. To compare the processes on the same basis a 1.0 would have to be added to the fuel production values for gasoline and NG methanol. However, even if this is done the energy efficiency of the Blue Fuel process is not as high as the production of methanol from natural gas or the production of gasoline from crude oil.

4.1.2 GHG Emissions

The lifecycle GHG emissions from the three fuels for this scenario are shown in the following table on the basis of the emissions to produce the fuel plus the emissions that would arise from the combustion of the fuels assuming the same combustion efficiency per unit of energy.

	Gasoline		
Fuel	(Low S)	Methanol	Methanol
Feedstock	Crude oil	NG	CO ₂ , H ₂
		g CO ₂ eq/GJ	
Fuel dispensing	20	40	40
Fuel distribution and storage	405	3,299	1,687
Fuel production	11,622	7,768	10,631
Feedstock transmission	81	209	0
Feedstock recovery	11,990	4,144	0
Land-use changes, cultivation	427	0	0
Fertilizer manufacture	0	0	0
Gas leaks and flares	2,582	854	0
CO ₂ , H ₂ S removed from NG	0	868	0
Emissions displaced	-198	0	0
Total	26,929	17,182	12,359
Combustion emissions	63,778	59,014	1,911
Grand Total	90,707	76,196	14,271
% Change		-16.0	-84.3

Table 4-2 GHG Emissions – Wind Scenario

Both of the methanol fuels results in lower overall GHG emissions than gasoline. While the GHG emissions for the wind energy system are only slightly lower than the NG methanol when only the production emissions are considered, the GHG emission profile of the Blue Fuel process is significantly better than the traditional natural gas based methanol when the combustion emissions are factored in and the benefit of removing the CO_2 , that would have otherwise been emitted to the air in the Blue Fuel process, is considered. Most of the GHG emissions from the Blue Fuel process, when wind power is used for the electric power, are related to the natural gas used in the process. There may be opportunities for increased waste heat utilization for the process (and thus lower natural gas consumption) when final engineering and design is completed.

4.1.2.1 M85 Vehicles

The GHG emissions can also be presented based on distance travelled as the functional unit rather than just using a unit of energy. This approach has the advantage in that that includes any differences in the combustion or conversion efficiency of the fuel in the vehicle. In GHGenius, E85 and M85 vehicles are slightly more efficient that gasoline powered vehicles. M85 denotes 85% methanol by volume but on an energy basis, 25% of the energy (and thus the emissions) is provided by the gasoline. In the following table the lifecycle emission results are presented for gasoline, M85 from natural gas, and M85 from the Blue Fuel process.

General fuel	Gasoline	Methanol	Methanol
Fuel spec	RFG30ppm S	M85	Blue Fuel M85
Production process energy	Crude oil	Natural Gas	Wind Energy
		g CO₂eq/km	
Vehicle operation	211.4	190.0	190.0
C in end-use fuel from CO ₂ in air	0.0	0.0	-134.6
Net Vehicle Operation	211.4	190.0	55.5
Fuel dispensing	0.1	0.1	0.1
Fuel storage and distribution	1.3	8.1	4.3
Fuel production	38.5	27.5	34.2
Feedstock transport	0.3	0.6	0.1
Feedstock and fertilizer production	41.2	19.6	9.6
Land use changes and cultivation	0.0	0.0	0.3
CH ₄ and CO ₂ leaks and flares	8.6	6.1	2.1
Emissions displaced by co-products	-0.7	-0.2	-0.2
Sub total (fuel cycle)	300.7	251.9	106.0
% changes (fuel cycle)	0.0	-16.2	-64.9
Vehicle assembly and transport	4.5	4.5	4.5
Materials in vehicles	27.5	27.7	27.7
Grand total	332.7	284.1	138.2
% changes to RFG (grand total)	0.0	-14.6	-58.5

 Table 4-3
 Lifecycle GHG Emissions Light Duty Vehicles – Wind Energy

The use of M85 blended with methanol from the Blue Fuel process results in significant GHG emission reductions when the process uses wind electricity as the source of energy. The reduction is about four times larger than the reduction provided by methanol produced from natural gas.

4.1.2.2 M100 HD Vehicles

The results for the use of methanol in heavy-duty engines are shown in the following table. Methanol is not an ideal fuel for use in compression ignition engines as it has a high-octane value but a low Cetane value. The engines were modified to utilize a glow plug to enhance ignition and unlike M85 in spark ignited engines, where an increase in combustion efficiency is found, the M100 engines have a lower efficiency than engines operated on diesel fuel.

The results from GHGenius are shown in the following table.

General fuel	Diesel Fuel	Methanol	Methanol
			Blue Fuel
Fuel spec	15 PPM S	M100	M100
Production process energy	Crude oil	Natural Gas	Wind Energy
		g CO₂eq/km	
Vehicle operation	1,078.3	996.9	996.9
C in end-use fuel from CO ₂ in air	0.0	0.0	-970.2
Net Vehicle Operation	1,078.3	996.9	26.7
Fuel dispensing	0.3	0.6	0.6
Fuel storage and distribution	6.4	53.0	27.1
Fuel production	122.0	124.7	170.7
Feedstock transport	1.3	3.4	0.0
Feedstock and fertilizer production	194.6	66.5	0.0
Land use changes and cultivation	0.0	0.0	0.0
CH ₄ and CO ₂ leaks and flares	39.5	27.6	0.0
Emissions displaced by co-products	-3.0	0.0	0.0
Sub total (fuel cycle)	1,439.4	1,272.8	225.2
% changes (fuel cycle)		-11.6	-84.4
Vehicle assembly and transport	8.6	10.4	10.4
Materials in vehicles	30.7	35.8	35.8
Grand total	1,478.6	1,319.0	271.4
% changes to Diesel Fuel (grand total)		-10.8	-81.6

 Table 4-4
 Lifecycle GHG Emissions Heavy-Duty Vehicles – Wind Energy

The GHG emission reduction for this application of methanol is small when the methanol is produced from natural gas, but is quite significant when using methanol from a wind energy driven Blue Fuel plant.

4.1.3 CAC Emissions

In addition to calculating the GHG emissions from the production and use of various fuels, GHGenius can also report the criteria air contaminant (CAC) emissions for the fuels for each stage of the lifecycle. These emissions are dependent on the engine application as well as the fuel production process.

4.1.3.1 M85 Vehicles

The CAC emissions for the light duty M85 vehicles are summarized in the following table. The vehicle emissions (operation and manufacturing the vehicles) are the same for both sources of methanol but the fuel production emissions are generally lower for the Blue Fuel process when wind energy is the source of the electric power.

General fuel	Gasoline	Methanol	Methanol
Fuel spec	RFG30ppm S	M85	Blue Fuel M85
Production process energy	Crude oil	Natural Gas	Wind Energy
		g CO ₂ eq/km	
CO ₂ (not including other pollutants)			
Vehicle Operation	207.6	186.4	51.9
Upstream	77.2	54.4	42.8
Vehicle Material & Assembly	31.0	31.2	31.2
Total	315.8	272.1	125.9
% total CO ₂ -Equiv.	94.9	95.8	91.1
CH ₄			
Vehicle Operation	0.021	0.013	0.013
Upstream	0.436	0.251	0.139
Vehicle Material & Assembly	0.032	0.033	0.033
Total	0.490	0.297	0.185
% total CO ₂ -Equiv.	3.683	2.611	3.344
N ₂ O			
Vehicle Operation	0.011	0.011	0.011
Upstream	0.004	0.004	0.014
Vehicle Material & Assembly	0.001	0.001	0.001
Total	0.015	0.015	0.026
% total CO ₂ -Equiv.	1.385	1.606	5.533
Total CO ₂ Equiv.	332.7	284.1	138.2
CFCs + HFCs			
Vehicle Operation	0.002	0.002	0.002
Upstream	0.000	0.000	0.000
Vehicle Material & Assembly	0.000	0.000	0.000
Total	0.002	0.002	0.002
СО			
Vehicle Operation	10.861	7.620	7.620
Upstream	0.051	0.066	0.027
Vehicle Material & Assembly	0.017	0.017	0.017
Total	10.929	7.703	7.664
NOx			
Vehicle Operation	0.218	0.202	0.202
Upstream	0.185	0.244	0.095
Vehicle Material & Assembly	0.048	0.048	0.048
Total	0.451	0.495	0.345
VOC-Ozone weighted			
Vehicle Operation	0.244	0.125	0.125
Upstream	0.106	0.060	0.070
Vehicle Material & Assembly	0.018	0.019	0.019
Total	0.369	0.203	0.213
SOx			
Vehicle Operation	0.018	0.016	0.016
Upstream	0.124	0.053	0.033
Vehicle Material & Assembly	0.068	0.069	0.069
Total	0.210	0.138	0.119
PM			
Vehicle Operation	0.014	0.008	0.008
Upstream	0.022	0.018	0.008
Vehicle Material & Assembly	0.031	0.032	0.032
Total	0.068	0.058	0.047

Table 4-5 Lifecycle CAC Emissions Light Duty Vehicles – Wind Energy

4.1.3.2 M100 HD Vehicles

The CAC emissions for the use of M100 in heavy-duty vehicles are shown in the following table. There is a lot of similarity in the directional results for this application compared to the light duty use of M85.

General fuel	Diesel	Methanol	Methanol
Fuel spec	15 ppm S	M100	Blue Fuel M100
Production process energy	Crude oil	Natural Gas	Wind Energy
		g CO ₂ eq/km	
CO ₂ (not including other pollutants)			
Vehicle Operation	1,063.0	981.5	11.3
Upstream	308.1	245.2	166.0
Vehicle Material & Assembly	38.0	44.7	44.7
Total	1,409.1	1,271.4	221.9
% total CO2-Equiv.	95.3	96.4	81.8
CH ₄			
Vehicle Operation	0.067	0.067	0.067
Upstream	1.939	0.995	0.230
Vehicle Material & Assembly	0.038	0.046	0.046
Total	2.043	1.108	0.342
% total CO2-Equiv.	3.5	2.1	3.2
N ₂ O			
Vehicle Operation	0.046	0.046	0.046
Upstream	0.015	0.019	0.090
Vehicle Material & Assembly	0.001	0.001	0.001
Total	0.062	0.067	0.137
% total CO ₂ -Equiv.	1.2	1.5	15.1
Total CO ₂ Equiv.	1,478.6	1,319.0	271.4
CFCs + HFCs			
Vehicle Operation	0.001	0.001	0.001
Upstream	0.000	0.000	0.000
Vehicle Material & Assembly	0.000	0.000	0.000
Total	0.001	0.001	0.001
CO			
Vehicle Operation	0.184	0.240	0.240
Upstream	0.207	0.366	0.138
Vehicle Material & Assembly	0.100	0.121	0.121
Total	0.492	0.727	0.499
NOx			
Vehicle Operation	0.401	0.201	0.201
Upstream	0.774	1.366	0.428
Vehicle Material & Assembly	0.065	0.079	0.079
Total	1.240	1.647	0.708
VOC-Ozone weighted			
Vehicle Operation	0.111	0.206	0.206
Upstream	0.152	0.235	0.161
Vehicle Material & Assembly	0.034	0.041	0.041
Total	0.297	0.482	0.408
SOx			
Vehicle Operation	0.075	0.075	0.075
Upstream	0.545	0.158	0.032
Vehicle Material & Assembly	0.091	0.110	0.110
Total	0.711	0.343	0.216

 Table 4-6
 Lifecycle CAC Emissions Heavy-Duty Vehicles – Wind Energy

РМ			
Vehicle Operation	0.020	0.004	0.004
Upstream	0.085	0.088	0.020
Vehicle Material & Assembly	0.047	0.057	0.057
Total	0.151	0.149	0.080

4.2 BC POWER GRID

In order to investigate the sensitivity of the emissions performance of the process to the source of electricity several alternative sources of electric power have been considered. The choice of electric power can be made by the user on the Input sheet in cell N236 by using the drop down menu in that cell.

The BC power grid is mostly hydro electric (90%), with some biomass power (6%), some fossil (~4% natural gas), and less than 1% wind at the present time. It has a total carbon intensity of 11,048 g CO_2 eq/GJ of electricity delivered.

4.2.1 Lifecycle Energy Balance

The results of the energy balance calculations are shown in the following table. These results are based on the primary energy values and thus they include the energy required to produce the energy actually used at a plant site.

	Gasoline		
Fuel	(Low S)	Methanol	Methanol
Feedstock	Crude oil	NG	CO ₂ , H ₂
	Joules C	onsumed/Joule I	Delivered
Fuel dispensing	0.0019	0.0039	0.0039
Fuel distribution, storage	0.0086	0.0419	0.0222
Fuel production	0.1619	0.3902	1.9457
Feedstock transmission	0.0025	0.0037	0.0000
Feedstock recovery	0.1797	0.0763	0.0000
Ag. chemical manufacture	0.0000	0.0000	0.0000
Co-product credits	-0.0030	0.0000	0.0000
Total	0.3517	0.5161	1.9718
Net Energy Ratio (J delivered/J consumed)	2.8436	1.9375	0.5071

Table 4-7Energy Balance – BC Grid Scenario

The energy balance numbers for the BC grid scenario are not quite as attractive as for the wind power scenario because about 10% of the power is coming from thermal power sources which have a lower generation efficiency than the assumed 100% value for wind and hydro power.

4.2.2 GHG Emissions

The GHG emissions from the three fuels for this scenario are shown in the following table based on the emissions to produce the fuel plus the emissions that would arise from the combustion of the fuels assuming the same combustion efficiency.

	Gasoline		
Fuel	(Low S)	Methanol	Methanol
Feedstock	Crude oil	NG	CO ₂ , H ₂
		g CO ₂ eq/GJ	
Fuel dispensing	20	40	40
Fuel distribution and storage	405	3,299	1,687
Fuel production	11,622	7,768	28,038
Feedstock transmission	81	209	0
Feedstock recovery	11,990	4,144	0
Land-use changes, cultivation	427	0	0
Fertilizer manufacture	0	0	0
Gas leaks and flares	2,582	854	0
CO ₂ , H ₂ S removed from NG	0	868	0
Emissions displaced	-198	0	0
Total	26,929	17,182	29,766
Combustion emissions	63,778	59,014	1,911
Grand Total	90,707	76,196	31,670
% Change		-16.0	-65.1

Table 4-8 GHG Emissions – BC Grid Scenario

While the GHG emissions for the Blue Fuel process are now higher than in the wind power scenario, the resulting methanol fuel still has a better emissions profile that methanol produced from natural gas or for gasoline.

4.2.2.1 M85 Vehicles

The GHG emissions can also be presented based on distance travelled as the functional unit rather than just using a unit of energy. This approach has the advantage in that that includes any differences in the combustion or conversion efficiency of the fuel in the vehicle. In GHGenius, E85 and M85 vehicles are slightly more efficient that gasoline powered vehicles. In the following table the lifecycle emission results are presented for gasoline, M85 from natural gas and M85 from the Blue Fuel process.

General fuel	Gasoline	Methanol	Methanol
Fuel spec	RFG30ppm S	M85	Blue Fuel M85
Production process energy	Crude oil	Natural Gas	Wind Energy
		g CO₂eq/km	
Vehicle operation	211.4	190.0	190.0
C in end-use fuel from CO ₂ in air	0.0	0.0	-134.6
Net Vehicle Operation	211.4	190.0	55.5
Fuel dispensing	0.1	0.1	0.1
Fuel storage and distribution	1.3	8.1	4.3
Fuel production	38.5	27.5	75.1
Feedstock transport	0.3	0.6	0.1
Feedstock and fertilizer production	41.2	19.6	9.6
Land use changes and cultivation	0.0	0.0	0.3
CH_4 and CO_2 leaks and flares	8.6	6.1	2.1
Emissions displaced by co-products	-0.7	-0.2	-0.2
Sub total (fuel cycle)	300.7	251.9	146.8
% changes (fuel cycle)	0.0	-16.2	-51.3
Vehicle assembly and transport	4.5	4.5	4.5
Materials in vehicles	27.5	27.7	27.7
Grand total	332.7	284.1	179.1
% changes to RFG (grand total)	0.0	-14.6	-46.2

Table 4-9 Lifecycle GHG Emissions Light Duty Vehicles – BC Grid

4.2.2.2 M100 HD Vehicles

The results for the M100 vehicles using the BC grid as the source of power are shown in the following table. As with the M85 light duty vehicles, there are still significant reductions in GHG emissions but not as great as with the wind power alternative.

General fuel	Diesel Fuel	Methanol	Methanol
			Blue Fuel
Fuel spec	15 PPM S	M100	M100
Production process energy	Crude oil	Natural Gas	Wind Energy
		g CO₂eq/km	
Vehicle operation	1,078.3	996.9	996.9
C in end-use fuel from CO ₂ in air	0.0	0.0	-970.2
Net Vehicle Operation	1,078.3	996.9	26.7
Fuel dispensing	0.3	0.6	0.6
Fuel storage and distribution	6.4	53.0	27.1
Fuel production	122.0	124.7	450.2
Feedstock transport	1.3	3.4	0.0
Feedstock and fertilizer production	194.6	66.5	0.0
Land use changes and cultivation	0.0	0.0	0.0
CH ₄ and CO ₂ leaks and flares	39.5	27.6	0.0
Emissions displaced by co-products	-3.0	0.0	0.0
Sub total (fuel cycle)	1,439.4	1,272.8	504.7
% changes (fuel cycle)		-11.6	-64.9
Vehicle assembly and transport	8.6	10.4	10.4
Materials in vehicles	30.7	35.8	35.8
Grand total	1,478.6	1,319.0	550.9
% changes to Diesel Fuel (grand total)		-10.8	-62.7

 Table 4-10
 Lifecycle GHG Emissions Heavy-Duty Vehicles – BC Grid

4.2.3 CAC Emissions

In addition to calculating the GHG emissions from the production and use of various fuels, GHGenius can also report the criteria contaminant emissions for the fuels for each stage of the lifecycle.

4.2.3.1 M85 Vehicles

The CAC emissions for the light duty M85 vehicles are summarized in the following table.

General fuel	Gasoline	Methanol	Methanol
Fuel spec	RFG30ppm S	M85	Blue Fuel M85
Production process energy	Crude oil	Natural Gas	BC Grid
· • • • • • • • • • • • • • • • • • • •	g CO ₂ eq/km		
CO ₂ (not including other pollutants)	CO ₂ (not including other pollutants)		
Vehicle Operation	207.6	186.4	51.9
Upstream	77.2	54.4	73.8
Vehicle Material & Assembly	31.0	31.2	31.2
Total	315.8	272.1	157.0
% total CO ₂ -Equiv.	94.9	95.8	87.6
CH ₄			
Vehicle Operation	0.021	0.013	0.013
Upstream	0.436	0.251	0.491
Vehicle Material & Assembly	0.032	0.033	0.033
Total	0.490	0.297	0.537
% total CO ₂ -Equiv.	3.683	2.611	7.496
N ₂ O			
Vehicle Operation	0.011	0.011	0.011
Upstream	0.004	0.004	0.018
Vehicle Material & Assembly	0.001	0.001	0.001
Total	0.015	0.015	0.029
% total CO ₂ -Equiv.	1.385	1.606	4.867
Total CO ₂ Equiv.	332.7	284.1	179.0
CFCs + HFCs			
Vehicle Operation	0.002	0.002	0.002
Upstream	0.000	0.000	0.000
Vehicle Material & Assembly	0.000	0.000	0.000
Total	0.002	0.002	0.002
СО			
Vehicle Operation	10.861	7.620	7.620
Upstream	0.051	0.066	0.032
Vehicle Material & Assembly	0.017	0.017	0.017
Total	10.929	7.703	7.670
NOx			
Vehicle Operation	0.218	0.202	0.202
Upstream	0.185	0.244	0.107
Vehicle Material & Assembly	0.048	0.048	0.048
Total	0.451	0.495	0.357
VOC-Ozone weighted			
Vehicle Operation	0.244	0.125	0.125
Upstream	0.106	0.060	0.070
Vehicle Material & Assembly	0.018	0.019	0.019
Total	0.369	0.203	0.213
SOx			
Vehicle Operation	0.018	0.016	0.016
Upstream	0.124	0.053	0.035
Vehicle Material & Assembly	0.068	0.069	0.069
Total	0.210	0.138	0.120
PM			
Vehicle Operation	0.014	0.008	0.008
Upstream	0.022	0.018	0.008
Vehicle Material & Assembly	0.031	0.032	0.032
Total	0.068	0.058	0.048

Table 4-11 Lifecycle CAC Emissions Light Duty Vehicles – BC Grid

4.2.3.2 M100 HD Vehicles

The CAC emission results are shown in the following table for the BC grid power mix and the heavy-duty vehicle application. As with the light duty case, the CAC emissions with the Blue Fuel process are considerably better than with diesel fuel or natural gas produced methanol.

General fuel	Diesel	Methanol	Methanol
Fuel spec	15 ppm S	M100	Blue Fuel M100
Production process energy	Crude oil	Natural Gas	BC Grid
		g CO₂eq/km	
CO ₂ (not including other pollutants)			
Vehicle Operation	1,063.0	981.5	11.3
Upstream	308.1	245.2	377.8
Vehicle Material & Assembly	38.0	44.7	44.7
Total	1,409.1	1,271.4	433.8
% total CO2-Equiv.	95.3	96.4	78.8
CH ₄			
Vehicle Operation	0.067	0.067	0.067
Upstream	1.939	0.995	2.638
Vehicle Material & Assembly	0.038	0.046	0.046
Total	2.043	1.108	2.750
% total CO2-Equiv.	3.5	2.1	12.5
N ₂ O			
Vehicle Operation	0.046	0.046	0.046
Upstream	0.015	0.019	0.115
Vehicle Material & Assembly	0.001	0.001	0.001
Total	0.062	0.067	0.162
% total CO ₂ -Equiv.	1.2	1.5	8.8
Total CO ₂ Equiv.	1,478.6	1,319.0	550.9
CFCs + HFCs			
Vehicle Operation	0.001	0.001	0.001
Upstream	0.000	0.000	0.000
Vehicle Material & Assembly	0.000	0.000	0.000
Total	0.001	0.001	0.001
CO			
Vehicle Operation	0.184	0.240	0.240
Upstream	0.207	0.366	0.138
Vehicle Material & Assembly	0.100	0.121	0.121
Total	0.492	0.727	0.499
NOX			
Vehicle Operation	0.401	0.201	0.201
Upstream	0.774	1.366	0.428
Vehicle Material & Assembly	0.065	0.079	0.079
l otal	1.240	1.647	0.708
VOC-Ozone weighted	0.444		
Vehicle Operation	0.111	0.206	0.206
Upstream	0.152	0.235	0.161
Vehicle Material & Assembly	0.034	0.041	0.041
lotal	0.297	0.482	0.408
SUX			
Venicle Operation	0.075	0.075	0.075
Upstream	0.545	0.158	0.032
Venicle Material & Assembly	0.091	0.110	0.110
lotal	0.711	0.343	0.216

 Table 4-12
 Lifecycle CAC Emissions Heavy-Duty Vehicles – BC Grid

PM			
Vehicle Operation	0.020	0.004	0.004
Upstream	0.085	0.088	0.020
Vehicle Material & Assembly	0.047	0.057	0.057
Total	0.151	0.149	0.080

4.3 ALBERTA POWER GRID

The issue with the BC power mix is that BC is currently an importer of electricity and thus extra load in the province is met through increased efficiency of the existing load or imported power. Details on the source of imported power are not readily available and the source does vary as prices change but some power is imported from Alberta and thus an estimate of the emissions from the process using the Alberta power mix is appropriate.

The Alberta power is more than 90% thermal power, with coal making up almost 60% of the mix, high efficiency sources like wind and hydro only make up about 6% of the Alberta power mix. It has a carbon intensity of 241,200 g CO_2eq/GJ delivered.

4.3.1 Lifecycle Energy Balance

The overall lifecycle energy balance for the production of methanol from the Blue Fuel system is compared in the following table to the energy balance for methanol produced by natural gas and to gasoline produced from crude oil. The natural gas methanol is assumed to be produced offshore and transported to the market by ocean tanker.

	Gasoline		
Fuel	(Low S)	Methanol	Methanol
Feedstock	Crude oil	NG	CO ₂ , H ₂
	Joules Co	onsumed/Joule [Delivered
Fuel dispensing	0.0019	0.0039	0.0039
Fuel distribution, storage	0.0086	0.0419	0.0222
Fuel production	0.1619	0.3902	4.3354
Feedstock transmission	0.0025	0.0037	0.0000
Feedstock recovery	0.1797	0.0763	0.0000
Ag. chemical manufacture	0.0000	0.0000	0.0000
Co-product credits	-0.0030	0.0000	0.0000
Total	0.3517	0.5161	4.3615
Net Energy Ratio (J delivered/J consumed)	2.8436	1.9375	0.2293

 Table 4-13
 Energy Balance – Alberta Grid Scenario

The lower efficiency (as a result of the higher proportion of thermal power) of the Alberta power system is apparent in this table, as the overall lifecycle energy efficiency is much lower than the two previous scenarios.

4.3.2 GHG Emissions

The GHG emissions from the three fuels for this scenario are shown in the following table based on the emissions to produce the fuel plus the emissions that would arise from the combustion of the fuels assuming the same combustion efficiency.

	Gasoline		
Fuel	(Low S)	Methanol	Methanol
Feedstock	Crude oil	NG	CO ₂ , H ₂
		g CO ₂ eq/GJ	
Fuel dispensing	20	40	40
Fuel distribution and storage	405	3,299	1,687
Fuel production	11,622	7,768	412,920
Feedstock transmission	81	209	0
Feedstock recovery	11,990	4,144	0
Land-use changes, cultivation	427	0	0
Fertilizer manufacture	0	0	0
Gas leaks and flares	2,582	854	0
CO ₂ , H ₂ S removed from NG	0	868	0
Emissions displaced	-198	0	0
Total	26,929	17,182	414,648
Combustion emissions	63,778	59,014	1,911
Grand Total	90,707	76,196	416,559
% Change		-16.0	+359

 Table 4-14
 GHG Emissions – Alberta Grid Scenario

This mix of electric power increases the GHG emissions dramatically. The process would result in GHG emissions that are much higher the natural gas produced methanol or the gasoline system.

4.3.2.1 M85 Vehicles

The GHG emissions can also be presented based on distance travelled as the functional unit rather than just using a unit of energy. This approach has the advantage in that that includes any differences in the combustion or conversion efficiency of the fuel in the vehicle. In GHGenius, E85 and M85 vehicles are slightly more efficient that gasoline powered vehicles. In the following table the lifecycle emission results are presented for gasoline, M85 from natural gas and M85 from the Blue Fuel process using electricity from the Alberta grid. As expected from the previous table there is a significant increase in GHG emissions.

General fuel	Gasoline	Methanol	Methanol
Fuel spec	RFG30ppm S	M85	Blue Fuel M85
Production process energy	Crude oil	Natural Gas	Alberta Grid
		g CO ₂ eq/km	
Vehicle operation	211.4	190.0	190.0
C in end-use fuel from CO ₂ in air	0.0	0.0	-134.6
Net Vehicle Operation	211.4	190.0	55.5
Fuel dispensing	0.1	0.1	0.1
Fuel storage and distribution	1.3	8.1	4.3
Fuel production	38.5	27.5	978.4
Feedstock transport	0.3	0.6	0.1
Feedstock and fertilizer production	41.2	19.6	9.6
Land use changes and cultivation	0.0	0.0	0.3
CH_4 and CO_2 leaks and flares	8.6	6.1	2.1
Emissions displaced by co-products	-0.7	-0.2	-0.2
Sub total (fuel cycle)	300.7	251.9	1,050.1
% changes (fuel cycle)	0.0	-16.2	248.2
Vehicle assembly and transport	4.5	4.5	4.5
Materials in vehicles	27.5	27.7	27.7
Grand total	332.7	284.1	1,082.4
% changes to RFG (grand total)	0.0	-14.6	224.4

Table 4-15 Lifecycle GHG Emissions Light Duty Vehicles – Alberta Grid

4.3.2.2 M100 HD Vehicles

When the fuel is used in heavy-duty vehicles the emissions results are not attractive as shown in the following table.

General fuel	Diesel Fuel	Methanol	Methanol
			Blue Fuel
Fuel spec	15 PPM S	M100	M100
Production process energy	Crude oil	Natural Gas	Alberta Grid
		g CO₂eq/km	
Vehicle operation	1,078.3	996.9	996.9
C in end-use fuel from CO ₂ in air	0.0	0.0	-970.2
Net Vehicle Operation	1,078.3	996.9	26.7
Fuel dispensing	0.3	0.6	0.6
Fuel storage and distribution	6.4	53.0	27.1
Fuel production	122.0	124.7	6,629.9
Feedstock transport	1.3	3.4	0.0
Feedstock and fertilizer production	194.6	66.5	0.0
Land use changes and cultivation	0.0	0.0	0.0
CH ₄ and CO ₂ leaks and flares	39.5	27.6	0.0
Emissions displaced by co-products	-3.0	0.0	0.0
Sub total (fuel cycle)	1,439.4	1,272.8	6,684.4
% changes (fuel cycle)		-11.6	364.4
Vehicle assembly and transport	8.6	10.4	10.4
Materials in vehicles	30.7	35.8	35.8
Grand total	1,478.6	1,319.0	6,730.6
% changes to Diesel Fuel (grand total)		-10.8	355.2

 Table 4-16
 Lifecycle GHG Emissions Heavy-Duty Vehicles-Alberta Grid

4.3.3 CAC Emissions

In addition to calculating the GHG emissions from the production and use of various fuels, GHGenius can also report the criteria contaminant emissions for the fuels for each stage of the lifecycle.

4.3.3.1 M85 Vehicles

The CAC emissions for the light duty M85 vehicles using fuel produced from the Alberta grid are summarized in the following table

General fuel	Gasoline	Methanol	Methanol
Fuel spec	RFG30ppm S	M85	Blue Fuel M85
Production process energy	Crude oil	Natural Gas	Alberta Grid
	g CO₂eq/km		
CO ₂ (not including other pollutants)			
Vehicle Operation	207.634	186.437	51.9
Upstream	77.178	54.448	965.4
Vehicle Material & Assembly	31.018	31.199	31.2
Total	315.831	272.084	1048.5
% total CO ₂ -Equiv.	94.933	95.782	96.9
CH ₄			
Vehicle Operation	0.021	0.013	0.013
Upstream	0.436	0.251	0.944
Vehicle Material & Assembly	0.032	0.033	0.033
Total	0.490	0.297	0.990
% total CO ₂ -Equiv.	3.683	2.611	2.287
N ₂ O			
Vehicle Operation	0.011	0.011	0.011
Upstream	0.004	0.004	0.019
Vehicle Material & Assembly	0.001	0.001	0.001
Total	0.015	0.015	0.030
% total CO ₂ -Equiv.	1.385	1.606	0.839
Total CO ₂ Equiv.	332.689	284.064	1,082.4
CFCs + HFCs			
Vehicle Operation	0.002	0.002	0.002
Upstream	0.000	0.000	0.000
Vehicle Material & Assembly	0.000	0.000	0.000
Total	0.002	0.002	0.002
СО			
Vehicle Operation	10.861	7.620	7.620
Upstream	0.051	0.066	0.032
Vehicle Material & Assembly	0.017	0.017	0.017
Total	10.929	7.703	7.670
NOx			
Vehicle Operation	0.218	0.202	0.202
Upstream	0.185	0.244	0.107
Vehicle Material & Assembly	0.048	0.048	0.048
Total	0.451	0.495	0.357
VOC-Ozone weighted			
Vehicle Operation	0.244	0.125	0.125
Upstream	0.106	0.060	0.070
Vehicle Material & Assembly	0.018	0.019	0.019
Total	0.369	0.203	0.213
SOx			
Vehicle Operation	0.018	0.016	0.016
Upstream	0.124	0.053	0.035
Vehicle Material & Assembly	0.068	0.069	0.069
Total	0.210	0.138	0.120
PM			
Vehicle Operation	0.014	0.008	0.008
Upstream	0.022	0.018	0.008
Vehicle Material & Assembly	0.031	0.032	0.032
Total	0.068	0.058	0.047

Table 4-17 Lifecycle CAC Emissions Light Duty Vehicles – Alberta Grid

4.3.3.2 M100 HD Vehicles

The CAC emissions for the M100 heavy-duty vehicle application are shown in the following table.

General fuel	Diesel	Methanol	Methanol
Fuel spec	15 ppm S	M100	Blue Fuel M100
Production process energy	Crude oil	Natural Gas	Wind Energy
CO ₂ (not including other pollutants)			
Vehicle Operation	1,063.0	981.5	11.3
Upstream	308.1	245.2	6,477.5
Vehicle Material & Assembly	38.0	44.7	44.7
Total	1,409.1	1,271.4	6,533.6
% total CO2-Equiv.	95.3	96.4	97.1
CH₄			
Vehicle Operation	0.067	0.067	0.067
Upstream	1.939	0.995	5.738
Vehicle Material & Assembly	0.038	0.046	0.046
Total	2.043	1.108	5.851
% total CO2-Equiv.	3.5	2.1	2.2
N ₂ O			
Vehicle Operation	0.046	0.046	0.046
Upstream	0.015	0.019	0.123
Vehicle Material & Assembly	0.001	0.001	0.001
Total	0.062	0.067	0.170
% total CO ₂ -Equiv.	1.2	1.5	0.8
Total CO ₂ Equiv.	1,478.6	1,319.0	6,730.6
CFCs + HFCs			
Vehicle Operation	0.001	0.001	0.001
Upstream	0.000	0.000	0.000
Vehicle Material & Assembly	0.000	0.000	0.000
Total	0.001	0.001	0.001
СО			
Vehicle Operation	0.184	0.240	0.240
Upstream	0.207	0.366	0.138
Vehicle Material & Assembly	0.100	0.121	0.121
Total	0.492	0.727	0.499
NOx			
Vehicle Operation	0.401	0.201	0.201
Upstream	0.774	1.366	0.428
Vehicle Material & Assembly	0.065	0.079	0.079
Total	1.240	1.647	0.708
VOC-Ozone weighted			
Vehicle Operation	0.111	0.206	0.206
Upstream	0.152	0.235	0.161
Vehicle Material & Assembly	0.034	0.041	0.041
Total	0.297	0.482	0.408
SOx			
Vehicle Operation	0.075	0.075	0.075
Upstream	0.545	0.158	0.032
Vehicle Material & Assembly	0.091	0.110	0.110
Total	0.711	0.343	0.216
PM			

 Table 4-18
 Lifecycle CAC Emissions Heavy-Duty Vehicles – Alberta Grid

Vehicle Operation	0.020	0.004	0.004
Upstream	0.085	0.088	0.020
Vehicle Material & Assembly	0.047	0.057	0.057
Total	0.151	0.149	0.080

4.4 NATURAL GAS POWER

In many regions of Canada combined cycle natural gas power plants are the marginal supply of electric power so a scenario has been run using natural to produce the electricity. It has been assumed that the efficiency of the natural gas power is 45%.

4.4.1 Lifecycle Energy Balance

The overall lifecycle energy balance for the production of methanol from the Blue Fuel system is compared in the following table to the energy balance for methanol produced by natural gas and to gasoline produced from crude oil. The natural gas methanol is assumed to be produced offshore and transported to the market by ocean tanker.

Table 4-19 Energy Balance – Natural Gas Power Scenario

	Gasoline		
Fuel	(Low S)	Methanol	Methanol
Feedstock	Crude oil	NG	CO ₂ , H ₂
	Joules C	onsumed/Joule [Delivered
Fuel dispensing	0.0019	0.0039	0.0039
Fuel distribution, storage	0.0086	0.0419	0.0222
Fuel production	0.1619	0.3902	3.8827
Feedstock transmission	0.0025	0.0037	0.0000
Feedstock recovery	0.1797	0.0763	0.0000
Ag. chemical manufacture	0.0000	0.0000	0.0000
Co-product credits	-0.0030	0.0000	0.0000
Total	0.3517	0.5161	3.9088
Net Energy Ratio (J delivered/J consumed)	2.8436	1.9375	0.2558

The system has a higher efficiency than the Alberta grid scenario but the lifecycle energy efficiency is still quite low due to the combination of the efficiency of power production and the electrolysis efficiency.

4.4.2 GHG Emissions

The GHG emissions from the three fuels for this scenario are shown in the following table based on the emissions to produce the fuel plus the emissions that would arise from the combustion of the fuels assuming the same combustion efficiency.

	Gasoline		
Fuel	(Low S)	Methanol	Methanol
Feedstock	Crude oil	NG	CO ₂ , H ₂
		g CO ₂ eq/GJ	
Fuel dispensing	20	40	40
Fuel distribution and storage	405	3,299	1,687
Fuel production	11,622	7,768	215,296
Feedstock transmission	81	209	0
Feedstock recovery	11,990	4,144	0
Land-use changes, cultivation	427	0	0
Fertilizer manufacture	0	0	0
Gas leaks and flares	2,582	854	0
CO ₂ , H ₂ S removed from NG	0	868	0
Emissions displaced	-198	0	0
Total	26,929	17,182	217,024
Combustion emissions	63,778	59,014	1,911
Grand Total	90,707	76,196	218,935
% Change		-16.0	+141

 Table 4-20
 GHG Emissions – Natural Gas Power Scenario

The GHG emissions using this source of electric power are significantly higher than the direct natural gas to methanol route or from the production and use of gasoline.

4.4.2.1 M85 Vehicles

The GHG emissions can also be presented based on distance travelled as the functional unit rather than just using a unit of energy. This approach has the advantage in that that includes any differences in the combustion or conversion efficiency of the fuel in the vehicle. In GHGenius, E85 and M85 vehicles are slightly more efficient that gasoline powered vehicles. In the following table the lifecycle emission results are presented for gasoline, M85 from natural gas and M85 from the Blue Fuel process.

General fuel	Gasoline	Methanol	Methanol
Fuel spec	RFG30ppm S	M85	Blue Fuel M85
			Natural Gas
Production process energy	Crude oil	Natural Gas	Power
		g CO ₂ eq/km	
Vehicle operation	211.4	190.0	190.0
C in end-use fuel from CO ₂ in air	0.0	0.0	-134.6
Net Vehicle Operation	211.4	190.0	55.5
Fuel dispensing	0.1	0.1	0.1
Fuel storage and distribution	1.3	8.1	4.3
Fuel production	38.5	27.5	514.6
Feedstock transport	0.3	0.6	0.1
Feedstock and fertilizer production	41.2	19.6	9.6
Land use changes and cultivation	0.0	0.0	0.3
CH ₄ and CO ₂ leaks and flares	8.6	6.1	2.1
Emissions displaced by co-products	-0.7	-0.2	-0.2
Sub total (fuel cycle)	300.7	251.9	586.3
% changes (fuel cycle)	0.0	-16.2	94.4
Vehicle assembly and transport	4.5	4.5	4.5
Materials in vehicles	27.5	27.7	27.7
Grand total	332.7	284.1	618.5
% changes to RFG (grand total)	0.0	-14.6	85.9

Table 4-21 Lifecycle GHG Emissions Light Duty Vehicles– Natural Gas Power

4.4.2.2 M100 HD Vehicles

General fuel	Diesel Fuel	Methanol	Methanol
			Blue Fuel
Fuel spec	15 PPM S	M100	M100
			Natural Gas
Production process energy	Crude oil	Natural Gas	Power
		g CO₂eq/km	
Vehicle operation	1,078.3	996.9	996.9
C in end-use fuel from CO ₂ in air	0.0	0.0	-970.2
Net Vehicle Operation	1,078.3	996.9	26.7
Fuel dispensing	0.3	0.6	0.6
Fuel storage and distribution	6.4	53.0	27.1
Fuel production	122.0	124.7	3,456.8
Feedstock transport	1.3	3.4	0.0
Feedstock and fertilizer production	194.6	66.5	0.0
Land use changes and cultivation	0.0	0.0	0.0
CH ₄ and CO ₂ leaks and flares	39.5	27.6	0.0
Emissions displaced by co-products	-3.0	0.0	0.0
Sub total (fuel cycle)	1,439.4	1,272.8	3,511.3
% changes (fuel cycle)		-11.6	143.9
Vehicle assembly and transport	8.6	10.4	10.4
Materials in vehicles	30.7	35.8	35.8
Grand total	1,478.6	1,319.0	3,557.5
% changes to Diesel Fuel (grand total)		-10.8	140.6

Table 4-22 Lifecycle GHG Emissions Heavy-Duty Vehicles– Natural Gas Power

4.4.3 CAC Emissions

In addition to calculating the GHG emissions from the production and use of various fuels, GHGenius can also report the criteria contaminant emissions for the fuels for each stage of the lifecycle.

4.4.3.1 M85 Vehicles

The CAC emissions for the light duty M85 vehicles are summarized in the following table.

General fuel	Gasoline	Methanol	Methanol
Fuel spec	RFG30ppm S	M85	Blue Fuel M85
			Natural Gas
Production process energy	Crude oil	Natural Gas	Power
· · · · · · · · · · · · · · · · · · ·		g CO ₂ eq/km	
CO ₂ (not including other pollutants)			
Vehicle Operation	207.634	186.437	51.9
Upstream	77.178	54.448	518.6
Vehicle Material & Assembly	31.018	31.199	31.2
Total	315.831	272.084	601.7
% total CO ₂ -Equiv.	94.933	95.782	97.3
CH₄			
Vehicle Operation	0.021	0.013	0.013
Upstream	0.436	0.251	0.174
Vehicle Material & Assembly	0.032	0.033	0.033
Total	0.490	0.297	0.220
% total CO ₂ -Equiv.	3.683	2.611	0.889
N ₂ O			
Vehicle Operation	0.011	0.011	0.011
Upstream	0.004	0.004	0.026
Vehicle Material & Assembly	0.001	0.001	0.001
Total	0.015	0.015	0.038
% total CO ₂ -Equiv.	1.385	1.606	1.827
Total CO ₂ Equiv.	332.689	284.064	618.5
CFCs + HFCs			
Vehicle Operation	0.002	0.002	0.002
Upstream	0.000	0.000	0.000
Vehicle Material & Assembly	0.000	0.000	0.000
Total	0.002	0.002	0.002
СО			
Vehicle Operation	10.861	7.620	7.620
Upstream	0.051	0.066	0.032
Vehicle Material & Assembly	0.017	0.017	0.017
Total	10.929	7.703	7.670
NOx			
Vehicle Operation	0.218	0.202	0.202
Upstream	0.185	0.244	0.107
Vehicle Material & Assembly	0.048	0.048	0.048
Total	0.451	0.495	0.357
VOC-Ozone weighted			
Vehicle Operation	0.244	0.125	0.125
Upstream	0.106	0.060	0.070
Vehicle Material & Assembly	0.018	0.019	0.019
Total	0.369	0.203	0.213
SOx			
Vehicle Operation	0.018	0.016	0.016
Upstream	0.124	0.053	0.035
Vehicle Material & Assembly	0.068	0.069	0.069
Total	0.210	0.138	0.120
PM			
Vehicle Operation	0.014	0.008	0.008
Upstream	0.022	0.018	0.008
Vehicle Material & Assembly	0.031	0.032	0.032
Total	0.068	0.058	0.048

Table 4-23 Lifecycle CAC Emissions Light Duty Vehicles– Natural Gas Power

4.4.3.2 M100 HD Vehicles

The CAC emission results for the M100 vehicle and the natural gas power scenario are shown in the following table.

General fuel	Diesel	Methanol	Methanol		
Fuel spec	15 ppm S	M100	Blue Fuel M100		
Production process energy	Crude oil	Natural Gas	Natural Gs Power		
		g CO₂eq/km			
CO ₂ (not including other pollutants)					
Vehicle Operation	1,063.0	981.5	11.3		
Upstream	308.1	245.2	3,420.9		
Vehicle Material & Assembly	38.0	44.7	44.7		
Total	1,409.1	1,271.4	3,477.0		
% total CO2-Equiv.	95.3	96.4	97.7		
CH ₄					
Vehicle Operation	0.067	0.067	0.067		
Upstream	1.939	0.995	0.470		
Vehicle Material & Assembly	0.038	0.046	0.046		
Total	2.043	1.108	0.583		
% total CO2-Equiv.	3.5	2.1	0.4		
N ₂ O					
Vehicle Operation	0.046	0.046	0.046		
Upstream	0.015	0.019	0.174		
Vehicle Material & Assembly	0.001	0.001	0.001		
Total	0.062	0.067	0.221		
% total CO ₂ -Equiv.	1.2	1.5	1.9		
Total CO ₂ Equiv.	1,478.6	1,319.0	3,557.5		
CFCs + HFCs					
Vehicle Operation	0.001	0.001	0.001		
Upstream	0.000	0.000	0.000		
Vehicle Material & Assembly	0.000	0.000	0.000		
Total	0.001	0.001	0.001		
CO					
Vehicle Operation	0.184	0.240	0.240		
Upstream	0.207	0.366	0.138		
Vehicle Material & Assembly	0.100	0.121	0.121		
Total	0.492	0.727	0.499		
NOX					
Vehicle Operation	0.401	0.201	0.201		
Upstream	0.774	1.366	0.428		
Vehicle Material & Assembly	0.065	0.079	0.079		
Total	1.240	1.647	0.708		
VOC-Ozone weighted					
Vehicle Operation	0.111	0.206	0.206		
Upstream	0.152	0.235	0.161		
Vehicle Material & Assembly	0.034	0.041	0.041		
lotal	0.297	0.482	0.408		
SUX	0.0				
Venicie Operation	0.075	0.075	0.075		
Upstream	0.545	0.158	0.032		
Vehicle Material & Assembly	0.091	0.110	0.110		
	0.711	0.343	0.216		
PM			1		

 Table 4-24
 Lifecycle CAC Emissions Heavy-Duty Vehicles- Natural Gas Power

Vehicle Operation	0.020	0.004	0.004
Upstream	0.085	0.088	0.020
Vehicle Material & Assembly	0.047	0.057	0.057
Total	0.151	0.149	0.080

5. DISCUSSION

A special GHGenius model has been developed to project the lifecycle energy balance, GHG and CAC emissions. The model is flexible and it can model a wide range of types of electric power that would be used in the process. A number of scenarios have been evaluated and it is apparent that the source of electrical energy that is used in the process strongly influences all of the results.

The overall primary energy balance of the process is strongly influenced by how the electric power is produced. The results from the four scenarios that have been evaluated are summarized in the following table.

Fuel	Methanol								
Feedstock	CO ₂ , H ₂								
	Wind	BC Grid	Alberta	Natural					
Power Source			Grid	Gas					
	Jo	ules Consum	ed/Joule Deli [,]	vered					
Fuel dispensing	0.0039	0.0039	0.0039	0.0039					
Fuel distribution, storage	0.0222	0.0222	0.0222	0.0222					
Fuel production	1.8316	1.9457	4.3354	3.8827					
Feedstock transmission	0.0000	0.0000	0.0000	0.0000					
Feedstock recovery	0.0000	0.0000	0.0000	0.0000					
Ag. chemical manufacture	0.0000	0.0000	0.0000	0.0000					
Co-product credits	0.0000	0.0000	0.0000	0.0000					
Total	1.8577	1.9718	4.3615	3.9088					
Net Energy Ratio (J delivered/J consumed)	0.5383	0.5071	0.2293	0.2558					

 Table 5-1
 Energy Balance Summary

The wind power scenario is closest to a secondary energy balance where the energy required to produce the energy is not include. This is the best measure of the efficiency of the process itself and in this case is influenced mostly by the efficiency of hydrogen production from electrolysis. When other sources of electricity are considered the overall energy efficiency drops considerably. The natural gas scenario is not as efficient as just producing the methanol directly from natural gas and thus it can be expected that this route would have higher GHG emissions than the direct natural gas to methanol route (and probably less attractive economics).

The GHG emissions from the process are related to the energy consumption and reflect both the quantity of energy used and the carbon intensity of the different energy sources. In the following table, the GHG emissions of the four scenarios considered are compared. The lifecycle GHG emissions are attractive when Wind Power or the BC Grid power are used but if Alberta power or natural gas derived power were used, the emissions are higher than they are for gasoline or methanol produced from natural gas.

Fuel	Methanol									
Feedstock	CO ₂ , H ₂									
	Wind	BC Grid	Alberta Grid	Natural Gas						
		g CO ₂	eq/GJ							
Fuel dispensing	40	40	40	40						
Fuel distribution and storage	1,687	1,687	1,687	1,687						
Fuel production	10,631	28,038	412,920	215,296						
Feedstock transmission	0	0	0	0						
Feedstock recovery	0	0	0	0						
Land-use changes, cultivation	0	0	0	0						
Fertilizer manufacture	0	0	0	0						
Gas leaks and flares	0	0	0	0						
CO ₂ , H ₂ S removed from NG	0	0	0	0						
Emissions displaced	0	0	0	0						
Total	12,359	29,766	414,648	217,024						
Combustion emissions	1,911	1,911	1,911	1,911						
Grand Total	14,271	31,670	416,559	218,935						
% Change	-84.3	-65.1	+359	+141						

Table 5-2 GHG Emission Summary

The modelling results from the scenarios considered are not that different from other electricity based transportation fuels such as electric vehicles or fuel cells power by electrolytic hydrogen. In some locations in Canada, these pathways produce better GHG emissions than gasoline and in other regions; there is little or no benefit.

References

(S&T)² Consultants Inc. 2009. The Development of Provincial Inputs for GHGenius. Prepared for Natural Resources Canada. March 2009. <u>http://www.ghgenius.ca/reports/ProvincialModelsFinalReport.pdf</u>

(S&T)² Consultants Inc. 2006. Construction Emissions. March 2006. http://www.ghgenius.ca/reports/ConstructionEmissions.pdf

	A B C	Seni		odel for	J κ	essme	ent of transpo	o P	Q					
-														
2	INDEX TO SHEETS IN TH	HE SPREADSHEET												
3														
4	© COPYR	IGHT HER MAJESTY THE QUEEN	IN RIGHT OF CANADA	(2002-2009))									
5														
6	SUB-LICENCE AGREI	EMENT FOR GHGENIUS												
1	Sub-licence granted as	s of September 17, 2004		-										
9	PLEASE READ THIS BUTTON BELOW. BY AGREEMENT, PRESS	SUB-LICENCE AGREEMENT FOR (PRESSING "I AGREE", YOU AGR S "I DISAGREE", IN WHICH CASE	THE USE OF GHGENIU REE TO BE BOUND BY THE APPLICATION WII	JS AND REL THE TERM LL CLOSE.	LATED DOCUMENTATI	ION CAREF	ULLY BEFORE PRESS DO NOT AGREE TO T	SING THE "I AGREE" HE TERMS OF THIS						
11	This is a legal agreem ("Licensor"). BY ACCE BY THE TERMS OF T GHGENIUS, RELATEI	ent between you ("Licensee") and H SSING, PRINTING OR USING GHO HIS AGREEMENT. IF YOU DO NO D DOCUMENTATION AND INFORM	er Majesty the Queen in GENIUS, RELATED DOO T AGREE TO THE TERI IATION AND ANY DERI	Right of Car CUMENTATI MS OF THIS VED PRODI	hada ("Canada") as repr ION AND INFORMATIO 3 AGREEMENT, YOU M UCTS.	esented by t N, IT MEAN UST IMMEE	he Minister of Natural F S THAT YOU ARE AGF DIATELY DISPOSE OF	tesources Canada REEING TO BE BOUND ANY SUCH						
13	I WHEREAS GHGenius is used to systematically evaluate the lifecycle energy balances, and emissions of greenhouse gases and common air contaminants of existing and potential transportation fuels. The results from the evaluation can be used for a variety of uses including: comparing the environmental impacts of different fuels on a common basis, improving the environmental performance of fuels by identifying the emissions associated with each stage of the fuel production cycle and making appropriate changes to the production process, identifying shifts in environmental impacts between life cycle stages, quantifying environmental releases from the production and use of transportation fuels.													
14	II AND WHE	REAS GHGenius and Related Docu	mentation are hereinafte	er referred to	in this Sub -licence Agr	eement as '	'the Material";							
15	III AND WHE	REAS the Licensee wishes to obtain	n the right to use the Mat	terial on tern	ns and conditions herein	contained;								
16	IV AND WHE	REAS Canada represents that it has	s the authority to grant th	ne rights des	ired by the Licensee on	the terms a	nd conditions herein cor	ntained;						
17	V AND WHE	REAS the parties are desirous of er	ntering into a sub-licence	agreement	on the basis herein set f	forth.								
19	NOW THEREFORE, in	n consideration of the covenants cor	ntained in this Agreemen	t, the parties	s agree as follows:									
21		NS												
22	1.1 "GHGenius	s" means the entire or any part of the	e Excel spreadsheet app	lication, incl	uding all codes and scrip	ots develope	ed or drafted for that spr	eadsheet application, if						
23	any, 1.2 "Derivative	Products" means any product syst	em sub-system device	component	material or software the	at incornorat	tee derives from or use	s any part of GHGenius:						
24	1.2 Derivative	ders" means the licensors who have	signed a licence agreem	ent with Ca	nada for the use of GHC	Senius and F	Related Documentation	and all other person that						
25	may have	lawfull ownership title of intellectual	property rights in GHGen	ius and LEN	Λ;									
	1.4 "Intellectua	al Property Rights" means any intelle	ctual property right record	gnised by lav	w, including any intellect	ual property	right protected through	legislation, such as that						
26	governing,	, but not limited to, copyright and pat	ents;											
27	1.5 "LEM" mea	ans the lifecycle emissions model wh	nich is the basis model fo	or GHGenius	;									
28	1.6 "Licensor"	means the Government of Canada,	the Minister of Natural F	Resources ar	nd includes any duly aut	horized offic	ers, representatives, en	nployees and agents.						
29	1.7 "Related I	Documentation" means the documer	nts, reports and studies v	vith respect	to GHGenius posted on	this website	;							
31	2 SUB-LICE	NCE GRANT												
33	2.1 Subject to	this Agreement Canada bereby gra	ints to the Licensee a no	n-exclusive	non-transferable rovati	free sub-lic	ence to use the Materia	al for personal purpose only						
34		and Agreement, Canada hereby gra		in cholusive,	non-transierable, royalt									
35	2.2 Canada pr	ovides limited personal permission f	or the Licensee to use th	ne Material.	The use of the Material i	s limited in t	hat you may not:							
36	2.2.1	Use, download or print Material for	commercial purposes si	uch as sellin	g, creating course packe	ets or postin	g information on Web s	ites.						
37	2.2.2	2 Make multiple copies, publish or di	stribute or transmit the M	Aaterial for p	ublic purposes.									
38	2.2.3	3 Modify, incorporate, translate, ada	pt, improve, further deve	lop, manufa	cture in whole or in part	the Material								
	2.2.4	Transfer or sublicense in whole or	in part, the Material or of	therwise ass	ign any rights under this	Agreement	to any third party witho	ut the written						
39		permission of the Licensor.		1	1 1	1	1							
40	2.2.5	5 Change or delete propriety notices	from Material.	ļ		Ļ								
	2.2.6	Post or transmit any unlawful, threa	atening, libelous, defama	tory, obscer	ne, scandalous, inflamm	atory, porno	graphic or profane mate	erial, any propriety						
41		Information belonging to others or	any material that could b	e deemed a	s or encourage criminal	activity, give	e rise to civil liability or c	otherwise violate the						
42	2.2.1	Use the web site in a manner con	trary to any applicable la	w.										
44	3 PROTECT	TION OF INITIAL HOLDER(S)												

Sheet A

	A	В	С	D	E	F	G	Н	I	J	K	L	М	Ν	0	Р	Q
10		3.1	The origina	al version of	GHGenius	was based ir	part on the	Lifecycle E	missions Mo	odel (LEM) d	eveloped by	Dr. Mark A.	Delucchi. II	nformation o	on the LEM c	an be	
40		3.2	This sub-lic	Delucchi's	web site (w	ww.its.ucd.e	Canada from	elucchi.ntm)	Concultante	I to and from	n S&T Saua	red Consulta	inte Inc				
48		3.3	The Licens	ee should as	sume that	evervthing s	een or read	on the Mate	erial is copyr	iahted unles:	s otherwise	noted.					
		3.4	The Licens	ee should er	sure that li	nitial Holders	, the Licens	or or the co	ntent origina	tor have give	en their writt	en permissio	on to the Lic	censee to all	ow reproduc	tion of their	
49			information	l.													
50		3.5	The name	of an Initial H	lolders sha	II NOT be us	ed for any p	urpose with	out specific	prior written	authorizatio	n of the Initia	al Holders o	r the Licenso	or.		
51		3.0	right title a	nd interest t	herein or th	ereto excent	as express	lne Material lv set forth i	snall at all ti n this Adree	mes remain ment	with the initi	al Holders of	the Licens	or. The Lice	insee shall h	ave no	
• •		3.7	The Intellec	ctual Propert	y Rights ari	sing from an	y modificati	on, improve	ment, devel	opment, ada	ptation or tra	anslation of a	ny part of t	he GHGeniu	us or from the	е	
			manufactur	re of GHGen	ius or Deriv	ative Produc	cts, effected	by or for th	e Initial Hold	ers, the Lice	ensor or the	Licensee sha	all be vested	d in the Initia	al Holders or	the	
52		0.0	Licensor or	in such per	son as the l	nitial License	ors or the Li	censor shall	decide.						D M M M M M	00.411/	
		3.8	IN NO EVE	NI SHALL	I HE INITIA						T, INDIREC			EQUENTIAL	. DAMAGES, SE DATA (, OR ANY סר	
			PROFITS:	OR BUSINE	SS INTERF	RUPTION) H	OWSOEVE	R CAUSED	AND ON AI	NY THEORY	OF LIABILI	TY, WHETH	ER IN AN A	ACTION OF	CONTRACT	, STRICT	
			LIABILITY,	OR TORT (INCLUDING	G NEGLIGEN	NCE OR OT	HERWISE)	ARISING IN	ANY WAY	OUT OF OF		CTION WIT	TH THE MAT	TERIAL OR 1	THE	
53			USEOF TH	E MATERIA	L, EVEN IF	ADVISED (OF THE POS	SSIBILITY C	OF SUCH DA	MAGE.	1				1	1	
54		4	OBLIGATI	ONS OF TH	E LICENSE												
56		4.1	The Licens	ee shall be r	esponsible	TOP ODtaining	all that is re	equired to ru	In GHGeniu	5. Jation includi	na namo lor	agnization p	ame and a	-mail addres	e in order to	facilitato	
57		7.2	communica	ation of infor	mation relat	ing to the Ma	aterial.				ng name, u	gamzation II	anie, anu e				
		4.3	The Licens	ee shall not	make any s	tatement or	representati	ion indicatin	g that the Li	censor endo	rses or appr	oves any rec	commendat	ion, study, re	eport, produc	ct, service	
58			or other co	urse of actio	n as a resu	It of the Lice	nsee's use o	of the Mater	al.	1		,			1	1	
60		5	MAINTENA	ANCE AND S	SUPPORT												
01		5.1	It is unders	tood and ag	reed that th	e Licensor is	under no o	bligation to	provide sup	port for insta	llation, conv	ersion, trainii	ng, technica	al support, m	naintenance	services,	
62			update serv	vices, notice	s of latent c	lefects, or co	prrection of o	defects for C	HGenius.			,	0,				
64		6	DISCLAIM	ERS, WARR	ANTY, LIA	BILITY											
00		6.1	GHGENIUS	S IS SUB-LIC	CENSED O	N AN "AS IS	" BASIS AN	D THE LICE	ENSOR MA	ES NO GU	ARANTEES.	REPRESEN	ITATIONS.	OR WARRA	ANTIES OF	ANY KIND	
			RESPECTI	ING GHGEN	IUS AND T	HE MATERI	AL, EITHER	REXPRESS	OR IMPLIE	D, ARISING	BY LAW OF	R OTHERWI	SE, INCLU	DING BUT N	NOT LIMITE	D TO	
66			USEFULNE	ESS, NOVEL	TY, SCOP	E, EFFECTI	VENESS, C	OMPLETEN	IESS, ACCL	JRACY, OR	FITNESS FO		CULAR PU	RPOSE.			
67		6.2	The views and shall no	and opinions	s on the Ma	terial are the	f the service	opinions of t	ne individua	author(s) o	f the docum	ents and do	not necessa	arily state or	reflect those	e of Canada	
07		6.3	Reference	herein to an	y specific co	ommercial pr	oducts, pro	cess, or ser	vice by trade	e name, trade	emark, man	ufacturer, or	otherwise,	does not nee	cessarily cor	nstitute or	
68			imply its en	dorsement,	recomment	dation, or fav	ouring by C	anada.									
69		6.4	The Licens	or does not	ensure or w	arrant comp	atibility with	past, currer	nt or future v	ersions of yo	our browser	or computer	to access t	he Material.			
		6.5	iniury or da	or snall not i mages dire	of indirect	t which may	iy claim, der / result from	the License	on, irrespec		ature of the (f GHGenius	or any conte	ciaim, dema	web site Ca	n alleging an anada shall n	ly IOSS, not be liable	
70			in any way	for loss of re	evenue or c	ontracts, or a	any other co	nsequential	loss of any	kind resulting	g from any d	efect in GHG	Genius.	web site. Of			
71		6.6	The Licens	or does not	assume an	y legal liabilit	y or respons	sibility if it is	determine t	hat the use o	of GHGenius	infringe priv	ately owne	d rights.			
70		6.7	The Licens	ee shall hav	e no recour	se against C	anada, whe	ther by way	of any suit of	or action, for	any loss, lia	bility, damag	e or cost th	hat the Licen	see may suf	fer or incur	
12		6.8	THE LICEN	SEE SHALL	DEFEND	AT ITS OWN	SSION OF USE	ANY CLAI	A SUIT OR	PROCEEDI	NGS BROU	GHT AGAIN	ST THE LIC	CENSEE CA		THE	
73		0.0	LICENSOR	, INSOFAR	AS IT ARIS	ES FROM L	ICENSEE'S	USE OF TH	HE MATERI	AL AND SHA		IFY AND HO	OLD CANA	DA AND TH	E LICENSOF	R	
75		7	TERM														
70		7 1	This Agree	ment is effer	tive as of t	he date and	time of acce	entance (Fa	stern Stands	ard Time) an	d shall rema	in in force ur	ntil terminat	ed as follows	s.		
<u> </u>		7.1	7.1.1	Automatica	lly and with	out notice, if	the License	e commits o	or permits a	breach of an	y of its cove	nants or obli	gations und	der this Agre	ement and t	he breach	
78				is not corre	cted to the	satisfaction of	of the Minist	er within ter	n (10) days a	fter the Mini	ister gives th	ie Licensee r	notice in wr	iting of the a	llegation of a	a breach.	
70			7.1.2	Upon writte	n notice of	termination a	at any time,	by any Part	y. Where the	e notice is se	ent by the Lie	censee, such	terminatio	n shall take	effect thirty (30) days	
79 80			713	Upon mutu	al agreeme	naua of such	inouce.										
			7.1.4	Upon the te	ermination f	or whatever	reason of th	is Agreeme	nt, the Licen	see's obligat	tions under s	section 6 sha	all survive a	nd the Licen	see's rights	under	
81				section 2 sl	nall immedia	ately cease.		-		5							
00		7.2	Immediatel	y upon the te	ermination f	for whatever	reason of th	nis Agreeme	nt, the Licer	see shall de	elete or destr	oy all Materia	al acquired	under this A	greement in	nmediately	
02 00		-	anu ensure	i inal ine Ma	terial conta	med on any	media IN LIC	ensee's pos	session nas	Deen comp	etely erased		e destroyed	ı.			
84		8	DESTRUC	TION													
86		8.1	Prior to dis	posing of an	y media, Li	censee shall	ensure that	any Materia	al contained	on such mee	dia has beer	completely	erased of o	therwise des	stroyed.		
88		9	GENERAL	CONDITIO	NS												
90		9.1	No membe	r of the Hous	se of Comm	nons or the S	Senate shall	be admitted	to any shar	e or part of t	his Sub-lice	nce agreeme	ent or to ber	nefit to arise	herefrom.		
		9.2	No former p	public office	holder who	is not in con	pliance with	n the post-e	mployment p	provisions of	the Conflict	of Interest a	nd Post-Err	ployment C	ode for Publi	ic Office	
91			Holders or	the Values a	Ind Ethics C	ode for the	Public Servi	ce apply, sh	all derive a	direct benefit	t from this A	greement.					
93		10	NOTICES					<u> </u>						<u> </u>			

3/24/2011 - 10:10 AM

Sheet A

	Δ	В	C	D	F	F	G	н	1	.1	к	1	М	N	0	Р	0
		10 1		demands ar	d other cor	munications	s hereunder	shall he in v	writing and s	hall he deer	med to have	heen duly a	iven if deliv	ered by hand	d or if sent h	v first class	<u> </u>
05		10.1	All Holices,	il or faccimil		munications	silereunder	Shall be in	witting and 3		neu to nave	been duly g		ered by hand		y mat class	
90			prepaid ma		е.	1					1			1	1		
97			To Licenso	r:													
98			Natural Res	sources Can	ada												
99				Office of Er	nergy Efficie	ncy											
100				Derek McC	ormack												
101				580 Booth	St.												
102				Ottawa, On	tario												
103				K1A 0E4													
101			To Lineare														
105			To License	e:													
107				At the addr	ess provide	d upon regis	tration.										
100		44															
109			APPLICAB														
		11.1	This Agree	ment shall b	e construed	and enforce	d in accorda	ance with, a	nd the rights	of the Parti	ies shall be g	overned by	, the laws of	f Ontario and	d Canada as	applicable.	
111			The Parties	attorn to th	e jurisdictio	n of the Supe	erior Court o	f the Provin	ice of Ontari	0.							
140		40		OFFMENT								-					
113		12	ENTIRE AG	SREEMENT	1												
		12.1	This Agree	ment constit	utes the ent	ire agreeme	nt between t	the parties v	with respect	to its subjec	t matter. Thi	s Agreemer	nt may only	be amended	l in writing, s	igned by	
115			both parties	s, which exp	ressly states	s the intentio	n to amend	this Agreen	nent.	-						-	
117		40			N			-									
11/	<u> </u>	13	DISFULE		/1N		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>		
		13.1	If a dispute	arises conc	erning this A	Agreement, t	he parties s	hall attempt	to resolve th	ne matter fir	st, by negoti	ation; secon	id, by media	ation by a mu	utually accep	table	
			mediator; a	nd, failing th	ese, the dis	pute shall be	e finally settle	ed by bindir	ng arbitration	in accordar	nce with the	rules of the	Commercia	I Arbitration	Act (Canada	a), and	
119			judgement	upon the aw	ard rendere	d by the arb	itrators may	be entered	in any court	having juris	diction over	the matter.					
104					TEDMO C					07							
121		14	ACCEPTA	NCE OF TH	ETERMSC	F THIS AGE	REEMENI										
122																	
123		<u>GHGeniu</u>	<u>s Website</u>														
124																	
125																	
126																	
127																	
128			Δ			SHEETS IN	THE SPRE										
120																	
120			Input Cost														
130			Input Cost									VEINE33					
131		L	<u>nergy Balanc</u>	<u>e</u>	PRIMARY			D BREAKD	OWN OF SE		ENERGY						
132			<u>_</u>		COMPLET		LE EMISSIC	JNS FROM	ELECTRICI	TY GENER			TO				
133		Upst	ream Results	HHV	GRAMS/G	JFUELCYCL		NS (HHV),	EXCLUDING	SEND USE	(CALCULA	ED RESUL	.15)				
134		Ups	tream Results	LHV	GRAMS/G	JFUELCYCL		NS (LHV),	EXCLUDING	END USE	(CALCULA I	ED RESUL	IS)				
135		L	ifecycle Resu	<u>ts</u>	CO2-EQUI	VALENT EM	IISSIONS, B	Y VEHICLE	E/FUEL AND	STAGE							
136		Lit	ecycle Result	<u>s 2</u>	CO2-EQUI	VALENT EM	IISSIONS, B	Y VEHICLE	FUEL AND	STAGE							
137			<u>AD</u>		SUMMARY	OF PERCE	NTAGE CH	ANGES									
138			LDV Summ		LIGHT DU	TY VEHICLE	S: SUMMA	RY OF GRE	ENHOUSE	AND NON-0	GREENHOU	SE GAS EN	ISSIONS,	g/km			
139			HDV Summ		HEAVY DU	ITY VEHICLI	ES: SUMMA	RY OF GR	EENHOUSE	AND NON-	-GREENHOU	JSE GAS EI	MISSIONS,	g/km			
140			CostLDV		COST-EFF	ECTIVENES	SS FOR LIG	HT-DUTY V	/EHICLE AL	TERNATIVE	S						
141			CostHDV		COST-EFF	ECTIVENES	SS FOR HEA	AVY-DUTY	VEHICLE AL	TERNATIV	ES						
142		S	ensitivity Solv	er	SENSITIVI	TY SOLVER											
143		-	Monte Carlo		MONTE C/	ARLO					1				1		
144			Printina		PRINTING						1			1	1		
145			B		TARGET Y	EAR, COUN	TRY, CO2-	EQUIVALFI		RS (CEFs)	1			1	1		
146			<u> </u>		ELECTRIC	ITY GENER	ATION FFF	ICIENCY 4	AND TYPES		ISED			1	1		
147			F			FRISTICS	FFUELS	SASES AND		CKS							
1/12			<u> </u>					OCK AND	FUELOVOU						1		
140			<u> </u>					M/NI LIGE	- OLLOTOL					+	+		
149			<u> </u>						10		1				1		
150	-		AA						0N 4000 001	-	+				+		
151					U.S.PEIF		PPLY AND	UISPUSITIO	UN 1990-20	00					1		
152			<u>Z</u>		FLOW OF	PEIROLEU		ATION OF	I ONNE-KM)	-			-	-		
153			<u>G</u>		REFINERY	ENERGY U	ISE and EM	ISSIONS		L	1				1		
154			<u>R</u>		NATURAL	GAS AND N	ATURAL G	AS LIQUIDS	SUPPLY A	ND DISPOS	SITION						
155			Q		COAL MIN	ING AND OV	WN USE; M	ETHANE FF	ROM COAL	MINES	1				1		
156			<u>P</u>		URANIUM	AND NUCLE	EAR POWER	۲									
157			<u>0</u>		ADJUSTM	ENTS TO CA	ALCULATIO	N OF ENEF	RGY USED 1	O RECOVE	ER FEEDST	OCKS AND	RAIL TRAN	ISIT			
158			V		PRODUCT	ION OF BIO	MASS		1		1			1	1		
159			W		FERTILIZE	R MANUFA	CTURE, API	PLICATION	; NUTRIENT	LOSS; LAN	ND USE						
160			Y		EMISSION	S DISPLACE	ED BY CO P	RODUCTS	OF FUEL P	RODUCTIO	N PROCES	SES			1		
161			Sequestration	1	SEQUEST	RATION INP	UTS					-		1	1		
162			Х	1	PRODUCT	ION OF AI T	ERNATIVE	FUELS							1		
		1							1				1			i	

	A	В	С	D	E	F	G	н	1	J	K	L	M	N	0	Р	Q
163			<u>1</u>		SECONDA	RY ENERG	Y-USE INTE	ENSITY AND	SECONDA	RY ENERG	Y-USE BY 1	TYPE OF FL	JEL				
164			<u>U</u>		TRANSPOR	RT OF FEE	DSTOCKS,	FUELS, VEI	HICLES, ET	C.							
165			<u>N</u>		EMISSION	FACTORS	FOR TRAIN	S, TANKER	S, REFINEF	RIES, METH	ANOL PLAN	NTS, GAS C	OMPRESS	ORS, ETC.			
166			AB		ENERGY U	SE AND EN	AISSIONS A	T SERVICE	STATIONS	, INCLUDIN	IG ENERGY	TO COMPI	RESS OR LI	IQUEFY GA	SEOUS FUE	ELS	
167			<u>C</u>		VEHICULA	R ENERGY	USE										
168		<u>E</u>	khaust Emissi	<u>ons</u>	MOTOR-VE	EHICLE EM	ISSIONS: IN	IPUT DATA	AND RESU	LTS FOR: \	Western Car	nada					
169			L		MATERIAL	S USED IN	VEHICLES										
170			M		EMISSION	S FROM VE	HICLE ASS	EMBLY ANI	D MATERIA	LS MANUFA	ACTURE; IN	DIRECT EN	IERGY USE	FOR TRAIN	NS, SHIPS, "	TRUCKS, E	TC.
171			Defaults		DEFAULT \	ALUES US	SED TO INIT	IATE MODE	EL INPUT SI	HEET (**DC	D NOT INPU	T SCENAR	IO DATA IN	TO THIS SH	IEET**)		
172			Macros		MACROS												
173			Glossary		GLOSSAR	Y OF ABBR	EVIATIONS										

Sheet A

3/24/2011 - 10:10 AM