

DOCKET

10-IEP-1F

JUL 13 2010

L.A	SMUD's FOA 58	Submi	ttal			
T	Table 1. Cos	ts of SmartSaci	amento Projec	ct by Task (in m	nillions)	
	Project Tasks	2009 (Pre-Award)	2010 (Year One)	2011 (Year Two)	2012 (Year Three)	Total Project Costs
	Task 1: AMI/Smart Meters	\$15.6	\$84.5	\$26.2	\$0.0	\$126.3
	Task 2: Dynamic Pricing	\$0.0	\$8.0	\$4.0	\$4.0	\$16.0
	Task 3: Demand Response	\$0.0	\$8.4	\$16.3	\$23.0	\$47.7
	Task 4: Customer Applications					
	CA DGS	\$0.0	\$8.3	\$8.3	\$8.3	\$24.9
	CSUS	\$0.0	\$2.8	\$2.8	\$2.8	\$8.4
		\$0.0	\$3.1	\$3.1	\$3.1	\$9.3
	Task 5: Distribution Automation	\$0.0	\$20.5	\$25.5	\$23.0	\$69.0
	Cyber Security	\$0.0	\$3.0	\$1.5	\$1.0	\$0. I
	Total Project Costs	\$15.6	\$138.6	\$87.7	\$65.8	\$307.7

Demand Response

- ♦ Automate DR
- SMUD will provide up to 20,000 residential and small commercial customers with enabling technologies (such as home energy management systems) that allow them to participate in direct load control and pricing programs

 SMUD will work with medium and large commercial customers to provide technical assistance and enabling technology that allows them to automatically respond to peak prices by reducing load

- Implement programmable controllable thermostats, home area networks and controllable appliances
- Provide near real time energy use data in multiple formats
- Auto DR for commercial customers

	Electric \	/ehic	le Infr	rastru	lcture	<u>)</u>	
	 Install 180 s Resident Commer Public/fle Test impact 	smart c ial cial eet is on th	harging ie grid	statior	IS		
		Year	PHEV	BEV	% Sac	Load	Energy
		2015	9,225	1,045	0.3	35MW	53 GWh
		2020	47,940	2,357	1.4	164MW	144 GWh
		2025	148,108	16,322	12.2	566MW	495 GWh
<u>Sk</u>		2030	282,524	33,481	30.3	1,097MW	956 GWh

ALAR.	Expected Outcomes			
K	♦ Job creation	TBD		
	 Energy Savings 	TBD		
	♦ Greenhouse Gas Reduction	TBD		
	♦ Others—			
M	 Enhance utility infrastructure Add transparency and control Promote increased customer engagement 			
Ŵ	 Reduce peak load Improve energy efficiency 	nage their chergy usage		
	 Promote distributed generation Improve air quality Integrate intermittent renewable resource 	ces		

	Challenges
T	AMI issues across California
	Customer acceptance
	Communication
	 Emerging technologies in the marketplace – customer
	confusion/reliability of new technologies
	 Lack of standards
	 Resource challenges – equipment, staffing
	 Federal requirements – contracting, reporting
	 Short time frame for delivery (3 years)

