PRIMUS POWER

CEC COMMITTEE WORKSHOP

July 13, 2010 Tammie Candelario

Wind Firming EnergyFarm PRIMUS POWER

- 1. Scope
- 2. Value proposition
- 3. System description
- 4. Timing/deliverables
- 5. Funding
- 6. Expected outcomes
- 7. Challenges
- 8. Do differently?

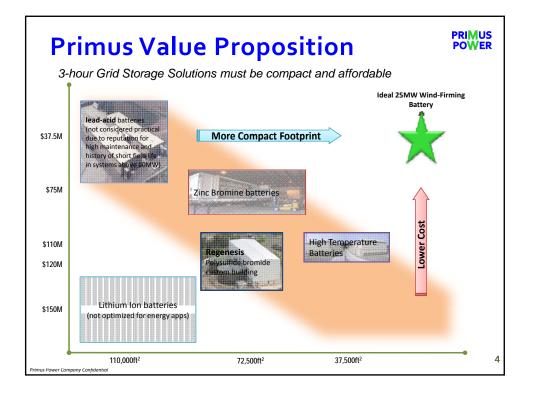
Primus Power Company Confidentia

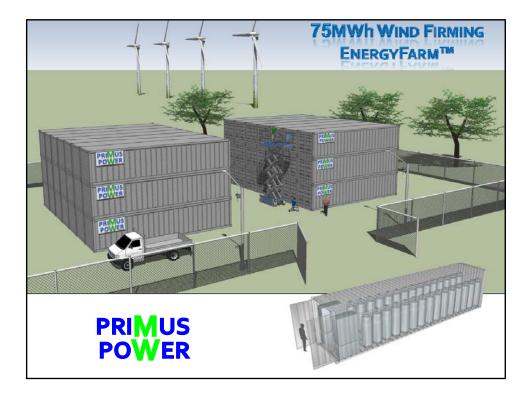
DOCKET

10-IEP-1F

DATE

RECD. <u>JUL 14 2010</u>


2


Scope

PRIMUS POWER

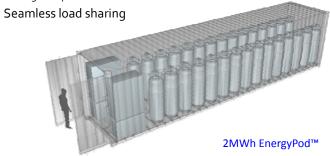
- Development, integration, and field deployment of zinc flow battery storage system
 - ✓ Cell and system development in 2010 2011
 - ✓ Field demo at PG&E Modular Generation Test Facility early 2012
 - √ 25 MW/ 75 MWh installation at Modesto Irrigation District late 2012
- \$46.7M in total project funding
- Primary application: wind firming
- Lower cost, smaller footprint solution
- Local sourcing and manufacturing

Development History

PRIMUS POWER

- Mature electrochemistry through 15 years of well-funded work by the Electric Power Research Institute on large-scale Zn-Cl₂ systems in the 70's & 80's
 - » 125kW/6ookWh system built by EDA in the early 8o's
 - » EPRI designed a complete 100MWh system
 - » CEC funding enabled proof-of-concept of current version of the technology

3MW EPRI System Design


6

EnergyPods™ & EnergyFarms™

PRIMUS POWER

"Plug & Play" EnergyPods™ create EnergyFarms™

- ▶ 66okW / 2MWh per 4o' ISO
 - .
- > Substation applications
- ≥ 2x16 EnergyCells™ in series
- > 200MW/acre & 600MWh/acre
- > 750 1000 V_{DC}; 500A_{DC}
- > 480V_{AC}/3-phase integration
 - \checkmark single-step conversion

Primus Power Company Confident

7

WFEF Schedule

PRIMUS POWER

Major Milestones Commissioned $\mathsf{EnergyFarm}^{\mathsf{TM}}$ Detailed EnergyFarm™ Final EnergyFarm™ $Validated\,EnergyPod^{TM}$ Quantified economic customer specification product design and technology performance benefits Validated EnergyCell™ functionality Quantified envir. benefits technology performance Final report

Primus Power Company Confidenti

8

WFEF Status To Date

PRIMUS POWER

> Technical

- ✓ Optimizing chemical and electrical operating parameters to improve efficiency and energy density
- ✓ Evaluating new commodity materials to optimize reliability and battery life
- ✓ Out-sourcing non-cell components to reduce technical and schedule risk

Overall

- ✓ Metrics and Benefits Reporting Plan work initiated
- ✓ Detail Requirements Specification underway
- ✓ Four patents filed with several in progress
- \checkmark Facility move in planning stages; expected move in August

Primus Power Company Confidention

9

State & Federal Funding

- >Primus Power received one of sixteen DOE Smart Grid Storage Demonstration Awards (\$14M of an overall \$47M project)
 - ✓ Enables 3-year roadmap to commercialization
 - ✓ Additional DOE (ARPA-E) application submitted to evaluate
 alternative electrode materials
- ➤ Primus Power received one of five CEC PON-08-011 Smart Grid Demonstration awards
 - ✓ Follow-on contribution to original CEC grant funding
 - ✓ Provides support for EnergyCellTM and production process development

Funding	(\$M)
DOE	14
CEC	1
Primus	32.7
TOTAL	47.7

10

Expected Outcomes

PRIMUS POWER

- Deployment of affordable, reliable energy storage technology with quantified benefits
- Over 100 high tech and manufacturing jobs created
- Acceleration of cost-effective renewables integration in wind firming application
- Reduction in greenhouse gases
- Other benefits as identified through modeling studies with MID

Primus Power Company Confidentia

11

Challenges

≻Cost

- ✓ Production facility design and build
- ✓ Component materials costs

≻Technical

- ✓ Materials stability over the life of the battery
- ✓ Effective thermal modeling and thermal management
- ✓ Automation and communications within a utility environment

≻Resources

- √ Availability of/access to technical team
- √ Lab/equipment availability

12

Do Differently?

PRIMUS POWER

> Primus

- ✓ DOE funding is critical to timely development!
- ✓ ARPA-E future opportunity
- ✓ Streamline internal processes for acquiring funding

➤ CEC

- ✓ Continue aligning funding opportunities to DOE programs; creates easier access to and administration of funding
- ✓ However, CEC component could focus on earlier deliverables and be shorter in duration
- ✓ Provide clarity re reviewers and level of detail needed in light of confidential nature of the information

13