

June 21, 2010

Dockets Unit California Energy Commission 1516 Ninth Street, MS 4 Sacramento, CA 95814

> RE: Hydrogen Energy California Project Application for Certification 08-AFC-8

On behalf of HECA LLC, the applicant for the above-referenced Hydrogen Energy California AFC, we are pleased to submit one print copy and one CD of the enclosed document:

 Response to the April 12, 2010 CEC Data Response and Issues Resolution Workshop, Request No. 40

Additionally we are providing the enclosed DVD containing air quality modeling files to the CEC.

In accordance with the CEC's Filing and Electronic Document Directives for this project, the enclosed document is being provided to individuals on the Proof of Service list on CD because the size of the electronic document may prevent reliable email service and the printed document exceeds 50 pages. A paper copy of the document can be provided upon request to me at 415-243-3708 or <a href="mailto:document-document

The enclosed document is being submitted to the CEC for docketing.

URS Corporation

Dale Shileikis

Vice President, Environmental Services

Enclosures

CC: Rod Jones (w/o enclosure)

URS Corporation Post Montgomery Center One Montgomery Street, Suite 900 San Francisco, Ca 94104-4538 Tel: 415.896.5858 Fax: 415.882.9261 www.urscorp.com 3-1-80

BEFORE THE ENERGY RESOURCES CONSERVATION AND DEVELOPMENT COMMISSION OF THE STATE OF CALIFORNIA 1516 NINTH STREET, SACRAMENTO, CA 95814 1-800-822-6228 – WWW.ENERGY.CA.GOV

APPLICATION FOR CERTIFICATION FOR THE HYDROGEN ENERGY CALIFORNIA PROJECT Docket No. 08-AFC-8

PROOF OF SERVICE LIST (Rev. 5/10/10)

APPLICANT

Gregory D. Skannal
Tiffany Rau
Rick Harrison
Hydrogen Energy International LLC
One World Trade Center, Suite 1600
Long Beach, CA 90831
gregory skannal@hydrogenenergy.com
tiffany.rau@hydrogenenergy.com
rick.harrison@hydrogenenergy.com

Asteghik Khajetoorians, Senior BP Legal Attorney BP America, Inc. 6 Centerpointe Drive, LPR 6-550 La Palma, CA 90623 Asteghik Khajetoorians@bp.com

APPLICANT'S CONSULTANT

Dale Shileikis, Vice President Energy Services Manager Major Environmental Programs URS Corporation 221 Main Street, Suite 600 San Francisco, CA 94105-1917 dale shileikis@urscorp.com

COUNSEL FOR APPLICANT

Michael J. Carroll Latham & Watkins, LLP 650 Town Center Drive, 20th FI. Costa Mesa, CA 92626-1925 michael.carroll@lw.com

INTERESTED AGENCIES

California ISO e-recipient@caiso.com

INTERVENORS

Tom Frantz
Association of Irritated Residents
30100 Orange Street
Shafter, CA 93263
tfrantz@bak.rr.com

Kern-Kaweah Chapter of the Sierra Club Babak Naficy Law Offices of Babak Naficy 1504 Marsh Street San Luis Obispo, California 93401 babaknaficy@sbcglobal.net

*Environmental Defense Fund (EDF) Timothy O'Connor, Esq. 1107 Ninth St., Suite 540 Sacramento, CA 95814 toconnor@edf.org

ENERGY COMMISSION

JAMES D. BOYD Vice Chair and Presiding Member jboyd@energy.state.ca.us

JEFFREY D. BYRON Commissioner and Associate Member jbyron@energy.state.ca.us

Raoul Renaud Hearing Officer rrenaud@energy.state.ca.us

Kristy Chew Adviser to Commissioner Boyd kchew@energy.state.ca.us

Rod Jones Project Manager rjones@energy.state.ca.us

Lisa De Carlo Staff Counsel Idecarlo@energy.state.ca.us

Jennifer Jennings
Public Adviser's Office
publicadviser@energy.state.ca.us

DECLARATION OF SERVICE

I, Dale Shileikis, declare that on June 18, 2010, I served and filed copies of the attached <u>Response to the April 12, 2010 CEC Data Response and Issues Resolution Workshop, Request No. 40</u>, dated <u>June</u>, 2010. The original document, filed with the Docket Unit, is accompanied by a copy of the most recent Proof of Service list, located on the web page for this project at: [www.energy.ca.gov/sitingcases/hydrogen_energy].

The documents have been sent to both the other parties in this proceeding (as shown on the Proof of Service list) and to the Commission's Docket Unit, in the following manner:

(Check all that Apply)

	FOR SERVICE TO ALL OTHER PARTIES:
	sent electronically to all email addresses on the Proof of Service list
Χ .	by personal delivery or by depositing in the United States mail at <u>San Francisco, CA</u> with first-class postage thereon fully prepaid and addressed as provided on the Proof of Service list above to those addresses NOT marked "email preferred."
AND	
	FOR FILING WITH THE ENERGY COMMISSION:
X	sending an original paper copy and one electronic copy, mailed and emailed respectively, to the address below (<i>preferred method</i>);
OR	
	depositing in the mail an original and 12 paper copies, as follows:

CALIFORNIA ENERGY COMMISSION

Attn: Docket No. <u>08-AFC-8</u> 1516 Ninth Street, MS-4 Sacramento, CA 95814-5512

docket@energy.state.ca.us

I declare under penalty of perjury that the foregoing is true and correct.

Da Allakas

Response to the April 12, 2010 CEC Data Response and Issues Resolution Workshop Request No. 40

Revised
Application for Certification
(08-AFC-8)
for
HYDROGEN ENERGY CALIFORNIA
Kern County, California

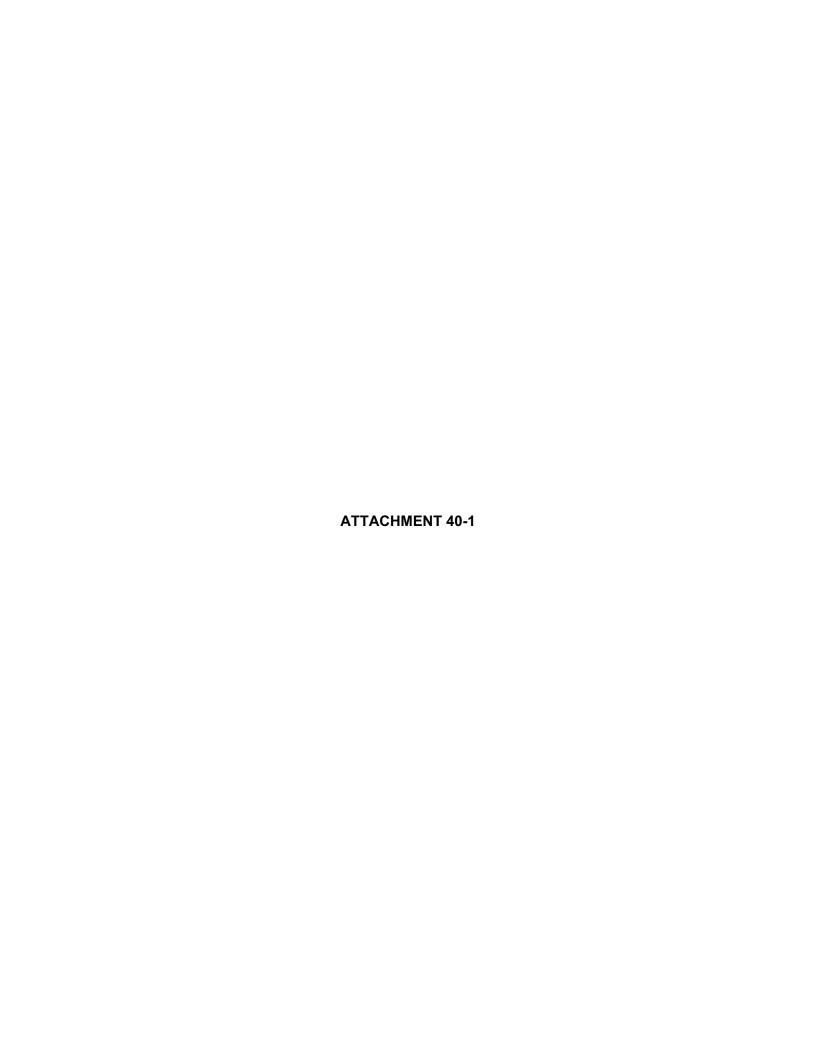
Prepared for:

Hydrogen Energy International LLC

Submitted to:

California Energy Commission

Technical Areas: Air Quality and Public Health


Technical Leads: William Walters and Dr. Alvin Greenberg

WORKSHOP REQUEST

40. Subsequent to the Workshop, CEC staff requested a summary of the refinements that have occurred to the modeling for air quality and public health since the submittal of the AFC Amendment, details on how the emissions from each source changed, and a DVD of the modeling files.

RESPONSE

The information is provided in Attachment 40-1 and on the accompanying DVD.

1	Introduction	1- 1
2	Project Description Change	2- 1
	2.1 Combustion Turbine Generator/Heat Recovery System Generator	
	2.2 Gasification Flare	2-1
	2.3 Sulfur Recovery Unit Flare	2-1
	2.4 Gasifier Refractory Heaters	2-1
	2.5 Auxiliary Boiler	
	2.6 Tail Gas Thermal Oxidizer	
	2.7 Diesel Emergency Generators	
	2.8 Diesel Emergency Fire Water Pump	
	2.9 Carbon Dioxide Vent	
	2.10 Fugitive Emissions	
	2.11 Operations and Maintenance Vehicles	2-2
3	Environmental Consequences	3-3
	3.1 Air Quality	3-3
	3.1.1 Construction Emissions	3-3
	3.1.2 Operational Emissions	
	3.1.3 Dispersion Modeling	
	3.1.4 Compliance with Ambient Air Quality Standards	
	3.1.5 Impacts on Air Quality Related Value in Class I Areas	
	3.2 Public Health	
	3.2.1 Construction Emissions	
	3.2.2 Operations Emissions	
	3.2.3 HRA Modeling	
	3.2.4 HRA Model Results	3-19
4	References	4-1
TABLES		
Table 1	Total Combined Annual Criteria Pollutant Emission	
Table 2	Maximum CTG/HRSG Operating Schedule	
Table 3	Criteria Pollutant Sources and Emission Totals for the Worst-Case CTG Emiss Scenario for All Averaging Times	ions
Table 4	Average Annual Emissions per Turbine Operating Scenario	
Table 5	Planned Annual Gasifier Flare Usage	
Table 6	Emissions Factors for NO ₂ and CO and Associated Emissions	
Table 7	Fugitive Emission Factors, Control Efficiencies for LDAR Program and Compo Count	onent
Table 8	AERMOD Modeling Results for Project Operations (All Project Sources Comb	ined)
Table 9	PSD Class I Increment Significance Analysis – CALPUFF Results	
Table 10	Visibility Analysis – CALPUFF Results	
Table 11	Total Nitrogen and Sulfur Deposition Analysis – CALPUFF Results	
Table 12	Estimated Cancer Risk, Acute and Chronic Non-Cancer Total Hazard Index Du HECA Operations	e to

APPENDICES

Appendix A	HECA Operational Criteria Pollutant Emissions
Appendix B	HECA Operational Greenhouse Gas Emissions
Appendix C	HECA Operational Toxic Air Contaminant Emissions
Appendix D	CALMET/CALPUFF Air Quality Modeling Results

ACRONYMS

AAQS Ambient Air Quality Standards
AFC Application for Certification
AQRV Air Quality Related Values
BACT best available control technology

CAAQS California Ambient Air Quality Standards

C₃H₆ propylene

CEC California Energy Commission

CH₃OH methanol

CO carbon monoxide
CO₂ carbon dioxide
COS carbonyl sulfide
CT combustion turbine

combustion turbine generator CTG DPM diesel particulate matter ٥F degrees Fahrenheit General Electric GE greenhouse gas GHG grams per second g/shydrogen sulfide H_2S hydrogen cyanide HCN

HECA Hydrogen Energy California

HHV higher heating value

hr hours

HRA Health Risk Assessment
HRSG heat recovery system generator

K Kelvin

lbs/MWhpounds per megawatt hourLDARleak detection and repairLHVlower heating valueMDEAmethyl diethanolamine

MEIR maximally exposed individual resident MEIW maximally exposed individual worker

μg/m³ micrograms per cubic meter

MMBtu/hr million British thermal units per hour

MW megawatts

NAAQS National Ambient Air Quality Standards

NAD North American datum

NESHAPS National Emission Standards for Hazardous Air Pollutants

NH₃ ammonia

NO₂ nitrogen dioxide NO_X nitrogen oxide

O&M operation and maintenance OLM ozone-limiting method

PDOC preliminary determination of compliance

 PM_{10} particulate matter less than 10 microns in diameter $PM_{2.5}$ particulate matter less than 2.5 microns in diameter

ppb parts per billion ppm parts per million

ppmv parts per million by volume ppmvd parts per million volumetric dry PSD Prevention of Significant Deterioration

PVMRM plume volume molar ratio method Revised AFC Revised Application for Certification

SCR selective catalytic reaction SILs Significant Impact Levels

SJVAPCD San Joaquin Valley Air Pollution Control District SOCMI Synthetic Organic Chemical Manufacturing Industry

 SO_2 sulfur dioxide SO_X sulfur oxides SRU sulfur recovery unit

TAC toxic air contaminant
TGTO Tail Gas Thermal Oxidizer

USEPA U.S. Environmental Protection Agency

VOC volatile organic compound

During the process of developing the San Joaquin Valley Air Pollution Control District (SJVAPCD) air permit, Hydrogen Energy California (HECA) engineers revised a few of the Project operating conditions described in the Revised Application for Certification (AFC) and subsequent Amendment to the Revised AFC. This document outlines how these Project refinements affect the air quality emissions and subsequent air quality impact analysis. These refinements are reflected in the air permit preliminary determination of compliance (PDOC) created by the SJVAPCD.

The refinements primarily reflect the need for more startups and shutdowns to account for offline turbine washing that are recommended by General Electric (GE) for maintenance, along with ancillary activities during those washes.

This document provides a detailed discussion of the refinements. Tables and figures that have been changed as a result of these refinements are included in this document.

These refinements modify emissions rates, but do not fundamentally alter the nature of the Project, nor do they affect the proposed capture and sequestration of Project carbon emissions. This attachment describes the Project refinements and analyzes whether or not they result in any new significant impacts. The emissions of criteria pollutants, toxic air contaminants, and greenhouse gases (GHG) increase as a result of Project refinements. However, the AERMOD and HARP modeling results demonstrate that the Project refinements are expected to remain less than significant.

The Project refinements primarily consist of modifications associated with the need for more startups and shutdowns to account for the offline turbine washing that is recommended by GE for maintenance.

The refinements would not result in changes to the amount of power produced, the plot plan, schedule, workforce, traffic, or construction equipment use.

The Project refinements examined in this document are outlined below for each affected source.

2.1 COMBUSTION TURBINE GENERATOR/HEAT RECOVERY SYSTEM GENERATOR

To account for the combustion turbine generator (CTG) washes and other possible maintenance, 10 hot startups were added. Thus, the number of startups and shutdowns was refined to:

- Cold startups = 10 per year
- Hot startups = 20 per year
- Shutdowns = 30 per year
- Normal Operations with Duct Burning = 8,257 hours per year
- Total Hours of operations = 8,322 hours per year (95 percent)

In the Revised AFC and subsequent Amendment to the Revised AFC, a duct burner heating value of 500 million British thermal units (MMBtu) per hour (hr) was incorrectly used as the higher heating value [HHV] in the emission calculations. However, that value is actually the lower heating value (LHV). The calculations have been revised to use the correct duct burner heating value of 550 MMBtu/hr HHV. This resulted in the CTG/heat recovery system generator (HRSG) hourly emissions to increase slightly for sulfur dioxide (SO₂) when firing natural gas, and all pollutants except for particulate matter less than 10 microns in diameter (PM₁₀)/particulate matter less than 2.5 microns in diameter (PM_{2.5}) when cofiring natural gas and syngas.

The worst-case daily emissions were estimated based on a maximum of one cold startup, one hot startup, and one shutdown, with the remainder of the time at maximum normal operating emissions. To account for the increase in CTG startups and shutdowns, the annual emissions increase slightly for all pollutants except ammonia and particulate matter.

2.2 GASIFICATION FLARE

During the turbine washes, hydrogen-rich fuel will be diverted to the gasification flare. A turbine wash is expected to take 12 hours, during which time the gasifier will operate at a reduced capacity (70 percent). Four turbine washes are planned annually, which add up to approximately 81,400 MMBtu per year (yr) of flaring. The total planned usage of the gasifier flare is expected to be 196,600 MMBtu/yr of flaring; this includes turbine washes and gasifier startups and shutdowns.

Each CTG wash is expected to take 12 hours, although 24 hours was assumed to estimate worst-case daily emissions. It is expected that up to 1,695 MMBtu/hr of syngas could be flared during a turbine wash.

2.3 SULFUR RECOVERY UNIT FLARE

To more accurately account for the time expected to startup the gasifier, the sulfur recovery unit (SRU) may flare for up to 40 hours per year. This is an increase from the 6 hours per year previously proposed in the Revised AFC. Maximum daily flaring is based on a gasifier startup of 12 hours.

2.4 GASIFIER REFRACTORY HEATERS

Based on operations from similar facilities, it was determined that each refractory heater should be permitted to operate up to 1,200 hours per year; this is an increase in operations previously proposed in

the Revised AFC. For estimating worst-case hourly and daily emissions, two heaters may operate at full load for the entire period. When gasifiers are switched, for gasifier maintenance purposes, two may operate at the same time. The vendor provided emission factors for nitrogen dioxide (NO₂) and carbon dioxide (CO) are higher than the U.S. Environmental Protection Agency (U.S. EPA) AP-42 emission factors previously used to estimate these emissions.

2.5 AUXILIARY BOILER

SJVAPCD determined that selective catalytic reduction (SCR) was the best available control technology (BACT) for the auxiliary boiler. This reduces the nitrogen oxide (NO_x) emissions from the boiler. The boiler will now also have some ammonia slip.

2.6 TAIL GAS THERMAL OXIDIZER

No modifications were made to the operation of the Tail Gas Thermal Oxidizer (TGTO), although the emission calculations were updated to ensure the examination of incineration from one stream at a time. Annual emissions are slightly lower due to new calculations.

2.7 DIESEL EMERGENCY GENERATORS

The maintenance operation schedule was changed to 52 hours per year for each engine. Emission factors for U.S. EPA Offroad Tier 4 engines were used as discussed in the response to California Energy Commission (CEC) Set One Data Request No. 30.

2.8 DIESEL EMERGENCY FIRE WATER PUMP

Emission factors for U.S. EPA Offroad Tier 4 engines were used as discussed in the response to CEC Set One Data Request No. 30.

2.9 CARBON DIOXIDE VENT

Upon further examination it was determined that the concentration of carbonyl sulfide (COS) in the carbon dioxide (CO₂) stream should not exceed 43 parts per million by volume (ppmv); this reduces the COS emissions from the emergency CO₂ venting.

2.10 FUGITIVE EMISSIONS

In response to CEC Set One Data Request Nos. 17 and 89, emissions from fugitive leaks in the piping and components were included in the total facility inventory. These emissions were included in the criteria pollutant and toxic air contaminants (TAC) modeling analyses presented in this document.

2.11 OPERATIONS AND MAINTENANCE VEHICLES

In response to CEC Set One Data Request Nos. 23 and 24, emissions from 10 light heavy-duty gasoline trucks and 10 light heavy-duty diesel trucks used for onsite maintenance were included in the modeling analyses.

2.12 RECTISOL FLARE, COOLING TOWERS, MATERIAL HANDLING, AND FEEDSTOCK DELIVERY

No revisions were made to the operation or emissions from the rectisol flare, cooling towers, or the handling of materials.

This section discusses emission changes associated with potential environmental impacts associated with the Project refinements. The emission sections discuss the changes associated with the Project refinements. All other emission calculation techniques remained the same as presented in the Revised AFC, Amendment to the Revised AFC, and responses to CEC Data Requests. Operational criteria pollutant emission calculations for all sources are presented in Appendix A of this document. The Project refinements do not affect the either the construction or commissioning emissions; thus, these emissions are not discussed in this document, although modeling was conducted to show compliance with the new federal 1-hour NO₂ standard.

3.1 AIR QUALITY

3.1.1 Construction Emissions

No changes to the construction activities are expected from the Project refinements. Therefore, the construction emissions calculated and modeled in the Applicant's response to CEC Set One Data Request No. 6 accurately characterize the potential air quality impacts during construction with the Project refinements incorporated. The Project refinements would not change the conclusions in Section 5.1 of the Revised AFC or the response to CEC Set One Data Request No. 6, and potential air quality impacts during construction are expected to remain less than significant.

Construction modeling was conducted to show compliance with the new federal 1-hour NO_2 standard. The modeling techniques used in the analysis are discussed in Section 3.1.3 and the results are discussed in Section 3.1.4.

3.1.2 Operational Emissions

Operational Emissions – Stationary Sources

An overview of the Project refinements as they affect each source is provided above in Section 2. This section describes details regarding emission changes to affected sources. The updated emission rates are presented in Table 1, Total Combined Annual Criteria Pollutant Emissions.

CTG/HRSG Operating Emissions

As presented in the Revised AFC and Amendment to the Revised AFC, the maximum short-term operational emissions from the CTG/HRSG were determined from a comparative evaluation of potential emissions corresponding to normal operating conditions (including HRSG duct-firing), and CTG startup/shutdown conditions. The long-term operational emissions from the CTG/HRSG were estimated by summing the emissions contributions from normal operating conditions (including hours with duct-firing) and CTG/HRSG startup/shutdown conditions. Estimated annual emissions of air pollutants for the CTG/HRSG have been calculated based on the expected operating schedule for the CTG/HRSG presented in Table 2, Maximum CTG/HRSG Operating Schedule. Although the number of startups and shutdowns was revised, the technique for calculating the emissions associated with these activities did not change.

The change of the duct burner heating value to 550 MMBtu/hr HHV caused the CTG/HRSG emissions to increase slightly for SO_2 when firing natural gas, and all pollutants but PM_{10} when cofiring natural gas and syngas. These revised duct burner emissions were calculated by Project engineers and then added to the CTG emissions, which did not change.

Table 1 **Total Combined Annual Criteria Pollutant Emissions**

Pollutant	Total Annual	CTG/HRSG Stack Maximum ¹	Cooling Towers ²	Auxiliary Boiler	Emergency Generators ³	Fire Water Pump ⁴	Gasifica- tion Flare	SRU Flare	Rectisol Flare	Tail Gas Thermal Oxidizer	CO ₂ Vent	Gasifier Refractory Heaters	Feed- stock ⁵	Fugiti ves ⁵
NO _X	195.1	168.0		0.9	0.2	0.1	7.2	0.2	0.2	10.5		7.8		
СО	406.9	155.7		5.8	0.9	0.2	111.2	0.2	0.1	8.8	106.9	11.3		6.0
VOC	59.1	33.8		0.6	0.10	0.01	0.003	0.003	0.002	0.3	2.4	2.3		19.7
SO ₂	37.7	28.3		0.3	0.001	0.0003	0.118	0.372	0.003	8.5		0.07		
PM ₁₀	111.4	82.3	24.1	0.8	0.02	0.001	0.007	0.006	0.004	0.4		0.3	3.6	
PM _{2.5} ⁶	99.2	82.3	14.5	0.8	0.02	0.001	0.007	0.006	0.004	0.4		0.3	1.0	
NH ₃	76.3	75.8		0.3										0.2
H ₂ S	3.7										1.3			2.4

Notes:

Total annual HRSG emissions represent the maximum emissions rate from firing hydrogen-rich fuel, natural gas, or co-firing. Includes contributions from all three cooling towers.

Includes contributions from both emergency generators.

VOC emissions for fire pump engine are combined with NO_X.

Feedstock emissions are shown as the contribution of all dust collection points.

Where $PM_{10} = PM_{2.5}$ it is assumed all PM_{10} is $PM_{2.5}$.

CO = carbon monoxide H_2S hydrogen sulfide

HRSG = heat recovery system generator

 NH_3 ammonia NO_X nitrogen oxide

particles less than 2.5 micrometers in diameter $PM_{2.5}$ particles less than 10 micrometers in diameter

 SO_2 = sulfur dioxide

= volatile organic compound VOC

Table 2
Maximum CTG/HRSG Operating Schedule

Operating Conditions	Annual Numbers
Total Hours of Operation	8,322
Total Number of Cold Starts	10
Cold Start Duration (hour)	3
Total Number of Hot Starts	20
Hot Start Duration (hour)	1
Total Number of Shutdowns	30
Shutdown Duration (hour)	0.5
Duct Burner Operation (hour)	8,257

Notes:

CTG = combustion turbine generator HRSG = heat-recovery steam generator

CTG/HRSG Emissions Scenarios for Modeling

Reasonable worst-case short-term emissions from the turbines were calculated for use in the air quality modeling. These scenarios form the basis for the air dispersion modeling analyses presented in Section 3.1.3, Dispersion Modeling.

Worst-case 8-hour and 24-hour emissions were based on a maximum of one cold startup, one hot startup, and one shutdown, with the remainder of the time at maximum normal operating emissions.

Table 3, Criteria Pollutant Sources and Emission Totals for the Worst-Case CTG Emissions Scenario for All Averaging Times, summarizes the worst-case emissions scenarios adopted to assess maximum impacts to air quality and air quality—related values in the modeling analyses presented in Section 3.1.3.

Estimated annual emission totals for all pollutants incorporate the maximum anticipated emissions related to startups and shutdowns, as well as the maximum steady-state operating emissions with duct firing. Estimated maximum annual emissions for the GE 7FB turbine are presented in Table 4, Average Annual Emissions per Turbine Operating Scenario. Emissions calculations for all scenarios, including revisions, are contained in Appendix A.

Auxiliary Boiler Emissions

SJVAPCD determined that SCR was BACT for the auxiliary boiler; therefore, the NO_x emissions from the boiler were reduced. NO_X emissions are based on 5 parts per million volumetric dry (ppmvd) at 3 percent O_2 , with installation of SCR.

A summary of the annual auxiliary boiler emissions is presented in Table 1. Emissions and calculations are included in Appendix A.

Gasification Flare

During the turbine washes, hydrogen-rich fuel will be diverted to the gasification flare. A turbine wash is expected to take 12 hours, during which time the gasifier will operate at a reduced capacity (70 percent).

Table 3 Criteria Pollutant Sources and Emission Totals for the Worst-Case CTG Emissions Scenario for All Averaging Times

Averaging	Worst-Case Emission Scenarios by		Emissions in Pounds – Entire Period			
Time	Operating Equipment	Pollutant	CTG/HRSG	Fuel		
	NO _X : Hot startup hour	NO_X	167.0	All fuels		
1 hour	CO: Cold startup hour	CO	1,679.7	All fuels		
1 Hour	SO _X : Full-load turbine operation with duct firing at peak fuel use	SO_X	6.8	Hydrogen-Rich Fuel		
3 hour	SO _X : Full-load turbine operation with duct firing at peak fuel use	SO_X	20.5	Hydrogen-Rich Fuel		
8 hour	CO: One cold start, one hot start, one shutdown and remainder of period at full load operation with duct firing at peak fuel use	СО	5,671.0	Co-firing		
24 hour	NO _X : One cold start, one hot start, one shutdown and remainder of period at full load operation with duct firing at peak fuel use	NO_X	1,275.9	Hydrogen-Rich Fuel		
	SO _x , PM ₁₀ /PM _{2.5} : Continuous full-	$PM_{10} = PM_{2.5}$	475.2	Natural Gas or Co-firing		
	load turbine operation with duct firing at peak fuel use	SO_X	163.8	Hydrogen-Rich Fuel		
	NO _X , CO, PM ₁₀ /PM _{2.5} and SO _X :	NO_X	336,053	Hydrogen-Rich Fuel		
Annual	10 cold starts, 20 hot starts, 30	CO	311,417	Co-firing		
Aimuai	shutdowns and 8,257 hours of turbine operates at full load with duct	$PM_{10} = PM_{2.5}$	164,607	Natural Gas or Co-firing		
	firing	SO_X	56,690	Hydrogen-Rich Fuel		

Notes:

CO = carbon monoxide

= combustion turbine generator

= degrees Fahrenheit

HRSG = heat recovery steam generator

 NO_X = nitrogen oxides

PM₁₀: = particulate matter less than 10 microns in diameter, and is assumed to equal PM_{2.5} = particulate matter less than 2.5 microns in

diameter

sulfur oxidesvolatile organic compounds

Table 4
Average Annual Emissions per Turbine Operating Scenario

Pollutant	HRSG Stack – Natural Gas (tons/yr/CT)	HRSG Stack – (Hydrogen-Rich Fuel) (tons/yr/CT)	HRSG Stack – Co-Firing (tons/yr/CT)	Maximum (tons/yr/CT)
NO_X	148.0	168.0	167.8	168.0
CO	141.2	105.9	155.7	155.7
VOC	30.5	19.6	33.8	33.8
SO ₂	20.5	28.3	24.7	28.3
$PM_{10} = PM_{2.5}$	74.9	82.3	82.3	82.3
NH ₃	66.9	75.8	75.7	75.8

Notes:

CO = carbon monoxide CT = combustion turbine

HRSG = heat recovery steam generator

 NH_3 = ammonia NO_X = nitrogen oxide

 $PM_{2.5}$ = particulate matter less than 2.5 microns in diameter ($PM_{2.5}$ is assumed to equal PM_{10})

 PM_{10} = particulate matter less than 10 microns in diameter

 SO_2 = sulfur dioxide

VOC = volatile organic compounds

During a turbine wash, the maximum hourly flaring rate of shifted hydrogen-rich fuel will be $1,695 \, MMBtu/hr$. To estimate the worst-case daily emissions, 24 hours of flaring at this rate was assumed, although it should be noted that this is not expected to occur. Maximum daily $PM_{10}/PM_{2.5}$ emissions from the gasification flare are based on 24 hours of pilot operation, since during a turbine wash hydrogen-rich fuel, which contains negligible amounts of PM, will be flared. Four turbine washes are planned annually.

The total planned gasifier flare usage is outlined in Table 5. This flaring includes turbine washes and gasifier startups and shutdowns. Annual emissions were based on the flaring outlined in Table 5.

Table 5
Planned Annual Gasifier Flare Usage

Event	Maximum Gas Flared (MMBtu/yr)	Event/yr	Percentage Unshifted	Unshifted Gas (MMBtu/yr)	Shifted Gas (MMBtu/yr)
Cold plant startup:	30,000	1	20%	6,000	24,000
Plant shutdown:	500	1	100%	500	0
Gasifier outages:	60,000	24	100%	60,000	0
Gasifier hot restarts:	25,000	12	100%	25,000	0
Off-line CTG wash:	81,400	12	0%	0	81,400
Totals (MMBtu/yr):	196,900			91,500	105,400

Notes:

CTG = combustion turbine generator MMBtu/yr = million British thermal units per year

SRU Flare

To more accurately account for the time expected to be needed for gasifier startup, the SRU may flare for up to 40 hours per year. Estimates of daily flare emissions were based on a maximum of 12 hours of flare operation, although this is expected to be an overestimate. Emissions for the SRU flare were calculated using the same emission factors and techniques outline in the Revised AFC.

Gasifier Refractory Heaters

The gasifier refractory heaters operate at 18 million MMBtu/hr, firing natural gas for 1,200 hours per year each, for a total of 3,600 hours per year. Emission factors for NO₂ and CO were revised to reflect vendor guaranteed rates. Table 6 outlines these emission factors and the associated emissions. Worst-case hourly and daily emissions were estimated assuming two heaters may operate simultaneously at full load for the entire period.

Table 6
Emissions Factors for NO₂ and CO and Associated Emissions

Pollutant	Gasifier Pollutant Emission Factors (lb/MMBtu, HHV)	Maximum Hourly Emissions Total Heaters (lb/hr)	Maximum Daily Emissions Total Heaters (lb/day)	Maximum Annual Emissions Total Heaters (ton/yr)
NO _x	0.24	8.64	207.36	7.78
СО	0.35	12.60	302.40	11.34
VOC	0.07	2.52	60.48	2.27
SO ₂	0.00	0.07	1.76	0.07
$PM_{10} = PM_{2.5}$	0.01	0.29	6.91	0.26

Notes:

CO = carbon monoxide HHV = higher heating value

lb = pounds

MMBtu = million British thermal units

 NO_X = nitrogen oxides

 $PM_{2.5}$ = particulate matter less than 2.5 microns in diameter PM_{10} = particulate matter less than 10 microns in diameter

 SO_2 = sulfur dioxide

VOC = volatile organic compound

Tail Gas Thermal Oxidizer

No revisions were made to the operation of the TGTO., It is expected to incinerate SRU startup waste gas for up to 300 hours per year, and the remainder of the year (8,460 hours) it will incinerate process vent gas. During incineration of either gas there will be 10 MMBtu/hr of natural gas assist gas. In the Revised AFC the assist gas emissions were counted twice for the 300 hours of SRU startup waste gas disposal. Emission factors are based on previous project engineering data and U.S. EPA AP-42 for natural gas external combustion.

Diesel Emergency Generators

The maintenance operation schedule was changed to 52 hours per year for each engine. Emission factors for U.S. EPA Offroad Tier 4 engines were used as discussed in the response to CEC Set One Data Request No. 30.

Diesel Emergency Fire Water Pump

Emission factors for U.S. EPA Offroad Tier 4 engines were used as discussed in the response to CEC Set One Data Request No. 30. The maintenance schedule for testing the fire water pump remains 100 hours per year.

CO₂ Vent

Criteria pollutant emissions from the CO₂ vent are unchanged from those presented in the Revised AFC.

Fugitive Emissions

In response to CEC Set One Data Request Nos. 17 and 89, emissions from fugitive leaks in the piping and components were included in the total facility inventory.

Potential fugitive VOC emissions from piping components were estimated using the U.S. EPA guidance, *Protocol for Equipment Leak Emission Estimates* (1995). The emission factors used in the calculations are for the Synthetic Organic Chemical Manufacturing Industry (SOCMI) factors and are presented in Table 7. A leak detection and repair (LDAR) program will be implemented on select process areas with the largest TAC and VOC fugitive emissions. The LDAR program implemented will meet the National Emission Standard for Hazardous Air Pollutants (NESHAPS) regulations.

Because the fugitive emission factors were based on factors for SOCMI facilities, the LDAR program implemented at this facility will meet the NESHAPS regulations, which are traditionally used at SOCMI facilities. The control efficiencies for such a program are presented in Table 7.

Table 7
Fugitive Emission Factors, Control Efficiencies for LDAR Program and Component Count

Component Type	Service Type	TOC Emission Factor (kg/hr/source)	Control Efficiency	Total Componen t Count
	Gas	5.97E-03	92%	1,156
Valves	Light Liquid	4.30E-03	88%	1,141
	Heavy Liquid	2.30E-04	0%	840
Dumm Cools	Light Liquid	1.99E-02	75%	17
Pump Seals	Heavy Liquid	8.62E-03	0%	26
Compressor Seals	Gas	2.28E-01	0%	3
Connectors	All	1.83E-03	93%	9,293

Notes:

Emission factors and control efficiencies are from EPA's 1995 "Protocol for Equipment Leak Emission Estimates" from Table 2-1 (SOCMI Average Emission Factors) and Table 5-2 (Control Effectiveness for an LDAR Program at a SOCMI Process Unit).

kg/hr/source = kilogram per hour per source

SOCMI = Synthetic Organic Chemical Manufacturing Industry

TOC = total organic compounds

The Applicant proposes to apply the LDAR program to Area # 1(methanol), Area # 5 (propylene), Area # 7 (H_2S -laden methanol), Area #8 (CO_2 -laden methanol), Area # 9 (acid gas), and Area # 10 (ammonia-laden gas). These areas were selected because they had the largest uncontrolled emissions for methanol, propylene, and H_2S . The following compounds were included as VOCs (not all compounds are found in the gas in each process area): methanol (CH_3OH), propylene (C_3H_6), COS, hydrogen cyanide (HCN), and methyl diethanolamine (MDEA).

Table 1 presents the annual fugitive emissions that were calculated for the Project.

Total Combined Facility-Wide Emissions

The total combined annual emissions from all emission sources of the Project are shown in Table 1, Total Combined Annual Criteria Pollutant Emissions.

Commissioning

The Project refinements consist of minor changes to operating schedules for the equipment. No changes to the commissioning schedule are expected to result from these revisions. Therefore, the commissioning emissions calculated and modeled in the Revised AFC accurately characterize the potential air quality impacts during commissioning with the Project refinements incorporated. As noted in the Amendment to the Revised AFC, PM₁₀ emission rates are expected to be lower when commissioning the CTG/HRSG on hydrogen-rich fuel; therefore, the analysis in the Revised AFC provides a conservative overestimate. The Project refinements would not change the conclusions in Section 5.1 of the Revised AFC, and potential air quality impacts during construction are expected to remain less than significant.

Commissioning modeling was conducted to show compliance with the new federal 1-hour NO₂ standard. The modeling techniques are discussed in Section 3.1.3, and the results are presented in Section 3.1.4.

Greenhouse Gas Emissions

Total facility greenhouse gas emissions estimates were revised to incorporate Project refinements. These emissions are presented in Appendix B. The total onsite plant GHG emissions from both stationary and mobile sources are expected to be 529,911 metric tons (tonnes) per year.

The Project's GHG emissions will be approximately 500 pounds per megawatt hour (lb/MWh), well below the 1,100 lbs/MWh threshold requirement of Senate Bill 1368.

Operational Emissions – Mobile Sources – Onsite

Material Handling and Feedstock Delivery

No revisions were made to the operation or emissions from the handling of materials associated with the HECA Project.

Operations and Maintenance Vehicles

In response to CEC Set One Data Request Nos. 23 and 24, emissions from 10 light heavy-duty gasoline trucks and 10 light heavy-duty diesel trucks used for onsite maintenance were included in the modeling analyses. It was assumed that each vehicle would travel 10,000 miles per year, up to of 27 miles per day. Emissions from these trucks were estimated using emission factors from the EMFAC2007 model for year 2015 for light heavy-duty gasoline trucks and light heavy-duty diesel trucks driving 15 miles per hour. This is consistent with the technique used to estimate the onsite feedstock delivery truck emissions. Vehicle emissions are presented in Appendix A.

3.1.3 Dispersion Modeling

The purpose of the air quality impact analyses is to evaluate whether criteria pollutant emissions resulting from the Project will cause or contribute significantly to a violation of California or national Ambient Air Quality Standards (AAQS) or contribute significantly to degradation of air quality-related values in Class I areas. The air quality impact analyses were performed using the same model and model option selections, and receptor locations as in the Revised AFC and Amendment to the Revised AFC. Copies of

the revised modeling files are included on the Revised Air Quality Modeling DVD, June 2010 included with this document.

Meteorological Data

The meteorological data set was updated at the request of the SJVAPCD. Data for the years 2004 to 2008 from the Bakersfield Airport meteorological station were used in the revised analyses presented in this document. This is the same meteorological station used for all previous analyses. These data were issued by the SJVAPCD and are provided on the Revised Air Quality Modeling DVD, June 2010.

Turbine Impact Screening Modeling

Turbine impact screening modeling was not revised. The stack parameters that were determined to be associated with these maximum predicted impacts from the screening modeling conducted for the Amendment to the Revised AFC were used in all subsequent simulations of the refined AERMOD analyses. These stack parameters were associated with Case 2C, 60 percent load burning natural gas and had the lowest exhaust temperature and exit velocity.

Refined Modeling

A refined modeling analysis was performed to estimate offsite criteria pollutant impacts from operational emissions of the Project. The CTG/HRSG was modeled assuming the worst-case emissions corresponding to each averaging time and the turbine stack parameters that were determined in the turbine screening analysis. The maximum mass emission rates that will occur for any averaging time, whether during turbine startups, normal operations, turbine shutdowns, or a combination of these activities, were used in all refined modeling analyses. Emissions from all Project sources, including the CO₂ vent, were included in the AERMOD modeling to ensure maximum impacts from the Project were examined.

Modeling for Compliance with NO₂ 1-hour National Ambient Air Quality Standards

Applicant has been working with SJVAPCD to conduct the NO₂ modeling in a manner consistent with the new U.S. EPA NO₂ 1-hour standard. SJVAPCD has developed techniques to conduct the NO₂ modeling analyses that have been approved by U.S. EPA Region 9. On April 12, 2010 SJVAPCD published the draft guidance document "Modeling Procedure to Address the New Federal 1 Hour NO₂ Standard." This guidance discusses a three-tier modeling approach and outlines the U.S. EPA criteria for determining appropriate background data. The tiered approach was developed to streamline the modeling process, with each tier requiring more refined modeling techniques. The SJVAPCD recommends the using the AERMOD model with either the ozone-limiting method (OLM) or plume volume molar ratio method (PVMRM) algorithm for all analyses. HECA used the OLM algorithm in the AERMOD NO₂ modeling analysis.

The Tier I analysis consists of combining the maximum 1-hour predicted NO_2 concentration from AERMOD with the 98^{th} percentile background concentration. In the guidance document, SJVACPD has determined the 98^{th} percentile background NO_2 concentration at all San Joaquin Valley monitoring stations for the years 2006 to 2008.

The Tier II analysis requires AERMOD to be run to predict the eighth highest 1-hour concentration for each year. The highest eighth high 1-hour concentration predicted for any year over the modeling period shall be combined with the 98^{th} percentile background NO_2 concentration to estimate the peak offsite NO_2 concentration.

The Tier III analysis requires that the modeling be conducted per the procedures outlined by U.S. EPA in "Notice Regarding Modeling for New Hourly NO₂ NAAQS", dated February 25, 2010. In this approach,

AERMOD is run to produce an output file with NO₂ concentrations at every receptor for every hour in the meteorological data set using the hourly POSTFILE option. From the hourly AERMOD POSTFILE, the maximum 1-hour concentration for each day of the data period at each receptor is determined using a FORTRAN post-processing program designed for this purpose. The post-processor then determines the eighth highest daily maximum 1-hour concentration from the daily 1-hour maximum concentrations at each receptor for each year modeled. The eighth highest concentration is representative of the 98th percentile concentration from the distribution of daily 1-hour maximum values. At each receptor, the eighth highest daily 1-hour maximum concentrations are averaged across the modeled years. The highest of the average eighth highest (98th percentile) concentrations among the values for all receptors plus the 98th percentile background NO₂ concentration from a representative monitoring location is used to represent the peak offsite NO₂ concentration for comparison with the National Ambient Air Quality Standards (NAAQS).

Through discussions with SJVAPCD modeling staff, a fourth-tier modeling analysis technique was developed. The Tier IV AERMOD modeling is conducted in the same manner as the Tier III AERMOD modeling to produce an output file with NO₂ concentrations at every receptor for every hour in the meteorological data set using the hourly POSTFILE option. Concurrent hourly NO₂ background data from the most representative monitoring station are then added to the modeled NO₂ concentrations to obtain the total NO₂ concentration for each hour. Then the 98th percentile (eighth highest) of the daily maximum 1-hour concentrations for each year of meteorological data at each receptor are determined. The eighth highest daily 1-hour maximum concentrations at each receptor are then averaged across the five modeled years and the maximum of these averaged values from all receptors is used to represent the peak predicted offsite NO₂ concentration for comparison with the NAAQS.

The hourly monitoring NO₂ data used in the Tier IV analysis were provided by SJVAPCD. SJVAPCD provided hourly NO₂ data from the Bakersfield, California Avenue monitoring station for 2004 and from the Bakersfield Golden State Highway monitoring station for years 2005 to 2008. Data for 2004 at the Bakersfield Golden State Highway monitoring station had too many missing values to be considered a valid data set.

SJVAPCD has developed a protocol for filling in missing data that involves linearly interpolating data when one hour of data is missing. If data for two or more sequential hours are missing, the missing values are filled in with the highest recorded 1-hour NO₂ concentration from the appropriate calendar quarter. Although this technique is conservative, it overly skews the total concentration as the highest quarterly background concentration dominates the total impact. It was found that for more than 95 percent of all receptors, the filled-in background data dominated the total NO₂ concentration, thus causing the predicted NO₂ concentration to be significantly higher than expected if actual data were available for that hour.

A post-processor program was developed by URS to process the Tier III and IV AERMOD POSTFILE output files. The post-processor calculates the 98th percentile of the daily maximum 1-hour concentrations for each year of meteorological data at each receptor. The post-processor has the option to add concurrent NO₂ background to the AERMOD output prior to calculating the 98th percentile concentrations, which is consistent with the Tier IV analysis described above.

HECA has used the tiered analysis approach outlined above to show compliance with the new NO_2 1-hour standard. The maximum averaged 98^{th} percentile NO_2 concentration predicted for offsite receptors using any of the tiered analyses will be compared with the federal NO_2 1-hour standard of 100 parts per billion (ppb), which is equivalent to 188.68 micrograms per cubic meter ($\mu g/m^3$), to determine whether compliance will be achieved.

NO₂ emissions from construction activities and commissioning will also be modeled to show compliance wit the federal NO₂ 1-hour standard.

3.1.4 Compliance with Ambient Air Quality Standards

Air dispersion modeling was performed according to the methodology described in Revised AFC Section 5.1.2.3 and Section 3.1.3 above. This was done to evaluate the maximum increase in ground level pollutant concentrations resulting from Project emissions based on the Project refinements, and to compare the maximum predicted impacts, including background pollutant levels, with applicable short-term and long-term California Ambient Air Quality Standards (CAAQS) and NAAQS.

Construction Impacts

Compliance with the federal 1-hour NO_2 standard was demonstrated using a Tier IV analysis as described in the modeling techniques above. The average of the 98th percentile daily maximum 1-hour concentration for the years 2004 to 2008 was predicted to be 163 μ g/m³ (this value includes the background concentration). The predicted concentration is below the NAAQS of 188.68 μ g/m³ therefore emissions from construction activities are expected to have a less-than-significant impact.

Operations Impacts

The emissions used for each pollutant and averaging time are explained and quantified in Section 3.1.2, Operations.

Table 8, AERMOD Modeling Results for Project Operations (All Project Sources Combined), summarizes the maximum predicted criteria pollutant concentrations due to Project emissions. The incremental impacts of Project emissions will be below the federal Prevention of Significant Deterioration (PSD) Significant Impact Levels (SILs) for all attainment pollutants, despite the use of worst-case emissions scenarios for all pollutants and averaging times. Although maximum predicted values for PM_{10} are below the SILs, these thresholds do not apply to this pollutant because the San Joaquin Valley Air Basin is designated as being in non-attainment with respect to the federal ambient standards. No SILs have been established yet for $PM_{2.5}$.

Table 8 also shows that the modeled impacts due to the Project emissions, in combination with conservative background concentrations, will not cause a violation of any NAAQS and will not significantly contribute to the existing violations of the federal and state PM_{10} and $PM_{2.5}$ standards. In addition, as described later, all of the Project's operational emissions of non-attainment pollutants and their precursors will be offset to ensure a net air quality benefit.

Compliance with the federal 1-hour NO_2 standard was demonstrated using a Tier IV analysis as described in the modeling techniques above. The average of the 98^{th} percentile daily maximum 1-hour concentration for the years 2004 to 2008 is presented in Table 8, this value includes the background concentration.

The locations of predicted maximum impacts will vary by pollutant and averaging time. The peak 24-hour PM_{10} and $PM_{2.5}$ are predicted to occur on the southwestern boundary of the Project Site, while the peak annual NO_2 , SO_2 , PM_{10} , and $PM_{2.5}$ concentrations are predicted to occur on the eastern boundary of the Project Site.

The peak 1-hour NO₂ concentrations are predicted to occur approximately 4 kilometers southwest of the Project Site. Peak 1-hour, 3-hour, and 24-hour SO₂ concentrations are predicted to occur approximately 7.5 kilometers southeast, 3 kilometers south, and 5.5 kilometers west of the Project Site, respectively.

Carbon monoxide 1-hour impacts from the all sources including the CO_2 vent were predicted to be $2,180~\mu g/m^3$ at a point off of the Project Site and Controlled Areas approximately 4.5 kilometers

Table 8 **AERMOD Modeling Results for Project Operations (All Project Sources Combined)**

Pollutant	Averaging Period	Model Predicted Concentration	Class II Significance Level	% of SIL	Background Conc. (4)	Monitoring Station Description (4)	CAAQS	NAAQS	Total Conc.
	Av	$(\mu g/m^3)$	(μg/m ³)		(μg/m ³)		(μg/m ³)	$(\mu g/m^3)$	$(\mu g/m^3)$
	1-hour (OLM) (1,3)	133.71	NA	NA	143.4	1	339	NA	277
	1-hour (OLM) ^(1,3) NAAQS	176.98	NA	NA	NA ⁽²⁾	6	NA	188.68	177
NO ₂ (1)	Annual (OLM) (1)	0.66	1	87%	39.6	1	57	100	40
	1-hour (3)	2179.70	2,000	71%	4,025	2	23,000	40,000	6,205
CO	8-hour (3)	576.12	500	43%	2,444	2	10,000	10,000	3,020
	1-hour (3)	26.50	NA	NA	340.6	3	655	NA	367
	3-hour (3)	15.89	25	31%	195	3	NA	1300	211
	24-hour ⁽³⁾	1.79	5	18%	81.38	3	105	365	83
SO ₂	Annual	0.13	1	14%	26.7	3	NA	80	27
	24-hour ⁽³⁾	4.08	5	58%	267.4	4	50	150	-
PM_{10}	Annual	0.57	1	59%	56.5	4	20	Revoked	-
	24-hour (3)	2.64	-	44%	154	5	NA	35	-
PM _{2.5} ⁽⁴⁾	Annual	0.41	-	45%	25.2	5	12	15	-
H ₂ S	1-hour	20.47	NA	NA	NA	NA	42	NA	20

Notes:

CAAQS = California Ambient Air Quality Standards

CARB = California Air Resources Board

CO = carbon monoxide

 H_2S = hydrogen sulfide

 $\mu g/m^3 = micrograms per cubic meter$

NA = not applicable.

NAAQS = National Ambient Air Quality Standards

 NO_2 = nitrogen dioxide

OLM = ozone limiting method

 $PM_{2.5}$ = particulate matter less than 2.5 microns in diameter PM_{10} = particulate matter less than 10 microns in diameter SIL = Significant Impact Level

 $SO_2 = sulfur dioxide$

¹ The Ozone Limiting Method (OLM) was applied using hourly O₃ data.

² Background NO₂ concentrations are included in the federal NO₂ 1-hour analysis.

³ For short-term (1-, 3-, 8-, and 24-hour) modeling, only one emergency generator will be operational at any one time, and the current assumption is that two gasifier heaters are expected to be operational at any one time.

⁴ Monitoring station for the maximum background concentration is described below:

CARB, Maximum of last three years (2006-2008), Bakersfield Golden State Highway, 2006

CARB, Maximum of last three years (2006-2008), Bakersfield Golden State Highway, 2007

CARB, Maximum of last three years (2006-2008), Bakersfield Golden State Highway, 2008

CARB, Maximum of last three years (2006-2008), Shafter-Walker Street, 2007

CARB, Maximum of last three years (2006-2008), Fresno - 1st Street, 2007

⁹⁸th percentile of daily 1-hour maximum concentrations averaged over last three years (2006-2008), Bakersfield Golden State Highway

southwest of the site, and $576~\mu g/m^3$ for the 8-hour averaging time approximately 3 kilometers southwest of the site. These values are above the CO SIL. Since the predicted 1-hour and 8-hour CO concentrations plus background concentration are below the CAAQS and NAAQS, impacts from CO are less than significant.

Hydrogen sulfide impacts from the carbon dioxide vent and fugitive emissions were predicted to be $20 \,\mu g/m^3$ at the maximum impact point off of the Project Site and Controlled Area approximately 3 kilometers southwest from the site. This value is below the 1-hour CAAQS of 42 $\mu g/m^3$.

Turbine Commissioning

Compliance with the federal 1-hour NO_2 standard was demonstrated using a Tier IV analysis as described in the modeling techniques above. The average of the 98^{th} percentile daily maximum 1-hour concentration for years 2004 to 2008 from commissioning was predicted to be $184 \, \mu g/m^3$. This value includes the background concentration. The predicted concentration is below the NAAQS of $188.68 \, \mu g/m^3$; therefore, emissions from commissioning are expected to have a less-than-significant impact.

Impacts for Non-Attainment Pollutants and their Precursors

The emission offset program described in the SJVAPCD Rules and Regulations was developed to facilitate net air quality improvement when new sources locate within the District. Project impacts of non-attainment pollutants (PM₁₀, PM_{2.5}, and O₃) and their precursors (NO_X, SO₂, and VOC) will be fully mitigated by emission offsets. The emission reductions associated with these offsets have not been accounted for in the modeled impacts noted above. Thus, the impacts indicated in the foregoing presentation of model results for the Project may be significantly overestimated.

Effects on Visibility from Plumes

There will be no changes to the effects on visibility from plumes, since there are no changes to the cooling tower emissions due to Project refinements.

3.1.5 Impacts on Air Quality Related Value in Class I Areas

In response to U.S. Forest Service comments about the Class I area analyses, and to reflect emission changes due to Project refinements, the CALPUFF modeling analysis for impacts to Air Quality Related Values (AQRV) was updated. Appendix D contains the revised Class I Area analysis report, which includes a discussion of the emissions from each source and how the U.S. Forest Service comments are addressed in the revised analysis.

The objectives of the modeling were to demonstrate whether air emissions from the Project will cause or contribute to a PSD increment exceedance or cause a significant impact on visibility, regional haze, or sulfur or nitrogen deposition in any Class I area. Since the Project location has not changed, the same Class I area (San Rafael Wilderness Area) was included in the revised AQRV analysis. The CALMET data were not changed from previous analyses.

The PSD increment analysis for the San Rafael Wilderness Class I area is shown in Table 9, PSD Class I Increment Significance Analysis – CALPUFF Results. No Class I PSD increments will be exceeded.

Table 9
PSD Class I Increment Significance Analysis – CALPUFF Results

Class I Area	Pollutant Unit Threshold	Annual NO _x μg/m ³ 0.1	3-hour SO ₂ µg/m ³	24-hour SO ₂ µg/m ³ 0.2	Annual SO ₂ μg/m ³ 0.08	24-hour PM ₁₀ µg/m ³ 0.32	Annual PM ₁₀ Annual 0.16
San Rafael	2001	3.93E-03	2.34E-01	5.27E-02	7.36E-04	8.70E-02	3.33E-03
Wilderness	2002	4.27E-03	2.46E-01	5.05E-02	8.65E-04	7.72E-02	3.80E-03
Area	2003	4.44E-03	2.70E-01	4.42E-02	8.71E-04	9.33E-02	3.78E-03
Exceed?		No	No	No	No	No	No

Notes:

 $\mu g/m^3$ = micrograms per cubic meter

 NO_X = nitrogen oxides

 PM_{10} = particulate matter less than 10 microns in diameter

 SO_2 = sulfur dioxide

Effects on Visibility. This revised analysis was conducted using the same model (CALPUFF). The same 3-year meteorological data set for 2001 to 2003 was used in the revised analysis.

Visibility impact results for the San Rafael Wilderness Class I area are shown in Table 10, Visibility Analysis – CALPUFF Results. No maximum extinction change exceeds 10 percent with only 1 to 3 days of exceedance of 5 percent despite the conservative operating emission scenario. Therefore, the Project successfully passed all screening criteria.

Table 10 Visibility Analysis – CALPUFF Results

Class I Area	Pollutant Unit Threshold	No. of Days > 5% Days 0	No. of Days >10% Days 0	Maximum Extinction Change % 10	Day of Maximum Extinction Change Julian Day
San Rafael Wilderness Area	2001	3	0	9.48	308
	2002	4	0	8.07	287
1100	2003	2	0	6.65	247
Exceed?				No	

Source: HECA Project.

Terrestrial Resources. This revised analysis was conducted using the same model (CALPUFF). Table 11, Total Nitrogen and Sulfur Deposition Analysis – CALPUFF Results, summarizes the maximum modeled impacts versus the National Park Service and the U.S. Forest Service significance criteria. All impacts are below the significance criteria.

Pollutant Deposition Nitrogen Deposition Sulfur Unit $g/m^2/s$ $g/m^2/s$ Threshold 1.59E-11 1.59E-11 Class I Area 2001 9.75E-13 3.85E-13 San Rafael Wilderness Area 2002 1.23E-12 5.04E-13 2003 1.25E-12 4.54E-13 Exceed? No No

Table 11
Total Nitrogen and Sulfur Deposition Analysis – CALPUFF Results

Notes:

 $g/m^2/s$ = grams per square meter per second.

Aquatic Resources. A significant effect of NO_X and SO_2 emissions on aquatic resources is nitrogen and sulfur deposition and subsequent acidification. However, because any increased nitrogen and sulfur deposition due to the Project will be minimal, impacts to water acid neutralizing capacity and pH, and, therefore, acidification or eutrophication, are not likely to occur.

The revised CALPUFF air impact modeling analysis for Class I areas is presented in selected revised tables, provided in Appendix D.

3.2 PUBLIC HEALTH

3.2.1 Construction Emissions

The Project refinements would not result in a change to construction emissions; therefore, there is no change to the construction impact analysis that was previously conducted. In the response to CEC Set One Data Request No. 85, the health risks due to diesel particulate matter (DPM) concentration from construction equipment were examined and found to be less than significant.

3.2.2 Operations Emissions

The Project refinements would cause a slight increase in emissions of TACs during operation than those presented in the response to CEC Set One Data Request No. 86. Therefore, a revised Health Risk Assessment (HRA) was conducted.

The HRA presented in this document was conducted using the same techniques and emission factors outlined in the Revised AFC and responses to CEC Data Requests.

The Project refinements that changed TAC emissions from those presented in the response to CEC Set One Data Request Nos. 86 through 90 are outlined below. TAC emissions and calculation techniques for all sources are presented in Appendix C.

CTG/HRSG

No modification to TAC emissions for the CTG/HRSG are needed, because full load operations for 8,322 hours were already considered while burning syngas.

Gasification Flare

Additional flaring was added to account for the offline turbine washes. The maximum hourly emissions were based on 1,695 MMBtu/hr of syngas flaring and the maximum annual emissions were based on 196,600 MMBtu/yr of flaring.

SRU Flare

To more accurately account for the time expected to startup the gasifier, the SRU flare may flare for up to 40 hours per year, this is an increase from 6 hours per year previously proposed in the Revised AFC. Annual emissions are based on 40 hours of operation.

Rectisol Flare

No revisions were made to the operation or emissions from the rectisol flare. The rectisol flare operation remains for emergency purposes only.

Gasifier Refractory Heaters

Each of the three gasifier refractory heaters operate at 18 MMBtu/hr, firing natural gas for 1,200 hours per year each. Hourly emissions are based on the operation of two heaters and annual emissions are based on the operation of all three heaters for 1,200 hours each.

Auxiliary Boiler

The hours of operation associated with the auxiliary boiler did not change due to the Project refinements, although due to the use of SCR, ammonia will now be emitted from the auxiliary boiler. Ammonia slip will be limited to 5 ppmv at 3 percent O_2 or 0.0022 lb/MMBtu or 0.31 lb/hr.

Tail Gas Thermal Oxidizer

No refinements were made to the emissions estimated for the Tail Gas Thermal Oxidizer, since the emissions are based on 8,760 hours per year of 10 MMBtu/hr natural gas assist gas.

CO₂ Vent

Project engineering refinement determined that the concentration of COS in the CO₂ stream is not expected to exceed 43 ppmv; thus, the COS emissions from the emergency CO₂ venting will be reduced. Although COS is a hazardous air pollutant, it does not have an associated Office of Environmental Health Hazard Assessment health risk; thus, emissions from the CO₂ vent did not change in the HRA modeling.

Diesel Emergency Generators

The maintenance operation schedule was changed to 52 hours per year for each engine. The DPM emission factors for U.S. EPA Offroad Tier 4 engines used in the response to CEC Set One Data Request Nos. 30 and 86 were used in this HRA.

Diesel Emergency Fire Water Pump

The DPM emission factors for U.S. EPA Offroad Tier 4 engines used in the response to CEC Set One Data Request Nos. 30 and 86 were used in this HRA; therefore, there is no change to the emissions from the fire pump engine.

Fugitive Emissions

In response to CEC Set One Data Request Nos. 17 and 89, emissions from fugitive leaks in the piping and components were included in the total facility inventory. These emissions have not changed due to the Project refinements described in this document. TACs included in the HRA from the fugitive emissions include H₂S, methanol, propylene, hydrogen cyanide, and ammonia.

Cooling Towers

No revisions were made to the operation or emissions from the cooling towers.

Material Handling and Feedstock Delivery

No revisions were made to the operation or emissions from the handling of materials associated with the HECA Project.

Operations and Maintenance Vehicles

DPM Emissions from the 10 light heavy-duty diesel trucks used for onsite maintenance were included in the HRA. The DPM emissions were estimated using EMFAC2007 for fleet year 2040. A described in the Revised AFC, this is a representative vehicle fleet year, to characterize the 70-year cancer risk.

3.2.3 HRA Modeling

The HRA was conducted using the same techniques described in the Revised AFC and response to CEC Set One Data Request No. 86. The AERMOD model was run for all sources with unit emission rate (1 g/s). Using HARP On-Ramp, the output from AERMOD and the source emissions were converted into a format for input into the HARP model. The HARP was run to predict the acute and chronic health index and the cancer risk.

As described in the response to CEC Set One Data Request No. 86, the AERMOD/HARP modeling included all grid receptors used in the criteria pollutant modeling, the sensitive receptor located at the Elk Hills School in Tupman, the residence along the northwestern property boundary, the residence at the intersection of Station Road and Tule Park Road, plus one offsite worker at the Tule Elk State Reserve ranger station, approximately 1 kilometer east of the property boundary.

The risk calculation for the maximally exposed individual worker (MEIW) assumed that the worker would be present at that location for 8 hours per day, 5 days per week, 49 weeks per year, for 40 years (default HARP worker adjustment).

At the request of SJVAPCD, the meteorological data set was updated to include years 2004 to 2008 from the Bakersfield Airport meteorological station, which is consistent with the criteria pollutant analysis. These data were issued by SJVAPCD and are provided on the Revised Air Quality Modeling DVD, June 2010 along with all HRA modeling files.

3.2.4 HRA Model Results

The results of the HRA for Project operations are presented below in Table 12 for the point of maximum impact (PMI) and at the MEIW outside the property boundary and the maximally exposed individual resident (MEIR). The MEIR for all health risks occurs at the residence along the northwestern property boundary. The health risks at the residence at the intersection of Station Road and Tule Park Road are also shown for informational purposes in Table 12. As shown in this table, all health risks were predicted to be below the significance thresholds.

The AERMOD modeling files and risk calculation reports from HARP are included on a DVD with this document. The files include the Chi/Q in µg/m³ per gram per second from each source at each receptor.

Table 12
Estimated Cancer Risk, Acute and Chronic Non-Cancer Total Hazard Index
Due to HECA Operations

Location	Cancer Risk	Chronic Hazard Index	Acute Hazard Index
Point of maximum impact	3.45 excess risk in 1 million	0.31 total hazard index	0.81 total hazard index
Coordinates of PMI in UTM NAD83 (m)	283,960E 3,911,650N	283,960E 3,911,650N	282,362E 3,912,769N
Peak risk at off-site worker MEIW	0.52 excess risk in 1 million	0.05 total hazard index	0.25 total hazard index
Coordinates of MEIW in UTM NAD83 (m) (Tule Elk State Reserve Ranger Station)	285,170E 3,912,389N	285,170E 3,912,389N	285,170E 3,912,389N
Peak risk at MEIR	0.95 excess risk in 1 million	0.06 total hazard index	0.64 total hazard index
Coordinates of MEIR in UTM NAD83 (m) (Residence at the northwest corner of the property)	282,408 E 3,913,181 N	282,408 E 3,913,181 N	282,408 E 3,913,181 N
Risk at Residence at Station Road and Tule Park Road	0.70 excess risk in 1 million	0.06 total hazard index	0.36 total hazard index
Coordinates in UTM NAD83 (m) (Residence at Station Road and Tule Park Road)	284,396 E 3,912,529 N	284,396 E 3,912,529 N	284,396 E 3,912,529 N
Peak risk at nearest Sensitive Receptor (Elk Hills School, Tupman, California)	0.48 excess risk in 1 million	0.04 total hazard index	0.11 total hazard index
Coordinates of Sensitive Receptor NAD83 (m)	285,878E 3,908,605N	285,878E 3,908,605N	285,878E 3,908,605N
Significance threshold	10 in 1 million	1	1
Below significance?	Yes	Yes	Yes

Notes:

1. MEIW cancer risk is conservatively based on a residential risk calculation, i.e., a 70 year exposure.

m = meters

MEIR = maximally exposed individual resident MEIW = maximally exposed individual worker

NAD83 = Geographic coordinate system North American datum 83

PMI = point of maximum impact UTM = Universal Transverse Mercator

- SJVAPCD (San Joaquin Valley Air Pollution Control District), 2010. Draft Modeling Procedure to Address the New Federal 1 Hour NO₂ Standard. April 12, 2010.
- URS Corporation, 2009. Revised Application for Certification for Hydrogen Energy California, Kern County, California. Prepared for Energy International LLC. May 2009.
- U.S. EPA (U.S. Environmental Protection Agency), 1992. Screening Procedures for Estimating the Air Quality Impact of Stationary Sources, Revised. EPA-454/R-92-019. October 1992.
- U.S. EPA (U.S. Environmental Protection Agency), 1995. Guidance, *Protocol for Equipment Leak Emission Estimates*. EPA-453/R-95-017. November 1995.
- U.S. EPA (U.S. Environmental Protection Agency), 2010. Notice Regarding Modeling for New Hourly NO₂ NAAQS. February 25, 2010.

APPENDIX A HECA OPERATIONAL CRITERIA EMISSIONS

Total Annual Project Emissions

Emissions Summary

Hydrogen Energy California LLC HECA Project

6/18/2010

Pollutant	Total Annual	CTG/HRSG Maximum ⁽¹⁾	Cooling Towers ⁽²⁾	Auxiliary Boiler	Emergency Generators ⁽³⁾	Fire Water Pump	Gasification Flare	SRU Flare	Rectisol Flare	Tail Gas Thermal Oxidizer	CO₂ Vent	Gasifier Refractory Heaters	Feedstock ⁽⁴⁾	Fugitives
	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)
NO_X	195.1	168.0		0.9	0.2	0.1	7.2	0.2	0.2	10.5	_	7.8	\$	•
co	406.9	155.7		5.8	0.9	0.2	111.2	0.2	0.1	8.8	106.9	11.3		6.0
VOC	59.1	33.8		0.6	0.10	0.01	0.003	0.003	0.002	0.3	2.4	2.3		19.7
SO ₂	37.7	28.3		0.3	0.001	0.0003	0.118	0.372	0.003	8.5		0.07		
PM ₁₀	111.4	82.3	24,1	0.8	0.02	0.001	0.007	0.006	0.004	0.4		0.3	3.6	-
PM _{2.5} ⁽⁵⁾	99.2	82.3	14.5	0.8	0.02	0.001	0.007	0.006	0.004	0.4		0.3	1.0	-
NH ₃	76.3	75.8		0.3						-				0.2
H₂S	3.7	,,				-			- 1		1,3			2.4

⁽¹⁾ Total annual CTG/HRSG emissions represent the maximum emissions rate from firing either hydrogen-rich fuel, natural gas or co-firing.

⁽²⁾ Includes contributions from all three cooling towers

⁽³⁾ Includes contributions from both emergency generators

⁽⁴⁾ Feedstock emissions are shown as the contribution of all dust collection points.

⁽⁵⁾ Where $PM_{10} = PM_{2.5}$, it is assumed that PM_{10} is 100% $PM_{2.5}$

⁽⁶⁾ CO₂e emission rates are shown as metric tons (tonnes)

Hydrogen Energy California LLC HECA Project

6/18/2010

Summary of CTG/HRSG Emission Rates Under the Three Different Firing Scenarios

	SSIONS:per:Turbine CTG/HRSG - Nat Gas (ton/yr/CT)	CTG/HRSG - Syn Gas (ton/yr/CT)	CTG/HRSG - Co Firing (ton/yr/CT)	Maximum (ton/yr/CT)
NO _x	148.8	168.0	167.8	168.0
co ·	141.2	105.9	155.7	155.7
voc	30.5	19.6	33.8	33.8
SO₂	20.5	28.3	24.7	28.3
$PM_{10} = PM_{2.5}$	74.9	82.3	82.3	82.3
NH ₃	66.9	75.8	75.7	75.8

	CTG/HRSG - Nat Gas	CTG/HRSG - Syn Gas	CTG/HRSG - Co Firing	Maximum	
	(g/sec/CT)	(g/sec/CT)	(g/sec/CT)	(g/sec/CT)	
NOx	21.0	21.0	21.0	21.0	
co	211.6	211.6	211.6	211.6	
SO ₂	0.7	0.86	0.80	0.9	

Modeling Worst-Case 3 h	r Emissions per Turbine			
	CTG/HRSG - Nat Gas	CTG/HRSG - Syn Gas	CTG/HRSG - Co Firing	Maximum
	(g/sec/CT)	(g/sec/CT)	(g/sec/CT)	(g/sec/CT)
SO ₂	0.7	0.86	0.80	0.9

Modeling Worst-Case 8 h	r Emissions per Turbine			
-	CTG/HRSG - Nat Gas	CTG/HRSG - Syn Gas	CTG/HRSG - Co Firing	Maximum
	(g/sec/CT)	(g/sec/CT)	(g/sec/CT)	(g/sec/CT)
CO	89.1	88.6	89.3	89.3

Modeling Worst-Gase 24	Hour Emission Rate			
·	CTG/HRSG - Nat Gas	CTG/HRSG - Syn Gas	CTG/HRSG - Co Firing	Maximum
	(g/sec/CT)	(g/sec/CT)	(g/sec/CT)	(g/sec/CT)
SO ₂	0.7	0.86	0.80	0.9
PM ₁₀ = PM _{2.5}	2.3	2.5	2.5	2.5

	CTG/HRSG - Nat Gas	CTG/HRSG - Syn Gas	CTG/HRSG - Co Firing	Maximum
	(g/sec/CT)	(g/sec/CT)	(g/sec/CT)	(g/sec/CT)
NO _X	4.3	4.8	4.8	4.8
co	4.1	3.0	4.5	4.5
VOC SO ₂	0.9	0.6	1.0	1.0
	0.6	0.82	0.71	0.8
PM ₁₀ = PM _{2.5}	2.2	2.4	2.4	2.4

CTG/HRSG Stack - Natural Gas

Emissions Summary

6/18/2010

Hydrogen Energy California LLC HECA Project

CTG Operating Parameters

Ambient Temperature	UNITS		Winter Minimum - 20°F				Yearly Average- 65°F				Summer Maximum - 97°F		
CTG Load Level	Percent Load (%)	100%	100%	80%	60%	100%	100%	80%	60%	100%	100%	80%	60%
Evap Cooling Status	off / on	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Duct Burner Status	off / on	On	Off	Off	Off	On	Off	Off	Off	On	Off	Off	Off

Average Emission Rates from CTG (lbs/hr/turbine) - Normal Operation

	UNITS		Winter Mini	mum - 20°F		Yearly Average- 65°F				Summer Maximum - 97°F			
NO _x (@ 4.0 ppm)	lbm/hr	37.2	29.0	24.8	20.8	35.1	27.0	23.1	19.4	34.2	26.1	22.4	18.7
CO (@ 5.0 ppm)	lbm/hr	28.3	22.1	18.8	15.8	26.7	20.5	17.6	14.8	26.0	19.8	17.0	14.2
VOC (@ 2.0 ppm)	lbm/hr	6.5	5.0	4.3	3.6	6.1	4.7	4.0	3.4	5.9	4.5	3.9	3.2
SO ₂ (@ 12.65 ppmv)	lbm/hr	5.2	4.1	3.5	3.0	4.9	3.8	3.3	2.8	4.8	3.7	3.2	. 2.7
PM ₁₀ = PM _{2.5}	lbm/hr	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0
NH ₃ (@ 5.0 ppm slip)	lbm/hr	17.2	13.4	11.4	9.6	16.2	12.5	10.7	9.0	15.8	12.1	10.3	8.6
All turbine operating parameters and emissions data pr	ovided by FLUOR based on expected opera	ting parameters.											

Startup / Shutdown Emissions from Turbine (1CT)

Cold Startup				Hot Startup		Shutdown		
180	Max 1-hr.	Total	60	Max 1-hr.	Total	30	Max 1-hr.	Total
(min. in cold startup)	(lb/hr)	(lb/180min)	(min. in hot startup)	(lb/hr)	(lb/60min)	(min. in shutdown)	(lb/hr)	(lb/30min)
NO _x	90.7	272.0	NOx	167.0	167.0	NOx	62.0	62.0
CO	1,679.7	5,039,0	co	394.0	394.0	со	126.0	126.0
voc	266.7	800.0	voc	98.0	98.0	voc	21.0	21.0
SO ₂ (@ 12.65 ppmv)	5.1	15.3	SO ₂	5.1	5.1	SO ₂	2.6	2.6
$PM_{10} = PM_{2.5}$	19.0	57.0	PM ₁₀ = PM _{2.5}	19.8	19.8	PM ₁₀ = PM _{2.5}	5.0	5.0
All turbine operating parameters and emissions data provided by FLUC	R based on expected opera	iting parameters.	***				-	

Startup and shutdown SO2 emissions will always be lower than normal operation max SO2 emissions. Startup and shutdown emissions are assumed equal to the normal operations max emission rate.

Average Annual Emissions

Total Hours of Operation	8,322.0	Pollutant	Turbine Emissions	Emissions	Emissions
Total Number of Cold Starts	10.0		lb/yr/CT	ton/yr/CT	g/sec/CT
Cold Start Duration (hr)	3.0	NO _X	297,638.3	148.8	4.3
Total Number of Hot Starts	20.0	co	282,487.8	141.2	4.1
Hot Start Duration (hr)	1.0	voc	60,975.8	30.5	0.9
Total Number of Shutdowns	30.0	SO₂	40,902.9	20.5	0.6
Shutdown Duration (hr)	0.5	PM ₁₀ = PM _{2.5}	149,742.0	74.9	2.2
Duct Burner Operation (hr)	8,257.0	NH₃	133,837.3	66.9	1.9
Average Normal Operation (hr)	0.0				

Assumptions

Average annual normal operational emissions are calculated using yearly average- 65°F, at 100 % load. Duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Faianieleis	
Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

Hydrogen Energy California LLC HECA Project

First Quarter Emissions (Jan, Feb, Mar)

			Turbine	
Total Hours of Operation	2,080.5	Pollutant	Emissions	Emissions
Total Number of Cold Starts	2.5		lb/qtr/CT	ton/qtr/CT
Cold Start Duration (hr)	3.0	NO _X	74,409.6	37.2
Total Number of Hot Starts	5.0	co	70,622.0	35.3
Hot Start Duration (hr)	1.0	voc	15,243.9	7.6
Total Number of Shutdowns	7.5	SO ₂	10,225.7	5.1
Shutdown Duration (hr)	0.5	PM ₁₀ = PM _{2.5}	37,435.5	18.7
Duct Burner Operation (hr)	2,064.3	NH ₃	33,459.3	16.7
Average Normal Operation (hr)	0.0			

Assumptions

Quarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load.

Quarterly duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Second Quarter Emissions (Apr, May, Jun)

			Turbine	
Total Hours of Operation	2,080.5	Pollutant	Emissions	Emissions
Total Number of Cold Starts	2.5		lb/qtr/CT	ton/qtr/CT
Cold Start Duration (hr)	3.0_	NO _X	74,409.6	37.2
Total Number of Hot Starts	5.0	со	70,622.0	35.3
Hot Start Duration (hr)	1.0	VOC	15,243.9	7.6
Total Number of Shutdowns	7.5	SO₂	10,225.7	5.1
Shutdown Duration (hr)	0.5	PM ₁₀ = PM _{2.5}	37,435.5	18.7
Duct Burner Operation (hr)	2,064.3	NH ₃	33,459.3	16.7
Average Normal Operation (hr)	0.0			

Assumptions:

Quarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load.

Quarterly duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Modeling Worst-Case 1 hr Emissions per Turbine

Pollutant	lb/hr/CT	g/sec/CT	
NOx	167.0	21.0	
CO SO ₂	1,679.7	211.6	
SO ₂	5.2	0.7	

Assumptions:

Startup emissions represent worst case hr for NOx and CO.

Worst case 1 hr NOx emissions are from hot start

Worst case 1 hr CO emissions are from cold start

Calculation assumes that startup and shutdown SO₂ emissions will always be lower than normal operational max SO₂ emissions.

Third Quarter Emissions (Jul, Aug, Sep)

Total Hours of Operation	2,080.5	Pollutant	Turbine Emissions	Emissions
Total Number of Cold Starts	2.5		lb/qtr/CT	ton/qtr/CT
Cold Start Duration (hr)	3.0	NO _X	74,409.6	37.2
Total Number of Hot Starts	5.0	со	70,622.0	35.3
Hot Start Duration (hr)	1.0	voc	15,243.9	7.6
Total Number of Shutdowns	7.5	SO ₂	10,225.7	5.1
Shutdown Duration (hr)	0.5	PM ₁₀ = PM _{2.5}	37,435.5	18.7
Duct Burner Operation (hr)	2,064.3	NH ₃	33,459.3	16.7
Average Normal Operation (hr)	0.0			

Assumption

Quarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load.

Quarterly duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Fourth Quarter Emissions (Oct, Nov, Dec)

Total Hours of Operation	2,080.5	Pollutant	Turbine Emissions	Emissions
Total Number of Cold Starts	2.5		lb/qtr/CT	ton/qtr/CT
Cold Start Duration (hr)	3.0	NO _X	74,409.6	37.2
Total Number of Hot Starts	5.0	co	70,622.0	35.3
Hot Start Duration (hr)	1.0	VOC	15,243.9	7.6
Total Number of Shutdowns	7.5	SO₂	10,225.7	5.1
Shutdown Duration (hr)	0.5	PM ₁₀ = PM _{2.5}	37,435.5	18.7
Duct Burner Operation (hr)	2,064.3	NH ₃	33,459.3	16.7
Average Normal Operation (hr)	0.0			

Assumption:

Quarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load.

Quarterly duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Hydrogen Energy California LLC HECA Project

Modeling Worst-Case 3 hr Emissions per Turbine

	hr	emission rate lb/hr	Emissions lb/CT	
Total Hours of Operation	3.0			
Startup Duration	0.0		0.0	contribution over 3 hr from start up
Shutdown Duration	0.0		0.0	contribution over 3 hr from shut dow
Hours of Normal Operation (burning natural gas)	3.0	5.2	15.6	contribution over 3 hr from normal o
				-
SO ₂ worst-case 3 hr emissions per turbine	15.6	lb/3 hr		
SO ₂ worst-case 1 hr emissions per turbine	5.2	lb/hr		
SO ₂ modeling worst-case emissions per turbine	0.7	g/sec		•
Assumptions:				
Only SO ₂ is considered for an average 3-hour Ambient Air Quality Stand	larđ.			
Normal operation assumes max emission rate			•	
Worst-case 3 hr emissions assumes a total start up of :	0			-
Worst-case 3 hr emissions assumes a total shut down of :	0			
Calculation assumes that startup and shutdown SO_2 emissions will always	ys be lower than norma	al operational max SO ₂ emiss	ions	

Modeling Worst-Case 8 hr Emissions per Turbine

-	hr	emission rate lb/hr	Emissions lb/CT	
Total Hours of Operation	8.0			
Startup Duration (1 cold start and 1 hot start)	4.0		5,433.0	contribution ov
Shutdown Duration	0.5		126.0	contribution or
Hours of Normal Operation (burning natural gas)	3.5	28.3	99.0	contribution ov
			-	
CO worst-case 8 hr emissions per turbine	5,658.0	lb/8 hr		
CO worst-case 1 hr emissions per turbine	707.2	lb/hr		
CO modeling worst-case emissions per turbine	89.1	g/sec	* -	-
Assumptions:				
Only CO is considered for an average 8-hour Ambient Air Quality Standa	arđ.			
Normal operation assumes max emission rate				
Worst-case 8 hr emissions assumes a total COLD start up of :	1			
Worst-case 8 hr emissions assumes a total HOT start up of :	1			
Worst-case 8 hr emissions assumes a total shut down of :	1			

over 8 hr from start up (1 cold & 1 hot) over 8 hr from shut down over 8 hr from normal operation

R:\10 HECA\DRs\WRs\App A Criteria Pollutants.xls

Hydrogen Energy California LLC HECA Project

Worst-Case Daily Emissions per Turbine and Modeling Worst-Case 24 Hour Emission Rate

DO UNITED TO	<u> </u>
SO ₂ (lb/day/CT)	124.9
SO ₂ (g/s/CT) (burning natural gas)	0.7
PM ₁₀ = PM _{2.5} (lb/day/CT)	432.0
PM ₁₀ = PM _{2.5} (g/s/CT) (burning natural gas)	2.3

Only SO₂ and PM are considered for an average 24-hour Ambient Air Quality Standard.

For SO_2 24 hrs of normal operation at max emission rate For PM emissions are calculated below assuming startup and shutdown contributions.

Worst-Case Daily Emissions per Turbine and Modeling Worst-Case 24 Hour Emission Rate

Pollutant	Time in Cold Startup hr	Startup Emission Rate Ib/start	Time in Hot Startup hr	Startup Emission Rate Ib/start	Time in Shut Down hr	Shutdown Emission Rate lb/shutdown	Time in Normal Operation hr	Normal Operation Emission Rate lb/hr	Worst-Case Daily Emissions Ib/day/CT	Modeling Worst- Case 24 Hr Emission g/s/CT
Nox (1 COLD start up, 1 HOT start up, and I shut down)	3.0	272.0	1.0	167.0	0.5	62.0	19.5	37.2	1,225.6	6.4
CO	3.0	5,039.0	1.0	394.0	0.5	126.0	19.5	28.3	6,110.3	
VOC	3.0	800.0	1.0	98.0	0.5	21.0	19.5	6.5	1,045.0	
SO ₂	3.0	15.3	1.0	5.1	0.5	2.6	19\5	5.2	124.5	0.7
PM ₁₀ = PM _{2.5}	3.0	57.0	1.0	19.8	0.5	5.0	19.5 .	18.0	432.8	2.3

For NOx, CO, VOC, and PM -- emissions are calculated assuming:

Worst-case daily emissions assumes a total COLD start up of :

and a total HOT start up of:

Worst-case daily emissions assumes a total shut down of :

Remainder of time is spent at maximum normal operation emissions

See above calculation for worst-case daily SO₂:calculated as 24 hrs of normal operation at max emissions rate

Hydrogen Energy California LLC HECA Project

CTG Operating Parameters

OTO Operating Farameters													
Ambient Temperature	UNITS		Winter Minin	num - 20°F		·	Yearly Average- 65°F				Summer Maxir	ոստ - 97°F	
CTG Load Level	Percent Load (%)	100%	100%	80%	60%	100%	100%	80%	60%	100%	100%	80%	60%
Evap Cooling Status	off / on	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Duct Burner Status	off / on	On	Off	Off	Off	On	Off	Off	Off	On	Off	Off	Off

Average Emission Rates from CTG (lbs/hr/turbine) - Normal Operation

	UNITS		Winter Minir	num - 20°F			Yearly Average- 6	55°F			Summer Maxin	num - 97°F	•
NO _x (@ 4.0 ppm)	lbm/hr		37.2	31.5	26.1	39.7	36.9	31.0	25.6	39.7	38.0	30.9	25.6
CO (@ 3.0 ppm)	lbm/hr		17.0	14.4	11.9	18.1	16.8	14.1	11.7	18.1	17.4	14.1	11.7
VOC (@ 1.0 ppm)	lbm/hr		3.2	2.7	2.3	3.5	3.2	2.7	2.2	3.5	3.3	2.7	2.2
SO₂ (@ 5.0 ppmv)	lbm/hr		6.1	5.2	4.4	6.8	6.1	5.1	4.3	6.8	6.0	5.1	4.3
PM ₁₀ = PM _{2.5}	lbm/hr		19.8	19.8	19.8	19.8	19.8	19.8	19.8	19.8	19.8	19.8	19.8
NH ₃ (@ 5.0 ppm slip)	lbm/hr		17.2	14.6	12.0	18.4	17.0	14.3	11.8	18.4	17.6	14.3	11.8
All turbine operating parameters and emissions data	provided by FLUOR based on expected of	perating parameters.				•					**************************************		

Startup / Shutdown Emissions from Turbine (1CT)

Cold Startup							Shutdown			
180	Max 1-hr.	Total	60	Max 1-hr.	Total	30	Max 1-hr.	Total		
(min. in cold startup)	(lb/hr)	(lb/180min)	(min. in hot startup)	(lb/hr)	(lb/60min)	(min. in shutdown)	(lb/hr)	(lb/30min)		
NO _X	90.7	272.0	NOx	167.0	167.0	NOx	62.0	62.0		
co	1,679.7	5,039.0	со	394.0	394.0	co	126.0	126.0		
voc	266.7	800.0	voc	98.0	98.0	voc	. 21.0	21.0		
SO ₂ (@ 12.65 ppmv)	5.1	15.3	SO2	5.1	5.1	SO2	2.6	2.6		
PM ₁₀ = PM _{2.5}	19.0	57.0	$PM_{10} = PM_{2.5}$	19.8	19.8	$PM_{10} = PM_{2,5}$	5.0	5.0		

All turbine operating parameters and emissions data provided by FLUOR based on expected operating parameters.

CTGs will always be started burning natural gas. Startup and shutdown emission rates above reflect natural gas.

Startup and shutdown SO2 emissions will always be lower than normal operation max SO2 emissions. Startup and shutdown emissions are assumed equal to normal operations (burning natural gas) at the max emission rate.

Average Annual Emissions

Total Hours of Operation		8,322.0	Pollutant	Turbine Emissions	Emissions	Emissions
Total Number of Cold Starts		10.0		lb/yr/CT	ton/yr/CT	g/sec/CT
Cold Start Duration (hr)		3.0	NO _x	336,046.9	168.0	4.8
Total Number of Hot Starts	9	20.0	co	211,847.1	105.9	3.0
Hot Start Duration (hr)		1.0	VOC	39,122.8	19.6	0.6
Total Number of Shutdowns		30.0	SO₂	56,688.7	28.3	0.8
Shutdown Duration (hr)		0.5	$PM_{10} = PM_{2.5}$	164,604.6	82.3	2.4
Duct Burлer Operation (hr)	-	8,257.0	NH ₃	151,580.4	75.8	2.2
Average Normal Operation (hr)		0.0				
Accumptions:						

erage annual normal operational emissions are calculated using yearly average- 65°F, at 100 % load.

Duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Days per year:	365				
Hours per day:	24				
Minutes per hour:	60				
Seconds per minute:	60				

Hydrogen Energy California LLC HECA Project

First Quarter Emissions (Jan, Feb, Mar)

			Turbine	
Total Hours of Operation	2,080.5	Pollutant	Emissions	Emissions
Total Number of Cold Starts	2.5		lb/qtr/CT	ton/qtr/CT
Cold Start Duration (hr)	3.0	NO _X	84,011.7	42.0
Total Number of Hot Starts	5.0	co	52,961.8	26.5
Hot Start Duration (hr)	1.0	VOC	9,780.7	4.9
Total Number of Shutdowns	7.5	SO ₂	14,172.2	7.1
Shutdown Duration (hr)	0.5	PM ₁₀ = PM _{2.5}	41,151.2	20.6
Duct Burner Operation (hr)	2,064.3	NH ₃	37,895.1	18.9
Average Normal Operation (hr)	0.0		•	

Assumptions:

Quarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load.

Quarterly duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Second Quarter Emissions (Apr, May, Jun)

Total Hours of Operation	2,080.5	Pollutant	Turbine Emissions	Emissions
Total Number of Cold Starts	2.5		lb/qtr/CT	ton/yr/CT
Cold Start Duration (hr)	3.0	NO _X	84,011.7	42.0
Total Number of Hot Starts	5.0	со	52,961.8	26.5
Hot Start Duration (hr)	1.0	voc	9,780.7	4.9
Total Number of Shutdowns	7.5	SO₂	14,172.2	7.1
Shutdown Duration (hr)	0.5	PM ₁₀ = PM _{2.5}	41,151.2	20.6
Duct Burner Operation (hr)	2,064.3	NH ₃	37,895.1	18.9
Average Normal Operation (hr)	0.0			

Quarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load.

Quarterly duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Modeling Worst-Case 1 hr Emissions per Turbine

Pollutant	lb/hr/CT	g/sec/CT
NOx	167.0	21.0
co	1,679.7	211.6
SO ₂	6.8	0.9

Assumptions:

Startup emissions represent worst case hr for NOx and CO. Startup and shutdown only burn natural gas.

NOx emissions are from hot start

CO emissions are from cold start

Normal operation burning syngas represents worst case SO_2 Calculation assumes that startup and shutdown SO_2 emissions will always be lower than normal operational (burning natural gas) max SO₂ emissions.

Third Quarter Emissions (Jul, Aug, Sep)

Total Hours of Operation	2.080.5		Pollutant	Turbine Emissions	Emissions
Total Number of Cold Starts	2.5	- 600	1 Ollutant		
	2.5	140/00/00/00/00		lb/qtr/CT	ton/qtr/CT
Cold Start Duration (hr)	3.0		NO _X	84,011.7	42.0
Total Number of Hot Starts	5.0		со	52,961.8	26.5
Hot Start Duration (hr)	1.0		voc	9,780.7	4.9
Total Number of Shutdowns	7.5		SO₂	14,172.2	7.1
Shutdown Duration (hr)	0.5		PM ₁₀ = PM _{2.5}	41,151.2	20.6
Duct Burner Operation (hr)	2,064.3		NH ₃	37,895.1	18.9
Average Normal Operation (hr)	0.0				

Quarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load.

Quarterly duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Fourth Quarter Emissions (Oct, Nov, Dec)

			Turbine	
Total Hours of Operation	2,080.5	Pollutant	Emissions	Emissions
Total Number of Cold Starts	2.5		■ lb/qtr/CT	ton/qtr/CT
Cold Start Duration (hr)	3.0	NO _X	84,011.7	42.0
Total Number of Hot Starts	5.0	NO _X	52,961.8	26.5
Hot Start Duration (hr)	1.0	voc	9,780.7	4.9
Total Number of Shutdowns	7.5	SO ₂	. 14,172.2	7.1
Shutdown Duration (hr)	0.5	$PM_{10} = PM_{2.5}$	41,151.2	20.6
Duct Burner Operation (hr)	2,064.3	VOC SO ₂ PM ₁₀ = PM _{2.5} NH ₃	37,895.1	18.9
Average Normal Operation (hr)	0.0			

Assumptions:

Quarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % toad.

Quarterly duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Hydrogen Energy California LLC
HECA Project
Modeling Worst-Case 3 hr Emission

Modeling Worst-Case 3 hr Emissions per Turbine		Emission Rate	Emissions	
	hr	lb/hr	Ib/CT	
Total Hours of Operation	3.0			
Startup Duration	0.0		0.0	contribution over 3 hr from start up
Shutdown Duration	0.0		0.0	contribution over 3 hr from shut down
Hours of Normal Operation (burning syngas)	3.0	6.8	20.5	contribution over 3 hr from normal operation
SO ₂ worst-case 3 hr emissions per turbine	20.5	lb/3 hr		
SO ₂ worst-case 1 hr emissions per turbine	6.8	lb/hr		
SO ₂ modeling worst-case emissions per turbine	0.9	g/sec		
Assumptions:				
Only SO ₂ is considered for an average 3-hour Ambient Air Quality Stand	lard.	İ		
Normal operation burning syngas represents worst case SO ₂ .		1		
Worst-case 3 hr emissions assumes a total start up of :	0	1		
Worst-case 3 hr emissions assumes a total shut down of : Calculation assumes that startup and shutdown SO ₂ emissions will alwa natural gast SO ₂ emissions	0 ays be lower than no	ormal operational (burning		

Modeling Worst-Case 8 hr Emissions per Turbine

	hr	Emission Rate	Emissions lb/CT	
Total Hours of Operation	8.0			
Startup Duration (1 cold start and 1 hot start)	4.0		5,433.0	contribution over 8 hr fo
Shutdown Duration	0.5		126.0	contribution over 8 hr fr
Hours of Normal Operation (burning syngas)	3.5	18.1	63.5	contribution over 8 hr fr
				_
CO worst-case 8 hr emissions per turbine	5,622.5	lb/8 hr		•
CO worst-case 1 hr emissions per turbine	702.8	lb/hr		
CO modeling worst-case emissions per turbine	88.6	g/sec		•
Assumptions:				•
Only CO is considered for an average 8-hour Ambient Air Quality Stan	dard.			
Normal operation assumes max rate.				
Worst-case 8 hr emissions assumes a total COLD start up of :	1			
Worst-case 8 hr emissions assumes a total HOT start up of :	1	•		
Worst-case 8 hr emissions assumes a total shut down of :	1			

ır from start up r from shut down r from normal operation

Hydrogen Energy California LLC HECA Project

Worst-Case Daily Emissions per Turbine and Modeling Worst-Case 24 Hour Emission Rate

SO ₂ (lb/day/CT)	163.8
SO ₂ (g/s/CT) (burning syngas)	0.9
10 mm	
$PM_{10} = PM_{2,5} (lb/day/CT)$	475.2
$PM_{10} = PM_{2.5}$ (g/s/CT) (burning syngas)	2.5
Assumptions:	
Only SO ₂ and PM are considered for an average 24-hour Ambier	it Air Quality Standard.
For SO ₂ 24 hrs of normal operation max emission rate	

Worst-Case Daily Emissions per Turbine and Modeling Worst-Case 24 Hour Emission Rate

Pollutant	Time in Cold Startup hr	Startup Emission Rate lb/start	Time in Hot Startup hr	Startup Emission Rate , lb/start	Time in Shut Down hr	Shutdown Emission Rate Ib/shutdown	Time in Normal Operation hr	Normal Operation Emission Rate Ib/hr	Worst-Case Daily Emissions Ib/day/CT	Modeling Worst- Case 24 Hr Emission g/s/CT
NOx	3.0	272.0	1.0	167.0	0.5	62.0	19.5	39.7	1,275.9	6.7
co	3.0	5,039.0	1.0	394.0	0.5	126.0	19.5	18.1	5,912.8	
voc	3.0	0.008	1.0	98.0	0.5	21.0	19.5	3.5	986.4	
SO ₂	3.0		1.0	5.1	0.5	2.6	19.5	6.8	156.1	0.8
$PM_{10} = PM_{2,5}$	3.0	57.0	1.0	19.8	0.5	5.0	19:5	19.8	467.9	2.5

Assumptions:

For NOx, CO, and VOC -- emissions are calculated assuming:

For PM 24 hrs of normal operation max emission rate

Worst-case daily emissions assumes a total COLD start up of :

and a total HOT start up of:

Worst-case daily emissions assumes a total shut down of :

1 -

Remainder of time is spent at maximum normal operation emissions

See above calculation for worst-case daily SO_2 and PM: calculated as 24 hrs of normal operational max emissions rate

Hydrogen Energy California LLC

HECA Project

CTG Operating Parameters

Ambient Temperature	UNITS	Winter Minimum - 20°F			Yearly Average- 65°F				Summer Maximum - 97°F				
CTG Load Level	Percent Load (%)	100%	100%	80%	60%	100%	100%	80%	60%	100%	100%	80%	60%
Evap Cooling Status	off / on	N/A	· N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Duct Burner Status	off / on	On	Off	Off	Off	On	Off	Off	Off	On	Off	Off	Off

Average Emission Rates from CTG (lbs/hr/turbine) - Normal Operation

UNITS		Winter Mi	nimum - 20°F	Yearly Average- 65°F			Summer Maximum - 97°F		
ibm/hr	42.0	34.0		39.7	31.7		Company of the Compan		
lbm/hr	32.0	25.9		30.2	24.1				
lbm/hr	7.3	5.9		6.9	5.5				
lbm/hr	6.3	5.2		6.0	4.8				
lbm/hr	19.8	19.8		19.8	19.8				
lbm/hr	19.4	15.7		18.3	14.6				
	Ibm/hr Ibm/hr Ibm/hr Ibm/hr	Ibm/hr 42.0 1bm/hr 32.0 1bm/hr 7.3 1bm/hr 6.3 1bm/hr 19.8	Ibm/hr 42.0 34.0 Ibm/hr 32.0 25.9 Ibm/hr 7.3 5.9 Ibm/hr 6.3 5.2 Ibm/hr 19.8 19.8	Ibm/hr	Ibm/hr 42.0 34.0 39.7 Ibm/hr 32.0 25.9 30.2 Ibm/hr 7.3 5.9 6.9 Ibm/hr 6.3 5.2 6.0 Ibm/hr 19.8 19.8 19.8	Ibm/hr 42.0 34.0 39.7 31.7 Ibm/hr 32.0 25.9 30.2 24.1 Ibm/hr 7.3 5.9 6.9 5.5 Ibm/hr 6.3 5.2 6.0 4.8 Ibm/hr 19.8 19.8 19.8 19.8	Ibm/hr 42.0 34.0 39.7 31.7 Ibm/hr 32.0 25.9 30.2 24.1 Ibm/hr 7.3 5.9 6.9 5.5 Ibm/hr 6.3 5.2 6.0 4.8 Ibm/hr 19.8 19.8 19.8 19.8		

All turbine operating parameters and emissions data provided by FLUOR based on expected operating parameters.

Co-firing emissions are controlled at the same amount as natural gas.

Startup / Shutdown Emissions from Turbine (1CT)

Cold Sta		Hot Startup			Shutdown			
180	Max 1-hr.	Total	60	Max 1-hr.	Total	30	Max 1-hr.	Total
· (min. in cold startup)	(lb/hr)	(lb/180min)	(min. in hot startup)	(lb/hr)	(lb/60min)	(min. in shutdown)	(lb/hr)	(lb/30min)
NO _X	90.7	272.0	NOx	167.0	167.0	NOx	62.0	62.0
co	1,679.7	5,039.0	со	394.0	394.0	со	126.0	126.0
voc	266.7	800.0	voc ·	98.0	98.0	voc	21.0	21.0
SO₂ (@ 12.65 ppmv)	5.1	15.3	SO2	5.1	5.1	SO2	2.6	2.6
PM ₁₀ = PM _{2.5}	19.0	57.0	$PM_{10} = PM_{2.5}$	19.8	19.8	PM ₁₀ = PM _{2.5}	5.0	5.0

All turbine operating parameters and emissions data provided by FLUOR based on expected operating parameters.

CTGs will always be started burning natural gas. Startup and shutdown emission rates above reflect natural gas.

Startup and shutdown SO2 emissions will always be lower than normal operation max SO2 emissions. Startup and shutdown emissions are assumed equal to normal operations (burning natural gas) at the max emission rate.

Average Annual Emissions

Total Hours of Operation	8,322.0	Pollutant	Turbine Emissions	Emissions	Emissions
Total Number of Cold Starts	10.0		lb/yr/CT	ton/yr/CT	g/sec/CT
Cold Start Duration (hr)	3.0	NO _X	335,530.2	167.8	4.8
Total Number of Hot Starts	20.0	co	311,411.4	155.7	4.5
Hot Start Duration (hr)	1.0	VOC ·	67,565.7	33.8	1.0
Total Number of Shutdowns	30.0	SO₂	49,479.2	24.7	0.7
Shutdown Duration (hr)	0.5	PM ₁₀ = PM _{2.5}	164,604.6	82.3	2.4
Duct Burner Operation (hr)	8,257.0	NH ₃	151,341.7	75.7	. 2.2
Average Normal Operation (hr)	0.0		-		

Average annual normal operational emissions are calculated using yearly average- 65°F, at 100 % load.

Ouct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Parameters	
Days per year:	365
łours per day:	24
Ainutes per hour:	60
Sanada nas minutas	

Hydrogen Energy California LLC HECA Project

First Quarter Emissions (Jan, Feb, Mar)

			Turbine	
Total Hours of Operation	2,080.5	Pollutant	Emissions	Emissions
Total Number of Cold Starts	2.5		lb/qtr/CT	ton/qtr/CT
Cold Start Duration (hr)	3.0	NO _X	83,882.6	41.9
Total Number of Hot Starts	5.0	co	77,852.9	38.9
Hot Start Duration (hr)	1.0	VOC	16,891.4	8.4
Total Number of Shutdowns	7.5	SO ₂	12,369.8	6.2
Shutdown Duration (hr)	0.5	$PM_{10} = PM_{2.5}$	41,151.2	20.6
Duct Burner Operation (hr)	2,064.3	NH ₃	37,835.4	18.9
Average Normal Operation (hr)	0.0			

Assumption

Quarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load.

Quarterly duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Second Quarter Emissions (Apr, May, Jun)

				Turbine	
Total Hours of Operation	2,080.5		Poliutant	Emissions	Emissions
Total Number of Cold Starts	2.5	4.0		lb/qtr/CT	ton/gtr/CT
Cold Start Duration (hr)	3.0		NO _X	83,882.6	41.9
Total Number of Hot Starts	5.0		со	77,852.9	38.9
Hot Start Duration (hr)	1.0		voc	16,891.4	8.4
Total Number of Shutdowns	7.5		SO₂	12,369.8	6.2
Shutdown Duration (hr)	0.5		PM ₁₀ = PM _{2.5}	41,151.2	20.6
Duct Burner Operation (hr)	2,064.3		NH ₃	37,835.4	18.9
Average Normal Operation (hr)	0.0				

Assumptions:

Quarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load.

Quarterly duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Modeling Worst-Case 1 hr Emissions per Turbine

Pollutant	lb/hr/CT	g/sec/CT
NOx	167.0	21.0
co	1,679.7	211.6
SO ₂	6.3	0.80

Observations.

Startup emissions represent worst case hr for NOx and CO. Startup and shutdown only burn natural gas.

NOx emissions are from hot star

CO emissions are from cold start

Normal operation co firing represents worst case SO₂.

Calculation assumes that startup and shutdown SO₂ emissions will always be lower than normal operational (burning natural gas) max SO₂ emissions.

Third Quarter Emissions (Jul, Aug, Sep)

Total Hours of Operation	2,080.5	Pollutant	Turbine Emissions	Emissions
Total Number of Cold Starts	2.5		lb/qtr/CT	ton/qtr/CT
Cold Start Duration (hr)	3.0	NO _X	83,882.6	41.9
Total Number of Hot Starts	5.0	CO .	77,852.9	38.9
Hot Start Duration (hr)	1.0	VOC	16,891.4	8.4
Total Number of Shutdowns	7.5	SO ₂	12,369.8	6.2
Shutdown Duration (hr)	0.5	PM ₁₀ = PM _{2.5}	41,151.2	20.6
Duct Burner Operation (hr)	2,064.3	NH ₃	37,835.4	18.9
Average Normal Operation (hr)	0.0		•	

Assumption

Quarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load.

Quarterly duct burner emissions are calculated using yearly average- 65°F, at 100 % toad with duct burners.

Fourth Quarter Emissions (Oct, Nov, Dec)

			Turbine	
Total Hours of Operation	2,080.5	Pollutant	Emissions	Emissions
Total Number of Cold Starts	2.5	•	lb/qtr/CT	ton/qtr/CT
Cold Start Duration (hr)	3.0	NO _X	83,882.6	41.9
Total Number of Hot Starts	5.0	со	77,852.9	38.9
Hot Start Duration (hr)	1.0	VOC	16,891.4	8.4
Total Number of Shutdowns	7.5	SO ₂	12,369.8	6.2
Shutdown Duration (hr)	0.5	PM ₁₀ = PM _{2.5}	41,151.2	20.6
Duct Burner Operation (hr)	2,064.3	NH ₃	37,835.4	18.9
Average Normal Operation (hr)	0.0			

Assumption

Quarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load.

Quarterly duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

CTG/HRSG Stack - Co Firing

Hydrogen Energy California LLC HECA Project

6/18/2010

Emissions Summary

Modeling Worst Case 3 hr Emission

		emission rate	Emissions
	hr	lb/hr	lb/CT
Total Hours of Operation	3.0		
Startup Duration	0.0		0.0
Shutdown Duration	0.0		0.0
Hours of Normal Operation (co firing)	3.0	6.3	18.9
SO ₂ worst-case 3 hr emissions per turbine	18.9	lb/3 hr	

contribution over 3 hr from start up contribution over 3 hr from shut down contribution over 3 hr from normal operation

SO ₂ worst-case 3 hr emissions per turbine	18.9	1b/3 hr
SO ₂ worst-case 1 hr emissions per turbine	6.3	lb/hr
SO ₂ modeling worst-case emissions per turbine	0.8	g/sec

Only SO₂ is considered for an average 3-hour Ambient Air Quality Standard.

Normal operation co firing represents worst case SO₂.

Worst-case 3 hr emissions assumes a total start up of :

Worst-case 3 hr emissions assumes a total shut down of :

Worst-case 8 hr emissions assumes a total shut down of :

Calculation assumes that startup and shutdown SO₂ emissions will always be lower than normal operational (burning natural gas) SO₂ emissions.

Modeling Worst-Case 8 hr Emissions per Turbine

	hr	emission rate lb/hr
Total Hours of Operation	- 8.0	
Startup Duration (1 cold start and 1 hot start)	4.0	
Shutdown Duration	0.5	
Hours of Normal Operation (co firing)	3.5	32.0
CO worst-case 8 hr emissions per turbine	5,671.0	lb/8 hr
CO worst-case 1 hr emissions per turbine	708.9	lb/hr
CO modeling worst-case emissions per turbine	89.3	g/sec
Assumptions:		-
Only CO is considered for an average 8-hour Ambient Air Quality Stand	dard.	
Normal operation assumes max rate.		
Worst-case 8 hr emissions assumes a total COLD start up of :	1	
Worst-case 8 hr emissions assumes a total HOT start up of ; 💢 😞 .	1	

contribution over 8 hr from start up contribution over 8 hr from shut down contribution over 8 hr from normal operation

Emissions Ib/CT

5,433.0

126.0

112.0

13 of 57

Hydrogen Energy California LLC HECA Project

Worst-Case Daily Emissions per Turbine and Modeling Worst-Case 24 Hour Emission Rate

Horse ouse buny Emissions per rarbine and	modeling morse-dase 24
SO ₂ (lb/day/CT)	151.5
SO2 (g/s/CT) (co firing)	0.8
PM ₁₀ = PM _{2.5} (lb/day/CT)	475.2
PM ₁₀ = PM _{2.5} (g/s/CT) (cofiring)	2.5
Accumptions	

Only SO₂ and PM are considered for an average 24-hour Ambient Air Quality Standard.

For SO₂ 24 hrs of normal operation max emission rate

For PM 24 hrs of normal operation max emission rate

Worst-Case Daily Emissions per Turbine and Modeling Worst-Case 24 Hour Emission Rate

Pollutant	Time in Cold Startup hr	Startup Emission Rate Ib/start	Time in Hot Startup hr	Startup Emission Rate Ib/start	Time in Shut Down hr	Shutdown Emission Rate Ib/shutdown	Time in Normal Operation hr	Normal Operation Emission Rate Ib/hr	Worst-Case Daily Emissions Ib/day/CT	Modeling Worst- Case 24 Hr Emission g/s/CT
NOx	3.0	272.0	1.0	167.0	0.5	62.0	19.5	42.0	1,320.6	6.9
co	3.0	5,039.0	1.0	394.0	0.5	126.0	19.5	32.0	6,183.0	
VOC	3.0	800.0	1.0	98.0	0.5	21.0	19.5	7.3	1,061.5	
SO ₂	3.0	15.3	1.0	5.1	0,5	2.6	19.5	6.3	146.1	0.8
$PM_{10} = PM_{2.5}$	3.0	57.0	1.0	19.8	0.5	5.0	19.5	19.8	467.9	2.5

For NOx, CO, and VOC -- emissions are calculated assuming:

Worst-case daily emissions assumes a total COLD start up of :

and a total HOT start up of:

Worst-case daily emissions assumes a total shut down of :

Remainder of time is spent at maximum normal operation emissions

See above calculation for worst-case daily SO₂ and PM: calculated as 24 hrs of normal operationat max emissions rate

Auxiliary Boiler

Emissions Summary

Hydrogen Energy California LLC HECA Project 6/18/2010

Auxiliary Boiler - Annual Operating Emissions

	*	
Total Hours of Operation	2,190	hr/yr
Firing Rate	142	MMBtu/hr

	Hours per Qtr							
	Q1	Q2	Q3	Q4				
	547.5	547.5	547.5	547.5				
Ass	Assuming equal operation in each quarter							

Auxiliary Boiler Emission Factors

NOx (low NOx burner and flue gas recirculation, 5 ppmvd (3% O2))	0.006	lb/MMBtu
CO (50 ppmvd (3% O2))	0.037	lb/MMBtu
voc	0.004	lb/MMBtu
SO ₂ (12.65 ppmv total sulfur in pipeline natural gas)	0.00204	lb/MMBtu
$PM_{10} = PM_{2.5}$	0.005	lb/MMBtu
NH ₃ (@ 5.0 ppm slip)	0.0022	lb/MMBtu

Auxiliary Boiler Pollutant Emission Rates

	Auxiliary Boiler Emissions						
Pollutant	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr		
NOx	0.85	20.45	1,865.88	0.23	0.9		
co	5.25	126.10	11,506.26	1.44	5.8		
voc	0.57	13.63	1,243.92	0.16	0.6		
SO₂	0.29	6.96	635.09	0.08	0.3		
$PM_{10} = PM_{2.5}$	0.71	17.04	1,554.90	0.19	0.8		
NH ₃ (@ 5.0 ppm slip)	0.31	7.50	684.16	0.09	0.3		

Modeling Worst-Case 1 hr Emissions

NOx (g/sec)	0.1
CO (g/sec)	0.7
SO ₂ (g/sec)	0.04

Only NOx, CO, and SO₂ are considered for an average 1-hour Ambient Air Quality Standard.

Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60 ·

Auxiliary Boiler Emissions Summary

Hydrogen Energy California LLC
HECA Project

Emissions Summary
6/18/2010

Modeling Worst-Case 3 hr Emissions

SO ₂ (lb/3-hr)	0.87
SO ₂ (g/sec)	0.04

Only SO₂ is considered for an average 3-hour Ambient Air Quality Standard.

Modeling Worst-Case 8 hr Emissions

CO (lb/8-hr)	42.03
CO (g/sec)	0.7

Only CO is considered for an average 8-hour Ambient Air Quality Standard.

Modeling Worst-Case 24 Hour Emissions

SO ₂ (lb/24-hr)	6.96
SO ₂ (g/sec)	0.04
PM ₁₀ = PM _{2.5} (lb/24-hr)	17.04
PM ₁₀ = PM _{2.5} (g/sec)	0.09

Only SO₂ and PM are considered for an average 24-hour Ambient Air Quality Standard.

Modeling Annual Average Emissions

NOx (g/sec)	0.03
CO (g/sec)	0.2
VOC (g/sec)	0.02
SO ₂ (g/sec)	0.01
PM ₁₀ = PM _{2,5} (g/sec)	0.02

Gasification Flare

Emissions Summary

Hydrogen Energy California LLC HECA Project

6/18/2010

Gasification Flare - Normal Operating Emissions From Pilot

Total Hours of Operation	8,760	hr/yr
Gasification Flare Pilot Fuel Use =	0.5	MMBtu/hr

	Hours per Qtr						
Q1	Q2	Q3	Q4				
2190	2190	2190	2190				

Assuming equal operation in each quarter

Pilot Pollutant Emission Factors

NOx (lb/MMBtu, HHV)	0.12
CO (lb/MMBtu, HHV)	0.08
VOC (lb/MMBtu, HHV)	0.0013
SO ₂ (lb/MMBtu, HHV) (12.65 ppm)	0.002
$PM_{10} = PM_{2.5}$ (lb/MMBtu, HHV)	0.003

Pilot Pollutant Emission Rates

Thor Fondan Emission rates		Pilot Emissions					
Pollutant	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr		
NOx	0.060	1.44	525.60	0.07	0.26		
co .	0.040	0.96	350.40	0.04	0.18		
voc	0.001	0.02	5.69	0.0007	0.003		
SO₂	0.0010	0.02	8.94	0.0011	0.004		
$PM_{10} = PM_{2.5}$	0.002	0.04	13.14	0.00	0.007		

Hydrogen Energy California LLC HECA Project

6/18/2010

Gasification Flare - Operating Emissions During Gasifier Startup, Shutdown, and CTG Wash

Total Flare SU/SD/CTG wash Operation	196,900	MMBtu/yr	
Wet Unshifted Gas Heat Rate	900	MMBtu/hr	
Dry Shifted Gas Heat Rate	770	MMBtu/hr	
H2-rich gas during CTG wash	1695	MMBtu/hr	

Startup and shutdown flared gas scenario

Cold plant startup = 30,000 MMBtu/yr (1 event) (assume 20% unshifted) Plant shutdown = 500 MMBtu/vr (1 event) (assume 100% unshifted) 60,000 MMBtu/yr (24 events) Gasifier outages = (assume 100% unshifted) Gasifier hot restarts = 25,000 MMBtu/yr (12 events) (assume 100% unshifted) Total SU/SD = 115,500 MMBtu/yr (approx 79% unshifted) Off-line CTG wash* = 81,400 MM8tu/yr (12 events) (assume 100% shifted) (approx 50% unshifted)

0.07

0

Total = 196,900 MMBtu/yr

Off-line CTG Wash Flare Pollutant Emission Factors

NOx (lb/MMBtu, HHV)	0.07
CO (lb/MMBtu, HHV)	0.37
VOC (lb/MMBtu, HHV)	0
SO ₂ (lb/MMBtu, HHV)	0.0028
PM ₁₀ = PM _{2,5} (lb/MMBtu, HHV)	0

CO (lb/MMBtu, HHV) (wet) 2.00 CO (lb/MMBtu, HHV) (dry) 0.37 VOC (lb/MMBtu, HHV) 0 0

SO₂ (lb/MMBtu, HHV) $PM_{10} = PM_{2.5}$ (lb/MMBtu, HHV)

SU/SD Flare Pollutant Emission Factors

NOx (lb/MMBtu, HHV)

SU/SD Flare Pollutant Emission Rates

		SU/SD Flare Emissions					
Pollutant	lb/hr (wet)	lb/hr (dry)	% Wet	% Dry	lb/hr (wet/dry)	ton/qtr (wet/dry)	ton/yr (wet/dry)
NOx	63.0	53.9	79.2%	20.8%	61.11	1.01	4.04
co	1800.0	284.9	79.2%	20.8%	1,485.17	23.99	95.94
voc ·	0	. 0	79.2%	20.8%	0	0	0.00
SO ₂	0	0	79.2%	20.8%	0	0	0.00
$PM_{10} = PM_{2.5}$	0	0	79,2%	20.8%	0	0	0.00

Total emissions are determined based on the fractional amount of wet and dry gas burned.

Gasification Flare Emissions Summary

Hydrogen Energy California LLC HECA Project

6/18/2010

Offline CTG Wash Pollutant Emission Rates

		CTG Wash Flare Emissions				
Pollutant	lb/hr	ton/qtr	ton/yr			
NÖx	118.65	0.71	2.85			
co	627.15	3.76	15.06			
voc	0.00	0	0.00			
SO₂	4.75	0	0.11			
PM ₁₀ = PM _{2.5}	0.00	0	0.00			

Total emissions are determined based on 48 hr/yr @ 70% gasifier capacity of CTG Wash

Total Gasification Flare Emissions

Pollutant	Emissions Pilot (ton/yr)	SU/SD/Wash (ton/yr)	Total (ton/qtr)	Total (ton/yr)
NOx	0.26	6.89	1.79	7.2
co	0.18	111.00	27.79	111.2
VOC	0.003	0.00	0.001	0.003
SO₂	0.004	0.11	0.030	0.118
$PM_{10} = PM_{2.5}$	0.01	0.00	0.002	0.01

Modeling Worst-Case 1 hr Emissions

NOx (g/sec)	14.9
CO (g/sec)	226.8
SO ₂ (g/sec)	 0.5980

Only NOx, CO, and SO₂ are considered for an average 1-hour Ambient Air Quality Standard.

Days per year:	365
Hours per day:	24 .
Minutes per hour:	60
Seconds per minute:	60

CO rate is taken from the SU/SD flaring events

NOx and SO₂ rate are taken from CTG wash operation

Gasification Flare Emissions Summary

Hydrogen Energy California LLC HECA Project

6/18/2010

Modeling Worst-Case 3 hr Emissions

SO ₂ (lb/3-hr)	14.238
SO ₂ (g/sec)	0.5980

Only SO₂ is considered for an average 3-hour Ambient Air Quality Standard, SO₂ pounds per 3-hr assumes three (3) hours of CTG wash operation.

Modeling Worst-Case 8 hr Emissions

CO (lb/8-hr)	14,400.00
CO (g/sec)	226.8

Only CO is considered for an average 8-hour Ambient Air Quality Standard. Pounds per 8-hr assumes eight (8) hours of SU/SD flaring events.

Modeling Worst-Case 24 Hour Emissions

SO ₂ (lb/24-hr)	113.90
SO₂ (g/sec)	0.5980
PM ₁₀ = PM _{2.5} (lb/24-hr)	0.04
PM ₁₀ = PM _{2.5} (g/sec)	0.0002

Only SO₂ and PM are considered for an average 24-hour Ambient Air Quality Standard. PM₁₀ pounds per 24-hr assumes 24 hours of pilot operation.

SO₂ pounds per 24-hr assumes 24 hours of CTG wash operation.

Modeling Annual Average Emissions

NOx (g/sec)	•	0.2
CO (g/sec)		3.2
VOC (g/sec)		0.0001
SO ₂ (g/sec)		0.0034
$PM_{10} = PM_{2,5} (g/sec)$		0.0002

Pounds per year assumes contributions from both pilot operation and SU/SD/CTG Wash flaring

SRU Flare Emissions Summary

Hydrogen Energy California LLC HECA Project 6/18/2010

8,760	hr/yr			Hours	per Qtr	
0.3	MMBtu/hr		Q1	Q2	Q3	Q4
\\			2190	2190	2190	2190
			Assuming equal oper	ration in each quarter	Ī	
0.12				,		
0.08			- 1			
0.0013						
0.002						
0.003			**			
	Pile	ot Emissions				•
lb/hr	lb/day	lb/yr	ton/qtr	ton/yr		
	0.12 0.08 0.0013 0.002 0.003	0.12 0.08 0.0013 0.002 0.003	0.12 0.08 0.0013 0.002 0.003	0.3 MMBtu/hr Q1 2190 Assuming equal ope 0.12 0.08 0.0013 0.002 0.003 Pilot Emissions	0.3 MMBtu/hr Q1 Q2 2190 2190 Assuming equal operation in each quarter 0.12 0.08 0.0013 0.002 0.003 Pilot Emissions	Q1 Q2 Q3 2190 2190 2190 2190

0.58

0.01

0.01

0.02

210.24

3.42

5.37

7.88

0.03

0.0004

0.0007

0.00

0.1

0.002

0.003

0.004

0.024

0.0004

0.0006

0.0009

CO

voc

SO₂

PM₁₀ = PM_{2.5}

SRU Flare Emissions Summary

Hydrogen Energy California LLC HECA Project

6/18/2010

SRU - Operating Emissions During Gasifier Startup and Shutdown

Natural Gas Heat Rate (assist gas)	36.0	MMBtu/hr	,		
Approximate Operating Hours	40.0	hr/yr	Assumed:	12	hours/ event, with maximum of 1 event /day
Control efficiency of scrubber =	99.60%				
Acid gas lb/hr SO2 =	4,600	lb/hr scrubbed SO2≂	18.4		

SU/SD Flare Pollutant Emission Factors

NOx (lb/hr)	4.32
CO (lb/hr)	2.88
VOC (lb/hr)	0.05
SO₂ (lb/hr) from natural gas	0.07
SO₂ (lb/hr) from sour flaring	18.40
PM ₁₀ = PM _{2.5} (lb/hr)	0.11

Natural gas emissions are the same as those listed for the pilot multiplied by the heat rate of the assist gas

SU/SD Flare Pollutant Emission Rates

Pollutant		SU/SD Flare Emissions						
	lb/hr	lb/day	lb/yr	ton/qt r	ton/yr			
NOx	4.32	51.8	172.8	0.02160	0.0864			
co	2.88	34.6	115.2	0.01440	0.0576			
voc	0.05	0.6	1.9	0	0.0009			
SO₂	18.47	221.7	738.9	0.09	0.3695			
$PM_{10} = PM_{2.5}$	0.11	1.3	4.3	0	0.0022			

SRU Flare - Total Annual Emissions

Pollutant		Emissions				
	Pilot (ton/yr)	SU/SD (ton/yr)	Total (ton/qtr)	Total (ton/yr)		
NOx	0.16	0.0864	0.06	0.2		
СО	0.11	0.0576	0.04	0.2		
VOC	0.002	0.0009	0.001	0.003		
SO₂	0.003	0.37	0.093	0.4		
$PM_{10} = PM_{2.5}$	0.004	0.0022	0.002	0.006		

SRU Flare Emissions Summary

Hydrogen Energy California LLC HECA Project 6/18/2010

Modeling Worst-Case 1 hr Emissions

NOx (g/sec)	0.544
CO (g/sec)	0.363
SO ₂ (g/sec)	2.33

Only NOx, CO, and SO2 are considered for an average 1-hour Ambient Air Quality Standard. NOx, CO, and SO2 one (1) hr rates are from taken from the SU/SD flaring events

Modeling Worst-Case 3 hr Emissions

SO ₂ (lb/3-hr)	•	55.42
SO ₂ (g/sec)		2.33

Only SO_2 is considered for an average 3-hour Ambient Air Quality Standard. Pounds per 3-hr assumes aproximately 3 hours of SU/SD flaring.

Modeling Worst-Case 8 hr Emissions

CO (lb/8-hr)		147.79
CO (g/sec)		 2.33

Only CO is considered for an average 8-hour Ambient Air Quality Standard. Pounds per 8-hr assumes aproximately 8 hours of SU/SD flaring.

Modeling Worst-Case 24 Hour Emissions

modeling troibt base mi from Enthesion	
SO ₂ (lb/24-hr)	221.69
SO₂ (g/sec)	1.16
PM ₁₀ = PM _{2.5} (lb/24-hr) *	1.31
$PM_{10} = PM_{2.5}$ (g/sec)	0.0069

Only SO₂ and PM are considered for an average 24-hour Ambient Air Quality Standard.

SO₂ and PM pounds per 24-hr assume aproximately 12 hours of SU/SD flaring and the remainder in pilot operation.

Modeling Annual Average Emissions

NOx (g/sec)	0.007
CO (g/sec)	0.005
VOC (g/sec)	0.00008
SO ₂ (g/sec)	0.011
PM ₁₀ = PM _{2.5} (g/sec)	0.0002

Pounds per year assumes contributions from both pilot operation and SU/SD flaring

	Days per year:	365
1	Hours per day:	24
ı	Minutes per hour:	60
	Seconds per minute:	60

Rectisol Flare

Emissions Summary

Hydrogen Energy California LLC HECA Project

6/18/2010

Rectisol - Normal Operating Emissions from Pilot

Total Hours of Operation	8,760	hr/yr
Rectisol Flare Pilot Firing Rate	0.3	MMBtu/hr

Hours per Qtr				
Q1	Q2	Q3	Q4	
2190	2190	2190	2190	

Pilot Pollutant Emission Factors

NOx (lb/MMBtu, HHV)	0.12
CO (lb/MMBtu, HHV)	0.08
VOC (lb/MMBtu, HHV)	0.0013
SO ₂ (lb/MMBtu, HHV) (12.65 ppm)	0.002
$PM_{10} = PM_{2.5}$ (lb/MMBtu, HHV)	0.003

Assuming equal operation in each quarter

Pilot Pollutant Emission Rates

Pollutant	Pilot Emissions lb/hr	lb/đay	lb/yr	ton/qtr	ton/yr
NOx	0.036	0.86	315.36	0.04	0.2
co.	0.024	0.58	210.24	0.03	0.1
voc	0.0004	0.01	3.42	0.0004	0.002
SO₂	0.0006	0.01	5.37	0.0007	0.003
$PM_{10} = PM_{2.5}$	0.0009	0.02	7.88	0.00	0.004

Please note that there are no planned flaring is expected with this flare.

Rectisol Flare - Total Annual Emissions

Pollutant	Emissions Pilot (ton/yr)	Total (ton/qtr)	Total (ton/yr)
NOx	0.16	0.04	0.2
co	0.11	0.03	0.1
voc	0.002	0.000	0.002
SO₂	0.003	0.001	0.003
$PM_{10} = PM_{2.5}$	0.004	0.001	0.004

Modeling Worst-Case 1 hr Emissions

NOx (g/sec)	0.005
CO (g/sec)	0.003
SO ₂ (g/sec)	0.0001

Only NOx, CO, and SO2 are considered for an average 1-hour Ambient Air Quality Standard.

NOx, CO, and SO2 one (1) hr rates are from taken from the natural gas pilot emissions

Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

Rectisol Flare Emissions Summary

Hydrogen Energy California LLC HECA Project

6/18/2010

Modeling Worst-Case 3 hr Emissions

SO ₂ (lb/3-hr)	0.0018
SO ₂ (g/sec)	0.0001

Only SO₂ is considered for an average 3-hour Ambient Air Quality Standard.
Pounds per 3-hr assumes aproximately 3 hours the natural gas pilot emissions.

Modeling Worst-Case 8 hr Emissions

	O (lb/8-hr)	 0.19
C) (a/sec)	0.003

Only CO is considered for an average 8-hour Ambient Air Quality Standard. Pounds per 8-hr assumes aproximately 8 hours of pilot operation.

Modeling Worst-Case 24 Hour Emissions

SO ₂ (lb/24-hr)	0.01
SO ₂ (g/sec)	0.0001
$PM_{10} = PM_{2.5} (lb/24-hr)$.0.02
PM ₁₀ = PM _{2.5} (g/sec)	0.0001

Only SO₂ and PM are considered for an average 24-hour Ambient Air Quality Standard. SO₂ and PM pounds per 24-hr assume aproximately 24 hours of pilot operation.

Modeling Annual Average Emissions

NOx (g/sec)	0.005
CO (g/sec)	0.003
VOC (g/sec)	0.00005
SO ₂ (g/sec)	0.0001
PM ₁₀ = PM _{2.5} (g/sec)	0.0001

Pounds per year assumes contributions from both pilot operation and SU/SD flaring

Tail Gas Thermal Oxidizer

Emissions Summary

Hydrogen Energy California LLC HECA Project

6/18/2010

Thermal Oxidizer - Process Vent Disposal Emissions

Total Hours of Operation	8,460	hr/yr
Thermal Oxidizer Firing Rate	10	MMBtu/hr

		Hours p	er Qtr	
	Q1	Q2	Q3	Q4
-	2115	2115	2115	2115

Assuming equal operation in each quarter

Process Vent Gas Pollutant Emission Factors

NOx (lb/MMBtu, HHV)	0.24
CO (lb/MMBtu, HHV)	0.20
VOC (lb/MMBtu, HHV)	0.0060
SO ₂ (lb/MMBtu, HHV)	See Below
$PM_{10} = PM_{2.5}$ (lb/MMBtu, HHV)	0.008

Assume an allowance of 2 lb/hr SO₂ emission to account for sulfur in the various vent streams plus fuel.

Process Vent Gas Pollutant Emission Rates

			Proc	ess Vent Gas Emi	ssions	
Pollutant		lb/hr	lb/day	lb/yr	ton/qtr	ton/yr
NOx		2.40	57.60	20,304.00	2,54	10.2
co	,	2.00	48.00 ~	16,920.00	2.12	8.5
VOC		0.06	1.44	507.60	0.0635	0.3
SO ₂		2.00	48.00	16,920.00	2.1150	8.5
$PM_{10} = PM_{2.5}$		0.08	1.92	676.80	0.08	0.3

Assume an allowance of 2 lb/hr SO₂ emission to account for sulfur in the various vent streams plus fuel.

Tail Gas Thermal Oxidizer

Emissions Summary

Hydrogen Energy California LLC HECA Project

6/18/2010

Thermal Oxidizer - SRU Startup Waste Gas Disposal

Total Hours of Operation	300	hr/yr
Thermal Oxidizer Firing Rate	10	MMBtu/hr

Hours per Qtr				
Q1	Q2	Q3	Q4	
75	75	75	75	

SRU Startup Waste Gas Disposal Emission Factors

NOx (lb/MMBtu, HHV)	0.24
CO (lb/MMBtu, HHV)	0.20
VOC (lb/MMBtu, HHV)	0.006
SO ₂ (lb/MMBtu, HHV) (12.65 ppm)	0.002
$PM_{10} = PM_{2.5}$ (lb/MMBtu, HHV)	0.008

SRU Startup Waste Gas Disposal Pollutant Emission Rates

		SRU Startup Waste Gas Disposal Emissions			
Pollutant	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr
NOx	2.40	57.60	720.00	0.09	0.36
CO	2.00	48.00	600.00	0.08	0.30
VOC	0.06	1.44	18.00	0.002	0.009
SO ₂	0.02	0.49	6.17	0.001	0.003
$PM_{10} = PM_{2.5}$	0.08	1.92	24.00	0.003	0.012

Thermal Oxidizer - Total Annual Emissions

	Emissions			
Pollutant	Vent and SU/SD (ton/yr)	Total (ton/qtr)	Total (ton/yr)	
NOx	10.51	2.63	10.5	
CO	8.76	2.19	8.8	
voc	0.26	0.07	0.3	
SO ₂	8.46	2.12	8.5	
$PM_{10} = PM_{2.5}$	0.35	0.09	0.4	

Please note that the annual emissions were calculated based on the total emission from process vent and SU/SD.

Tail Gas Thermal Oxidizer

Emissions Summary

6/18/2010

Hydrogen Energy California LLC HECA Project

Modeling Worst-Case 1 hr Emissions

morrow S are a second of the additional of the a	
NOx (g/sec)	0.3
CO (g/sec)	0.25
SO ₂ (g/sec)	0.25

Only NOx, CO, and SO₂ are considered for an average 1-hour Ambient Air Quality Standard, NOx, CO, and SO₂ one (1) hr rates include contributions from process venting.

Modeling Worst-Case 3 hr Emissions

SO ₂ (lb/3-hr)		6.00
SO ₂ (g/sec)	,	0.3

Only SO_2 is considered for an average 3-hour Ambient Air Quality Standard. SO_2 pounds per 3-hr assumes three (3) hours of oxidation from process venting.

Modeling Worst-Case 8 hr Emissions

CO (lb/8-hr)	16.00
CO (g/sec)	0.3

Only CO is considered for an average 8-hour Ambient Air Quality Standard.
Pounds per 8-hr assumes eight (8) hours of oxidation from process venting.

Modeling Worst-Case 24 Hour Emissions

more and a second	··
SO ₂ (lb/24-hr)	48.00
SO ₂ (g/sec)	0.3
PM ₁₀ = PM _{2.5} (lb/24-hr)	1.92
$PM_{10} = PM_{2.5}$ (g/sec)	0.01

Only SO_2 and PM are considered for an average 24-hour Ambient Air Quality Standard. Pounds per 24-hr assumes 24 hours of oxidation from process venting.

Modeling Annual Average Emissions

NOx (g/sec)	0.3
CO (g/sec)	0.25
VOC (g/sec)	0.01
SO₂ (g/sec)	0.2
PM ₁₀ = PM _{2.5} (g/sec)	. 0.01

Pounds per year assumes all contributions from annual waste gas oxidation and periodic SRU startup.

Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

Gasifier Refractory Heaters

Emissions Summary

Hydrogen Energy California LLC HECA Project

6/18/2010

Gasifier Warming Emissions - Normal Operation

Total Hours of Operation (3 heaters)	3,600	hr/yr
Gasifier Firing Rate	18	MMBtu/hr

	Hours	per Qtr	
Q1	Q2	Q3	Q4
900	900	900	900

Gasifier Pollutant Emission Factors

NOx (lb/MMBtu, HHV)	0.24
CO (lb/MMBtu, HHV)	0.35
VOC (lb/MMBtu, HHV)	0.070
SO ₂ (lb/MMBtu, HHV) (12.65 ppm)	0.002
$PM_{10} = PM_{2.5}$ (lb/MMBtu, HHV)	0.008

Assuming equal operation in each quarter

Gasifier Pollutant Emission Rates (3 Gasifier Heaters operation scenario)

	Gasifier Emissions					
Pollutant	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr	
NOx	8.64	207.36	15,552.00	1.94	7.8	
CO-	12.60	302.40	22,680.00	2.84	11.3	
VOC	2.52	60.48	4,536.00	0.57	2.3	
SO₂	0.07	1.76	132.19	0.02	0.1	
$PM_{10} = PM_{2.5}$	0.29	6.91	518.40	0.06	0.3	

Please note that there are three gassifiers; However, under normal operations, up to two heaters operate at a time.

Gasifier Refractory Heaters

Emissions Summary

Hydrogen Energy California LLC HECA Project 6/18/2010

Modeling Worst-Case 1 hr Emissions per Gasifier Heater

NOx (g/sec)	0.5	
CO (g/sec)	0.8	
SO ₂ (g/sec)	0.0046	

Only NOx, CO, and SO₂ are considered for an average 1-hour Ambient Air Quality Standard. NOx, CO, and SO₂ one (1) hr rates assume normal operation.

Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60
	·

Parameters

Modeling Worst-Case 3 hr Emissions per Gasifier Heater

SO ₂ (lb/3-hr)	0.11
SO₂ (g/sec)	0.0046

Only SO_2 is considered for an average 3-hour Ambient Air Quality Standard, SO_2 pounds per 3-hr assumes three (3) hours of normal operation.

Modeling Worst-Case 8 hr Emissions per Gasifier Heater

CO (lb/8-hr)	50.40
CO (g/sec)	0.8

Only CO is considered for an average 8-hour Ambient Air Quality Standard. Pounds per 8-hr assumes eight (8) hours of normal operation.

Modeling Worst-Case 24 Hour Emissions per Gasifier Heater

SO₂ (lb/24-hr)	0.88
SO ₂ (g/sec)	0.0046
PM ₁₀ = PM _{2.5} (lb/24-hr)	3.46
PM ₁₀ = PM _{2.5} (g/sec)	0.02

Only SO_2 and PM are considered for an average 24-hour Ambient Air Quality Standard. Pounds per 24-hr assumes 24 hours of normal operation.

Modeling Annual Average Emissions per Gasifier Heater

NOx (g/sec)	0.07
CO (g/sec)	0.1087
VOC (g/sec)	0.0217
SO ₂ (g/sec)	0.0006
PM ₁₀ = PM _{2.5} (g/sec)	0.0025

Pounds per year assumes 3,600 hours of annual normal operation (3 heaters with 1,200 hr/yr of operation for each gasifier heater)

Cooling Towers

Emissions Summary

Hydrogen Energy California LLC HECA Project

6/18/2010

Cooling Towers - Annual Operating Emissions

Total Hours of Operation	8,322	hr/yr
		

Hours per Qtr				
Q1	Q2	Q3	Q4	
2080.5	2080.5	2080.5	2080.5	

Assuming equal operation in each quarter

Cooling Tower Operating Parameters

	Power Block	Gasification	ASU	Basis
Cooling water (CW) circulation rate, gpm	175,000	42,300	40,200	Typical plant performance
CW circulation rate (million lb/hr)	88	21	20	
CW dissolved solids (ppmw)	9,000	9,000	9,000	(See note)
Drift, fraction of circulating CW	0.0005%	0.0005%	0.0005%	Expected BACT

Note: Assumed 9,000 ppm TDS in circulating cooling water. Circulating water could range from 1200 to 90,000 ppm TDS depending on makeup water quality and tower operation. PM10 emissions would vary proportionately.

Cooling Tower PM₁₀ Emissions

	Cooling Tower PM ₁₀ Emissions				
	ib/hr	lb/day	lb/yr	ton/qtr	ton/yr
Power Block Cooling Tower PM ₁₀ Emissions	3.94	94.50	32,767.88	4.10	16.38
Gasification Cooling Tower PM ₁₀ Emissions	0.95	22.84	7,920.46	0.99	3.96
ASU Cooling Tower PM ₁₀ Emissions	0.90	21,71	7,527.25	0.94	3.76

Cooling Towers Emissions Summary

Hydrogen Energy California LLC HECA Project

6/18/2010

Total Cooling Tower PM₁₀ Emissions

	(ton/yr)
PM ₁₀	24.11
PM _{2.5}	14.46

PM₂₅ emission factors were determined by multiplying PM₁₀ numbers by a "PM₂₅ fraction of PM₁₀" value. Fractional values for PM₂₅ were taken from the SCAQMD guidance: Final - Methodology to Calculate PM₂₅ and PM₂₅ Significance Thresholds, October 2006: Appendix A - Updated CEIDARS Table with PM₂₅ Fractions.

Modeling Worst-Case 24 Hour Emissions	Power Block	Gasification	ASU
Cells per Cooling Tower	13	4	4
PM ₁₀ (lb/24-hr)	94.50	22.84	21,71
PM ₁₀ (g/sec/cell)	0.038	0.030	0.028
PM _{2.5} (lb/24-hr)	56.70	13.71	13.02
PM _{2.5} (g/sec/cell)	0.023	0.018	0.017

PM is considered for an average 24-hour Ambient Air Quality Standard.

Pounds per 24-hr assumes 24 hours of continual operation.

Modeling Worst-Case Annual Emissions	Power Block	Gasification	ASU	
Cells per Cooling Tower	13	4	4	
PM ₁₀ (ton/yr)	16.38	3.96	3.76	
PM ₁₀ (g/sec/cell)	0.036	0.028	0.027	
PM _{2.5} (lb/24-hr)	9.830	2.376	2.258	
PM _{2.5} (g/sec/cell)	0.022	0.017	0.016	

PM is considered for an annual average Ambient Air Quality Standard.

Assumes continual annual operation.

Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

Emergency Diesel Generators

Emissions Summary

Hydrogen Energy California LLC HECA Project 6/18/2010

Emergency Generator - Expected Emergency Operation and Maintenance

Total Hours of Operation	52	hr/yr
Generator Specification	2,922	Bhp

	Hours	per Qtr	
Q1	Q2	Q3	Q4
13	13	13	13

Assuming equal operation in each quarter

Generator Pollutant Emission Factors (per generator)

NOx (g/Bhp/hr)	0.50
CO (g/Bhp/hr)	2.60
VOC (g/Bhp/hr)	0.30
SO ₂ (g/Bhp/hr)	N/A
PM ₁₀ = PM _{2.5} (g/Bhp/hr)	0.07

Source: CARB Tier 4 Interim Standard

Generator Pollutant Emission Rates (per generator)

Pollutant		Generator Emissions				
	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr	
NOx	3.22	6.44	167.49	0.02	0.08	
CO	16.75	33.50	870.93	0.11	0.44	
voc	1.93	3.87	100.49	0.01	0.05	
SO₂	0.03	0.06	1.46	0.00	0.00	
$PM_{10} = PM_{2.5}$	0.45	0.90	23.45	0.00	0.01	

Fuel sulfur content = 15 pprrw
SO₂ emissions = 0.20 lb SO₂/1000 gal

Fuel flow 140.00 gal/hr

Please note that there are two generators; all emissions are shown for individual generators.

Modeling Worst-Case 1 hr Emissions (per generator)

()		
NOx (g/sec)	0.4	
CO (g/sec)	2:1	
SO ₂ (g/sec)	0.004	

Only NOx, CO, and SO2 are considered for an average 1-hour Ambient Air Quality Standard

Parameters

Pounds per day assumes two (2) hours of operation for maintenance and testing.

Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

Emergency Diesel Generators

Emissions Summary

Hydrogen Energy California LLC HECA Project 6/18/2010

Modeling Worst-Case 3 hr Emissions (per generator)

SO ₂ (lb/3-hr)	 <u> </u>	0.06
SO ₂ (g/sec)		0.002

Only SO_2 is considered for an average 3-hour Ambient Air Quality Standard. Pounds per 3-hr assumes two (2) hours of operation.

Modeling Worst-Case 8 hr Emissions (per generator)

CO (lb/8-hr)	33.50
CO (g/sec)	0.53

Only CO is considered for an average 8-hour Ambient Air Quality Standard. Pounds per 8-hr assumes two (2) hours of operation.

Modeling Worst-Case 24 Hour Emissions (per generator)

SO ₂ (lb/24-hr)	0.06
SO ₂ (g/sec)	0.0003
PM ₁₀ = PM _{2.5} (lb/24-hr)	0.90
$PM_{10} = PM_{2.5} (g/sec)$	0.005

Only SO_2 and PM are considered for an average 24-hour Ambient Air Quality Standard. Pounds per 24-hr assumes two (2) hours of operation.

Modeling Annual Average Emissions (per generator)

NOx (g/sec)	0.002
CO (g/sec)	0.013
VOC (g/sec)	0.001
SO ₂ (g/sec)	0.00002
PM ₁₀ = PM _{2.5} (g/sec)	0.0003

Pounds per year assumes 52 hours of operation.

Emergency Diesel Firewater Pump

Emissions Summary

Hydrogen Energy California LLC HECA Project

6/18/2010

Fire Water Pump - Expected Emergency Operation and Maintenance

Total Hours of Operation	100	hr/уг
Fire Water Pump Specification	556	Bhp

Hours per Qtr				
Q1	Q2	Q3	Q4	
- 25	25	25	25	

Assuming equal operation in each quarter

Pounds per day assumes two (2) hours of operation for maintenance and testing.

Fire Water Pump Pollutant Emission Factors

NOx (g/Bhp/hr)	1.50
CO (g/Bhp/hr)	2.60
VOC (g/Bhp/hr)	0.14
SO₂ (g/Bhp/hr)	N/A
$PM_{10} = PM_{2.5} (g/Bhp/hr)$	0.015
	

Source: CARB Tier 4 Interim Standard

Fire Water Pump Pollutant Emission Rates

		Fire Water Pump Emissions			
Pollutant	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr
NOx	1.84	3.68	183.86	0.02	0.1
co	3.19	6.37	318.69	0.04	0.2
VOC SO ₂	0.17	0.34	17.16	0.00	0.01
	0.01	0.01	0.56	0.0001	0.0003
$PM_{10} = PM_{2.5}$	0.02	0.04	1.84	0.00	0.00

Fuel sulfur content ≍	. 1	5 рртw	
SO ₂ emissions =	 0.	20 lb SO ₂	/1000 gal

28.00 Fuel flow

Emergency Diesel Firewater Pump

Emissions Summary

6/18/2010

Hydrogen Energy California LLC HECA Project

Modeling Worst-Case 1 hr Emissions

NOx (g/sec)	0.2
CO (g/sec)	0.4
SO ₂ (g/sec)	0.0007

Only NOx, CO, and SO₂ are considered for an average 1-hour Ambient Air Quality Standard

Modeling Worst-Case 3 hr Emissions

SO ₂ (lb/3-hr)	0.01
SO ₂ (g/sec)	0.0005

Only SO_2 is considered for an average 3-hour Ambient Air Quality Standard. Pounds per 3-hr assumes two (2) hours of operation.

Modeling Worst-Case 8 hr Emissions

CO (lb/8-hr)	6.37
CO (g/sec)	0.1

Only CO is considered for an average 8-hour Ambient Air Quality Standard. Pounds per 8-hr assumes two (2) hours of operation.

Modeling Worst-Case 24 Hour Emissions

medering treater edge 24 float 21moorens		
SO ₂ (lb/24-hr)	0.01	
SO ₂ (g/sec)	0.0001	
PM ₁₀ = PM _{2.5} (lb/24-hr)	0.04	
PM ₁₀ = PM _{2.5} (g/sec)	0.0002	

Only SO_2 and PM are considered for an average 24-hour Ambient Air Quality Standard. Pounds per 24-hr assumes two (2) hours of operation.

Modeling Annual Average Emissions

metering ranical riverage Emissions		
NOx (g/sec)	0.003	
CO (g/sec)	0.005	
VOC (g/sec)	0.0002	
SO₂ (g/sec)	0.00001	
PM ₁₀ = PM _{2.5} (g/sec)	0.00003	

Pounds per year assumes 100 hours of operation.

Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

Intermittent CO₂Vent	Emissions Summary
Hydrogen Energy California LLC HECA Project	6/18/2010

Intermittent CO₂ Vent - Venting Operation

Total Days of Operation	21	day/yr
Total Hours of Operation	504	hr/yr
Total Flow	656,000	lb/hr
Total Flow	15,150	lbmol/hr

Hours per Qtr			
Q1	Q2	Q3	Q4
126	126	126	126

Assuming equal operation in each quarter

Vont /	Gae	Dollar	ant F	miee	ion l	Factors
IVETII 1	LT/IS	Cutti	min i		EESTI I	aciors

CO (ppmv)	1000
VOC (ppmv)	40
H ₂ S (ppmv)	10

Molecular weighi

H ₂ S	3	4 lb/lbmol
CO	2	8 lb/lbmol
VOC	1	6 lb/lbmol

(Molecular weight of VOC is based on CH4)

Vent Gas Pollutant Emission Rates

	Vent Gas Emissions				
Pollutant	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr
co	424.20	10,180.88	213,798.43	26.72	106.9
voc	9.70	232.71	4,886.82	0.61	2.4
H ₂ S	5.15	123.62	2,596.12	0.32	1.3

Note that no SO2 is emitted since no oxidation occurs in the CO2 vent

Intermittent CO₂ Vent

Emissions Summary

6/18/2010

Hydrogen Energy California LLC HECA Project

Modeling Worst-Case 1 hr Emissions

modeling violet-odde i in Emissions	
CO (g/sec)	53.4
H ₂ S _s (g/sec)	0.6

Only H_2S and CO are considered for an average 1-hour Ambient Air Quality Standard. H_2S and CO one (1) hr rates assume normal venting operation.

Modeling Worst-Case 8 hr Emissions

CO (lb/8-hr)	3,393.63
CO (g/sec)	53.4

Only CO is considered for an average 8-hour Ambient Air Quality Standard. Pounds per 8-hr assumes eight (8) continuous hours of venting.

Modeling Annual Average Emissions

co	3.1
voc ·	0.1
H2S	0.0

Pounds per year assumes normal venting averaged over the entire year.

Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

Feedstock - Dust Collection

Emissions Summary

Hydrogen Energy California LLC HECA Project

6/18/2010

Operation

Total Hours of Operation	8,760	hr/yr	

Hours per Qtr				
Q1	Q2	Q3	Q4	
2190	2190	2190	2190	

Assuming equal operation in each quarter

	Dust	Max Feed	Air Flow to	Max Collector	Emission	Max 24-	hr Average	Annua	l Average
	Collector	Handling	Collector	PM Emission	Factor	Feed Rate	PM Emission	Feed Rate	PM Emission
Description	No.	Rate (ton/hr)	(acfm)	Rate (lb/hr)	(lb/ton)	(ton/hr)	(lb/hr)	(ton/hr)	(lb/hr)
Truck Unloading	DC-1	900	6,467	0.277	0.00031	775	0.239	150	0.046
Coke/coal Silos (filling)	DC-2	900	16,376	0.702	0.00078	775	0.604	150	0.117
Mass Flow Bins (in/out)	DC-3	170	7,620	0.327	0.00192	170	0.327	150	0.288
Coke/coal Silos (loadout)	DC-4	170	4,872	0.209	0.00123	170	0.209	150	0.184
Crusher Inlet/Outlet	DC-5	170	4,673	0.200	0.00118	170	0.200	150	0.177
Fluxant Bins (filling)	DC-6	100	1,234	0.053	0.00053	40	0.021	6	0.003

Maximum dust collector PM emission rate based on expected supplier guarantee of 0.005 grain/scf outlet dust loading.

Duct Collector Emission Rates

•		Collector Emissions					
Pollutant	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr		
Dust Collecter 1 (DC-1)	0.24	5.73	404.65	0.05	0.2		
Dust Collecter 2 (DC-2)	0.60	14.50	1,024.67	0.13	0.5		
Dust Collecter 3 (DC-3)	0.33	7.84	2,524.21	0.32	1.3		
Dust Collecter 4 (DC-4)	0.21	5.01	1,613.90	0.20	0.8		
Dust Collecter 5 (DC-5)	. 0.20	4.81	1,547.98	0.19	0.8		
Dust Collecter 6 (DC-6)	0.02	0.51	27.80	0.00	0.0		

Pounds per hour and pounds per day calculated based on the maximum 24-hr average emission rate.

Pounds per year calculated based on the annual average emission rate.

	lb/yr	ton/qtr	ton/yr
PM ₁₀ .	7,143.2	0.9	3.6
PM _{2.5}	2085.8	0.3	1.0

PM₂₅ emission factors were determined by multiplying PM₁₀ numbers by a "PM₂₅ fraction of PM₁₀" value. Fractional values for PM₂₅ were taken from the SCAQMD guidance: Final - Methodology to Calculate PM₂₅ and PM₂₅ Significance Thresholds, October 2006: Appendix A - Updated CEIDARS Table with PM₂₅ Fractions. The fractional PM₂₅ is based on loading and unloading of bulk material

The maximum 24-hr feed rate to the gasifiers is limited by the grinding mill capacity.

Feedstocki- Dust Collection Emissions Summary

Hydrogen Energy California LLC HECA Project

6/18/2010

Parameters

Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

Modeling Worst-Case 24 Hour Emissions	DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
PM ₁₀ (lb/day)	5.73	14.50	7.84	5.01	4.81	0.51
PM ₁₀ (g/sec)	0.030	0.076	0.041	0.026	0.025	0.003
PM _{2.5} (lb/24-hr)	1.673	4.235	2.289	1.463	1,404	0.148
PM _{2.5} (g/sec)	0.009	0.022	0.012	0.008	0.007	0.001

PM is considered for an average 24-hour Ambient Air Quality Standard.

Pounds per hour calculated based on the maximum 24-hr average emission rate,

Modeling Annual Average Emissions	DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
PM ₁₀ (lb/yr)	404.65	1,024.67	2,524.21	1,613.90	1,547.98	27.80
PM ₁₀ (g/sec)	0.006	0.015	0.036	0.023	0.022	0.000
PM _{2.5} (lb/24-hr)	118.158	299.204	737.068	471.259	452.010	8.117
PM _{2.5} (g/sec)	0.002	0.004	0.011	0.007	0.007	0.000

Pounds per year calculated based on the annual average emission rate.

6/18/2010

Hydrogen Energy California LLC HECA Project

Summary: Total Controlled Emissions

Compound	Emissions (lb/hr)	Emissions (tpy)
CO ₂	9.07	39.72
co	1.36	5.95
CH₄	5.17E-03	2.26E-02
H₂S	0.55	2.42
COS*	6.94E-05	0.00
CH₃OH≛	1.62	7.09
C ₃ H ₆ ,	1,44	6.33
NH ₃	0.04	0.17
HCN*	0.00E+00	0.00E±00
MDEA*	1.42	6.24
Total VOC*	4.49	19.65

^{*} Per District policy (SSP-2015), VOC emissions are not assessed to components handling fluid streams with a VOC content of 10% of less by weight.

Summary by Volume Source - Emissions are divided by number of Volume Sources

"POWER" Two Volume Sources (Area # 10)

	lb/hr	lb/yr
CO (g/s)	6.43E-05	
CO (g/s) H ₂ S	0.01	73.44
CH₃OH		
C ₃ H ₆		
NH ₃	0.01	90.35
HCN	6.54E-05	0.57

"TGTU" Three Volume Sources (Areas #1, #7, #8, #12, #13)

	lb/hr	lb/yr			
CO (g/s)	2.90E-04				
CO (g/s) H₂S	0.02	191.83			
CH₃OH	0.54	4,723.96			
C₃H ₆					
NH₃ HCN					
HCN	Ü				

"SHIFT" Two Volume Sources (Area # 4)

	lb/hr	lb/yr
CO (g/s)	0.005279	
H ₂ S	0.06	506.85
CH₃OH		
C ₃ H ₆		
NH ₃		
HCN		

"SRU" Three Volume Sources (Area # 9, #11)

	lb/hr	lb/yr
CO (g/s)	8.36E-06	
H ₂ S	0.04	352.80
CH₃OH	3.48E-05	0.30
C ₃ H ₆		
NH ₃		
HCN		

"AGR" Three Volume Sources (Area # 5)

	lb/hr	lb/yr
CO (g/s)		
H ₂ S		
CH₃OH		
C₃H ₆	0.48	4,219.33
NH ₃		
HCN		

"SWS" Three Volume Sources (Area #6)

	lb/hr	lb/yr
CO (g/s)	3.69E-06	
H ₂ S	3.80E-03	33.30
CH₃OH		
C ₃ H ₆		
NH ₃	0.02	137.12
HCN		

"GASIFICATION" Five Volume Sources (Areas #2, #3)

	lb/hr	lb/yr
CO (g/s)	0.03	
H ₂ S	0.04	390.79
CH₃OH		
C₃H ₆		
NH ₃	4.13E-04	3.62
HCN	2.05E-04	1.79

Note: Selective LDAR program was applied to Areas # 1, #5, #7, #8, #9, #10 due to high uncontrolled emissions for the VOCs (methanol and propylene) and hydrogen sulfide

EPA Table 2-1SOCMI Average Fugitive Emission Factors

Component Type	Service Type	Emission Factor ⁽¹⁾ (kg/hr/source)	Control _ Efficiency (%) ⁽³⁾
	Gas	5.97E-03	92%
Valves	Light Liquid	4.03E-03	88%
	Heavy Liquid	2.30E-04	
Pump Seals	Light Liquid	1.99E-02	75%
Fullip Ocals	Heavy Liquid	8.62E-03	
Compressor Seals	Gas	2.28E-01	
Pressure Relief Valves	Gas	1.04E-01	
Connectors	All	1.83E-03	93%
Open-Ended Lines	All	1.70E-03	
Sampling Connections	All `	1.50E-02	
Agitator Seals (2)	All	1.99E-02	

Source: EPA 1995, Protocol for Equipment Leak Emission Estimates

(1) Factors are for total organic compound emission rates.
(2) Factors for light liquid pump seals can be used to estimate the leak rate from agitator seals
(3) Control efficiencies for an LDAR program at a SOCMI process unit using HON reg neg
(control effectiveness attributable to requirements of the hazardous NESHAPS equipment leak regulations)

Area #1: Methanol

	,		Annual Hours of	Uncontrolled Emissions (E _{TOC})		Controlled Emissions (E _{TOC})	
Component	Service	(N)	Operation	lb/hr	tpy	lb/hr	tpy
Valves	Gas	50	8760	0.66	2.88	0.05	0.23
Valves	Light Liquid	416	8760	3.70	16.19	0.44	1.94
Valves	Heavy Liquid	0	8760				-
Pump Seals	Light Liquid	7	8760	0.31	1.35	0.08	0.34
Pump Seals	Heavy Liquid	0	8760	-	-	- 0.00	- 0.04
Compressor Seals	Gas	0	8760		-	_	
Connectors	All	1225	8760	4.94	21,65	0.35	1.52
			Total	9.60	42.06	0.92	4.02
		•	CH₃OH	9.60	42.06	0.92	4.02

Area #2: Syn Gas

		II. de la constantina della co		Annual Hours of	Uncontrolled Emissions (E _{TOC})		
١	Component	Service	(N)	Operation	lb/hr	tpy	
	Valves	Gas	108	8760	0.68	3.00	
- [Valves	Light Liquid	0	8760	-	_	
	Valves	Heavy Liquid	0	8760	-	-	
Ĺ	Pump Seals	Light Liquid	0	8760	- 1	-	
	Pump Seals	Heavy Liquid	0	8760	-		
	Compressor Seals	Gas	0	8760	-	-	
Į	Connectors	All	372	8760	0.72	3.16	
				Total	1.41	6.16	
			•	CO ₂	0.47	2.08	
				CO	0.87	3.83	
	•			CH₄	1.09E-03	4.79E-03	
				H₂S	0.05	0.22	
			•	cos	4.11E-03	0.02	
				NH ₃	1.81E-03	0.01	
				HCN	9.76E-05	4 28F-04	

Area #3: Flash Gas - Gasification

	······································	Equipment Count	Annual Hours of	Uncontrolled Emissions (E _{TOO}		
Component	Service	(N)	Operation	lb/hr	tpy	
Valves	Gas	49	8760	0.57	2.50	
Valves	Light Liquid	0	8760	-	_	
Valves	Heavy Liquid	0	8760	-		
Pump Seals	Light Liquid	0	8760		-	
Pump Seals	Heavy Liquid	0	8760	-	<u>-</u>	
Compressor Seals	Gas	1	8760	0.44	1.95	
Connectors	All	151	8760	0.54	2.36	
			Total	1.55	6.80	
	,		CO ₂	0.98	4.30	
			CO	0.39	1.72	
			CH₄	5.50E-04	2.41E-03	
			H ₂ S	0.17	0.76	
			COS	4.12E-03	0.02	
	•		NH ₃	2.59E-04	1.14E-03	
	•		HCN	9.26E-04	4.06E-03	

Area #4: Shifted Syn Gas

		Equipment Count	Annual Hours of	Uncontrolled Emissions (E _{TOC})		
Component	Service	(N)	Operation	lb/hr	tpy	
Valves	Gas	198	8760	2.45	10.73	
Valves	Light Liquid	0	8760	-		
Valves	Heavy Liquid	0	8760	-	_	
Pump Seals	Light Liquid	0.	8760	-	-	
Pump Seals	Heavy Liquid	0	8760	_	_	
Compressor Seals	Gas	1	8760	0.47	2.07	
Connectors	All	632	8760	2.40	10.50	
			Total	5.32	23.30	
			CO ₂	5.12	22.41	
			CO	- 0.08	0.37	
			CH ₄	3.48E-03	0.02	
	•		H₂S	0.12	0.51	
*			cos	3.25E-04	1.43E-0	

Area #5: Propylene

		Equipment Count	Annual Hours of	Uncontrolled Emissions (E _{TOC})		Controlled Emissions (E _{TOC})	
Component	Service	(N)	Operation	lb/hr	tpy	lb/hr	tpy
Valves	Gas	188	8760	2.47	10.84	0.20	0.87
Valves	Light Liquid	288	8760	2.56	11.21	0.31	1.34
Valves	Heavy Liquid	0	8760	· -	-	-	-
Pump Seals	Light Liquid	3	8760	0.13	0.58	0.03	0.14
Pump Seals	Heavy Liquid	0	8760		-	-	1
Compressor Seals	Gas	1	8760	0.50	2.20	0.50	2.20
Connectors	All	1432	8760	5.78	25.30	0.40	1.77
			Total	11.44	50.13	1.44	6.33
			C ₃ H ₆	11.44	50.13	1.44	6.33

R:\10 HECA\DRs\WRs\App A Criteria Pollutants.xls

Area #6: Sour Water

		Equipment Count	Annual Hours of	Uncontrolled Emissions (E _{TO}		
Component	Service	(N)	Operation	lb/hr	tpy	
Valves	Gas	0	8760	_	-	
Valves	Light Liquid	0	8760	_	-	
Valves	Heavy Liquid	508	8760	0.01	0.03	
Pump Seals	Light Liquid	0	8760	-		
Pump Seals	Heavy Liquid	17	8760	0.01	0.04	
Compressor Seals	Gas	0	8760	-	-	
Connectors	All	1410	8760	0.17	0.73	
			Total	0.18	0.81	
			CO ₂	0.16	0.69	
	·		CO	8.79E-05	3.85E-04	
			H ₂ S	0.01	0.05	
			NH ₃	0.02	0.07	

Area #7: H₂S Laden Methanol

		Equipment Count	Annual Hours of	Uncontrolled E	missions (E _{TOC})	Controlled Em	issions (E _{TOC})
Component	Service	(N)	Operation	lb/hr	tpy	lb/hr	tpy
Valves	Gas	94	8760	1.24	5.42	0.10	0.43
Valves	Light Liquid	358	8760	3.18	13.93	0.38	1.67
Valves	Heavy Liquid	0	8760	_	_	-	-
Pump Seals	Light Liquid	7	8760	0.31	1.34	0.08	0.34
Pump Seals	Heavy Liquid	0	8760	~	<u> </u>	-	
Compressor Seals	Gas	. 0	8760	-	-		_
Connectors	All	1323	8760	5.34	23.37	0.37	1.64
			Total	10.06	44.06	0.93	4.08
	• .		CO ₂	4.50	19.69	: 0.42	1.82
			CO	3.47E-03	0.02	3.21E-04	1.41E-03
			CH₄	2.94E-04	1.29E-03	2.72E-05	1.19E-04
			. H₂S	0.17	0.76	0.02	0.07
		•	COS	7.50E-04	3.28E-03	6.94E-05	3.04E-04
•			CH₃OH	5.38	23.58	0.50	2.18

Area #8: CO₂ Laden Methanol

		Equipment Count	Annual Hours of	Uncontrolled E	missions (E _{TOC})	Controlled Em	issions (E _{TOC})
Component	Service	(N)	Operation	lb/hr	tpy	lb/hr	tpy
Valves	Gas	79	8760	1.04	4.55	0.08	0.36
Valves .	Light Liquid	79	8760	0.70	3.07	0.08	0.37
Valves	Heavy Liquid	0	8760	· _	_	-	-
Pump Seals	Light Liquid	0	8760	-	-	-	-
Pump Seals	Heavy Liquid	0	8760	-	-	-	-
Compressor Seals	Gas	0	8760	-	-	-	-
Connectors	All	516	8760	2.08	9.11	0.15	0.64
			Total	3.82	16.74	0.31	1.37
		•	CO ₂	1.37	6.00	0.11	0.49
			CO	1.37E-03	0.01	1.12E-04	4.90E-04
			CH₄	1.17E-04	5.11E-04	9.55E-06	4.18E-05
	•		H₂S	3.70E-06	1.62E-05	3.03E-07	1.33E-06
			CH₃OH	2.45	10.73	0.20	0.88

Area #9: Acid Gas

		Equipment Count	Annual Hours of	Uncontrolled E	missions (E _{TOC})	Controlled Em	issions (E _{TOC})
Component	Service	(N)	Operation	lb/hr	tpy	lb/hr	tpy
Valves	Gas	161	8760	2.12	9.28	0.17	0.74
Valves	Light Liquid	0	8760	-	_		-
Valves	Heavy Liquid	0	8760	-	-	-	• -
Pump Seals	Light Liquid	0	8760	-	-	-	-
Pump Seals	Heavy Liquid	0	8760	-	-		-
Compressor Seals	Gas	0	8760	-	-	-	-
Connectors	All	492	8760	1.98	8.69	0.14	0.61
	***************************************		Total	4.10	17.97	0.31	1.35
	,		CO ₂	2.48	10.84	0.19	0.81
		•	CO	2.65E-03	0.01	1.99E-04	8.72E-04
	•		CH₄	7.19E-05	3.15E-04	5.40E-06	2.37E-05
	•		H ₂ S	1.60	7.02	0.12	0.53
			COS	0.02	0.09	1.57E-03	0.01
			CH₃OH	1.39E-03	0.01	1.04E-04	4.57E-04

Area #10: Ammonia-Laden Gas

		Equipment Count	Annual Hours of	Uncontrolled E	missions (E _{TOC})	Controlled Em	issions (E _{TOC})
Component	Service	(N)	Operation	lb/hr	tpy	lb/hr	tpy
Valves	Gas	157	8760	1.70	7.43	0.14	0.59
Valves	Light Liquid	0	8760	-	1		-
Valves	Heavy Liquid	0	8760	-	-	- 1	
Pump Seals	Light Liquid	0	8760	-	·	-	-
Pump Seals	Heavy Liquid	0	8760	-	-	-	
Compressor Seals	Gas	0	8760	-	ı	-	-
Connectors	All	407	8760	1.35	5.90	0.09	0.41
			Total	3.04	13.34	0.23	1.01
•			CO ₂	2.53	11.10	0.19	0.84
			CO	0.01	0.06	1.02E-03	4.47E-03
			CH₄	7.67E-05	3.36E-04	5.79E-06	2.54E-05
			H ₂ S	0.22	0.97	0.02	0.07
	•	<i>₹</i>	cos	8.03E-04	3.52E-03	6.07E-05	2.66E-04
			NH ₃	0.27	1.20	0.02	0.09
			. HCN	1.73E-03	0.01	1.31E-04	5.73E-04

Area #11: Sulfur

		Equipment Count	Annual Hours of	Uncontrolled Er	nissions (E _{TOC})
Component	Service	(N)	Operation	lb/hr	tpy
Valves	Gas	0	8760	-	-
Valves	Light Liquid	0	8760	- 1	
Valves	Heavy Liquid	68	8760	1.02E-05	4.48E-05
Pump Seals	Light Liquid	0	8760	- 1	-
Pump Seals	Heavy Liquid	4	8760	2.25E-05	9.87E-05
Compressor Seals	Gas	0	8760	- 1	-
Connectors	All	297	8760	3.55E-04	1.56E-03
			Total	3.88E-04	1.70E-03
	en e	Carlo San Carlo	H ₂ S	3.88E-04	1.70E-03

Area #12: TGTU Process Gas

	-	Equipment Count	Annual Hours of	Uncontrolled En	nissions (E _{TOC})
Component	Service	(N)	Operation	lb/hr	tpy
Valves	Gas	72	8760	0.63	2.77
Valves	Light Liquid	0	8760	-	-
Valves	Heavy Liquid	0	8760	-	
Pump Seals	Light Liquid	0	8760	- 1	
Pump Seals	Heavy Liquid	0	8760	- 1	-
Compressor Seals	Gas	0	8760		-
Connectors	All	290	8760	0.78	3.43
			Total	1.42	6.20
			CO ₂	1.37	6.00
			CO	0.01	0.03
			H ₂ S	0.04	0.17
			COS	7 28F-04	3 19F-03

Area #13: TGTU Amine

		Equipment Count	Annual Hours of	Uncontrolled Em	issions (E _{TOC})
Component	Service	(N)	Operation	lb/hr	tpy
Valves	Gas	0	8760		- 1 -
Valves	Light Liquid	0	8760	-	-
Valves	Heavy Liquid	264	8760	0.06	0.27
Pump Seals	Light Liquid	0	8760	-	_
Pump Seals	Heavy Liquid	5	8760	0.04	0.19
Compressor Seals	Gas	0	8760	-	-
Connectors	All	746	8760	1.39	6.10
		-	Total	1.50	6.56
	·		CO ₂	0.06	0.28
			H ₂ S	0.01	0.04
			MDEA	1.42	6.24

Note:

Please note that component counts listed in the tables above are only estimates, and do not represent exact component counts

 $E_{TOC} =$

F_A * WF_{TOC} * N

Where:

F_A =

Applicable average emisison factor for equipment type

WF_{TOC} =

Average weight fraction of TOC in the stream

N = Number of pieces of equipment of the applicable equipment type

The SOCMI emission factor does not need to be corrected for methane in the stream, because the emission factor is for total organic compounds.

Area Speciation

Area Speciation						1511.01							
•		•				Wt %	(WF _{TOC})				•		
Comound	Methanol	Syn Gas	Flash Gas - Gasification	Shifted Syn Gas	Propylene	Sour Water	H₂S Laden Methanol	CO ₂ Laden Methanol	Acid Gas	Ammonia- Laden Gas	Sulfur	TGTU Process Gas	TGTU Amine
CO ₂	0.00%			90.43%	0.00%	2.50%	44.68%	35.81%	60.32%	68.32%	0.00%	64.65%	1.98%
CO	0.00%			1.48%	0.00%	0.001%	0.03%	0.04%	0.06%	0.36%	0.00%	0.31%	0.00%
CH₄	0.00%			0.06%	0.00%	0.00%	0.003%	0.003%	0.002%	0.002%	0.00%	0.00%	0.00%
H ₂ S	0.00%			2.05%	0.00%	0.18%	1.73%	0.0001%	39.04%	5.98%	0.03%	1.86%	0.32%
COS	0.00%			0.01%	0.00%	0.00%	0.01%	0.00%	0.51%	0.02%	0.00%	0.03%	0.00%
CH₃OH	100.00%			0.00%	0.00%	0.00%	53.51%	64.10%	0.03%	0.00%	0.00%	0.00%	0.00%
C ₃ H ₆	0.00%			0.00%	100.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
NH ₃	0.00%			0.00%	0.00%	0.25%	0.00%	0.00%	0.00%	7.36%	0.00%	0.00%	0.00%
HCN	0.00%			0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.05%	0.00%	0.00%	0.00%
MDEA	0.00%			0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	43.96%
WF _{TOC} ¹	100.00%			94.03%	100.00%	2.93%	99.96%	99.95%	99.98%	82.10%	0.03%	66.85%	46.25%
Percentage VOC/entire gas stream	100.00%	0.14%	0.29%	0.01%	100.00%	0.00%	53.51%	64.10%	0.54%	0.07%	0.00%	0.03%	43.96%

Conversion Note: 1 kg =

2.20 pound

Note:

(1) WF_{TOC} does not always equal 100% due to the presence of inerts in the area not listed in table above.

Summary of On Site Operations Truck Emissions - HECA

Emissions Summary

Hydrogen Energy California LLC HECA Project

Transportation Information

- Maximum annual mileage =

- Onsite Vehicle = - Vehicle year= 20 trucks

20 trucks 2010

10,000 miles/truck-year

Notes

- Information Provided By Applicant
- Information Provided By Applicant
- All routine vehicular traffic is anticipated to travel exclusively on paved roads
- Assumed 15 mph average speed within HECA facility

Calculations for Trucks Operation Modeling per Truck

	Onsite O&M Trucks (@ 15 mph)
Mileage	
1-hr	1
3-hr	3
8-hr	9
24-hr	. 27
Annual average trucks or loads	10000

Emission Factor based on equation from AP-42, Chapter 13 (Paved Roads)

$$E = k \left(\frac{sL}{2}\right)^{0.65} \times \left(\frac{W}{3}\right)^{1.5} - C$$

E = particulate emission factor

k = particle size multiplier for particle size range and units of interest

sL = road surface silt loading

W = average weight (tons) of the vehicles traveling the road

C = emission factor for 1980's vehicle fleet exhaust, brake wear and tire wear.

Parameter	Value	
k =	0.016 lb/VMT	AP 42, Table 13.2-1.1: default k value for PM ₁₀
C =	0.00047 lb/VMT	AP 42, Table 13.2-1.2: default C value for PM ₁₀
sL=	0.031 g/m ²	Default value from URBEMIS 9.2 for Kern County
W =	2.65 ton	Default value from URBEMIS 9.2 for Kern County
E =	4.1E-04 lb/√MT 0.19 g/√MT	Estimated from the AP-42 formula

EMFAC2007 Emission Factors (g/mi) For Truck Model year 2010, Scenario year 2015

	AER	MOD
Pollutant	Gas LHDT1	Diesel LHDT2
CO	0.229	0.92
NOx	0.064	0.672
ROG	0.014	0.085
SOx	0.011	0.005
PM10 *	0.23	0.24
PM2.5	0.022	0.03

^{*} PM10 includes entrained road dust factor for paved roads obtained from AP-42 Ch. 13, using defaults from URBEMIS 9.2 AERMOD input assumed 2015 scenario. HARP input assumed 2040 scenario (70 years average) HARP PM 10 emission factor does not include tire wear or break wear contributions

1-hr Emission Rates for AERMOD (g/s) per Truck

	, <u>, , , , , , , , , , , , , , , , , , </u>	
	ÅER	MOD
Pollutant	Gas LHDT1	Diesel LHDT2
CO	7.26E-05	2.92E-04
NOx		2.13E-04
ROG	4.44E-06	2.70E-05
SOx	3,49E-06	1.59E-06
PM10	7.21E-05	7.49E-05
PM2.5	6.98E-06	9.51E-06

3-hr Emission Rates for AERMOD (g/s) per Truck

THE ENTERON TOTAL TRANSPORT	poi iraak	
	AER	MOD
Pollutant	Gas LHDT1	Diesel LHDT2
CO	7.26E-05	2.92E-04
NOx	2.03E-05	2.13E-04
ROG	4.44E-06	2.70E-05
SOx	3.49E-06	1.59E-06
PM10	7.21E-05	- 7.49E-05
PM2.5	6.98E-06	9.51E-06

8-hour Emission Rates for AERMOD (g/s) per Truck

Control of the contro	KINGS AND DESCRIPTION OF THE PROPERTY OF THE P	THE TAX PROPERTY AND ADDRESS OF THE TAX PARTY AND ADDRESS OF THE CASE OF THE C
	AED.	MOD
Pollutant	Gas LHDT1	Diesel LHDT2
CO	7.26E-05	2.92E-04
NOx	2.03E-05	2.13E-04 ⁻
DOC.	4.44E-06	
ROG	4.44E-06	2.70E-05
SOx	3.49E-06	1.59E-06
	7.045.05	
PM10	7.21E-05	7.49E-05
PM2.5	6.98E-06	9.51E-06
*2.0	7.74	5,5 .C 00

24-hour Emission Rates for AERMOD (g/s) per Truck

24-11001 EIII1331011 Mates 101 AERIMOD (9	pay per ridek	
	ĀĒR	MOD
e de la companya de		
Pollutant	Gas LHDT1	Diesel LHDT2
CO	7.26E-05	2.92E-04
NOx	2.03E-05	2.13E-04
ROG	4.44E-06	2.70E-05
SOx	3.49E-06	1.59E-06
PM10	7.21E-05	7.49E-05
PM2.5	6.98E-06	9.51E-06

Annual Emission Rates for AERMOD (q/s) per Truck

Milital Ellission Rates for AERMOD (gi	of politicon	
	AER	MOD
Pollutant	Gas LHDT1	Diesel LHDT2
CO	7.26E-05	2.92E-04
NOx	2.03E-05	2.13E-04
ROG	4.44E-06	2.70E-05
SOx	3.49E-06	1.59E-06
PM10	7.21E-05	7.49E-05
PM2.5	6.98E-06	9.51E-06

The HARP PM10 emission rates do not include road-entrained dust or brake and tire wear.

Summary of Truck Emissions - HECA

Emissions Summary

Hydrogen Energy California LLC HECA Project 6/18/2010

Calculations for Trucks Operation Modeling

Carculations for Trucks Operation Model	ing								
Data Supplied By Client									
Parameter	Coke and Coal Tr	ucks (@ 10 mph)	Onsite Gasifier Solids Handling (@ 5 mph)						
	Running Emissions	Idling Emissions	Running Emissions	Idling Emissions					
Distance Traveled (mi)*	1		0.5						
Per Truck Idle Time (hr)		0.117		0.083					
Maximum number of trucks or loads:	officeation of a subject of the			有多种的现代的 使各种					
1-hr	18	18	2	2					
3-hr	54	54	7	7					
8-hr	144	144	13	13					
24-hr	180	180	38	37.5					
Annual average trucks or loads	35,500	35,500	2,900	2,900					

Emission Factor based on equation from AP-42, Chapter 13 (Paved Roads)

$$E = k \left(\frac{sL}{2}\right)^{0.65} \times \left(\frac{W}{3}\right)^{1.5} - C$$

E = particulate emission factor

k = particle size multiplier for particle size range and units of interest

sL = road surface silt loading

W = average weight (tons) of the vehicles traveling the road

C = emission factor for 1980's vehicle fleet exhaust, brake wear and tire wear.

Parameter	Value Unit	
k = .	0.016 lb/VMT	AP 42, Table 13.2-1.1: default k value for PM ₁₀
C =	0.00047 lb/VMT	AP 42, Table 13.2-1.2; default C value for PM ₁₀
sL≒	0.031 g/m ²	Default value from URBEMIS 9.2 for Kern County
W =	2.65 ton	Default value from URBEMIS 9.2 for Kern County
E =	4.1E-04 lb/VMT	Calculated using AP-42 factors
	0.19 g/VMT	Calculated using AP-42 factors

EMFAC2007 Emission Factors (g/mi or g/idle-hour) For Truck Model year 2010, Scenario year 2015

	Coke and Coal T	rucks (@ 10 mph)	Onsite Gasifier Solid	s Handling (@ 5 mph)
Pollutant	Running Emissions	Idling Emissions	Running Emissions	Idling Emissions
CO	3.028	43.689	5.052	43.689
NOx	5.427	122.647	7.237	122.647
ROG	1.388	7.744	2.546	7.744
SOx	0.03	0.062	0.04	0.062
PM10 *	0.34	0.114	0.35	0.114
PM2.5	0.101	0.104	0.109	0.104

^{*} PM10 includes entrained road dust factor for paved roads obtained from AP-42 Ch. 13, using defaults from URBEMIS 9.2

1-hr Emission Rates for AERMOD (g/s)

(3)	Coke and Coal T	rucks (@ 10 mph)	Onsite Gasifier Solid	s Handling (@ 5 mph)
Pollutant	Running Emissions	ldling Emissions (at each Idle Point)	Running Emissions	idling Emissions (at each idle Point)
CO	0.015	0.025	0.001	0.002
NOx		0.072	0.002	0.006
ROG	0.007	0.005	0.001	0.000
SOx	1.5E-04	3.6E-05	1.0E-05	2.9E-06
PM10	0.002	0,000	0.000	5.3E-06
PM2.5	0.001	0.000	3.03E-05	4.8E-06

3-hr Emission Rates for AERMOD (g/s)

(3.2)	Coke and Coal T	rucks (@ 10 mph)	Onsite Gasifier Solid	s Handling (@ 6 mph)
Pollutant	Running Emissions	idling Emissions (at each idle Point)	Running Emissions	idling Emissions (at each idle Point)
CO	0.015	0.025	0,002	0.002
NOx	0.027	0.072	0.002	0.007
ROG	0.007	0.005	0.001	0.000
SOx	1.5E-04	3.6E-05	1.2E-05	3.3E-06
PM10	0.002	0.000	0.000	6.2E-06
PM2.5	0.001	.0.000	3.53E-05	5.6E-06

8-hour Emission Rates for AERMOD (g/s)

	Coke and Coal T	rucks (@ 10 mph)	Onsite Gasifier Solids	s Handling (@ 5 mph)
Pollutant	Running Emissions	Idling Emissions (at each Idle Point)	Running Emissions	Idling Emissions (at each idle Point)
CO	0.015	0.025	0.001	0.002
NOx	0.027	0.072	0.002	0.005
ROG	0.007	0.005	0.001	0.000
SOx	1.5E-04	3.6E-05	8.4E-06	2.3E-06
PM10	0.002	0.000	7.8E-05	4.3E-06
PM2.5	0.001	0.000	2.5E-05	3.9E-06

24-hour Emission Rates for AERMOD (q/s)

	Coke and Coal T	Onsite Gasifier Solids	Handling (@ 5 mph)	
Pollutant	Running Emissions	Idling Emissions (at each idle Point)	Running Emissions	Idling Emissions (at each idle Point)
CO	0.006	0.011	0.001	0.002
NOx	0.011	0.030	0.002	0.004
ROG	0.003	0.002	0.001	0.000
SOx	6.3E-05	1.5E-05	8.0E-06	2.2E-06
PM10	0.001	2.8E-05	7.5E-05	4.1E-06
PM2.5	0.000	2.5E-05	2.4E-05	3.8E-06

Annual Emission Rates for AERMOD (g/s)

Amida Emission rates for AErono's (gr		rucks (@ 10 mph)	Onsite Gasifier Solid	s Handling (@ 5 mph)
Pollutant	Running Emissions	Idling Emissions (at each Idle Point)	Running Emissions	Idling Emissions (at each idle Point)
CO	0.003	0.006	0.000	0.000
NOx	0.006	0.016	0.000	0.001
ROG	0.002	0.001	0.000	0.000
SOx	3.4E-05	8.1E-06	1.7E-06	4.8E-07
PM10	0.00038	1.5E-05	1.6E-05	8.7E-07
PM2.5	0.00011	1.4E-05	5.0E-06	8.0E-07

6/18/2010

Hydrogen Energy California LLC HECA Project

Modeling Wors	st-Case 1 hr Emi	ssions				500																										
1	CTG/HR\$G				Auxiliary	Emergency	Fire Water	Gasification																					Onsite Soli	lid Handling		
	Maximum (1)	Co	oling Towers (2)		Boiler	Generators (3)	Pump	Flare	SRU Flare	Flare	Oxidizer	CO ₂ Vent	Gasifier (4)			Feedsto	ck						Fugitives (7)				Onsite Li	ID Truck	Coal & Cok	e Trucks (5)	Truc	ıck [6]
1																											Gas	Diesel	Running	Idling	Running	Idling
1	1	Power Block	Process Area	ASU	i					[DC-1	DC-2	DC-3 E	DC-4 I	DC-5	DC-6	Power	Sru	SWS	TGTU	AGR	Gasification	Shift	LHDT1		Emission	Emission	Emission	Emission
	(g/sec)	(g/sec/cell)	(g/sec/cell)	(g/sec/cell)	(g/sec)	(g/sec/gen)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec) {	g/sec) (g/sec) ((g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)
NOx	21.0	_	_		0.1	0.4	0.2	14.9	0.544	0.005	0.3		0.5				- [-	-							0.0000	0.0002	0.0003	0.0715	0.0000	0.0028
co	211.6		1	_	0.7	2,1	0.4	226.8	0.363	0.003	0.3	53.4	0.8	-	-	-	-	-	-	0.0001	0.0000	0.0000	0.0003	-	0.0319	0.0053	0.0001	0.0003	0.0002	0.0255	0.0000	0.0010
SO ₂	0.9		·		0.04	0.004	0.0007	0.5980	2.33	0.0001	0.3		0.00	-					-	-	-					-	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
H₂S		_	_	-				-		-		0.6	_	- 1		-	-		-	-	-			-	-	-	-	-			-	-

- (1) HRSG modeling emission rates represents the maximum emissions rate from a composite firing scenario (all three fuels)
- (2) There are three separate cooling towers. The modeling rates are per cell.
- (3) There are two separate generators. Modeling rates are shown per individual generator. Assumend only one generator operates at any short term period.

 (4) There are three gasifiers. The modeling rate shown is per individual gasifier. However, up to two gasifier heaters will be operational at any one time.
- (5) Coat & Coke Trucks modeling rate is based on 85 separate volume sources for running emissions and one consolidated volume source for idling emissions.
- (6) Gasifier Solids Handling Trucks modeling rate is based on 50 separate volume sources for running emissions and two (drop off and pick up) consolidated volume sources for idling emissions.
- (7) Fugitive modeling rates were calculated per volume source as follows: Power (2), SRU (3), SWS(3), TGTU (3), Gasification (5), Shift (2)

Modeling Wor	t-Case 3 hr Emi:	ssions							Company of the									193.50													
	CTG/HRSG				Auxitiary	Emergency	Fire Water	Gasification		Rectisol	Tg Thermal																	1		Onsite Soli	iid Handling
	Maximum ⁽¹⁾	Co	ooling Towers (2)		Boiler	Generators (3)	Pump	Flare	SRU Flare	Flare	Oxidizer	CO ₂ Vent	Gasifier (4)			Feedsto	ck					Fugitives (7)				Onsite L	HD Truck	Coal & Col	e Trucks ⁽⁵⁾	Tru	1ck (e)
	1]		1				1												1	Gas	Diesel	Running	Idling	Running	Idling
	1	Power Block	Process Area	ASU			1						1	DC-1	DC-2	DC-3 C	DC-4 DC	>5 DC	C-6 Power	Sru	SWS	TGTU	AGR	Gasification	Shift	LHDT1	LHDT2	Emission	Emission	Emission	Emission
1	(g/sec)	(g/sec/cell)	(g/sec/cell)	(g/sec/cell)	(g/sec)	(g/sec/gen)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec) ((g/sec) (g	ysec) (g/s	ec) (g/s	ec) (g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)
SO ₂	0,9	-			0.04	0.002	0.0005	0.5980	2.33	0.00	0.3		0.00		-	-	- -	- -	-		-	-			-	0.00	0.00	0.00	0.00	0.00	0.00

- (1) HRSG modeling emission rates represents the maximum emissions rate from a composite firing scenario (all three fuels)
- (2) There are three separate cooling towers. The modeling rates are per cell.
- (3) There are two separate generators. Modeling rates are shown per individual generator. Assumend only one generator operates at any short term period.
- (4) There are three gasifiers. The modeling rate shown is per individual gasifier. However, up to two gasifier heaters will be operational at any one time.
- (5) Coal & Coke Trucks modeling rate is based on 85 separate volume sources for running emissions and one consolidated volume source for idling emissions.
- (6) Gasifier Solids Handling Trucks modeling rate is based on 50 separate volume sources for running emissions and two (drop off and pick up) consolidated volume sources for idling emissions.
- (7) Fugitive modeling rates were calculated per volume source as follows: Power (2), SRU (3), SWS(3), TGTU (3), Gasification (5), Shift (2)

Mod	eling Wors	-Case 8 hr Emi	ssions																						5.2752 (2002)							
		CTG/HRSG				Auxiliary	Emergency	Fire Water	Gasification		Rectisol	Tg Thermal								1											Onsite Sol	id Handling
- 1		Maximum ⁽¹⁾	· Co	ooling Towers (2)		Boiler	Generators (3)	Pump	Flare	SRU Flare	Flare	Oxidizer	CO ₂ Vent	Gasifier (4)			Feedsto	ock		1			Fugitives (7)				Onsite L	HD Truck	Coal & Col	e Trucks ⁽⁵⁾	Tru	ck ⁽⁶⁾
				1	T	1				1								- 1		1	1				1		Gas	Diesel	Running	Idling	Running	Idling
- 1			Power Block	Process Area	ASU	J		l .		1			l j		DC-1	DC-2 [DC-3 I	DC-4 DC	-5 DC-6	Power	Sru	SWS	TGTU	AGR	Gasification	Shift	LHDT1	LHDT2	Emission	Emission	Emission	Emission
		(g/sec)	(g/sec/cell)	(g/sec/cell)	(g/sec/cell)	(g/sec)	(g/sec/gen)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec) ((g/sec) (g	gisec) (gise	ec) (g/sec)) (g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)
CO		89.3				0.7	0.53	0.1	226.8	2.328	0,003	0.3	53.4	0.8				- -		0.0001	0.0000	0.0000	0.0003		0.0319	0.0053	0.0	0.0	0.0	0.0	0.0	0.0

- (1) HRSG modeling emission rates represents the maximum emissions rate from a composite firing scenario (all three fuels)
- (2) There are three separate cooling towers. The modeling rates are per cell.
- (3) There are two separate generators. Modeling rates are shown per individual generator. Assumend only one generator operates at any short term period.
- (4) There are three gasifiers. The modeling rate shown is per individual gasifier. However, up to two gasifier heaters will be operational at any one time. (5) Coal & Coke Trucks modeling rate is based on 85 separate volume sources for running emissions and one consolidated volume source for idling emissions.
- (6) Gasifier Solids Handling Trucks modeling rate is based on 50 separate volume sources for running emissions and two (drop off and pick up) consolidated volume sources for idling emission
- (7) Fugitive modeling rates were calculated per volume source as follows: Power (2), SRU (3), SWS(3), TGTU (3), Gasification (5), Shift (2)

6/18/2010

	CTG/HRSG	Emission Rate	Freezant a construir a Londo Cabouentario secunitario		Auxiliary	Emergency	Fire Water	A	T T				T	7	College College			Land Color Color		200000								2/2/2012/2				
	1	i	***		, , ,	Linesgency	Fire water	Gasification	1	Rectisol	Tg Thermal	l	l	.					[Onsite Sol	iid Handlin
	Maximum"	Co	oling Towers [2]		Boiler	Generators (3)	. Pump	Flare	SRU Flare	Flare	Oxidizer	CO ₂ Vent	Gasifier (4)	'L		Feeds	ock						Fugitives (8)				Onsite Li	ID Truck	Coal & Cok	e Trucks ⁽⁶⁾	Tru	ack ⁽⁷⁾
	1	<u> </u>					l i					ŀ		l.	- 1					- 1							Gas	Diesel	Running	ldling	Running	ldling
	l	Power Block	Process Area	ASU	l l		l I		1				1	DC-1	DC-2	DC-3	DC-4 I	DC⊸5 D∢	C-6 Po	ower	Sru	SWS	TGTU	AGR	Gasification	Shift	LHDT1	LHDT2	Emission	Emission	Emission	Emissic
	(g/sec)	(g/sec/cell)	(g/sec/cell)	(g/sec/cell)	(g/sec)	(g/sec/gen)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec) (g	g/sec) {g/s	sec) (g	g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(q/sec)	(a/sec)	(a/sec)	(a/sec)	(n/sec)
SO ₂	0.9	-			0.04	0.0003	0.0001	0.5980	1.1639	0.0001	0.3		0.00						-	-	_			-	-		0.00	0.00	0.00	0.00	0.00	0.00
PM _{to}	2.5	0.038	0.030	0.028	0.09	0.005	0.0002	0.0002	0.0069	0.0001	0.01	-	0.02	0.030	0.076	0.041	0.026 0	0.025 0.0	003	- 1	_		-		-	-	0.00	0.00	0.00	0,00	0.00	0.00
OM _{2.5} (3)	2.5	0.023	0.018	0.017	0.09	0.005	0.0002	0.0002	0.0069	0.0001	0.01		0.02	0,009	0.022	0.012	0.008 0	0.007 0.0	001			_				<u></u>	0.00	0,00	0.00	0.00	0.00	0.00

(1) HRSG modeling emission rates represents the maximum emissions rate from a composite firing scenario (all three fuels)

(2) There are three separate cooling towers. The modeling rates are per cell.

(3) There are two separate generators. Modeling rates are shown per individual generator. Assumend only one generator operates at any short term period.

(4) There are three gasifiers. The modeling rate shown is per individual gasifier. However, up to two gasifier heaters will be operational at any one time.

(5) Where $PM_{10} = PM_{2.5}$, it is assumed that PM_{10} is 100% $PM_{2.5}$

(6) Coal & Coke Trucks modeling rate is based on 85 separate volume sources for running emissions and one consolidated volume source for idling emissions.

(7) Gasifier Solids Handling Trucks modeling rate is based on 50 separate volume sources for running emissions and two (drop off and pick up) consolidated volume sources for idling emissions.

(8) Fugitive modeling rates were calculated per volume source as follows: Power (2), SRU (3), SWS(3), TGTU (3), Gasification (5), Shift (2)

	CTG/HRSG				Auxiliary	Emergency	Fire Water	Gasification	Ī	Rectisol	Tg Thermal			Τ			_						· · · · · · · · · · · · · · · · · · ·				ĺ			1	Onsite Sol	lid Handli
	Maximum ⁽¹⁾	Co	oling Towers (2)		Boiler	Generators (3)	Pump	Flare	SRU Flare	Flare	Oxidizer	CO ₂ Vent	Gasifier (4)			Feeds	tock						Fugitives (8)				Onsite U	ID Truck	Coal & Cok	e Trucks ⁽⁵⁾		uck ⁽⁶⁾
	(g/sec)	Power Block (g/sec/cell)	Process Area (g/sec/cell)	ASU (g/sec/cell)	(g/sec)	(g/sec/gen)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	. (g/sec)	DC-1 (g/sec)		DC-3 (g/sec)			DC-6 p/sec)	Power (g/sec)	Sru (g/sec)	SWS (g/sec)	TGTU (g/sec)	AGR (g/sec)	Gasification (g/sec)	Shift (g/sec)	Gas LHDT1 (g/sec)	Diesel LHDT2 (g/sec)	Running Emission (g/sec)	Idling Emission (g/sec)	Running Emission (g/sec)	fdling Emissi (g/sec
х ·	4.8	-	-	-	0.03	0.002	0.003	0.2	0.007	0.005	0.3		0.07	I - I	-	-		- '			-		-		_		0.00002	0.00021	0.00	0.02	0,00	0.00
)	4.5				0.2	0.013	0.005	3.2	0.005	0.003	0.25	3.1	0.10874						-	0.0001	0.0000	0.0000	0.0003		0.0319	0.0053	0.00007	0.00029	0.00004	0.00574	0.00000	0.000
С	1.0				0.02	0.0014	0.0002	0.0001	0.00008	0.00005	0.01	0.1	0.02175	-			-	- 1	-	⁽⁹⁾	⁽⁹⁾	_ (9)	0.128	0.061	(9)	(9)	0.00000	0.00003	0.00002	0.00102	0.00000	
2	8.0		-	-	0.01	0.00002	0.00001	0.0034	0.0107	0.0001	0.2		0.00063	-				-		-	-				-	-	0.00000	0.00000	0.00000	0.00001	0.00000	0.0000
10	2.4	0.036	0.028	0.027	0.02	0.0003	0.00003	0.0002	0.0002	0.0001	0,01		0.002	0.006	0.015	0.036	0.023 (0.022 0.	0004	-			-				0.00007	0.00007	0.00000	0.00001	0.00000	0.0000
.5) .5	2.4	0.022	0.017	0.016	0.02	0.0003	0.00003	0.0002	0.0002	0.0001	. 0.01		0.002	0.002	0.004	0.011	0.0068 (0.007 0.	0001		-	-	-		-	-	0.00001	0.00001	0.00000	0.00001	0.00000	0.0000
,		_	-	_	_							- 0.0		i i																	~	1

(1) HRSG modeling emission rates represents the maximum emissions rate from a composite firing scenario (all three fuels)

(2) There are three separate cooling towers. The modeling rates are per cell.

(3) There are two separate generators. Modeling rates are shown per individual generator. Assumend two generators operates during the year.

(4) There are three gasifiers. The modeling rate shown is per individual gasifier. However, up to two gasifier heaters will be operational at any one time. Annual model was based on the 3 gasifier heaters operations (1200 hours each)

(5) Where $PM_{10} = PM_{2.5}$, it is assumed that PM_{10} is 100% $PM_{2.5}$

(6) Coal & Coke Trucks modeling rate is based on 85 separate volume sources for running emissions and one consolidated volume source for idling emissions.

(7) Gasifier Solids Handling Trucks modeling rate is based on 50 separate volume sources for running emissions and two (drop off and pick up) consolidated volume sources for iding emissions.

(8) Fugitive modeling rates were calculated per volume source as follows: Power (2), SRU (3), SWS(3), TGTU (3), Gasification (5), Shift (2)

(9) Per District policy (SSP-2015), VOC emissions are not assessed to components handling fluid streams with a VOC content of 10% of less by weight. Therefore, VOC emissions from Area # 2, 3, 4, 6, 9, 10, 11, and 12 were not included in the emission rate calculation.

Stack exit velocity, act

7,1107.7.7.10,000.								
		CTG/	HRSG , H2-rich	Fuel	CTG/HR	SG , Natural G	as Fuel	CTG/HRSG Co-Firing **
Parameter		100% Load (2)	80% Load	60% Load	100% Load ⁽³⁾	80% Load	60% Load	100% Load
English Units		The second second						
Stack height above grade(1)	ft	213	213	213	213	213	213	213
Stack diameter	ft	20	20	20	20	20	20	20
Stack outlet temperature	°۶	200	. 190	180	180	170	160	190
Stack exit flow, act	ft ³ /s	19,900	16,300	13,400	16,700	14,300	11,900	18,300
Metric Units								
Stack height above grade ⁽¹⁾	w	65.0	65.0	65.0	65.0	65.0	65.0	65.0
Stack diameter	m	6.1	6.1	6.1	6,1	6.1	6.1	6.1
Stack outlet temperature	K	366.5	360.9	355,4	355.4	349.8	344.3	360.9
Stack exit flow, act	m³/s	563.5	461.6	379.4	472.9	404.9	337.0	518.2
Stack Area	m ²	29.2	29.2	29.2	29.2	29.2	29.2	29.2

13.0

Parameter		Aux Boiler	Gasification Flare(4)	SRU Flare(6)	Rectisol Flare (6)	Tail Gas Oxidizer ⁽⁷⁾	Gasifier Warming Vent (ea.)	Cooling Towers (per cell) ⁽⁵⁾	Diesel Generator (ea.)	Fire Pump Engine	CO₂ Vent
English Units		and the second							n diamentana		
Stack height above grade ⁽¹⁾	ft	80	250	250	250	165	210	55	20	20	260
Stack diameter	ft	4,5	(NA)	(NA)	(NA)	2.5	1.0	30	1.2 .	0.7	3,5
Stack outlet temperature	°۶	300	(NA)	(NA)	(NA)	1200	150	75	760	850	65
Stack exit flow, act	ft ³ /s	480	(NA)	(NA)	(NA)	120	68	18,500	250	60	1,765
Metric Units											
Stack height above grade ⁽¹⁾	m	24.4	76.2	76.2	76.2	50.3	64.0	16.8	6.1	6.1	79.2
Stack diameter	E	1.4	5,5	1.1	0.1	0.8	0.3	9.1	0.4	0.2	1.1
Stack outlet temperature	K	422.0	1273	1273	1273	922.0	338,7	297.0	677.6	727.6	291.5
	m³/s	13.6	469.5	18.8	0.2	3.4	1.9	523.9	7.1	1.7	50,0
Stack Area	m ²	1.5	23.5	0.9	0.01	0.5	0.1	65.7	0.1	0.04	0.9
Stack exit velocity, act	m/s	9.2	20.0	20.0	20.0	7.5	26.4	8.0	67.4	47.5	55.9

16.2

13.9

11.5

17.8

Notes:

- (1) Minimum stack height assumed for worst-case dispersion.
- (2) Volume Flow Value shown in table for H2-rich fuel is based on full load syn gas combustion (relatively constant for varying ambient temperatures). Duct firing of the HSRG changes the stack volumetric flow by about 1% or less.
- (3) Full load stack flow for natural gas combustion will vary from the value shown in the table during warm summer ambient temperatures to about 18,000 act ft3/sec for winter ambient temperatures. Stack flow rates for co-firing of H2-rich gas and natural gas will range between the values shown for the two fuels separately.
- (4) Stack parameters estimated from gasifier startup.
- (5) Thirteen cells estimated for power block cooling tower; four cells estimated for process cooling tower, and four cells estimated for the ASU cooling tower.
- (6) Waste gas heat release, 10^6 Btu/hr, HHV. First exit flow value is from maximum startup heat release. Rectisol Flare has no planned operation just standby with pilot on
- (7) Estimated oxidizer stack outlet flow for normal operating case of miscellaneous vent gas disposal; SRU startup case will be about 50% greater.
- ** HRSG Stack Coffring is estimated assuming 47% Syngas and the balance natural gas

19.3

15.8

m/s

6/18/2010

	[Fe	ed Stock - Dus	t Collection Uni	ts	
Parameter		DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
English Units:			edianist mini	A telephone and the		and the street of	
Ground elevation	ft	289	289	289	289	289	289
Stack elevation	ft	334	459	465	459	368	465
Stack height above grade	ft	46	171	177	171	80	177
Stack diameter	ft	1.7	2.7	1:8	1.4	1.4	0.8
Stack outlet temperature (1)	°F	Ambient	Ambient	Ambient	Ambient	Ambient	Ambient
Stack exit flow, act	ft ³ /s	108	273	127	81	78	21
Metric Units	richin di	deni elimen	erin erenik dibili	Middle State State	grapia di certa esti.		
Stack height above grade	m	13.9	52.0	53.8	52.0	24.2	53.8
Stack diameter	m.	0.5	0.8	0,6	0.4	- 0.4	0.2
Stack outlet temperature (1)	K	Ambient	Ambient	Ambient	Ambient	Ambient	Ambient
Stack exit flow, act	m³/s	3.1	7.7	3.6	2.3	2.2	0.6
Stack Area	m ²	0.2	0.5	0.2	0.1	0,1	0.0
Stack exit velocity, act	m/s	15.1	14.9	14.7	15.7	15.1	14.2

⁽¹⁾ Assume ambient temperature

				Fu	gitive Emissic	ns		
Parameter		Power	SRU	SWS	TGTU	Gasification	Shift	AGR
Metric Units						ja nji Halibaka fa		lindi (di di di di
Ground elevation	m	87.93	87.93	87.93	87.93	87.93	87.93	87.93
Number of Volume Sources		2	. 3	3	3	5	2	3
Release height above grade	m	7.62	6.10	6.10	6,10	30.48	6,10	6.10
Horizontal Dimension	m	3.433	6,353	6.353	7.995	7.200	16.512	5.116
Vertical Dimension	m	7.1	5.7	5,7	5.7	28.4	5.7	5.7

APPENDIX B HECA OPERATIONAL GREENHOUSE GAS EMISSIONS

Emissions Summary

Hydrogen Energy California LLC HECA Project 6/18/2010

GHG emissions are numerically depicted as metric tons (tonne) of carbon dioxide equivalents (CO₂e). CO₂e represents CO₂ plus the additional warming potential from CH₄ and N₂O. CH₄ and N₂O have 21 and 310 times the warming potential of CO₂, respectively.

Natural Gas GHG Emission Factors

Diesel GHG Emission Factors

CO ₂ =	52.78	kg/MMBtu =	116.36	lb/MMBtu	CO ₂ =	10.15	kg/gal =	22.38	lb/gal
CH ₄ =	0.0059	kg/MMBtu =	0.013	lb/MMBtu	CH ₄ =	0.0003	kg/gal =	0.001	lb/gal
$N_2O =$	0.0001	kg/MMBtu =	0.00022	lb/MMBtu	N ₂ O =	0.0001	kg/gal =	0.0002	lb/gal

CO₂, CH₄, and N₂O emission factors are taken from Appendix C of the California Climate Action Registry (CCAR) General Reporting Protocol Version 2.2 (March 2007)

HRSG Stack

Operating Ho	urs	832	hr/yr			
HRSG Heat I	nput	2,548	MMBtu/hr			
		-	_	-		
CO ₂ =	111,921	tonne/yr				
CH ₄ =	13	tonne/yr =	263	tonne CO ₂ e/yr		
$N_2O =$	0.21	tonne/yr =	66	tonne CO ₂ e/yr	Total tonne CO₂e/yr =	112,249

During mature operation of the HRSG, the unit will fire only syngas, except during periods of startup and shutdown.

Startup and shutdown of the HRSG will be accomplished using natural gas. The total operating hours, including startup and shutdown are estimated at 823 hr/yr for the worst case GHG emissions from natural gas combustion in the HRSG. The total startup and shutdown duration are estimated at 65 hr/yr for the worst case criteria pollutant.

HRSG heat input rate is assumed to be the maximum heat input rate firing natural gas with duct burner, which corresponds to winter minimum (20 F).

HRSG Stack - Burning Hydrogen-Rich Fuel

Operating Ho	urs	7,490	hr/yr		Syngas (GHG Emission	Factors
HRSG Heat Ir	nput	2,422	MMBtu/hr		CO ₂ =	28.1	lb/MMBtu
				•			
CO ₂ =	231,144	tonne/yr			Total to	nne CO ₂ e/yr =	231,144

During mature operation of the HRSG, the unit will fire only syngas, except during periods of startup and shutdown.

HRSG heat input rate is assumed to be the maximum heat input rate firing syngas with duct burner.

Emissions Summary

Hydrogen Energy California LLC HECA Project 6/18/2010

GHG emissions are numerically depicted as metric tons (tonne) of carbon dioxide equivalents (CO_2e). CO_2e represents CO_2 plus the additional warming potential from CH_4 and N_2O . CH_4 and N_2O have 21 and 310 times the warming potential of CO_2 , respectively.

Auxiliary Boiler

- 10.71u y = 0						
Operating Ho	urs	2,190	hr/yr			
Heat Input		142	MMBtu/hr]		
		•	•	-		
CO ₂ =	16,418	tonne/yr				
CH ₄ =	2	tonne/yr =	39	tonne CO ₂ e/yr		
N ₂ O =	0.03	tonne/yr =	10	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr =	16,466

Emergency Generators (2)

Operating Ho	urs	52	hr/yr			
Heat Input		2,800	Bhp			
CO ₂ =	3,201	lb/hr =	76	tonne CO ₂ /yr		
CH ₄ =	0.09	lb/hr =	0.047	tonne CO ₂ e/yr		
N ₂ O =	0.03	lb/hr =	0.2307	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr* =	152

The following conversions were used to convert from lb/gallon to lb/hp-hour; and then multiplying by the rated horsepower rating: 1 gallon/137,000 Btu; and 7,000 Btu/hp-hour.

Fire Water Pump

	<u> </u>									
Operating Ho	Operating Hours 100 hr/yr									
Heat Input		556	Bhp							
CO ₂ =	636	lb/hr =	29	tonne CO ₂ /yr						
CH ₄ =	0.02	lb/hr =	0.018	tonne CO ₂ e/yr						
N ₂ O =	0.01	lb/hr =	0.0881	tonne CO ₂ e/yr	Total tonne CO₂e/yr =	29				

The following conversions were used to convert from lb/gallon to lb/hp-hour; and then multiplying by the rated horsepower rating: 1 gallon/137,000 Btu; and 7,000 Btu/hp-hour.

^{*} Total tonnes CO₂e per year represent the contributions from both generators.

Emissions Summary

Hydrogen Energy California LLC HECA Project 6/18/2010

GHG emissions are numerically depicted as metric tons (tonne) of carbon dioxide equivalents (CO_2e). CO_2e represents CO_2 plus the additional warming potential from CH_4 and N_2O . CH_4 and N_2O have 21 and 310 times the warming potential of CO_2 , respectively.

Gasification Flare

Pilot Operati	on					
Operating Hours 8,76		8,760	hr/yr]		
Heat Input		0.5	MMBtu/hr			
			,			
CO ₂ =	231	tonne/yr				
CH ₄ =	0.03	tonne/yr =	0.5	tonne CO ₂ e/yr		
N ₂ O =	$I_2O = 0.0004 \text{ tonne/yr} = 0$		0.1	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr =	232
Flaring Even	ts					
Total Operation	on	196,900	MMBtu/yr]		
			•			
CO ₂ =	10,395	tonne/yr				
CH ₄ =	1.2	tonne/yr =	24	tonne CO ₂ e/yr		
N ₂ O =	0.02	tonne/yr =	6	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr =	10,426

GHG emissions from flaring events are conservatively estimated using GHG emission factors for natural gas combustion.

Rectisol Flare

1tootioor r iar	~					
Pilot Operati	on					
Operating Ho	urs	8,760	hr/yr			
Heat Input		0.3	MMBtu/hr]		
				_		
CO ₂ =	139	tonne/yr				
CH ₄ =	0.02	tonne/yr =	0.3	tonne CO2e/yr		
N ₂ O =	0.0003	tonne/yr =	0.08	tonne CO2e/yr	Total tonne CO ₂ e/yr =	139
	•	•	•		-	

6/18/2010

GHG emissions are numerically depicted as metric tons (tonne) of carbon dioxide equivalents (CO_2e). CO_2e represents CO_2 plus the additional warming potential from CH_4 and N_2O . CH_4 and N_2O have 21 and 310 times the warming potential of CO_2 , respectively.

SRU Flare

on			_		
urs	8,760	hr/yr			
	0.3	MMBtu/hr			
		•			
139	tonne/yr				
0.02	tonne/yr =	0.3	tonne CO ₂ e/yr		
0.0003	tonne/yr =	0.08	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr =	139
ts (natural ga	s assist)				
urs	40	hr/yr			
	36	MMBtu/hr			
		ī			
76	tonne/yr				
0.008	tonne/yr =	0.18	tonne CO ₂ e/yr		
0.00014	tonne/yr =	0.045	tonne CO ₂ e/yr	Total tonne CO₂e/yr =	76
(inerts)			_		
	25	%			
	75	%			
	72	lbmol/hr			
	216	lbmol/hr			
	9,488	lb/hr			
urs	40	hr/yr]		
			ſ	Total tonne CO₂e/vr =	172
	139 0.02 0.0003 ts (natural gaurs 76 0.008 0.00014 (inerts)	139 tonne/yr 0.02 tonne/yr = 0.0003 tonne/yr = ts (natural gas assist) urs 40 36 76 tonne/yr 0.008 tonne/yr = 0.00014 tonne/yr = (inerts) 25 75 72 216 9,488	139	139 tonne/yr 0.3 tonne CO2e/yr 0.002 tonne/yr = 0.3 tonne CO2e/yr 0.0003 tonne/yr = 0.08 tonne CO2e/yr ts (natural gas assist) urs	139

Throughtput (inerts) amount calculated from the relationship of CO2 to H2S in the SRU Flare.

6/18/2010

GHG emissions are numerically depicted as metric tons (tonne) of carbon dioxide equivalents (CO_2e). CO_2e represents CO_2 plus the additional warming potential from CH_4 and N_2O . CH_4 and N_2O have 21 and 310 times the warming potential of CO_2 , respectively.

Tail Gas Thermal Oxidizer

Process Ven	t Disposal En	nissions		_						
Operating Hours 8,460		hr/yr								
Heat Input		10	MMBtu/hr							
				-						
CO ₂ =	4,466	tonne/yr								
CH ₄ =	0.50	tonne/yr =	10.5	tonne CO ₂ e/yr						
$N_2O =$	0.0085	tonne/yr =	2.6	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr =	4,480				
ODU OL. 1	W1- O D									
SKU Startup	Waste Gas D	isposai		-						
Operating Ho	urs	300	hr/yr							
Heat Input		10	MMBtu/hr							
CO ₂ =	158	tonne/yr								
CH ₄ =	0.018	tonne/yr =	0.37	tonne CO ₂ e/yr						
N ₂ O =	0.00030	tonne/yr =	0.093	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr =	159				

GHG emissions from thermal oxidizer are estimated using GHG emission factors for natural gas combustion for the assist gas.

Gasifier Refractory Heaters

Submit Remarking meature								
Operating Ho	Operating Hours 3,600 hr/yr		hr/yr					
Heat Input		18	MMBtu/hr					
				_				
CO ₂ =	3,421	tonne/yr						
CH ₄ =	0	tonne/yr =	8	tonne CO ₂ e/yr				
$N_2O =$	0.01	tonne/yr =	2	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr *=	3,431		

^{*}Assumed 3,600 hours of annual normal operation (3 heaters with 1,200 hr/yr of operation for each gasifier)

Emissions Summary

Hydrogen Energy California LLC HECA Project 6/18/2010

GHG emissions are numerically depicted as metric tons (tonne) of carbon dioxide equivalents (CO_2e). CO_2e represents CO_2 plus the additional warming potential from CH_4 and N_2O . CH_4 and N_2O have 21 and 310 times the warming potential of CO_2 , respectively.

Intermittent CO₂ Vent

Operating Hours	504	hr/yr
CO ₂ Emission Rate	656,000	lb/hr

Assumes 504 hours per year venting at full rate.

Fugitives

Operating Hours		8,760	hr/yr			
CO ₂ =	40	tpy	38.60	tonne CO ₂ e/yr		
CH ₄ = 0.02		tpy	0.46	tonne CO ₂ e/yr		
			-	_		
					Total tonne CO ₂ e/yr =	39

Emissions Summary

Hydrogen Energy California LLC HECA Project 6/18/2010

GHG emissions are numerically depicted as metric tons (tonne) of carbon dioxide equivalents (CO₂e). CO₂e represents CO₂ plus the additional warming potential from CH₄ and N₂O. CH₄ and N₂O have 21 and 310 times the warming potential of CO₂, respectively.

230 kV Circuit Breakers

Number of Circuit Breakers 10		10					
SF ₆ capacity		216	lb/breaker				
Annual Leaka	Annual Leakage rate			-			
SF ₆ =	0.010	tonne/yr =	234	tonne CO ₂ e/yr	Total tonne CO₂e/yr =	234	

SF6 GWP = 23,900 http://www.epa.gov/electricpower-sf6/faq.html)

Sources: SF6 inventory and maximum leakage rates from electrical equipment suppliers

18 kV Circuit Breakers

Number of Circuit Breakers 2							
SF ₆ capacity		73	lb/breaker				
Annual Leakage rate		1%		-			
SF ₆ =	0.001	tonne/yr =	16	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr =	16	

SF6 GWP = 23,900 http://www.epa.gov/electricpower-sf6/faq.html)

Sources: SF6 inventory and maximum leakage rates from electrical equipment suppliers

Emissions Summary

Hydrogen Energy California LLC HECA Project 6/18/2010

GHG emissions are numerically depicted as metric tons (tonne) of carbon dioxide equivalents (CO_2e). CO_2e represents CO_2 plus the additional warming potential from CH_4 and N_2O . CH_4 and N_2O have 21 and 310 times the warming potential of CO_2 , respectively.

Onsite LHD Gasoline Trucks

Number of Or	nsite Trucks	10	trucks		EF CO ₂ =	1,175	g/mi
Total Annual VMT 10,000		10,000	miles/ truck		EF CH ₄ =	0.012	g/mi
				•	EF N ₂ O =	0.0101	g/mi
			<u>.</u>				
CO ₂ =	118	tonne/yr					
CH ₄ =	1.20E-03	tonne/yr =	3.E-02	tonne CO ₂ e/yr			
N ₂ O =	1.01E-03	tonne/yr =	3.E-01	tonne CO ₂ e/yr	Total to	nne CO ₂ e/yr =	118

Running emission Factor for N2O is based on Table C.4, California Climate Action Registry General Reporting Protocol Version 3.1, Jan 2009 for 2010 model year light trucks.

Onsite LHD Diesel Trucks

Number of Onsite Trucks 10		trucks		EF CO ₂ =	519	g/mi	
Total Annual VMT 10,00		10,000	miles/ truck		EF CH ₄ =	0.004	g/mi
		-	-		EF N ₂ O =	0.0015	g/mi
			•				
CO ₂ =	52	tonne/yr			_		
CH ₄ =	4.00E-04	tonne/yr =	8.E-03	tonne CO ₂ e/yr			
N ₂ O =	1.50E-04	tonne/yr =	5.E-02	tonne CO ₂ e/yr	Total to	nne CO ₂ e/yr =	52

Running emission Factor for N2O is based on Table C.4, California Climate Action Registry General Reporting Protocol Version 3.1, Jan 2009 for 2010 model year light trucks.

Emissions Summary

Hydrogen Energy California LLC HECA Project 6/18/2010

GHG emissions are numerically depicted as metric tons (tonne) of carbon dioxide equivalents (CO_2e). CO_2e represents CO_2 plus the additional warming potential from CH_4 and N_2O . CH_4 and N_2O have 21 and 310 times the warming potential of CO_2 , respectively.

Coal and Coke Trucks

Number of Tru	uck loads	35,500	truck loads		EF CO ₂ =	3,165	g/mi
Distrance Tra	velled Onsite	1	mi/ load		EF CH₄ =	0.064	g/mi
Truck Idle Tim	ne	0.117	hr/load		EF N ₂ O =	0.0048	g/mi
					EF CO ₂ =	6,542	g/ idle hr
					EF CH ₄ =	0.360	g/ idle hr
					EF N ₂ O =	0.027	g/ idle hr
CO ₂ =	140	tonne/yr			_		
CH ₄ =	3.77E-03	tonne/yr =	8.E-02	tonne CO ₂ e/yr			
N ₂ O =	2.83E-04	tonne/yr =	9.E-02	tonne CO ₂ e/yr	Total to	nne CO ₂ e/yr =	140

Running emission Factor for N2O is based on Table C.4, California Climate Action Registry General Reporting Protocol Version 3.1, Jan 2009 for 2010 model year diesel heavy duty vehicles. Idling emission Factor for N2O was extrapolated based on the ratio of CH4 emission factor for running and idling.

Emissions Summary

Hydrogen Energy California LLC HECA Project 6/18/2010

GHG emissions are numerically depicted as metric tons (tonne) of carbon dioxide equivalents (CO_2e). CO_2e represents CO_2 plus the additional warming potential from CH_4 and N_2O . CH_4 and N_2O have 21 and 310 times the warming potential of CO_2 , respectively.

Onsite Gasifier Solids Handling

Number of Tru	uck loads	2,900	truck loads		EF CO ₂ =	3,845	g/mi
Distrance Tra	velled Onsite	0.5	mi/ load		EF CH ₄ =	0.118	g/mi
Truck Idle Tim	ne	0.083	hr/load		EF N ₂ O =	0.0048	g/mi
				•	•		
					EF CO ₂ =	6,542	g/ idle hr
					EF CH ₄ =	0.360	g/ idle hr
					EF N ₂ O =	0.015	g/ idle hr
CO ₂ =	7	tonne/yr			_		
CH ₄ =	2.58E-04	tonne/yr =	5.E-03	tonne CO2e/yr			
N ₂ O =	1.05E-05	tonne/yr =	3.E-03	tonne CO ₂ e/yr	Total to	nne CO ₂ e/yr =	7

Running emission Factor for N2O is based on Table C.4, California Climate Action Registry General Reporting Protocol Version 3.1, Jan 2009 for 2010 model year diesel heavy duty vehicles. Idling emission Factor for N2O was extrapolated based on the ratio of CH4 emission factor for running and idling.

Total tonne CO₂e/yr for Stationary Sources=	529,594
Total tonne CO₂e/yr for Mobile Sources=	317
Total tonne CO₂e/yr for All Operations=	529,911

APPENDIX C HECA OPERATIONAL TOXIC AIR CONTAMINANT EMISSIONS

HECA Project		Annual Rate		Cooling Tower	Cooling Tower			Emergency				•	,			Onsite LHD Truck		
Compound	CAS#	(tons per year)	CTG/HRSG Syngas	(Power Block)		Cooling Tower (ASU)	Auxiliary Boiler	Generators (2)	Fire Water Pump	Gasification Flare	SRU Flare	Rectisol Flare	Tg Thermal Oxidizer	CO ₂ Vent	Gasifier Warming (3)	(10)	Coal& Solids Trucks	Fugitive
1,3-Butadiene	106-99-0	0.00E+00		(*	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			001101111010 (11)			0.1077	1 1000000777410	19	OO2 Vein	- Training (o)	1.07	Could Coulds (140)(5	ragilito
Acetaldehyde	75-07-0	2.24E-02	1.82E-02					-	 	4.12E-03	8.33E-05	 				<u> </u>		
Acrolein	107-02-8	9.78E-04	1.022 02			 		1		9.58E-04	1.94E-05							· · · · · ·
Ammonia*	7664-41-7	7.71E+01	7.66E+01			-	3.42E-01	 		0.00L 07	1.512.00	† <u> </u>			<u> </u>	-		0.17
Antimony	7440-36-0	1.11E-02	1,11E-02				<u> </u>	 										<u> </u>
Arsenic	7440-38-2	2.44E-02	2.43E-02	4.69E-05	1.13E-05	1.08E-05	2,96E-05	1		1.92E-05	3.87E-07	2.58E-07	8.34E-06		6.17E-06	······································		
Barjum	7440-39-3	5.67E-06						1				5.67E-06	******					
Benzene	71-43-2	4.03E-02	2.43E-02				3.11E-04	l		1.52E-02	3.08E-04	2.71E-06	8.76E-05		6.48E-05	i		
Beryllium	7440-41-7	2.64E-03	2.63E-03			1	1.78E-06	ĺ		1.15E-06	2.32E-08	1,55E-08	5.01E-07	· · · · · · · · · · · · · · · · · · ·	3.70E-07			
Cadmium	7440-43-9	9.75E-02	9.72€-02				1.63E-04	1		1.05E-04	2.13E-06	1.42E-06	4.59E-05		3.39E-05		· · · · · · · · · · · · · · · · · · ·	
Carbon Disulfide	75-15-0	4.66E-01	4.66E-01															
Carbonyl Sulfide	463-58-1	9.91E+00									t .			9.86E+00				4.81E-02
Chromium	7440-47-3	2.40E-04								1.34E-04	2.71E-06	1.80E-06	5.84E-05		4.32E-05			
Chromium, (hexavalent)	18540-29-9	1.55E-03	1.55E-03												Ì			
Chromium, Total	0-00-5	5.37E-03	5.16E-03			<u> </u>	2.07E-04	<u> </u>		1	<u> </u>				·			,
Cobalt	7440-48-4	2.66E-03	2.63E-03				1.24E-05	<u> </u>		8.05E-06	1.63E-07	1.08E-07	3.50E-06		2.59E-06			
Copper*	7440-50-8	2.85E-04		9.10E-06	2.20E-06	2.09E-06	1.26E-04	1		8.15E-05	1.65E-06	1.10E-06	3.55E-05		2.62E-05			L
Cyanides	57-12-5	6.28E-02	5.77E-02	1				ļ										5,06E-03
Ethylbenzene	100-41-4	1.41E-01				100				1.38E-01	2.80E-03	 						
Fluoride*	CO ^^ ~	1.21E-03	1705 01	8.19E-04	1.98E-04	1.88E-04	445.55		-	1 467 51	0.007.00			•		ļ	ļ	
Formaldehyde	50-00-0	3,03E-01	1.72E-01				1.11E-02			1.12E-01	2.26E-03	9.66E-05	3,13E-03		2.31E-03	l		
Hexane	110-54-3	4.00E-01	4 225 04			+	2,67E-01				1	2.32E-03	7.51E-02		5,55E-02	ļ		
Hydrochloric Acid	7647-01-0	1.32E-01	1.32E-01			 		ļ <u>.</u>							<u> </u>		ļ	<u> </u>
Hydrogen Fluoride (hydrofluoric acid)	7664-39-3	5.06E-01	5.06E-01					-						4.005.00	<u> </u>	<u> </u>		
Hydrogen Sulfide Lead	7783-06-4 7439-92-1	3.72E+00 5.72E-03	5,67E-03		····					4.79E-05	9.69E-07		· · · · · · · · · · · · · · · · · · ·	1.30E+00		 		2.42
	7439-92-1	1.41E-02	1.05E-02	2.34E-03	5.66E-04	5.38E-04	5.63E-05	 				4 DOE 07	4 505 05		1,17E-05	<u> </u>		
Manganese	7439-96-5	1.22E-02	1.03E-02 1.21E-02	2.345-03	3.005-04	5.30C-V4	3.85E-05	-		3.64E-05 2.49E-05	7.36E-07 5.04E-07	4.90E-07 3.35E-07	1.59E-05		8.02E-06			
Mercury Methanol	67-56-1	7.09E+00	1.215-02			 	3.03E-03			2.492-03	3.040-07	3.352-07	1.08E-05		0.UZE-U0		<u> </u>	7.09E+00
Methyl Bromide (Bromomethane)	74-83-9	4.83E-01	4.83E-01			 									1	 		7.09E+00
Methylene Chloride (Dichloromethane)	75-09-2	2.23E-02	2.23E-02			 						 						
Naphthalene	91-20-3	2.65E-02	2.53E-02			+	9.03E-05			1.05E-03	2 13F-05	7.86E-07	2.54E-05		1.88E-05		·	
n-Hexane	110-54-3	2.84E-03	1.552.52			 	3,000, 00			2,78E-03	2.13E-05 5.62E-05	7.002-07	2.542-05		1.00103			
Nickel	7440-02-0	4.62E-03	3,95E-03			 	3.11E-04	 		2.01E-04	4.07E-06	2.71E-06	8.76E-05		6.48E-05	····	l	
Phenol	108-95-2	3.73E-01	3.73E-01				0.11,2 01			2.012 01	1.07.2.00		0.100, 00		0.402-00			<u>'</u>
Propylene*	115-07-1	6.57E+00								2.34E-01	4.73E-03							6.33E+00
Propylene Oxide	75-56-9	0.00E+00				<u> </u>												0,002,100
Selenium	7782-49-2	5.73E-03	5.67E-03	3.90E-05	9.42E-06	8.95E-06	3.55E-06			2.30E-06	4.65E-08	3.09E-08	1.00E-06		7.41E-07			ſ
Sulfuric Acid and Sulfates*	7664-93-9	5.79E+00	5.79E+00															
Toluene	108-88-3	6.76E-03	3.34E-04				5.03E-04			5.56E-03	1.12E-04	4.38E-06	1.42E-04		1.05E-04			
Vanadium*	7440-62-2	7.35E-04					3.41E-04			2.20E-04	4.46E-06	2.96E-06	9.59E-05		7.10E-05			
Xylenes	1330-20-7	2.84E-03								2,78E-03	5.62E-05					ŀ		
Diesel Particulate Matter*	DPM	3.22E-02						2.39E-02	9.19E-04							3.42E-03	3,94E-03	
2-Methylnaphthalene	PAH	5.33E-06					3.55E-06					3.09E-08	1.00E-06		7.41E-07			
3-Methylchloranthrene	PAH	4.00E-07					2.67E-07				l	2.32E-09	7.51E-08		5.55E-08			
7,12-Dimethylbenz(a)anthracene	PAH	3.55E-06	ļ			<u> </u>	2.37E-06		1		-	2.06E-08	6.675-07		4.94E-07			
Acenaphthene	PAH	4,00E-07				1	2.67E-07					2.32E-09	7.51E-08	i	5.55E-08			
Acenaphthylene	PAH	4.00E-07	·			<u> </u>	2.67E-07				ļ	2.32E-09	7.51E-08		5.55E-08			
Anthracene	PAH	5.33E-07	0.005.00				3.55E-07					3.09E-09	1.00E-07		7.41E-08			
Benz(a)anthracene	PAH PAH	2.34E-05	2.33E-05				2.67E-07		ļ			2.32E-09	7.51E-08		5.55E-08			
Benzo(a)anthracene	PAH -	2.67E-07 2.66E-07							1			4.555.00	504500		2.705.02		ļ	·
Benzo(h)fluoranthene	PAH	2.66E-07 4:00E-07	+			 	1.78E-07 2.67E-07		ļ			1.55E-09 2.32E-09	5.01E-08	··· · · · · · · · · · · · · · · · · ·	3.70E-08	 		
Benzo(b)fluoranthene Benzo(g,h,i)perylene	PAH	2.66E-07					1.78E-07		 			2.32E-09 1.55E-09	7.51E-08 5.01E-08		5.55E-08 3.70E-08	 		ı———
Benzo(k)fluoranthene	PAH	4.00E-07	 			·	2.67E-07	 	<u> </u>			2.32E-09	7.51E-08		3.70E-08 5.55E-08	 	 	r
Chrysene	PAH	4.00E-07				 	2.67E-07	 	 -	1		2.32E-09	7.51E-08		5.55E-08	 		
Dibenzo(a,h)anthracene	PAH	2.66E-07				 	1.78E-07			1		1.55E-09	5.01E-08		3.70E-08	.		
Dichlorobenzene	PAH	1.55E-06				 	1 VE-U1		·	1		1.55E-06	0.012-00		, O.1 OL-00	 	 	<u> </u>
Fluoranthene	PAH	6.66E-07				 	4.44E-07					3.86E-09	1.25E-07		9.26E-08	ł		i
Fluorene	PAH	6.21E-07				1 1	4.15E-07			1		3,61E-09	1.17E-07		8.64E-08	l	i	i
Indeno(1,2,3-cd)pyrene	PAH	4.00E-07					2.67E-07	 	<u> </u>			2.32E-09	7.51E-08		5.55E-08	1		
PAH (excluding Naphthalene)	PAH	2.93E-04	1			1			İ	2.88E-04	5.81E-06					i .		ı———
Phenanathrene	PAH	3.77E-06					2.52E-06					2.19E-08	7.09E-07		5.25E-07			
Pyrene	PAH	1.11E-06					7.40E-07			1		6.44E-09	2.09E-07		1.54E-07	l		
Total Combined HAPs and TACs		113.36	84.81	3.26E-03	7.87E-04	7.48E-04	6.22E-01	2.39E-02	9.19E-04	5.18E-01	1.05E-02	2.44E-03	7.88E-02	1.12E+01	5.83E-02	3.42E-03	3,94E-03	1.61E+01
Total HAPs*		23.90	2.46	2.43E-03	5.87E-04	5.58E-04	2.79E-01	0.00E+00	0.00E+00	2.84E-01	5.74E-03	2.44E-03	7.87E-02	1.12E+01	5,82E-02	0,00E+00	0,00E+00	9.56E+00

**Obsets:

CTG/HRSG Stack - SynGas

HAP Emissions Summary

Hydrogen Energy California LLC HECA Project 6/18/2010

Annual emissions based on 100 percent load at annual average temperature (65°F)

HRSG Heat Input (Yearly Average - 65°F) = 2,159.00 10⁶ Btu/hr (higher heating value)

Duct Burner Heat Input (Yearly Average - 65°F) = 273.76 10⁶ Btu/hr ((higher heating value)

Total HRSG Heat Input (Yearly Average - 65°F) = 2,432.76 10⁶ Btu/hr ((higher heating value)

Hourly emissions based on 100 percent load at winter minimum temperature (20°F)

HRSG Heat Input (Winter Minimum - 20°F) = 2,176.00 10⁶ Btu/hr ((higher heating value)
Duct Burner Heat Input (Winter Minimum - 20°F) = 273.76 10⁶ Btu/hr ((higher heating value)
Total HRSG Heat Input (Winter Minimum - 20°F) = 2,449.76 10⁶ Btu/hr ((higher heating value)

HRSG (Firing Syngas) Operating Hours = 8,322.0 hr/y

·		Emission Factor	Hourly	Annual
Compound	CAS#	(lb/10 ¹² Btu coal)	(lb/hr)	(lb/yr)
Acetaldehyde	75-07-0	1.8	4.41E-03	3.64E+01
Ammonia	7664-41-7		1.84E+01	1.53E+05
Antimony	7440-36-0	1.1	2.69E-03	2.23E+01
Arsenic	7440-38-2	2.4	5.88E-03	4.86E+01
Benz[a]anthracene	56-55-3	0.0023	5.63E-06	4.66E-02
Benzene	71-43-2	2.4	5.88E-03	4.86E+01
Beryllium	7440-41-7	0.26	6.37E-04	5.26E+00
Cadmium	7440-43-9	9.6	2.35E-02	1.94E+02
Carbon disulfide	75-15-0	46	1.13E-01	9.31E+02
Chromium (hexavalent)	18540-29-9	0.15	3.75E-04	3.10E+00
Chromium, total	0-00-5	0.51	1.25E-03	· 1.03E+01
Cobalt	7440-48-4	0.26	6.37E-04	5.26E+00
Cyanides	57-12-5	5.7	1.40E-02	1.15E+02
Formaldehyde	50-00-0	17	4.16E-02	3.44E+02
Hydrochloric acid	7647-01-0	13	3.18E-02	2.63E+02
Hydrogen fluoride (Hydrofluoric acid)	7664-39-3	50	1.22E-01	1.01E+03
Lead	7439-92-1	0.56	1.37E-03	1.13E+01
Manganese	7439-96-5	1.0	2.55E-03	2.11E+01
Mercury	7439-97-6	1.2	2.94E-03	2.43E+01
Methyl bromide (Bromomethane)	74-83-9	47.7	1.17E-01	9.66E+02
Methylene chloride (Dichloromethane)	75-09-2	2.2	5.39E-03	4.45E+01
Naphthalene	91-20-3	2.5	6.12E-03	5.06E+01
Nicke!	7440-02-0	0.39	9.55E-04	7.90E+00
Phenol	108-95-2	36.8	9.02E-02	7.45E+02
Selenium	7782-49-2	0.56	1.37E-03	1.13E+01
Sulfuric acid and sulfates	7664-93-9	572	1.40E+00	1.16E+04
Toluene	108-88-3	0.033	8.08E-05	6.68E-01

Notes:

Under a mature operating scenario, the unit will primarily fire syngas.

- 1) HRSG (firing syngas) operating hours = 8,322 hour per year
- 2) Hourly emissions based on 100 percent load at winter minimum temperature (20°F)
- 3) Annual emissions based on 100 percent load at annual average temperature (65°F)
- 4) Emission rates are taken from Wabash River test data and the National Energy Technology Laboratory, U.S. Dept of Energy, Major Environmental Aspects of Gasification-based Power Generation Technologies, Final Report, December 2002.
- 5) Ammonia slip from the SCR (5 parts per million volume dry @ 15 percent O₂) provided by Fluor see Criteria Pollutant emission spreadsheet for details Btu = British thermal units

Cooling Towers

HAP Emissions Summary

Hydrogen Energy California LLC HECA Project

6/18/2010

Cooling Tower Operating Parameters

•	Power Block	Process Area	ASU	
Cooling water (CW) circulation rate, gpm =	175,000	42,300	40,200	
CW circulation rate (million lb/hr) =	88	21	20	
CW dissolved solids (ppmw) =	9,000	9,000	9,000	
Drift, fraction of circulating CW =	0.0005%	0.0005%	0.0005%	

Note: Assumed 9,000 ppm TDS in circulating cooling water. Circulating water could range from 1,200 to 90,000 ppm TDS depending on makeup water quality and tower operation. PM₁₀ emissions would vary proportionately.

Cooling Tower Operating Hours =

8,322.0 hc

hours per year

Power Block

Compound	CAS#	Emission Factor (ppm)	Hourly (lb/hr)	Annual (lb/yr)
Arsenic	7440-38-2	0.026	1.13E-05	9.38E-02
Copper	7440-50-8	0.005	2.19E-06	1.82E-02
Fluoride		0.45	1.97E-04	1.64E+00
Manganese	7439-96-5	1.29	5.63E-04	4.68E+00
Selenium	7784-49-2	0.02	9.36E-06	7.79E-02

Notes:

- 1) Power block operating hours = 8,322 hours per year
- 2) Arsenic ppm value shown taken as average of analytical test results (Fruit Growers Laboratory)
- 3) Copper ppm value shown is one-half of stated detection limit
- 4) Fluoride ppm value shown taken as average of analytical test results (Fruit Growers Laboratory)
- 5) Manganese ppm value shown taken as average of analytical test results (Fruit Growers Laboratory)
- 5) Selenium ppm value shown taken as average of analytical test results (DWR)
- 7) Zinc ppm value shown is one-half of stated detection limit and is no longer in OEHHA list of TAC

Gasifier Process Area

	Judinet 1 10003			
		Emission Factor	Manualia .	8 mm. red
Compound	CAS#	(ppm)	Hourly (lb/hr)	Annual (lb/yr)
Arsenic	7440-38-2	0.026	2.72E-06	2.27E-02
Copper	7440-50-8	0.005	5.29E-07	4.40E-03
Fluoride		0.45	4.76E-05	3.96E-01
Manganese	7439-96-5	1.29	1.36E-04	1.13E+00
Selenium	7784-49-2	0.02	2.26E-06	1.88E-02

Notes:

- 1) Process area operating hours = 8,322 hours per year
- 2) Arsenic ppm value shown taken as average of analytical test results (Fruit Growers Laboratory)
- 3) Copper ppm value shown is one-half of stated detection limit
- 4) Fluoride ppm value shown taken as average of analytical test results (Fruit Growers Laboratory)
- 5) Manganese ppm value shown taken as average of analytical test results (Fruit Growers Laboratory)
- 5) Selenium ppm value shown taken as average of analytical test results (DWR)
- 7) Zinc ppm value shown is one-half of stated detection limit and is no longer in OEHHA list of TAC

ASU

Compound	CAS#	Emission Factor (ppm)	Hourly (lb/hr)	Annual (lb/yr)
Arsenic	7440-38-2	0.026	2.59E-06	2.15E-02
Copper	7440-50-8	0.005	5.03E-07	4.18E-03
Fluoride		0.45	4.52E-05	3.76E-01
Manganese	7439-96-5	1.29	1.29E-04	1.08E+00
Selenium	7784-49-2	0.02	2.15E-06	1.79E-02

Notes:

- 1) ASU operating hours = 8,322 hours per year
- 2) Arsenic ppm value shown taken as average of analytical test results (Fruit Growers Laboratory)
- 3) Copper ppm value shown is one-half of stated detection limit
- 4) Fluoride ppm value shown taken as average of analytical test results (Fruit Growers Laboratory)
- 5) Manganese ppm value shown taken as average of analytical test results (Fruit Growers Laboratory)
- 5) Selenium ppm value shown taken as average of analytical test results (DWR)
- 7) Zinc ppm value shown is one-half of stated detection limit and is no longer in OEHHA list of TAC

Gasifier Refractory Heaters

HAP Emissions Summary

Hydrogen Energy California LLC HECA Project

6/18/2010

Operating Parameters

Gasifier Heat Input = Reference HHV =

18 1,050 10⁶ Btu/hr (HHV)

0.017

Btu/scf 10⁶ scf/hr

Gasifier Heater Operating Hours per Heater =

1,200

hours per year

Number of Heaters =

3

		Emission Factor	Hourly Per Heater	Annual Per Heater	Annual All 3 Heaters
Compound	CAS#	(lb/10 ⁶ scf)	(lb/hr)	(lb/yr)	(lb/yr)
Arsenic	7440-38-2	2.00E-04	6.86E-06	4.11E-03	1.23É-02
Benzene	71-43-2	2.10E-03	7.20E-05	4.32E-02	1.30E-01
Bervllium	7440-41-7	1.20E-05	4.11E-07	2.47E-04	7.41E-04
Cadmium	7440-43-9	1.10E-03	3.77E-05	2.26E-02	6.79E-02
Chromium	7440-47-3	1.40E-03	4.80E-05	2.88E-02	8.64E-02
Cobalt	7440-48-4	8.40E-05	2.88E-06	1.73E-03	5.18E-03
Copper	7440-50-8	8.50E-04	2.91E-05	1.75E-02	5.25E-02
Formaldehyde	50-00-0	7.50E-02	2.57E-03	1.54E+00	4.63E+00
Hexane	110-54-3	1.80E+00	6.17E-02	3.70E+01	1.11E+02
Manganese	7439-96-5	3.80E-04	1.30E-05	7.82E-03	2.35E-02
Mercury	7439-97-6	2.60E-04	8.91E-06	5.35E-03	1.60E-02
Naphthalene	91-20-3	6.10E-04	2.09E-05	1.25E-02	3.76E-02
Nickel	7440-02-0	2.10E-03	7.20E-05	4.32E-02	1.30E-01
Selenium	7782-49-2	2.40E-05	8.23E-07	4.94E-04	1.48E-03
Toluene	108-88-3	3.40E-03	1.17E-04	6.99E-02	2.10E-01
Vanadium	7440-62-2	2.30E-03	7.89E-05	4.73E-02	1.42E-01
Benzo(a)pyrene	PAH	1.20E-06	4.11E-08	2.47E-05	7.41E-05
Benz(a)anthracene	PAH	1.80E-06	6.17E-08	3.70E-05	1.11E-04
Benzo(b)fluoranthene	PAH	1.80E-06	6.17E-08	3.70E-05	1.11E-04
Chrysene	PAH	1.80E-06	6.17E-08	3.70E-05	1,11E-04
Dibenzo(a,h)anthracene	PAH	1.20E-06	4.11E-08	2.47E-05	7.41E-05
Indeno(1,2,3-cd)pyrene	PAH	1.80E-06	6.17E-08	3.70E-05	1.11E-04
2-Methylnaphthalene	PAH	2.40E-05	8.23E-07	4.94E-04	1.48E-03
3-Methylchloranthrene	PAH	1.80E-06	6.17E-08	3.70E-05	1.11E-04
7,12-Dimethylbenz(a)anthracene	PAH	1.60E-05	5.49E-07	3.29E-04	9.87E-04
Acenaphthene	PAH	1.80E-06	6.17E-08	3.70E-05	1.11E-04
Acenaphthylene	PAH	1.80E-06	6.17E-08	3.70E-05	1.11E-04
Anthracene	PAH	2.40E-06	8.23E-08	4.94E-05	1.48E-04
Benzo(g,h,i)perylene	PAH	1.20E-06	4.11E-08	2.47E-05	7.41E-05
Benzo(k)fluoranthene	PAH	1.80E-06	6.17E-08	3.70E-05	1.11E-04
Fluoranthene	PAH	3.00E-06	1.03E-07	6.17E-05	1.85E-04
Fluorene	PAH	2.80E-06	9.60E-08	5.76E-05	1.73E-04
Phenanathrene	PAH	1.70E-05	5.83E-07	3.50E-04	1.05E-03
Pyrene	PAH	5.00E-06	1.71E-07	1.03E-04	3.09E-04

Notes:

¹⁾ Gasifier operating hours = 1,200 hours per year per heater
2) Emission factor source is USEPA AP-42 Section 1.4

³⁾ Calculation assumes fuel heating value, British thermal units/standard cubic foot, higher heating value 1,050

⁴⁾ Please note that there are three gasifier heaters; however, it is assumption is that up to two gasifier heaters may operate at any one time on an as-needed basis to pre-heat the gasifier.

Auxiliary Boiler

HAP Emissions Summary

Hydrogen Energy California LLC HECA Project

6/18/2010

Operating Parameters

Auxiliary Boiler Heat Input = 142 10⁶ Btu/hr (HHV)

1050 Btu/scf 0.135

10⁶ scf/hr Auxiliary Boiler Operating Hours = 2,190 hours per year

		Emission Factor	Hourly	Annual
Compound	CAS#	(lb/10 ⁶ scf)	(lb/hr)	(lb/yr)
Ammonia	7664-41-7	2.31E+00	3.12E-01	6.84E+0
Arsenic	7440-38-2	2.00E-04	2.70E-05	5.92E-02
Benzene	71-43-2	2.10E-03	2.84E-04	6.22E-0
Beryllium	7440-41-7	1.20E-05	1.62E-06	3.55E-0
Cadmium	7440-43-9	1.10E-03	1.49E-04	3.26E-0
Chromium	7440-47-3	1.40E-03	1.89E-04	4.15E-0
Cobalt	7440-48-4	8.40E-05	1.14E-05	2.49E-02
Copper	7440-50-8	8.50E-04	1.15E-04	2.52E-0
Formaldehyde	50-00-0	7.50E-02	1.01E-02	2.22E+0
Hexane	110-54-3	1.80E+00	2.43E-01	5.33E+0
Manganese	7439-96-5	3.80E-04	5.14E-05	1.13E-0
Mercury	7439-97-6	2.60E-04	3.52E-05	7.70E-02
Naphthalene	91-20-3	6.10E-04	8.25E-05	1.81E-0
Nickel	7440-02-0	2.10E-03	2.84E-04	6.22E-0
Selenium	7782-49-2	2.40E-05	3.25E-06	7.11E-03
Toluene	108-88-3	3.40E-03	4.60E-04	1.01E+0
Vanadium	7440-62-2	2.30E-03	3.11E-04	6.81E-01
Benzo(a)pyrene	PAH	1.20E-06	1.62E-07	3.55E-04
Benz(a)anthracene	PAH	1.80E-06	2.43E-07	5.33E-04
Benzo(b)fluoranthene	PAH	1.80E-06	2.43E-07	5.33E-04
Chrysene	PAH	1.80E-06	2.43E-07	5.33E-04
Dibenzo(a,h)anthracene	PAH	1.20E-06	1.62E-07	3.55E-04
Indeno(1,2,3-cd)pyrene	PAH	1.80E-06	2.43E-07	5.33E-04
2-Methylnaphthalene	PAH	2.40E-05	3.25E-06	7.11E-03
3-Methylchloranthrene	PAH	1.80E-06	2.43E-07	5.33E-04
7,12-Dimethylbenz(a)anthracene	PAH	1.60E-05	2.16E-06	4.74E-03
Acenaphthene	PAH	1.80E-06	2.43E-07	5.33E-04
Acenaphthylene	PAH	1.80E-06	2.43E-07	5.33E-04
Anthracene	PAH	2.40E-06	3.25E-07	7.11E-04
Benzo(g,h,i)perylene	PAH	1.20E-06	1.62E-07	3.55E-04
Benzo(k)fluoranthene	PAH	1.80E-06	2.43E-07	5.33E-04
Fluoranthene	PAH	3.00E-06	4.06E-07	8.89E-04
Fluorene	PAH	2.80E-06	3.79E-07	8.29E-04
Phenanathrene	PAH	1.70E-05	2.30E-06	5.03E-03
Pyrene	PAH	5.00E-06	6.76E-07	1.48E-03

¹⁾ Auxiliary boiler operating hours = 2,190 hours per year
2) Emission factor source is EPA AP-42 Section 1.4

³⁾ Calculation assumes fuel heating value, British thermal units/standard cubic foot, higher heating value 1,050

Gasification Flare			HAP Emissions Summary
Hydrogen Energy California LLC HECA Project			6/18/2010
Operating Parameters			•
Reference HHV =	1,050	btu/scf	
Gasification Flare - Normal Operating Emi	ssions From I	Pilot	
Total Hours of Pilot Operation =	8,760	hr/yr	. •
Ground Flare Pilot Fuel Use =	0.5	10 ⁶ Btu/hr	
Gasification Flare - Operating Emissions	During Gasific	er Startup and Shu	tdown
Total Flare SU/SD Operation =	115,500	10 ⁶ Btu/yr	
Wet Unshifted Gas-Firing Rate =	900	10 ⁶ Btu/hr - conser	vatively assuming maximum possible rate
Dry Shifted Gas-Firing Rate =	770	10 ⁶ Btu/hr - conser	vatively assuming maximum possible rate
Startup and shutdown flared gas scenario	***************************************	(1)	
Cold plant startup =		10 ⁶ Btu/yr (1 event)	(assume 20 percent unshifted)
Plant shutdown =		10 ⁶ Btu/yr (1 event)	(assume 100 percent unshifted)
Gasifier outages =		10 ⁶ Btu/yr (24 events) 10 ⁶ Btu/yr (12 events)	(assume 100 percent unshifted)
Gasifier hot restarts = Total		10 ⁶ Btu/yr	(assume 100 percent unshifted) (approx 75 percent unshifted)
Gasification Flare - Operating Emissions	•	-	(approx 73 percent unstilled)
Total Flare CTG Wash Operation =	81.400	10 ⁶ Btu/yr	
	,		
H2 rich during CTG Wash =	1,695	10 Btu/nr - conser	vatively assuming maximum possible rate
CTG Wash flared gas scenario			

•		Emission Factor	Emission	Hourly	Annual
Compound	CAS#	(lb/10 ⁶ scf)	(lb/10 ⁶ Btu)	(lb/hr)	(lb/yr)
Acetaldehyde	75-07-0	0.043	4.10E-05	6.94E-02	8.24E+00
Acrolein	107-02-8	, 0.01	9.52E-06	1.61E-02	1.92E+00
Benzene	71-43-2	0.159	1.51E-04	2.57E-01	3.05E+01
Ethyl Benzene	100-41-4	1:444	1.38E-03	2.33E+00	2.77E+02
Formaldehyde	50-00-0	1.169	1.11E-03	1.89E+00	2.24E+02
Naphthalene	91-20-3	0.011	1.05E-05	1.78E-02	2.11E+00
n-Hexane	110-54-3	0.029	2.76E-05	4.68E-02	5.56E+00
PAH (excluding Naphthalene)	PAH	0.003	2.86E-06	4.84E-03	5.75E-01
Propylene	115-07-1	2.44	2.32E-03	3.94E+00	4.68E+02
Toluene	108-88-3	0.058	5.52E-05	9.37E-02	1.11E+01
Xylene(s)	1330-20-7	0.029	2.76E-05	4.68E-02	5.56E+00
Arsenic	7440-38-2	2.00E-04	1.90E-07	3.23E-04	3.83E-02
Beryllium	7440-41-7	1.20E-05	1.14E-08	1.94E-05	2.30E-03
Cadmium	7440-43-9	1.10E-03	1.05E-06	1.78E-03	2.11E-01
Chromium	7440-47-3	1.40E-03	1.33E-06	2.26E-03	2.68E-01
Cobalt	7440-48-4	8.40E-05	8.00E-08	1.36E-04	1.61E÷02
Соррег	7440-50-8	8.50E-04	8.10E-07	1.37E-03	1.63E-01
Lead	7439-92-1	5.00E-04	4.76E-07	8.07E-04	9.58E-02
Manganese	7439-96-5	3.80E-04	3.62E-07	6.14E-04	7.28E-02
Mercury	7439-97-6	2.60E-04	2.48E-07	4.20E-04	4.98E-02
Nickel	7440-02-0	2.10E-03	2.00E-06	3.39E-03	4.03E-01
Selenium	7782-49-2	2.40E-05	2.29E-08	3.88E-05	4.60E-03
Vanadium	7440-62-2	2.30E-03	2.19E-06	3.71E-03	4.41E-01

81,400 10⁶ Btu/yr (12 event)

(assume 100% percent shifted)

Notes:

Offline CTG Wash =

¹⁾ Annual operation assumes total pilot operation of 8,760 hr/yr and 115,500 10⁶ Btu/yr during gasifier startup and shutdown, plus 81,400 10⁶ Btu/yr for CTG washes.

²⁾ Emission factors based on AP-42 Chpt. 1.4 (for metals) and VCAPCD AB2588 (for non-metals).

³⁾ Calculation assumes fuel heating value, Btu/scf, higher heating value 1,050

Hydrogen Energy California LLC HECA Project

6/18/2010

Operating Parameters

Reference HHV =

1,050

btu/scf

SRU Flare - Normal Operating Emissions From Pilot

Total Hours of Pilot Operation =

8,760 hr/yr

Elevated Flare Pilot Fuel Use =

0.3 10⁶ Btu/hr

SRU Flare - Operating Emissions During Gasifier Startup and Shutdown

Total Flare Operation During SU/SD =

40.0 hr/yr

Natural Gas Heat Rate (assist gas) =

36.0 10⁶ Btu/hr

		Emission Factor	Emission Factor	Hourly	Annual
Compound	CAS#	(lb/10 ⁶ scf)	(lb/10 ⁶ Btu)	(lb/hr)	(lb/yr)
Acetaldehyde	75-07-0	0.043	4.10E-05	1.49E-03	1.67E-01
Acrolein	107-02-8	0.01	9.52E-06	3.46E-04	3.87E-02
Benzene	71-43-2	0.159	1.51E-04	5.50E-03	6.16E-01
Ethyl Benzene	100-41-4	1.444	1.38E-03	4.99E-02	5.59E+00
Formaldehyde	50-00-0	1.169	1.11E-03	4.04E-02	4.53E+00
Naphthalene	91-20-3	0.011	1.05E-05	3.80E-04	4.26E-02
n-Hexane	110-54-3	0.029	2.76E-05	1.00E-03	1.12E-01
PAH (excluding Naphthalene)	PAH	0.003	2.86E-06	1.04E-04	1.16E-02
Propylene	115-07-1	2.44	2.32E-03	8.44E-02	9.45E+00
Toluene	108-88-3	0.058	5.52E-05	2.01E-03	2.25E-01
Xylene(s)	1330-20-7	0.029	2.76E-05	1.00E-03	1.12E-01
Arsenic	7440-38-2	2.00E-04	1.90E-07	6.91E-06	7.75E-04
Beryllium	7440-41-7	1.20E-05	1.14E-08	4.15E-07	4.65E-05
Cadmium	7440-43-9	1.10E-03	1.05E-06	3.80E-05	4.26E-03
Chromium	7440-47-3	1.40E-03	1.33E-06	4.84E-05	5.42E-03
Cobalt	7440-48-4	8.40E-05	8.00E-08	2.90E-06	3.25E-04
Copper	7440-50-8	8.50E-04	8.10E-07	2.94E-05	3.29E-03
Lead	7439-92-1	5.00E-04	4.76E-07	1.73E-05	1.94E-03
Manganese	7439-96-5	3.80E-04	3.62E-07	1.31E-05	1.47E-03
Mercury	7439-97-6	2.60E-04	2.48E-07	8.99E-06	1.01E-03
Nickel Nickel	7440-02-0	2.10E-03	2.00E-06	7.26E-05	8.14E-03
Selenium	7782-49-2	2.40E-05	2.29E-08	8.30E-07	9.30E-05
Vanadium	7440-62-2	2.30E-03	2.19E-06	7.95E-05	8.91E-03

Notes

¹⁾ Annual operation assumes total pilot operation of 8,760 hr/yr and 6 hr/yr during gasifier startup and shutdown with assist gas.

²⁾ Emission factors based on AP-42 Chpt. 1.4 (for metals) and VCAPCD AB2588 (for non-metals).

³⁾ Calculation assumes fuel heating value, Btu/scf, higher heating value 1,050

Hydrogen Energy California LLC HECA Project

6/18/2010

Operating Parameters - Normal Operating Emissions From Pilot
Rectisol Flare Pilot Firing Rate = 0.3 MMBtu/hr
Annual Operating Hours = 8,760 hr/yr

		Emission Factor	Emission Factor	Hourly	Annual
Compound	CAS Number	(lb/10 ⁶ scf)	(lb/MMBtu)	(lb/hr)	(lb/yr)
2-Methylnaphthalene	91576	2.40E-05	2.35E-08	7.06E-09	6.18E-05
3-Methylchloranthrene	56495	1.80E-06	1.76E-09	5.29E-10	4.64E-06
7,12-Dimethylbenz(a)anthracene	57976	1.60E-05	1.57E-08	4.71E-09	4.12E-05
Acenaphthene	83329	1.80E-06	1.76E-09	5.29E-10	4.64E-06
Acenaphthylene	208968	1.80E-06	1.76E-09	5.29E-10	4.64E-06
Anthracene	120127	2.40E-06	2.35E-09	7.06E-10	6.18E-06
Benz(a)anthracene	56553	1.80E-06	1.76E-09	5.29E-10	4.64E-06
Benzene	71432	2.10E-03	2.06E-06	6.18E-07	5.41E-03
Benzo(a)pyrene	50328	1.20E-06	1.18E-09	3.53E-10	3.09E-06
Benzo(b)fluoranthene	205992	1.80E-06	1.76E-09	5.29E-10	4.64E-06
Benzo(g,h,i)perylene	191242	1.20E-06	1.18E-09	3.53E-10	3.09E-06
Benzo(k)fluoranthene	205823	1.80E-06	1.76E-09	5.29E-10	4.64E-06
Chrysene	218019	1.80E-06	1.76E-09	5.29E-10	4.64E-06
Dibenzo(a,h)anthracene	53703	1.20E-06	1.18E-09	3.53E-10	3.09E-06
Dichlorobenzene	25321226	1.20E-03	1.18E-06	3.53E-07	3.09E-03
Fluoranthene	206440	3.00E-06	2.94E-09	8.82E-10	7.73E-06
Fluorene	86737	2.80E-06	2.75E-09	8.24E-10	7.21E-06
Formaldehyde	50000	7.50E-02	7.35E-05	2.21E-05	1.93E-01
Hexane	110543	1.80E+00	1.76E-03	5.29E-04	4.64E+00
Indeno(1,2,3-cd)pyrene	193395	1.80E-06	1.76E-09	5.29E-10	4.64E-06
Naphthalene	91203	6.10E-04	5.98E-07	1.79E-07	1.57E-03
Phenanthrene	85018	1.70E-05	1.67E-08	5.00E-09	4.38E-05
Pyrene ⇒	129000	5.00E-06	4.90E-09	1.47E-09	1.29E-05
Toluene	108883	3.40E-03	3.33E-06	1.00E-06	8.76E-03
Arsenic	7440382	2.00E-04	1.96E-07	5.88E-08	5.15E-04
Barium	7440393	4.40E-03	4.31E-06	1.29E-06	1.13E-02
Beryllium	7440417	1.20E-05	1.18E-08	3.53E-09	3.09E-05
Cadmium	7440439	1.10E-03	1.08E-06	3.24E-07	2.83E-03
Chromium	7440473	1.40E-03	1.37E-06	4.12E-07	3.61E-03
Cobalt	7440484	8.40E-05	8.24E-08	2.47E-08	2.16E-04
Copper	7440508	8.50E-04	8.33E-07	2.50E-07	2.19E-03
Manganese	7439965	3.80E-04	3.73E-07	1.12E-07	9.79E-04
Mercury	7439976	2.60E-04	2.55E-07	7.65E-08	6.70E-04
Nickel	7440020	2.10E-03	2.06E-06	6.18E-07	5.41E-03
Selenium	7782492	2.40E-05	2.35E-08	7.06E-09	6.18E-05
Vanadium	7440622	2.30E-03	2.25E-06	6.76E-07	5.93E-03

Notes:

¹⁾ Emission factors (lb/10⁶ scf) are from AP-42, Chapter 1.4, Table 1.4-3. Factors in pounds per 10E-06 scf were converted to factors in lb/MMBtu by dividing by 1,020.

Tail Gas Thermal Oxidizer

HAP Emissions Summary

Hydrogen Energy California LLC HECA Project

6/18/2010

Operating Parameters

Tail Gas Thermal Oxidizer Heat Input =

Reference HHV =

10

106 Btu/hr (HHV)

1,050

Btu/scf 10⁶ scf/hr

Tail Gas Thermal Oxidizer Operating Hours =

0.010

hr/yr

8,760

		Emission Factor	Hourly	Annual
Compound	CAS#	(lb/10 ⁶ scf)	(lb/hr)	(lb/yr)
Arsenic	7440-38-2	2.00E-04	1.90E-06	1.67E-02
Benzene	71-43-2	2.10E-03	2.00E-05	1.75E-01
Beryllium	7440-41-7	1.20E-05	1.14E-07	1.00E-03
Cadmium	7440-43-9	1.10E-03	1.05E-05	9.18E-02
Chromium	7440-47-3	1.40E-03	1.33E-05	1.17E-01
Cobalt	7440-48-4	8.40E-05	8.00E-07	7.01E-03
Copper	7440-50-8	8.50E-04	8.10E-06	7.09E-02
Formaldehyde	50-00-0	7.50E-02	7.14E-04	6.26E+00
Hexane	110-54-3	1.80E+00	1.71E-02	1.50E+02
Manganese	7439-96-5	3.80E-04	3.62E-06	3.17E-02
Mercury	7439-97-6	2.60E-04	2.48E-06	2.17E-02
Naphthalene	91-20-3	6.10E-04	5.81E-06	5.09E-02
Nickel	7440-02-0	2.10E-03	2.00E-05	1.75E-01
Selenium	7782-49-2	2.40E-05	2.29E-07	2.00E-03
Toluene	108-88-3	3.40E-03	3.24E-05	2.84E-01
Vanadium	7440-62-2	2.30E-03	2.19E-05	1.92E-01
Benzo(a)pyrene	PAH	1.20E-06	1,14E-08	1.00E-04
Benz(a)anthracene	PAH	1.80E-06	1.71E-08	1.50E-04
Benzo(b)fluoranthene	· PAH	1.80E-06	1.71E-08	1.50E-04
Chrysene	PAH	1.80E-06	1.71E-08	1.50E-04
Dibenzo(a,h)anthracene	PAH	1.20E-06	1.14E-08	1.00E-04
Indeno(1,2,3-cd)pyrene	PAH	1.80E-06	1.71E-08	1.50E-04
2-Methylnaphthalene	PAH	2.40E-05	2.29E-07	2.00E-03
3-Methylchloranthrene	PAH	1.80E-06	1.71E-08	1.50E-04
7,12-Dimethylbenz(a)anthracene	PAH	1.60E-05	1.52E-07	1.33E-03
Acenaphthene	PAH	1.80E-06	1.71E-08	1.50E-04
Acenaphthylene	PAH	1.80E-06	1.71E-08	1.50E-04
Anthracene	PAH	2,40E-06	2.29E-08	2.00E-04
Benzo(g,h,i)perylene	PAH	1.20E-06	1.14E-08	1.00E-04
Benzo(k)fluoranthene	PAH	1.80E-06	1.71E-08	1.50E-04
Fluoranthene	PAH	3.00E-06	2.86E-08	2.50E-04
Fluorene	PAH	2.80E-06	2.67E-08	2.34E-04
Phenanathrene	PAH	1.70E-05	1.62E-07	1.42E-03
Pyrene	PAH	5.00E-06	4.76E-08	4.17E-04

Tail gas thermal oxidizer operating hours = 8,760 (accounting for both process vent and SRU startup)
 Emission factor source is USEPA AP-42 Section 1.4

³⁾ Calculation assumes fuel heating value, Btu/scf, HHV 1,050

Intermittent CO ₂ Vent		HAP	Emissions Summary
Hydrogen Energy California LLC HECA Project	;		6/18/2010
Operating Parameters			
Total Days of Operation =	21	day/yr	
Total Hours of Operation =	504	hr/yr	
Total Flow =	656,000	lb/hr	
Total Flow =	15,150	lbmol/hr	
Molecula	r weight		
cos	60	lb/lbmol	
H₂S	34	lb/lbmot	-

		Emission Factor	Hourly	Annual
Compound	CAS#	(ppm)	(lb/hr)	(lb/yr)
Carbonyl Sulfide	463-58-1	43	3.91E+01	1.97E+04
Hydrogen Sulfide	7783-06-4	10	5.15E+00	2.60E+03

Notes:

1) Emission rates based on plant design and 504 hours per year of full venting.

Emergency Diesel Generator

HAP Emissions Summary

Hydrogen Energy California LLC HECA Project

6/18/2010

Operating Parameters

Emergency Generator Specification = 2,800 Bhp Emergency Generator Operating Hours = 52 hr/yr

		Emission Factor	Hourly Each Generator		Annual Both Generators
Compound	CAS#	(g/Bhp/hr)	(lb/hr)	(lb/yr)	(lb/yr)
Diesel Particulate Matter	DPM .	0.07	4.60E-01	2.39E+01	4.79E+01

Emergency generator operating hours = 52 hours per year per generator
 Emission factor based on Tier 4 EPA IC Non-road Engines

Emergency Diesel Firewater Pump HAP Emissions Summary

Hydrogen Energy California LLC HECA Project

6/18/2010

Operating Parameters

Fire Water Pump Specification = 556 Bhp Fire Water Pump Operating Hours = 100 hr/yr

		Emission Factor	Hourly	Annual
Compound	CAS#	(g/Bhp/hr)	(lb/hr)	(lb/yr)
Diesel Particulate Matter	·DPM	0.015	1.84E-02	1.84E+00

Fire water pump operating hours = 100 hours per year
 Emission factor based on Tier 4 EPA IC Non-road Engines

Summary of On Site Operations Truck DPM Emissions - HECA

Emissions Summary

Hydrogen Energy California LLC HECA Project 6/18/2010

Transportation Information

- Onsite Vehicle =

- Scenario year=

- Maximum annual mileage =

10 diesel trucks

2040

10,000 miles/truck-year

Notes

- Information Provided By Applicant

- Assumed based on 70-yr risk calculation period

- All routine vehicular traffic is anticipated to travel exclusively on paved roads

- Assumed 15 mph average speed within HECA facility

Calculations for Trucks Operation Modeling per Truck

Calculations for Trucks Operation Modeling per Truck				
,	Onsite O&M Trucks (@ 15			
	mph)			
Mileage				
1-hr	1			
Annual average trucks or loads	10000			

EMFAC2007 Emission Factor	Diesel LHDT2
PM10 * (g/mi)	0.03

HARP input assumed 2040 scenario (70 years average) HARP PM ₁₀ emission factor does not include tire wear or break wear contributions

max hourly PM10 emission rate per truck	9.8E-06	7.8E-05	lb/hr
annual PM10 emission rate per truck		0.68	lb/yr

Annual Emission Rates for HARP per 10 Diesel Trucks (lb/yr): Annual Emission Rates for HARP per 10 Diesel Trucks (tpy):

6.83 0.0034

R:\10 HECA\DRs\WRs\App C TAC Emissions.xls

Hydrogen Energy California LLC HECA Project 6/18/2010

Parameter	Coke and Coal Trucks (@ 10 mph)		Onsite Gasifier Solids Handling (@ 5 mph)	
	Running Emissions	Idling Emissions	Running Emissions	ldling Emissions
Distance Traveled (mi)	1.00		0.500	
Per Truck Idle Time (hr)		0.117		0.083
No. Volume Sources for Modeling	85	1	50	2
Maximum number of trucks or loads				
1-hr	18	18	2	2
Annual average	35,500	35500	2,900	2900
EMFAC2007 Emission Factors (g/mi or g	/idle-hour)			
РМ10	0.08	0.122	0.09	0.122

HARP input assumed 2040 scenario (70 years average). Emission rate does not include tire/brake wear.

PM10 Emission Rates

	Coke and Coal T	rucks (@ 10.mph)	Onsite Gasifier Solids mph)	Handling (@ 5
		Idling Emissions		
Emission Rates for HARP	Running Emissions	(at each idle Point)	Running Emissions	(at each Idle
1-hr PM10 (lb/hr)	3.3E-03	5.6E-04	2.0E-04	4.5E-05
Annual PM10 (lb/yr)	6.4E+00	1.1E+00	2.9E-01	6.5E-02

HARP Inputs - Annual and Hourly Emission Rates per Volume Source

		rucks (@ 10 mph) Idling Emissions (at each idle Point)		idling Emissions
Max PM10 lb/hr/volume source PM10 lb/yr/volume source	3.83E-05	5.65E-04	3.97E-06	2.24E-05
	7.55E-02	1.11E+00	5.75E-03	3.25E-02

Title : SJVAB LHDT2 and HHD Trucks 2040 for HARP

Version: Emfac2007 V2.3 Nov 1 2006 Run Date: 2010/05/07 09:02:10

Scen Year: 2040 -- All model years in the range 1996 to 2040 selected

Season : Annual

Area : San Joaquin Valley

Year:

2040 -- Model Years

1996 to

2040 Inclusive --

Annual

Emfac2007 Emission Factors: V2.3 Nov 1 2006

San Joaquin Valley

Basin Average

Basin Average

Table 1: Running Exhaust Emissions (grams/mile; grams/idle-hour)

Pollutant Name: PM10

Temperature: 70F

Relative Humidity: 30%

Speed MPH	LHD2 CAT	LHD2 DSL	LHD2 ALL	HHD CAT	D. C.	HHD ALL
0	0	0.8	0.337	0	0.122	0.12
5	0.044	0.049	0.046	0.092	0.09	0.09
10	0.029	0.039	0.033	0.06	0.082	0.082
15		0.031				

Hydrogen Energy California LLC HECA Project 6/18/2010

Summary: Total Controlled Emissions

Summary: Total Controlled Emissions			
Compound	Emissions (lb/hr)	Emissions (tpy)	
CO ₂	9.07	39.72	
CO	1.36	5.95	
CH₄	5.17E-03	2.26E-02	
H₂S	0.55	2.42	
cos	1.10E-02	0.05	
CH₃OH ′	1.62	7.09	
C₃H ₆	1.44	6.33	
NH ₃	0.04	0.17	
HCN	1.15E-03	5.06E-03	
MDEA	1.42	6.24	
Total VOC	4.50	19.70	

Summary by Volume Source - Emissions are divided by number of Volume Sources

"POWER" Two Volume Sources (Area # 10)

	lb/hr	lb/yr
H ₂ S	0.01	73.44
CH₃OH		
C ₃ H ₆		
NH ₃	0.01	90.35
HCN	6.54E-05	0.57

"TGTU" Three Volume Sources (Areas #1, #7, #8, #12, #13)

	lb/hr	lb/yr
H ₂ S	0.02	191.83
CH₃OH	0.54	4,723.96
C ₃ H ₆ NH ₃		
		:
HCN		

"SHIFT" Two Volume Sources (Area # 4)

	lb/hr	lb/yr
H ₂ S	0.06	506.85
CH₃OH	4 1	
C₃H ₆		
NH ₃		
HCN		

"SRU" Three Volume Sources (Area # 9, #11)

	lb/hr	lb/yr
H ₂ S	0.04	352.80
CH₃OH	3.48E-05	0.30
C ₃ H ₆	·	
NH ₃		
HCN		

"AGR" Three Volume Sources (Area # 5)

	lb/hr	lb/yr
H ₂ S		
CH₃OH		
C ₃ H ₆	0.48	4,219.33
NH ₃		
HCN		

"SWS" Three Volume Sources (Area #6)

	lb/hr	lb/yr
H ₂ S	3.80E-03	33.30
CH₃OH		
C₃H ₆		
NH ₃	0.02	137.12
HCN		-

"GASIFICATION" Five Volume Sources (Areas #2, #3)

	lb/hr	lb/yr
H ₂ S	0.04	390.79
CH₃OH		
C ₃ H ₆		
NH ₃	4.13E-04	3.62
HCN	2.05E-04	1.79

Note: Selective LDAR program was applied to Areas # 1, #5, #7, #8, #9, #10 due to high uncontrolled emissions for the VOCs (methanol and propylene) and hydrogen sulfide

EPA Table 2-1SOCMI Average Fugitive Emission Factors

Component Type	Service Type	Emission Factor ⁽¹⁾ (kg/hr/source)	Control Efficiency (%) ⁽³⁾
	Gas	5.97E-03	92%
Valves	Light Liquid	4.03E-03	88%
	Heavy Liquid	2.30E-04	
Pump Seals	Light Liquid	1.99E-02	75%
r ump ocais	Heavy Liquid	8.62E-03	
Compressor Seals	Gas	2.28E-01	
Pressure Relief Valves	Gas	1.04E-01	
Connectors	All	1.83É-03	93%
Open-Ended Lines	All	1.70E-03	
Sampling Connections	All	1.50E-02	
Agitator Seals (2)	All	1.99E-02	

Note:
Source: EPA 1995, Protocol for Equipment Leak Emission Estimates
(1) Factors are for total organic compound emission rates.
(2) Factors for light liquid pump seals can be used to estimate the leak rate from agitator seals
(3) Control efficiencies for an LDAR program at a SOCMI process unit using HON reg neg
(control effectiveness attributable to requirements of the hazardous NESHAPS equipment leak regulations)

Area #1: Methanol

		Equipment Count	Annual Hours of	Uncontrolled Emissions (E _{TOC})		Controlled Emissions (E _{TOC})	
Component	Service	(N)	Operation	lb/hr	tpy	lb/hr	tpy
Valves	Gas	50	8760	0.66	2.88	0.05	0.23
Valves	Light Liquid	416	8760	3.70	16.19	0.44	1.94
Valves	Heavy Liquid	0	8760	-		-	-
Pump Seals	Light Liquid	7	8760	0.31	1.35	0.08	0.34
Pump Seals	Heavy Liquid	0	8760		-	-	-
Compressor Seals	Gas	0	8760		-	-	-
Connectors	All	1225	8760	4.94	21.65	0.35	1.52
			Total	9.60	42.06	0.92	4.02
			CH₃OH	9.60	42.06	0.92	4.02

Area #2: Syn Gas

		Equipment Count	Annual Hours of	Uncontrolled Er	nissions (E _{TOC})
Component	Service	(N)	Operation	lb/hr	tpy
Valves	Gas	108	8760	0.68	3.00
Valves	Light Liquid	0	8760	-	-
Valves	Heavy Liquid	0	8760	-	
Pump Seals	Light Liquid	0	8760	-	
Pump Seals	Heavy Liquid	0	8760	_	•
Compressor Seals	Gas	0	8760	-	-
Connectors	All	372	8760	0.72	3.16
			Total	1.41	6.16
	-		CO ₂	0.47	2.08
			CO	0.87	3.83
1 1			CH₄	1.09E-03	4.79E-03
			H ₂ S	0.05	0.22
	•		COS	4.11E-03	0.02
			NH ₃	1.81E-03	0.01
			HCN	9.76E-05	4.28E-04

Area #3: Flash Gas - Gasification

		Equipment Count	Annual Hours of	Uncontrolled Emis	sions (E _{TOC})
Component	Service	(N)	Operation	lb/hr	tpy
Valves	Gas	49	8760	0.57	2.50
Valves	Light Liquid	0	8760	-	
Valves	Heavy Liquid	0	8760	-	-
Pump Seals	Light Liquid	0	8760		-
Pump Seals	Heavy Liquid	0	8760	-	-
Compressor Seals	Gas	1	8760	0.44	1.95
Connectors	All	151	8760	0.54	2.36
			Total	1.55	6.80
·			CO ₂	0.98	4.30
			CO	0.39	1.72
			CH₄	5.50E-04	2.41E-03
	_		H₂S	0.17	0.76
			cos	4.12E-03	0.02
			NH ₃	2.59E-04	1.14E-0
			HCN	9.26E-04	4.06E-03

Area #4: Shifted Syn Gas

		Equipment Count	Annual Hours of	Uncontrolled Em	issions (E _{TOC})
Component	Service	(N)	Operation	lb/hr	tpy
Valves	Gas	198	8760	2.45	10.73
Valves	Light Liquid	0.	8760	-	-
Valves	Heavy Liquid	0	8760	•	-
Pump Seals	Light Liquid	0 .	8760	-	-
Pump Seals	Heavy Liquid	0	8760	-	-
Compressor Seals	Gas	1	8760	0.47	2.07
Connectors	Ali	632	8760	2.40	10.50
			Total	5.32	23.30
			CO ₂	5.12	22.41
			CO	0.08	0.37
			CH₄	3.48E-03	0.02
			H₂S	0.12	, 0.51
			cos	3.25E-04	1.43E-03

Area #5: Propylene

	*	Equipment Count	Annual Hours of	Uncontrolled Emissions (E _{TOC})		Controlled Emissions (E _{TOC})	
Component	Service	(N)	Operation	lb/hr	tpy	lb/hr	tpy
Valves	Gas	188	8760	2.47	10.84	0.20	0.87
Valves	Light Liquid	288	8760	2.56	11.21	0.31	1.34
Valves	Heavy Liquid	0	8760	-	-	- '	· · -
Pump Seals	Light Liquid	3	8760	0.13	0.58	0.03	0.14
Pump Seals	Heavy Liquid	0	8760	-	-	-	-
Compressor Seals	Gas	1	8760	0.50	2.20	0.50	2.20
Connectors	All	1432	8760	5.78	25.30	0.40	1.77
			Total	11.44	50.13	1.44	6.33
			C₃H ₆	11.44	50.13	1.44	6.33

Area #6: Sour Water

j		Equipment Count	Annual Hours of	Uncontrolled Emissions (E _{TOC})		
Component	Service	(N)	Operation	lb/hr	tpy	
Valves	Gas	0	8760	-	-	
Valves	Light Liquid	0	8760	-	•	
Valves	Heavy Liquid	508	8760	0.01	0.03	
Pump Seals	Light Liquid	0	8760	-	-	
Pump Seals	Heavy Liquid	17	8760	0.01	0.04	
Compressor Seals	Gas	0	8760	-	-	
Connectors	All	. 1410	8760	0.17	0.73	
			Total	0.18	0.81	
			CO ₂	0.16	0.69	
			CO	8.79E-05	3.85E-04	
			H ₂ S	0.01	0.05	
			NH ₃	0.02	0.07	

Area #7: H₂S Laden Methanol

		Equipment Count	Annual Hours of	Uncontrolled Em	issions (E _{TOC})	Controlled Emi	ssions (E _{TOC})
Component	Service	(N)	Operation	lb/hr	tpy	lb/hr	tpy
Valves	Gas	94	8760	1.24	5.42	0.10	0.43
Valves	Light Liquid	358	8760	3.18	13.93	0.38	1.67
Valves	Heavy Liquid	0	8760	-	-	-	
Pump Seals	Light Liquid	7	8760	0.31	1.34	0.08	0.34
Pump Seals	Heavy Liquid	0	8760	-	_		-
Compressor Seals	Gas	0	8760	-	-	-	-
Connectors	All	1323	8760	5.34	23.37	0.37	1.64
			Total	10.06	44.06	0.93	4.08
			CO ₂	4.50	19.69	0.42	1.82
			CO	3.47E-03	0.02	3.21E-04	1.41E-03
			CH₄	2.94E-04	1.29E-03	2.72E-05	1.19E-04
	*		H ₂ S	0.17	0.76	0.02	0.07
		-	COS	7.50E-04	3.28E-03	6.94E-05	3.04E-04
	•		CH₃OH	5.38	23.58	0.50	2.18

Area #8: CO₂ Laden Methanol

			Annual Hours of Uncontrolled Emi		nissions (E _{TOC})	Controlled Emissions (E _{TOC})	
Component	Service	(N)	Operation	lb/hr	tpy	lb/hr	tpy
Valves	Gas	79	8760	1.04	4.55	0.08	0.36
Valves	Light Liquid	79	8760	0.70	3.07	0.08	0.37
Valves	Heavy Liquid	0	8760	-	-	-	-
Pump Seals	Light Liquid	0	8760	-			-
Pump Seals	Heavy Liquid	0	8760	- 1	-	-	-
Compressor Seals	Gas	0	8760	-	-	-	-
Connectors	All	516	8760	2.08	9.11	0.15	0.64
			Total	3.82	16.74	0.31	1.37
			CO ₂	1.37	6.00	0.11	0.49
			CO	1.37E-03	0.01	1.12E-04	4.90E-04
			CH₄	1.17E-04	5.11E-04	9.55E-06	4.18E-05
			H₂S	3.70E-06	1.62E-05	3.03E-07	1.33E-06
			CH₃OH	2.45	10.73	0.20	0.88

Area #9: Acid Gas

- "		Equipment Count	Annual Hours of	Uncontrolled En	nissions (E _{TOC})	Controlled Emi	ssions (E _{TOC})
Component	Service	(N)	Operation	lb/hr	tpy	lb/hr	tpy
Valves	Gas	161	8760	2.12	9.28	0.17	0.74
Valves	Light Liquid	0	8760	-	-	-	-
Valves	Heavy Liquid	0	8760	- 1	-	•	-
Pump Seals	Light Liquid	0	8760		-	-	-
Pump Seals	Heavy Liquid	0	8760	-	-	-	-
Compressor Seals	Gas	0	8760	-	-	-	-
Connectors	All	492	8760	1.98	8.69	0.14	0.61
,		The state of the s	Total	4.10	17.97	0.31	1.35
			CO ₂	2.48	10.84	0.19	0.81
			CO	2.65E-03	0.01	1.99E-04	8.72E-04
•			CH₄	7.19E-05	3.15E-04	5.40E-06	2.37E-05
			H₂S	1.60	7.02	0.12	0.53
			cos	0.02	0.09	1.57E-03	0.01
			CH₃OH	1.39E-03	0.01	1.04E-04	4.57E-04

Area #10: Ammonia-Laden Gas

		Equipment Count	Annual Hours of	Uncontrolled Em	issions (E _{TOC})	Controlled Emissions (E _{TOC})	
Component	Service	(N)	Operation	lb/hr	tpy	lb/hr	tpy
Valves	Gas	157	8760	1.70	7.43	0.14	0.59
Valves	Light Liquid	0	8760	-	-	· -	
Valves	Heavy Liquid	0	8760	·	-	-	-
Pump Seals	Light Liquid	0.	8760	-	· _	-	-
Pump Seals	Heavy Liquid	0	8760	-	-	-	-
Compressor Seals	Gas	0 .	8760	-	-	-	-
Connectors	All	407	8760	1.35	5.90	0.09	0.41
			Total	3.04	13.34	0.23	1.01
			CO ₂	2.53	11.10	0.19	0.84
			co	0.01	0.06	1.02E-03	4.47E-0
			CH₄	7.67E-05	3.36E-04	5.79E-06	2.54E-0
			H ₂ S	0.22	0.97	0.02	0.07
			cos	8.03E-04	3.52E-03	6.07E-05	2.66E-0
			NH ₃	0.27	1.20	0.02	0.09
			HCN	1.73F-03	0.01	1.31F-04	5.73F-0

Area #11: Sulfur

		Equipment Count	Annual Hours of	Uncontrolled E	missions (E _{TOC})
Component	Service	(N)	Operation	lb/hr	tpy
Valves	Gas	0	8760	·	-
Valves	Light Liquid	0	8760		
Valves	Heavy Liquid	68	8760	1.02E-05	4.48E-05
Pump Seals	Light Liquid	0	8760	-	_
Pump Seals	Heavy Liquid	4	8760	2.25E-05	9.87E-05
Compressor Seals	Gas	0	8760	-	-
Connectors	All	297	8760	3.55E-04	1.56E-03
			Total	3.88E-04	1.70E-03
			H ₂ S	3.88E-04	1.70E-03

Area #12: TGTU Process Gas

		Equipment Count	Annual Hours of	Uncontrolled Emissions (E _{TOC})			
Component	Service	(N)	Operation	lb/hr	tpy		
Valves	Gas	72	8760	0.63	2.77		
Valves	Light Liquid	0	8760	-	_		
Valves	Heavy Liquid	0	8760	-	-		
Pump Seals	Light Liquid	0	8760	-	-		
Pump Seals	Heavy Liquid	0	8760	-	•		
Compressor Seals	Gas	0	8760	-	_		
Connectors	All	290	8760	0.78	3.43		
			Total	1.42	6,20		
			CO ₂	1.37	6.00		
			co	0.01	0.03		
*	4		H ₂ S	0.04	0.17		
			cos	7.28E-04	3.19E-03		

Area #13: TGTU Amine

		Equipment Count	Annual Hours of	Uncontrolled Emissions (E _{TOC})			
Component	Service	(N)	Operation	lb/hr	tpy		
Valves	Gas	0	8760		-		
Valves	Light Liquid	0	8760	. •			
Valves	Heavy Liquid	264	8760	0.06	0.27		
Pump Seals	Light Liquid	0 -	8760	· -	-		
Pump Seals	Heavy Liquid	5	8760	0.04	0.19		
Compressor Seals	Gas	0	8760	- :	_		
Connectors	All	746	8760	1.39	6.10		
			Total	1.50	6.56		
	•		CO ₂	0.06	0.28		
			H ₂ S	0.01	0.04		
			MDEA	1.42	6.24		

Note:
Please note that component counts listed in the tables above are only estimates, and do not represent exact component counts

E_{TOC} =

FA * WFTOC * N

Where:

F_A =

Applicable average emisison factor for equipment type

WF_{TOC} =

Average weight fraction of TOC in the stream

N =

Number of pieces of equipment of the applicable equipment type

The SOCMI emission factor does not need to be corrected for methane in the stream, because the emission factor is for total organic compounds.

Area Speciation

Area Speciation	Wt % (WF _{TOC})												
Comound	Methanol	Syn Gae	Flash Gas - Gasification	Shifted Syn Gas	Propylene	Sour Water		CO₂ Laden Methanol	Acid Gas	Ammonia- Laden Gas	Sulfur	TGTU Process Gas	TGTU Amine
CO ₂	0.00%			90.43%	0.00%	2.50%	44.68%	35.81%	60.32%	68.32%	0.00%	64.65%	1.98%
CO	0.00%			1.48%	0.00%	0.001%	0.03%	0.04%	0.06%	0.36%	0.00%	0.31%	0.00%
CH ₄	0.00%			0.06%	0.00%	0.00%	0.003%	0.003%	0.002%	0.002%	0.00%	0.00%	0.00%
H ₂ S	0.00%			2.05%	0.00%	0.18%	1.73%	0.0001%	39.04%	5.98%	0.03%	1.86%	0.32%
cos	0.00%			0.01%	0.00%	0.00%	0.01%	0.00%	0.51%	0.02%	0.00%	0.03%	0.00%
CH₃OH	100.00%			0.00%	0.00%	0.00%	53.51%	64.10%	0.03%	0.00%	0.00%	0.00%	0.00%
C ₃ H ₆	0.00%			0.00%	100.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
NH ₃	0.00%			0.00%	0.00%	0.25%	0.00%	0.00%	0.00%	7.36%	0.00%	0.00%	0.00%
HCN	0.00%			0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.05%	0.00%	0.00%	0.00%
MDEA	0.00%			0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	43.96%
WF _{TOC} ¹	100.00%			94.03%	100.00%	2.93%	99.96%	99.95%	99.98%	82.10%	0.03%	66.85%	46.25%

Conversion Note: 1 kg =

2.20 pound

Note:
(1) WF_{TOC} does not always equal 100% due to the presence of inerts in the area not listed in table above.

						Process Ar	rea						
	1	2	3	4	5	6	7	8	9	10	11	12	13
Component Count	Methanol	Syn Gas	Flash Gas - Gasification	Shifted Syn Gas	Propylene	Sour Water	H₂S Laden Methanol	CO ₂ Laden Methanol	Acid Gas	Ammonia- Laden Gas	Sulfur	TGTU Process Gas	TGTU Amine
/alves - Gas	50	108	49	198	188	0	94	79	161	157	0	72	0
/alves - Light Liquid	416	0	0	0	288	0	358	79	0	0	0	0	0
/alves - Heavy Liquid	0	0	0	0	0	508	0	0	0	0	68	0	264
Pumps - Light Liquid	7	0	0	0	3	0	7	0	0	0	0	0	0
Pumps - Heavy Liquid	0	0	0	0	0	17	0	0	0	0	4	0	5
Compressors	0	0	1	1	1	0	0	0	0	0	0	0	0
Connectors	1225	372	151	632	1432	1410	1323	516	492	407	297	290	746
	1698	480	201	831	1912	1935	1782	674	653	564	369	362	1015

	Process Area										7			
	1	2	3	4	5	6	7	8	9	10	11	12	13	1
	Methanol	Syn Gas	Flash Gas - Gasification	Shifted Syn Gas	Propylene	Sour Water	H₂S Laden Methanol	CO ₂ Laden Methanol	Acid Gas	Ammonia- Laden Gas	Sulfur	TGTU Process Gas	TGTU Amine	Total
Compound		•	•	An	nual Fugitive Er	nissions with L	DAR Application	on (ton/yr)		•			•	
CO ₂				22.41		0.69	1.82	0.49	0.81	0.84		6.00	0.28	39.72
СО				0.37		0.00	0.00	0.00	0.00	0.00		0.03		5.95
CH ₄				0.02			0.00	0.00	0.00	0.00				0.02
H ₂ S				0.51		0.05	0.07	0.00	0.53	0.07	0.00	0.17	0.04	2.42
cos				0.00			0.00		0.01	0.00		0.00		0.05
CH₃OH	4.02						2.18	0.88	0.00					7.09
C ₃ H ₆					6.33									6.33
NH ₃						0.07				0.09				0.17
HCN										0.00				0.01
MDEA													6.24	6.24
Total VOC	4.02	0.02	0.02	0.00	6.33	0.00	2.18	0.88	0.01	0.00	0.00	0.00	6.24	19.70
Total percentage of VOC content of gas in each process area	100.00%	0.14%	0.29%	0.01%	100.00%	0.00%	53.51%	64.10%	0.54%	0.07%	0.00%	0.03%	43.96%	

Note: The following compounds are included as VOCs, although not all compounds are found in the gas in each process area. CH₃OH, C₃H₆, COS, HCN, and MDEA

22 of 22 R:\10 HECA\DRs\WRs\App C TAC Emissions

APPENDIX D
CALMET/CALPUFF Air Quality Modeling Results

REVISED CALMET/CALPUFF Air Quality Modeling Impact Analysis for Far-Field Class I Areas

FOR THE

HYDROGEN ENERGY CALIFORNIA (HECA) PROJECT

Kern County, CA

Prepared for:

U.S. Forest Service

U.S. Environmental Protection Agency Region IX

Prepared by:

1615 Murray Canyon Road, Suite 1000 San Diego, CA 92108

June 2010

REVISED CALMET/CALPUFF

AIR QUALITY MODELING IMPACT ANALYSIS FOR FAR-FIELD CLASS I AREAS

Table of Contents

1.0	Backgro	Background								
	1.1	Model Selection and Setup	2							
	1.2	Domain								
2.0	CALM	CALMET Processing								
	2.1	MM5 Data	6							
	2.2	Hourly Surface and Precipitation Data	6							
	2.3	Upper Air Data								
	2.4	CALMET ZFACE and ZIMAX Settings	7							
	2.5	Wind Field Model Options	7							
	2.6	LULC and TERREL Processing								
3.0	Recepto	Receptors of Class I Areas								
	3.1	Sources Included in CALPUFF Modeling	12							
	3.2	CALPUFF Parameters	27							
	3.3	PSD Class I Increment Significance Analysis	28							
	3.4	Class I Area Visibility Reduction Analysis	28							
	3.5	Total Nitrogen and Sulfur Deposition Analysis	29							
4.0	CALPU	JFF Modeling Results	30							
5.0	Referen	nces	33							
List c	of Figures	;								
Revise	ed Figure 1	CALMET/CALPUFF Modeling Domain								
Figure	2	MM5 and CALMET/CALPUFF Modeling Domain								
Figure		Locations of Surface and Precipitation Data Stations								
Figure		3-D Terrain Elevation Contours								
Figure		Land Use Land Cover								
List c	of Tables									
Table	1	Class I Areas near the Project Site								
Revise	ed Table 2	Maximum Emission Rates of Each Averaging Time Period								
	ed Table 3	Source Location and Parameters								
	ed Table 4	3-hour Averaged Emission Inventory for CALPUFF (3-hour SO ₂ Increment Analysis)								
Revise	ed Table 5	24-hour Averaged Emission Inventory for CALPUFF (24-hour NO _x , SO ₂ and PM ₁₀ Increment and Visibility Analyses)								

Revised Table 6 Annual Averaged Emission Inventory for CALPUFF (Annual NOx, SO2,

and PM₁₀ Increment and Deposition Analyses)

Table 7 Size Distribution of EC (NPS, 2009)

Revised Table 8 PSD Class I Increment Significance Analysis – CALPUFF Results

Revised Table 9 Visibility Analysis – CALPUFF Results

Revised Table 10 Total Nitrogen and Sulfur Deposition Analysis – CALPUFF Results

1.0 BACKGROUND

In accordance with comments received from the U.S. Forest Service (USFS), National Park Service (NPS) and U.S. Environmental Protection Agency (U.S. EPA) Region 9 regarding far-field air quality modeling analysis for the proposed Hydrogen Energy California (HECA) Project, a refined CALPUFF modeling analysis was performed in conjunction with the CALMET diagnostic meteorological model. HECA submitted a CALPUFF air quality modeling impact analysis report in September 2009 to USFS, California Energy Commission (CEC) and U.S. EPA. On May 7, 2010, the USFS requested additional air dispersion modeling to address the following comments.

- Use the background ammonia concentration of 20 parts per billion (ppb), as recommended by the USFS for other projects in the San Joaquin Valley.
- Set the regulatory default switch (MREG = 1) of the CALPUFF model to force all model inputs to the U.S. EPA-approved regulatory settings.
- Correct the application of the particle speciation data. Overall, the speciation between sulfate, Secondary Organic Aerosol (SOA), and Elemental Carbon (EC) appears to be correct. However, the Applicant applied the recommended particle size information to the SOA component of the emissions, which are condensible particulate matter less than 10 microns in diameter (PM₁₀) emissions. The published particle size data should have been applied only to the filterable portion of the PM₁₀ emissions, which were modeled as EC. The use of the particle size information is voluntary and is not required for CALPUFF. However, if applied, the particle size information needs to be input correctly.
- Use the correct extinction coefficient in CALPOST for particulate matter. If the Applicant can accurately define the particulate matter less than 2.5 microns in diameter (PM_{2.5}) fraction for any source category, these emissions should be assigned as PMF, with an extinction coefficient of 1.0. Any remaining PM₁₀, which is larger than 2.5 microns, can be modeled as PMC, with an extinction coefficient of 0.6. If the Applicant cannot accurately define the PM_{2.5} and smaller fraction for a particular source category, then all PM₁₀ emissions for that source should be modeled as PMF as a conservative assumption. It is not acceptable to model PM₁₀ as PMC as this assumes that zero emissions occur in the PM_{2.5} fraction and results in underestimating the resulting visibility impact.
- Clearly state in the Class I modeling report what visibility calculation methods were used, i.e., Method 2. The visibility calculation method used was not clear from the Applicant's earlier data submittal. An analysis of visibility impacts using Method 2 is required. Data using other methods may be included at the Applicant's discretion.
- Include Dome Land Wilderness receptors in the modeling analysis. The 100-kilometer (km) cut-off used by the Applicant is arbitrary and excludes impacts to Class I areas just beyond 100 km that may be impacted more frequently by plant emissions. It appears that Dome Land can be included in the modeling without modifying the current modeling domain. Applicant may forgo the standard 50-km buffer around CALPUFF receptors as necessary to include the Dome Land receptors. Impacts should be listed separately for Dome Land vs. San Rafael.

Based upon a conversation with Mr. Howard Gebhart, the USFS's consultant, on May 28, 2010, and further discussion with Mr. Mike McCorision, USFS, on June 2, 2010, HECA revised the CALPUFF modeling to incorporate all of the USFS suggestions, except the inclusion of Dome Land Wilderness Area. Since the original CALMET domain does not extend far enough to cover the receptors in Dome Land Wilderness Area, it was determined that the CALMET analysis would have to be completely redone to incorporate that Class I Area. Therefore, based upon the comments from USFS, NPS and U.S. EPA, the refined CALPUFF modeling considered only San Rafael Wilderness Class I PSD area for the analysis.

1.1 Model Selection and Setup

The CALPUFF air dispersion model is the preferred model for long-range transport recommended by the Federal Land Managers' Air Quality Related Value Workgroup (FLAG) guidance and the Interagency Working Group on Air Quality Modeling (IWAQM) Phase 2 Summary Report. To estimate air quality impacts at distances greater than 50 km, the CALPUFF model was used in conjunction with the CALMET diagnostic meteorological model. CALPUFF is a puff-type model that can incorporate three-dimensionally varying wind fields, wet and dry deposition, and atmospheric gas and particle-phase chemistry.

The CALMET model is used to prepare the necessary gridded wind fields for use in the CALPUFF model. CALMET can accept as input mesoscale meteorological data (MM5 data), surface, upper air, precipitation, cloud cover, and over-water meteorological data (all in a variety of input formats). These data are merged and the effects of terrain and land cover types are estimated. This process results in the generation of gridded three-dimensional (3-D) wind field that accounts for the effects of slope flows, terrain blocking effects, flow channelization, and spatially varying land use types.

The development of model inputs and options for CALMET/CALPUFF processor was based on guidance provided in following references:

- Federal Land Managers' (FLM)'s comments received in March, May and June 2010;
- FLM's Air Quality Related Values Workgroup (FLAG) Phase I Report (December 2000);
- Inter-agency Working Group on Air Quality Modeling (IWAQM) Phase 2 Summary Report and Recommendations for Modeling Long Range Transport Impacts (December 1998);
- CALMET/CALPUFF Protocol for BART Exemption Screening Analysis for Class I Areas in the Western United States (August 15, 2006);
- CALPUFF Reviewer's Guide (DRAFT) prepared for the United States Department of Agriculture (USDA) Forest Service and NPS (September 2005); and
- Permit application PSD particulate matter speciation methodology developed by Don Shepherd, NPS (2009).

Key input and model options selected are discussed in the following sections.

The most recent U.S. EPA-approved version of the CALMET, CALPUFF, CALPOST system (version 5.8, version 5.8 and version 5.6394, respectively) was used.

1.2 Domain

The same CALMET/CALPUFF modeling domain used in previous analyses was used in this revised analysis. The CALMET/CALPUFF modeling domain was specified using the Lambert Conformal Conic (LCC) Projection system in order to capture the earth curvature of the large modeling domain more accurately for this Project. The false easting and northing at the projection origin were both set to zero. The latitude and longitude of the projection origin were set to 35.057 N and 119.643 W, respectively. Matching parallels of latitude 1 and 2 were defined as 34.38 N and 35.67 N, respectively. The choice of the matching parallels was made according to the latitudinal extent of the modeling domain, and therefore the parallels should be contained within the modeling domain in order to minimize distortion. An accepted rule-of-thumb is the rule of sixths which calls for one parallel to be placed 1/6th of the domain's north-south extent south of the domain's north edge, and an identical distance north of the domain's south edge (WDEQ, 2006). The modeling domain was defined using a grid-cell arrangement that is 52 cells in X (easting) direction and 54 cells in Y (northing) direction. The grid-cells are 4 kilometers wide. Therefore, the southwest corner of the gird cell (1,1) were set to -101 km and -110 km.

At least 50 km of buffer distance was set between the outermost boundary of the San Rafael Wilderness Area and the Project in order to prevent the loss of mass outside the boundary under some meteorological scenarios that might be associated with transport to the Class I area. The total CALMET/CALPUFF modeling domain is shown in Revised Figure 1. The entire MM5 data set domain is shown for information only in Figure 2.

AIR QUALITY MODELING IMPACT ANALYSIS FOR FAR-FIELD CLASS I AREAS

Revised Figure 1
CALMET/CALPUFF Modeling Domain

Havre NORTH D Great Eagle Fails: Kalispel United Seattle MONTANA WASHINGTON States Moscow Yakima SOUT IDAHO Bozaman Portland Rapid OREGON SOU 45°0'0"N Salem Eugene Resburg Boise OREGON Scottsbluff Klamath Falls Green Cheyenn Lake 40°0'0'N Douglas Colorado 40°0'0'N Springs United Carson VEVADA States San Durango Francisco San Jose HECA FORNIA 35°0'0'N Kingmar NEWMEX 35°0'0'N Los ARIZONA Angeles Phoenix San Rafael San Wilderness Area Tucson El Paso -30°0'0'N Chihuahua Legend MM5 Domain Kilometers Modeling Domain 100 200 300 500 400 115'0'0'W

Figure 2 MM5 and CALMET/CALPUFF Modeling Domain

2.0 CALMET PROCESSING

The CALMET data and processing presented below remain the same as outlined in the previously submitted analyses.

2.1 MM5 Data

A MM5 data set was used in conjunction with the actual surface and precipitation meteorological data observations. Three years (2001-2003) of MM5 data were obtained from Western Regional Air Partnership (WRAP). This MM5 data were used for Utah and Nevada's Best Available Retrofit Technology (BART) analysis by WRAP (WRAP, 2006). The MM5 data had a 36 km resolution. Initial-guess wind fields based on hourly 36-km MM5 meteorological fields for 2001, 2002 and 2003 (IPROG =14) was used. MM5 domain is shown in Figure 2.

2.2 Hourly Surface and Precipitation Data

CALMET pre-processed hourly surface data were obtained from WRAP's CALPUFF BART website (WRAP, 2008). WRAP used approximately 190 different surface meteorological data stations for 3-year period (2001 through 2003) for BART analysis. Although thirteen stations are located within the HECA CALPUFF modeling domain, all surface stations were used for this modeling analysis.

This modeling analysis considered the effects of chemical transformations and deposition processes on ambient pollutant concentrations; therefore, observation of precipitation was included in the CALMET analysis. CALMET pre-processed precipitation data was also collected from WRAP's BART website (WRAP, 2008). The precipitation stations are co-located with surface meteorological data stations. The inverse-distance-squared interpolation scheme was used to generate a gridded precipitation field with hourly precipitation data. The radius of influence for the interpolation method was set to 100 km.

The locations of both surface and precipitation stations used in this analysis are illustrated in Figure 3.

2.3 Upper Air Data

There are three upper air stations located in the modeling domain. Point Mugu (WBAN 93111, WMO ID 72391, Lat 34.10, Long -119.12); Vandenberg (WBAN 93214, WMO ID 72393, Lat 34.75, long -120.57); and Vandenberg AFB (WBAN 93223, WMO ID 74606, Lat 34.67, Long -120.58). For Point Mugu station, no data are available for the time period of MM5 meteorological data (2001 through 2003). Vandenberg and Vandenberg AFB stations have very spotty and incomplete data. Therefore, no upper-air meteorological observations were used in the CALMET/CALPUFF modeling analysis as they are not available in the modeling domain.

In addition, Western Regional Air Partnership (WRAP) explains that the twice daily upper-air meteorological observations are used as input with the MM5 model estimates nudged to the observations as part of the Four Dimensional Data Assimilation (FDDA) in the application of the MM5. This results in higher temporal (hourly vs. 12-hour) and spatial (36 km vs. approximately 300 km) resolution upper-air meteorology in the MM5 field that is dynamically balanced than contained in the upper-air observations. Therefore, the use of the upper-air observations with

CALMET may upset the dynamic balance of the meteorological fields potentially producing spurious vertical velocities (WRAP, 2006).

2.4 CALMET ZFACE and ZIMAX Settings

Eleven vertical layers were used with vertical cell face (ZFACE) heights at 0; 20; 100; 200; 350; 500; 750; 1,000; 2,000; 3,000; 4,000; and 5,000 meters. Maximum mixing height (ZIMAX) was set to 4,500 meters based on the WRAP modeling analysis. WRAP introduced Colorado Department of Public Health and Environment (CDPHE) analyses of soundings for summer ozone events in the Denver area (CDPHE, 2005). The CDPHE analysis suggests mixing heights in the Denver area are often well above the CALMET default value of 3,000 meters during the summer. A 3,000-meter AGL maximum mixing height might be appropriate in the eastern U.S., however in the western U.S. in the summer, mixing heights may exceed this value. WRAP expected that mixing heights in excess of the 3,000-meters-above-ground-level CALMET default maximum would occur in the western States (WRAP, 2006).

2.5 Wind Field Model Options

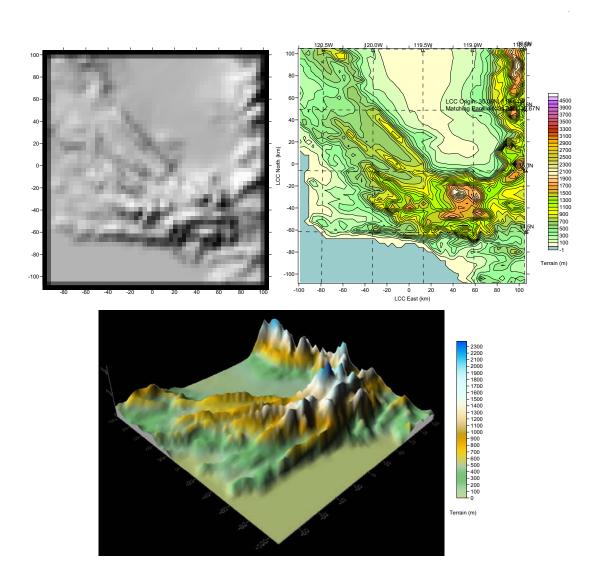
In general, CALMET involves two steps in developing the final wind field. First, the prognostic wind field (such as MM5) is introduced into CALMET as the initial guess field. CALMET then adjusts this field by accounting for the kinematic terrain effects, slope flows, blocking effects, and 3-D divergence minimization. The wind field resulting from this step is called the Step 1 wind field. Second, CALMET further adjusts the Step 1 wind field by applying an objective analysis procedure with observational data from selected surface, upper air, and precipitation stations. This step generates the final (Step 2) wind field. The "Diagnostic Wind Module" (DWM) option follows this two-step procedure. In this analysis, the DWM option was chosen in order to reflect the terrain effects in the wind field. Because several mountain ranges occur within the modeling domain, it was expected that terrain effects would be significant.

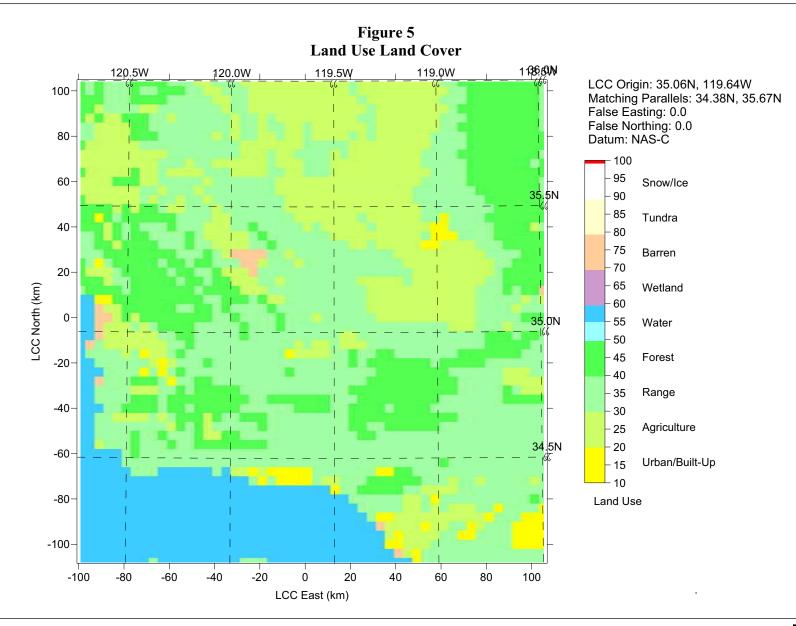
The MM5 data were used as the initial guess wind field. The extrapolation of the surface wind data aloft (IEXTRP =-4) was used as recommended by U.S. EPA.

Wind speed and wind direction data from observation stations were only allowed to influence the Step 1 wind field at a distance determined by setting the radius-of-influence parameter. The radius of influence for the surface (RMAX1) was set to 100 km as FLM recommended. The distance from a surface observation station at which the observations and Step 1 wind field were weighted was set to 50 km, which is within the FLM's recommended range of 20 to 80 km. Radius of influence for terrain features was set to 10 km. All of these radius-of-influence parameters were set based on CALPUFF Reviewer's Guide (2005).

2.6 LULC and TERREL Processing

The CALMET and CALPUFF models incorporate assumptions regarding land-use classification, leaf-area index, and surface roughness length to estimate deposition during transport. These parameters were calculated with a 4-km grid spacing for the modeling domain. U.S. Geological Survey (USGS) 1:250,000 scale digital elevation models (DEMs) and Land Use Land Cover (LULC) classification files were obtained and used to develop the geophysical input files required by the CALMET model. U.S. Geological Survey (USGS) 1:250,000 scale (1-degree)


DEMs data with 90 meters resolution were obtained from the USGS ftp site: http://edcftp.cr.usgs.gov/pub/data/DEM/250/. Using nine (9) 1-degree DEM data files obtained, terrain pre-processor (TERREL) was processed to produce gridded fields of terrain elevation in the formats compatible with the CALMET. The names of 1 degree DEM quadrangles are as follows: Bakersfield-e, Bakersfield-w, Fresno-e, Fresno-w, Los_angeles-e, Log_angeles-w, Monterey-e, San_luis_obispo-e, Santa_maria-e. Figure 4 shows the elevation contours calculated within the model domain.


LULC data (*.gz) were obtained from USGS 250K site, http://edcftp.cr.usgs.gov/pub/data/LULC/. Land Use Data Preprocessors, CTGCOMP and CTGPROC were processed to compress six 250K LULC data files. After processing, the data were quality checked to ensure land use was accurately represented. USGS land use data contains 38 land use categories. These were mapped to 14 categories read by CALMET. The names of 250K LULC quadrangles are as follows: Bakersfield, Fresno, Los_Angeles, Monterey, San_luis_obispo, and Santa_maria. Figure 5 shows the plot of land use data.

The outputs of TERREL and CTGPROC were combined in the geo-physical preprocessor (MAKEGEO) to prepare the CALMET geo-physical input file. These inputs include land use type, elevation, surface parameters (surface roughness, length, albedo, bowen ratio, soil heat flux parameter, and vegetation leaf area index) and anthropogenic heat flux.

Figure 3 Locations of Surface and Precipitation Data Stations 1000 800 600 LCC North (km) 400 200 0--200 Surface and Precipitation Station Ó 600 -200 200 800 400 LCC East (km)

Figure 4
3-D Terrain Elevation Contours

3.0 Receptors of Class I Areas

Receptors for all refined CALPUFF modeling of each Class I area were obtained from NPS' Class I Areas Receptor database (NPS, 2008). No modifications to the receptor locations or heights, as provided in the database, were made. Latitude/Longitude of the Class I receptor coordinates were converted to Lambert Conformal Conic (LCC) coordinate based on domain setup described in Section 1.2.

Three Class I areas are located within the region of the Project site: Dome Land Wilderness Area, Sequoia National Park, and San Rafael Wilderness Area. Table 1 lists the distances from the Project Site to the closest and farthest points of each Class I area.

Table 1 Class I Areas near the Project Site

Class I Areas	Distance f Project S	Model Included?	
San Rafael Wilderness Area	Closest	63	Yes
Sun region windomess rive	Farthest	84	Yes
Dome Land Wilderness Area	Closest	110	No
Dome Land winderness Area	Farthest	169	No
Sequoia National Park	Closest	123	No
Sequoia National Fark	Farthest	177	No

NPS does not anticipate any significant air quality impact at Sequoia National Park, based on the distance (123 km) from the Project Site, and the low emissions from proposed Project. Dome Land Wilderness Area is located in the range of 110 km to 169 km from the Project Site. Based on the distance, the low emissions from proposed Project, and the dominant wind direction at Bakersfield monitoring station (dominant wind is blowing from northwest, while the Dome Land Wilderness Area is located northeast of the Project Site), it was not anticipated that there will be any significant air quality impact at Dome Land Wilderness Area. Consequently, the original 2009 Project analysis did not include these two Class I areas. The closest parts of the San Rafael Wilderness are located beyond 31.1 miles (50 km) and within 62.1 miles (100 km) from the Project Site; thus, only San Rafael Wilderness Class I area was included in the Air Quality Relative Values (AQRV) analysis. On June 2, 2010, U.S. Forest Service agreed that this revised Project analysis may include only the San Rafael Wilderness Area. Therefore, Dome Land Wilderness Area and Sequoia National Park were not included in this revised Project analysis.

3.1 Sources Included in CALPUFF Modeling

Required emissions in CALPUFF correspond with the needed analysis and include maximum short-term rates for increment and visibility impacts, as well as maximum annual emissions for species deposition and increment comparison. Because of the various operations involved and potential occurrence during a specific period, the CALPUFF modeled sources and emissions included potential overlapping operations.

The maximum Potential-to-Emit (PTE) emission rate for each averaging time period is shown in Revised Table 2. The maximum emission rates shown in Revised Table 2 in units of grams per second were converted from the corresponding maximum emission rates expressed in units of either pounds per hour, pounds per day or tons per year contained in the emissions inventory. The maximum PTE rates are conservatively estimated based on simultaneous worst-case operation of all sources at the facility (please note that the auxiliary boiler was excluded in the short-term modeling analysis because the auxiliary boiler will not operate when the HRSG turbine is operating).

The stack parameters used in the CALPUFF modeling for all sources are shown in Revised Table 3.

The 3-hour averaged emission rate was used for the 3-hour SO_2 impact analysis. The 24-hour averaged emission rate was used for the 24-hour SO_2 and 24-hour PM_{10} impact analyses, and visibility impairment impact analysis. The annual emission rate was used for the annual NO_x , annual SO_2 , and annual PM_{10} impact analyses as well as nitrogen and sulfur deposition analyses.

Since last submittal of the CALPUFF modeling report in August 2009, the emission rates of the Project sources have been modified. The Project refinements primarily consists of revisions associated with the need for more startups and shutdowns to account for offline turbine washing that is recommended by GE for maintenance.

The Project would still produce about 250 megawatts (MW) of baseload power and 390 gross MW from the combined cycle plant that is fed by the Gasification Block. The Project refinements are within the 473-acre Project Site and do not result in any additional disturbed areas beyond the Site that were not previously evaluated. In addition, the refinements are not expected to result in any substantial changes to the schedule, costs, workforce, or traffic during construction or operations, or equipment use during construction, as presented in the Revised AFC.

The Project refinements examined in this document are outlined below for each affected source.

Cooling Towers

No revisions were made to the operation or emissions from the cooling towers. For 24-hour analysis, the hourly maximum PTE rate was used. For annual analysis, the annual averaged emission rates were used based on 8,322 hours of operation.

It was assumed that 60 percent of PM_{10} emission rate is equal to $PM_{2.5}$ emission rate. Therefore, 40 percent of PM emissions were modeled as PM_{10} (Coarse Particulate Matter, PMC) and 60 percent of PM emissions were modeled as $PM_{2.5}$ (Fine Particulate Matter, PMF).

Diesel Emergency Generators

The maintenance operation schedule was changed to 52 hours per year for each engine. Emission factors for U.S. EPA Offroad Tier 4 engines were used, as discussed in the Applicant response to CEC Data Request 30.

For 1-hour averaging period, the maximum, PTE 1-hour emission rate was used. For 3-hour and 24-hour averaging periods, the analysis assumed that the emergency generator is operated for two hours; therefore, the analysis used the suspended emission rates during the 3-hour and

24-hour averaging periods, respectively. Only one emergency generator will be operated for these short-term averaging periods. For annual analysis, the annual averaged emission rates was used based upon 52 hours per year of operation per engine, and emissions from both engines were included in the annual analysis.

It was assumed that 100 percent of PM_{10} emission rate is equal to $PM_{2.5}$ emission rate. Therefore, total PM emissions were modeled directly as $PM_{2.5}$ (PMF).

CTG/HRSG

To account for the CTG washes and other possible maintenance, 10 hot startups were added, thus the number of startups and shutdowns was revised to:

- Cold startups = 10 per year
- Hot startups = 20 per year
- Shutdowns = 30 per year
- Normal Operations with Duct Burning = 8,257 hours per year
- Total Hours of operations = 8,322 hours per year (95 percent)

In the Revised AFC and subsequent AFC Amendment, a duct burner heating value of 500 million British thermal units (MMBtu) per hour (hr) was incorrectly used as the higher heating value (HHV) in the emission calculations. However, that value is actually the lower heating value (LHV). The calculations have been revised to use the correct duct burner heating value of 550 MMBtu/hr HHV. This resulted in the CTG/heat recovery system generator (HRSG) hourly emissions increasing slightly for sulfur dioxide (SO₂) when firing natural gas, and all pollutants except for $PM_{10}/PM_{2.5}$ when cofiring natural gas and syngas.

The worst 1-hour emissions were taken from the maximum rates of cold startup, hot startup, shutdown, or normal operation during 1-hour period. The worst 3-hour and 24-hour SO₂ emissions were taken from 3-hours and 24-hours of normal operation, respectively (calculation assumes that startup and shutdown SO₂ emissions will always be lower than the normal operational maximum SO₂ emissions). The 24-hour averaged emissions for NO_x and PM₁₀ were estimated based on a maximum of 1 cold startup, 1 hot startup, 1 shutdown, with the remainder of the time at maximum normal operating emissions. HRSG used maximum emissions from either natural gas, synthetic gas, co-firing scenarios based on maximum startups and shutdowns in any given period of time. For annual analysis, the maximum annual averaged emission rates from either natural gas, synthetic gas, co-firing scenarios was used.

The CALPUFF modeling included speciation of emissions according to the NPS' Particulate Matter Speciation (PMS) method for natural gas combustion turbines. Although the CTG/HRSG will primarily burn hydrogen-rich fuel, no speciation data are available for the hydrogen-rich fuel, thus it is expected that the speciation should be similar to that for natural gas. Also the worst-case emissions used in the modeling were mostly from cases involving natural gas combustion. Applying the PMS methodology, 67 percent of total SO₂ was speciated into SO₂ and 33 percent of total SO₂ was speciated into SO₄. Also, the total PM emissions from CTG/HRSG were speciated into EC and SOA. The EC was speciated again into PM_{0.05}, PM_{0.01}, PM_{0.15}, PM_{0.20}, PM_{0.25}, and PM_{1.0} (indicated as PM0005, PM0010, PM0015, PM0020, PM0025,

and PM0100 in the modeling, respectively). Direct emissions of the remaining species, nitric acid (HNO₃) and nitrate (NO₃), were assumed to be zero for the natural gas and hydrogen-rich fuel burning sources of the Project. The modeled emissions are shown in Revised Table 4 (3-hour averaged), Revised Table 5 (24-hour averaged), and Revised Table 6 (annual averaged). The EC size distribution is shown in Table 7. In addition, total PM emissions were separately modeled as INCPM without speciation for incremental PM analysis. The INCPM was modeled using the same control file that the speciated PM was modeled.

Diesel Emergency Fire Water Pump

Emission factors for U.S. EPA Offroad Tier 4 engines were used as discussed in the response to CEC data request 30.

For 1-hour averaging period, the maximum, Potential-to-Emit (PTE) 1-hour emission rate was used. For 3-hour and 24-hour averaging periods, the analysis assumed that the emergency fire water pump is operated for two hours; therefore, the analysis used the suspended emission rates during the 3-hour and 24-hour averaging periods, respectively. For annual analysis, the annual averaged emission rate was used based upon 100 hours per year of operation.

It was assumed that 100 percent of PM_{10} emission rate is equal to $PM_{2.5}$ emission rate. Therefore, total PM emissions were modeled directly as $PM_{2.5}$ (PMF).

Auxiliary Boiler

SJVAPCD determined that SCR was BACT for the auxiliary boiler; therefore, the NO_x emissions from the boiler were reduced. The boiler is now a source of ammonia.

The auxiliary boiler was exempted for the short-term averaging period analysis because the auxiliary boiler (AUX_BOIL) will not operate on the same day that the HRSG turbine (HRSGSTK) operates. For annual analysis, the annual averaged emissions were estimated based on 2,190 hours per year of operation, and the modeling analysis included annual emissions from the auxiliary boiler with the HRSG emissions.

It was assumed that 100 percent of PM_{10} emission rate is equal to $PM_{2.5}$ emission rate. Therefore, total PM emissions were modeled directly as $PM_{2.5}$ (PMF).

Tail Gas Thermal Oxidizer

No revisions were made to the operation or emissions from the tail gas thermal oxidizer, although the emission calculations were updated to ensure incineration from one stream at a time was examined. Annual emissions are slightly lower due to new calculations.

The analysis used the hourly maximum PTE emission rate for each averaging time period. For annual analysis, the annual averaged emission rates were used based on 8,460 hours of normal operation and 300 hours of startup scenario.

It was assumed that 100 percent of PM_{10} emission rate is equal to $PM_{2.5}$ emission rate. Therefore, total PM emissions were modeled directly as $PM_{2.5}$ (PMF).

CO₂ Vent

Criteria pollutant emissions from the CO₂ vent did not change from those presented previously. There are no emissions of criteria pollutants except CO from the source; therefore, the CALPUFF analysis did not need to include any emissions from the source.

SRU Flare

To more accurately account for the time expected to startup/shutdown the gasifier, the SRU flare may flare for up to 40 hours per year. The worst-case 1-hour and 3-hour emission rates were taken from 1 hour and 3 hours of Startup/Shutdown flaring, respectively. The worst-case 24-hour emission rates were estimated based on approximately 12 hours of Startup/Shutdown flaring and the remainder in pilot operation. For annual analysis, the emission rates were estimated based on 40 hours of Startup/Shutdown flaring and 8,760 hours of pilot operation.

It was assumed that 100 percent of PM_{10} emission rate is equal to $PM_{2.5}$ emission rate. Therefore, total PM emissions were modeled directly as $PM_{2.5}$ (PMF).

Gasification Flare

During the turbine washes, hydrogen-rich fuel will be diverted to the gasification flare. It is expected to take 12 hours for a turbine wash, during which time the gasifier will operate at a reduced capacity (70 percent). Four turbine washes are planned annually, which add up to 81,400 MMBtu/yr of flaring. The total planned usage of the gasifier flare is expected to be 196,600 MMBtu/yr of flaring.

Each CTG wash is expected to take 12 hours, although 24 hours were considered for worst-case daily emission estimation. It is expected that up to 1,695 MMBtu/hr of shifted syngas could be flared during a turbine wash. The worst-case short-term emission rates were taken from maximum emission rates either from offline CTG wash operation, startup/shutdown operation, or pilot operation during the corresponding averaging period. For annual analysis, the emission rates were estimated based on summation of offline CTG wash operation, startup/shutdown operation and 8,760 hours of pilot operation.

It was assumed that 100 percent of PM_{10} emission rate is equal to $PM_{2.5}$ emission rate. Therefore, total PM emissions were modeled directly as $PM_{2.5}$ (PMF).

Gasifier Refractory Heaters

Based on operations from similar facilities, the Applicant determined that each refractory heater needs to be permitted to operate up to 1,200 hours per year. For estimating worst-case hourly and daily emissions, two heaters may operate at full load for the entire period. The analysis used gasifier warming vent stacks A and B, which have worst dispersion characteristics. For annual analysis, the emissions from all three heaters (A, B, and C) were included (total 3,600 hours per year of operation). The vendor-provided emission factors for NO₂ and CO are higher than the U.S. EPA AP-42 emission factors previously used to estimate these emissions.

It was assumed that 100 percent of PM_{10} emission rate is equal to $PM_{2.5}$ emission rate. Therefore, total PM emissions were modeled directly as $PM_{2.5}$ (PMF).

Feed Stock - Dust Collection

No revisions were made to the operation or emissions from the dust collection.

Maximum dust collector PM emission rate was estimated based on expected supplier guarantee of 0.005 grain/scf outlet loading. For 24-hour analysis, the maximum 24-hour averaging emission rate was used. For annual analysis, the maximum annual averaged emission rate was used.

It was assumed that 29.2 percent of PM_{10} emission rate is equal to $PM_{2.5}$ emission rate. Therefore, 70.8 percent of PM emissions were modeled as PM_{10} (PMC) and 29.2 percent of PM emissions were modeled as $PM_{2.5}$ (PMF).

Rectisol Flare

No revisions were made to the operation or emissions from the rectisol flare. The rectisol flare operation remains for emergency purposes only. However, the analysis used maximum emission rates for each averaging period based on pilot operation. For annual analysis, the annual averaged emission rates were estimated based on 8,760 hours per year of pilot operation.

It was assumed that 100 percent of PM₁₀ emission rate is equal to PM_{2.5} emission rate.

AIR QUALITY MODELING IMPACT ANALYSIS FOR FAR-FIELD CLASS I AREAS

Revised Table 2
Maximum Emission Rates of Each Averaging Time Period

C	3-hr (g/s)		24-h	r (g/s)			Annu	al (g/s)	
Source	SO ₂	NO _x	SO ₂	PM _{2.5}	PM ₁₀	NO _x	SO ₂	PM _{2.5}	PM ₁₀
ASUCOOL1	-	-	-	0.01710	0.02849	-	-	0.01624	0.02707
ASUCOOL2	-	-	-	0.01710	0.02849	-	-	0.01624	0.02707
ASUCOOL3	-	-	-	0.01710	0.02849	-	-	0.01624	0.02707
ASUCOOL4	-	-	-	0.01710	0.02849	-	-	0.01624	0.02707
PWCOOL1	-	-	-	0.02290	0.03816	-	-	0.02175	0.03626
PWCOOL2	-	-	-	0.02290	0.03816	-	-	0.02175	0.03626
PWCOOL3	-	-	-	0.02290	0.03816	-	-	0.02175	0.03626
PWCOOL4	-	_	-	0.02290	0.03816	_	-	0.02175	0.03626
PWCOOL5	-	-	-	0.02290	0.03816	-	-	0.02175	0.03626
PWCOOL6	-	-	-	0.02290	0.03816	-	-	0.02175	0.03626
PWCOOL7	-	-	-	0.02290	0.03816	-	-	0.02175	0.03626
PWCOOL8	-	-	-	0.02290	0.03816	-	-	0.02175	0.03626
PWCOOL9	-	-	-	0.02290	0.03816	-	-	0.02175	0.03626
PWCOOL10	-	-	-	0.02290	0.03816	-	-	0.02175	0.03626
PWCOOL11	-	-	-	0.02290	0.03816	-	-	0.02175	0.03626
PWCOOL12	-	-	-	0.02290	0.03816	-	-	0.02175	0.03626
PWCOOL13	-	-	-	0.02290	0.03816	-	-	0.02175	0.03626
GASCOOL1	-	-	-	0.01799	0.02998	-	-	0.01709	0.02848
GASCOOL2	-	-	-	0.01799	0.02998	-	-	0.01709	0.02848
GASCOOL3	-	-	-	0.01799	0.02998	-	-	0.01709	0.02848
GASCOOL4	-	-	-	0.01799	0.02998	-	-	0.01709	0.02848
EMERGEN1 ^a	0.00235	0.03382	0.00029	0.00473	0.00473	0.00241	2.09E-05	0.00034	0.00034
EMERGEN2 ^a	-	-	-	-	-	0.00241	2.09E-05	0.00034	0.00034
HRSGSTK	0.85996	6.93283	0.85996	2.49475	2.49475	4.83355	0.81539	2.36760	2.36760
FIREPUMP	0.00047	0.01931	5.88E-05	0.00019	0.00019	0.00264	8.05E-06	2.64E-05	2.64E-05

Revised Table 2
Maximum Emission Rates of Each Averaging Time Period (Continued)

					_	,	*		
Sauras	3-hr (g/s)		24-h	ır (g/s)			Annu	ıal (g/s)	
Source	SO ₂	NO _x	SO ₂	PM _{2.5}	PM ₁₀	NO _x	SO ₂	PM _{2.5}	PM ₁₀
AUX_BOIL b	-	-	-	-	-	0.02684	0.00913	0.02237	0.02237
TAIL_TO	0.25200	0.30240	0.25200	0.01008	0.01008	0.30240	0.24346	0.01008	0.01008
CO2_VENT	-	-	-	-	-	-	-	-	-
SRUFLARE	2.32766	0.27443	1.16387	0.00686	0.00686	0.00702	0.01071	0.00018	0.00018
GF_FLARE	0.59800	14.94990	0.59800	0.00019	0.00019	0.20581	0.00341	0.00019	0.00019
GASVENTA ^c	0.00463	0.54432	0.00463	0.01814	0.01814	0.07456	0.00063	0.00249	0.00249
GASVENTB ^c	0.00463	0.54432	0.00463	0.01814	0.01814	0.07456	0.00063	0.00249	0.00249
GASVENTC ^c	-	-	-	-	-	0.07456	0.00063	0.00249	0.00249
DC1	-	-	-	0.00878	0.03007	-	-	0.00170	0.00582
DC2	-	-	-	0.02224	0.07615	-	-	0.00430	0.01474
DC3	-	-	-	0.01202	0.04115	-	-	0.01060	0.03631
DC4	-	-	-	0.00768	0.02631	-	-	0.00678	0.02321
DC5	-	-	-	0.00737	0.02523	-	-	0.00650	0.02227
DC6	-	-	-	0.00078	0.00267	-	-	0.00012	0.00040
RC FLARE	7.72E-05	0.00454	7.72E-05	0.00011	0.00011	0.00454	7.72E-05	0.00011	0.00011
otes:									

Notes

- a. The analysis assumed that only one generator operates at any short-term period. The emission is from EMERGEN1, which results worst impact among 2 emergency generators during short-term period.
- b. Auxiliary boiler is not fired at the same time that the HRSG is operating.
- c. There are three gasifiers. Up to two gasifiers warming will be operational at any one time. The emission is from GASVENTA and GASVENTB, which result worst impact among three gasifiers.

g/s = grams per second NO_x = oxides of nitrogen

 PM_{10} = particulate matter 10 microns or less in diameter $PM_{2.5}$ = particulate matter 2.5 microns or less in diameter

 SO_2 = sulfur dioxide

Revised Table 3
Source Location and Parameters

Source ID	Source Description	UTM Easting	UTM Northing	LCC X	LCC Y	Base Elevation	Stack Height	Stack Temperature	Stack Velocity	Stack Diameter
		(m)	(m)	(km)	(km)	(m)	(m)	(K)	(m/s)	(m)
ASUCOOL1	ASU Cooling Tower	282891.3	3912002.1	23.21883	30.06171	87.93	16.76	299.9	7.98	9.14
ASUCOOL2	ASU Cooling Tower	282906.2	3912002.4	23.23371	30.06243	87.93	16.76	299.9	7.98	9.14
ASUCOOL3	ASU Cooling Tower	282922.2	3912002.1	23.24975	30.06254	87.93	16.76	299.9	7.98	9.14
ASUCOOL4	ASU Cooling Tower	282937.3	3912001.4	23.26486	30.06224	87.93	16.76	299.9	7.98	9.14
PWCOOL1	Power Block Cooling Tower	283031.9	3912001.1	23.35941	30.06445	87.93	16.76	299.9	7.98	9.14
PWCOOL2	Power Block Cooling Tower	283046.3	3912000.9	23.37385	30.06469	87.93	16.76	299.9	7.98	9.14
PWCOOL3	Power Block Cooling Tower	283061.6	3912001.0	23.38915	30.06519	87.93	16.76	299.9	7.98	9.14
PWCOOL4	Power Block Cooling Tower	283076.9	3912000.0	23.40443	30.06463	87.93	16.76	299.9	7.98	9.14
PWCOOL5	Power Block Cooling Tower	283092.1	3912000.0	23.41960	30.06494	87.93	16.76	299.9	7.98	9.14
PWCOOL6	Power Block Cooling Tower	283107.9	3912000.0	23.43540	30.06545	87.93	16.76	299.9	7.98	9.14
PWCOOL7	Power Block Cooling Tower	283122.7	3911999.4	23.45019	30.06518	87.93	16.76	299.9	7.98	9.14
PWCOOL8	Power Block Cooling Tower	283137.8	3911999.3	23.46529	30.06555	87.93	16.76	299.9	7.98	9.14
PWCOOL9	Power Block Cooling Tower	283153.5	3911999.5	23.48100	30.06609	87.93	16.76	299.9	7.98	9.14
PWCOOL10	Power Block Cooling Tower	283168.8	3911999.2	23.49627	30.06622	87.93	16.76	299.9	7.98	9.14
PWCOOL11	Power Block Cooling Tower	283183.7	3911999.6	23.51118	30.06702	87.93	16.76	299.9	7.98	9.14
PWCOOL12	Power Block Cooling Tower	283199.5	3911999.0	23.52698	30.06690	87.93	16.76	299.9	7.98	9.14
PWCOOL13	Power Block Cooling Tower	283275.2	3911998.1	23.60261	30.06800	87.93	16.76	299.9	7.98	9.14
GASCOOL1	Gasification Cooling Tower	283214.6	3911999.4	23.54206	30.06768	87.93	16.76	299.9	7.98	9.14
GASCOOL2	Gasification Cooling Tower	283228.6	3911998.4	23.55610	30.06699	87.93	16.76	299.9	7.98	9.14
GASCOOL3	Gasification Cooling Tower	283244.7	3911998.9	23.57215	30.06791	87.93	16.76	299.9	7.98	9.14
GASCOOL4	Gasification Cooling Tower	283259.1	3911998.1	23.58660	30.06755	87.93	16.76	299.9	7.98	9.14
EMERGEN1	Emergency Generator1	282948.3	3912172.0	23.27130	30.23302	87.93	6.10	677.6	67.38	0.37
EMERGEN2	Emergency Generator2	282948.3	3912172.0	23.27130	30.23302	87.93	6.10	677.6	67.38	0.37
HRSGSTK	HRSG Stack	282940.0	3912211.5	23.26200	30.27232	87.93	65.00	344.3	11.55	6.10
	Fire Water Pump Diesel									
FIREPUMP	Engine	282770.9	3912535.5	23.08432	30.59164	87.93	6.10	727.6	47.52	0.21
AUX_BOIL	Auxiliary Boiler	282955.1	3912273.0	23.27539	30.33414	87.93	24.38	422.0	9.20	1.37
TAIL_TO	Tail Gas Thermal Oxidizer	283049.1	3912112.7	23.37362	30.17650	87.93	50.29	922.0	7.45	0.76

Revised Table 3 Source Location and Parameters (Continued)

Source ID	Source Description	UTM Easting	UTM Northing	LCC X	LCC Y	Base Elevation	Stack Heigh t	Stack Temperature	Stack Velocity	Stack Diameter
		(m)	(m)	(km)	(km)	(m)	(m)	(K)	(m/s)	(m)
CO ₂ _VENT	CO ₂ Vent	283045.7	3912389.7	23.36286	30.45327	87.93	79.25	291.5	55.92	1.07
SRUFLARE	SRU Flare	283042.4	3912097.7	23.36739	30.16128	87.93	76.20	1273.0	20.00	1.09
GF_FLARE	Gasification Flare	283064.5	3912472.6	23.37946	30.53658	87.93	76.20	1273.0	20.00	5.47
GASVENTA	Gasifier Warming Vent A	283212.0	3912340.0	23.53038	30.40798	87.93	64.01	338.7	26.39	0.30
GASVENTB	Gasifier Warming Vent B	283212.0	3912316.0	23.53102	30.38400	87.93	64.01	338.7	26.39	0.30
GASVENTC	Gasifier Warming Vent C	283212.0	3912292.0	23.53166	30.36001	87.93	64.01	338.7	26.39	0.30
DC1	FeedStock-DustCollection	283318.3	3913064.3	23.61730	31.13474	87.93	13.87	291.9	15.06	0.51
DC2	FeedStock-DustCollection	283322.2	3912661.6	23.63192	30.73237	87.93	51.97	291.9	14.90	0.81
DC3	FeedStock-DustCollection	283150.4	3912310.2	23.46956	30.37655	87.93	53.80	291.9	14.66	0.56
DC4	FeedStock-DustCollection	283240.8	3912679.7	23.55013	30.74824	87.93	51.97	291.9	15.70	0.43
DC5	FeedStock-DustCollection	283147.0	3912671.2	23.45654	30.73726	87.93	24.23	291.9	15.06	0.43
DC6	FeedStock-DustCollection	283145.7	3912324.0	23.46453	30.39022	87.93	53.80	291.9	14.19	0.23
RC_FLARE	Rectisol Flare	283064.7	3912479.1	23.37950	30.54304	87.93	76.20	1273.0	20.00	0.10

Notes:

Assumed that the temperature of cooling tower is 8K degree higher than the annual averaged temperature value from the AERMET meteorological data at Bakersfield monitoring station.

Assumed that the temperature of dust collection is the annual averaged value from the AERMET meteorological data at Bakersfield monitoring station..

K = Kelvin km = kilometer

LCC = Lambert Conformal Conic

 $m \quad \ = \quad \ meter$

m/s = meters per second

UTM = Universal Transverse Mercator

This Page Intentionally Left Blank

Revised Table 4 3-hour Averaged Emission Inventory for CALPUFF (3-hour SO₂ Increment Analysis)

Sources							PMC	PMF	EC						
(g/s)	SO ₂	SO ₄	NO _x	HNO ₃	NO_3	INCPM	(PM_{10})	(PM _{2.5})	PM0005	PM0010	PM0015	PM0020	PM0025	PM0100	SOA
EMERGEN1	2.35E-03	-	4.06E-01	-	-	4.73E-03	-	4.73E-03	-	-	-	-	_	-	-
HRSGSTK	5.73E-01	4.30E-01	2.10E+01	-	-	2.49E+00	-	-	9.36E-02	1.56E-01	1.43E-01	9.36E-02	6.86E-02	6.86E-02	1.44E+00
FIREPUMP	4.70E-04	-	2.32E-01	-	-	1.93E-04	-	1.93E-04	-	-	-	-	-	-	-
TAIL_TO	2.52E-01	-	3.02E-01	-	-	1.01E-02	-	1.01E-02	-	-	-	-	-	-	-
SRUFLARE	2.33E+00	-	5.44E-01	-	-	6.86E-03	-	6.86E-03	-	-	-	-	-	-	-
GF_FLARE	5.98E-01	-	1.49E+01	-	-	1.89E-04	-	1.89E-04	-	-	-	-	-	-	-
GASVENTA	4.63E-03	-	5.44E-01	-	-	1.81E-02	-	1.81E-02	-	-	-	-	-	-	-
GASVENTB	4.63E-03	-	5.44E-01	-	-	1.81E-02	-	1.81E-02	-	-	-	-	-	-	-
RC_FLARE	7.72E-05	-	4.54E-03	-	-	1.13E-04	-	1.13E-04	-	-	-	-	-	-	-

Notes:

(g/s) = grams per second EC = Elemental Carbon HNO₃ = nitric acid

INCPM = total particulate matter emission

 NO_x = oxides of nitrogen

 NO_3 = nitrate

 $\begin{array}{llll} PM0005 & = & particulate \ matter \ 0.05 \ microns \ or \ less \ in \ diameter \\ PM0010 & = & particulate \ matter \ 0.1 \ microns \ or \ less \ in \ diameter \\ PM0015 & = & particulate \ matter \ 0.15 \ microns \ or \ less \ in \ diameter \\ PM0020 & = & particulate \ matter \ 0.2 \ microns \ or \ less \ in \ diameter \\ PM0025 & = & particulate \ matter \ 0.25 \ microns \ or \ less \ in \ diameter \\ PM0100 & = & particulate \ matter \ 1 \ microns \ or \ less \ in \ diameter \\ PM_{2.5} & = & particulate \ matter \ 2.5 \ microns \ or \ less \ in \ diameter \\ PM_{10} & = & particulate \ matter \ 10 \ microns \ or \ less \ in \ diameter \\ \end{array}$

PMC = Coarse Particulates
PMF = Fine Particulates
SO₂ = sulfur dioxide
SO₄ = sulfate compound

SOA = Secondary Organic Aerosol

AIR QUALITY MODELING IMPACT ANALYSIS FOR FAR-FIELD CLASS I AREAS

Revised Table 5
24-hour Averaged Emission Inventory for CALPUFF (24-hour NO_x, SO₂, and PM₁₀ Increment and Visibility Analyses)

Sources							PMC	PMF			SC	OA			
(g/s)	SO_2	SO ₄	NO _x	HNO ₃	NO_3	INCPM	(PM_{10})	$(PM_{2.5})$	PM0005	PM0010	PM0015	PM0020	PM0025	PM0100	EC
ASUCOOL1		-	-	-		2.85E-02	1.14E-02	1.71E-02	-	-	-	-	-	-	_
ASUCOOL2	_	_	_	-		2.85E-02	1.14E-02	1.71E-02	_	_	_	_	_	_	_
ASUCOOL3	_	_	_	_		2.85E-02	1.14E-02	1.71E-02	_	_	_	_	_	_	_
ASUCOOL4	_	_	_	_		2.85E-02	1.14E-02	1.71E-02	_	_	_	_	_	_	_
PWCOOL1	_	_	_	-		3.82E-02	1.53E-02	2.29E-02	_	_	_	_	-	_	_
PWCOOL2	_	_	_	-	_	3.82E-02	1.53E-02	2.29E-02	_	-	_	_	-	_	_
PWCOOL3	_	_	_	-	_	3.82E-02	1.53E-02	2.29E-02	_	_	_	_	_	_	_
PWCOOL4	_	_	_	_	_	3.82E-02	1.53E-02	2.29E-02	_	_	_	_	_	_	_
PWCOOL5	_	_	_	_	_	3.82E-02	1.53E-02	2.29E-02	_	_	_	_	_	_	_
PWCOOL6	_	_	_	-	_	3.82E-02	1.53E-02	2.29E-02	-	-	_	_	_	_	_
PWCOOL7	_	_	_	-	_	3.82E-02	1.53E-02	2.29E-02	-	-	_	_	_	_	_
PWCOOL8	_	_	_	-	_	3.82E-02	1.53E-02	2.29E-02	-	-	_	_	_	_	_
PWCOOL9	_	_	_	-	_	3.82E-02	1.53E-02	2.29E-02	-	-	_	_	_	-	_
PWCOOL10	_	_	_	-	_	3.82E-02	1.53E-02	2.29E-02	-	-	_	-	-	-	_
PWCOOL11	-	-	-	-	_	3.82E-02	1.53E-02	2.29E-02	-	-	-	-	-	-	-
PWCOOL12	-	-	-	-	-	3.82E-02	1.53E-02	2.29E-02	-	-	-	-	-	-	-
PWCOOL13	-	-	-	-	-	3.82E-02	1.53E-02	2.29E-02	-	-	-	-	=	-	=
GASCOOL1	-	-	-	-	-	3.00E-02	1.20E-02	1.80E-02	-	-	-	-	-	-	-
GASCOOL2	-	-	-	-	-	3.00E-02	1.20E-02	1.80E-02	-	-	-	-	-	-	-
GASCOOL3	-	-	-	-	-	3.00E-02	1.20E-02	1.80E-02	-	-	-	-	-	-	-
GASCOOL4	-	-	-	-	-	3.00E-02	1.20E-02	1.80E-02	-	-	-	-	-	-	-
EMERGEN1	2.94E-04	-	3.38E-02	-	-	4.73E-03	-	4.73E-03	-	-	-	-	-	-	-
HRSGSTK	5.73E-01	4.30E-01	6.93E+00	-	-	2.49E+00	-	-	9.36E-02	1.56E-01	1.43E-01	9.36E-02	6.86E-02	6.86E-02	1.44E+00
FIREPUMP	5.88E-05	-	1.93E-02			1.93E-04	-	1.93E-04							
TAIL_TO	2.52E-01	-	3.02E-01	-	-	1.01E-02	-	1.01E-02	-	-	-	-	-	-	-
SRUFLARE	1.16E+00	-	2.74E-01	-	-	6.86E-03	-	6.86E-03	-	-	-	-	-	-	-
GF_FLARE	5.98E-01	-	1.49E+01	-	-	1.89E-04	-	1.89E-04	-	-	-	-	-	-	-
GASVENTA	4.63E-03	-	5.44E-01	-	-	1.81E-02	-	1.81E-02	-	-	-	-	-	-	-
GASVENTB	4.63E-03	-	5.44E-01	-	-	1.81E-02	-	1.81E-02	-	-	-	-	-	-	-
DC1	-	-	-	-	-	3.01E-02	2.13E-02	8.78E-03	-	-	-	-	-	-	-
DC2	-	-	-	-	-	7.61E-02	5.39E-02	2.22E-02	-	-	-	-	-	-	-
DC3	-	-	-	-	-	4.11E-02	2.91E-02	1.20E-02	-	-	-	-	-	-	-
DC4	-	-	-	-	-	2.63E-02	1.86E-02	7.68E-03	-	-	-	-	-	-	-
DC5	-	_	-	-	-	2.52E-02	1.79E-02	7.37E-03	-	-	<u>-</u>	<u>-</u>	<u>-</u>		-
DC6	-	-	-	-	-	2.67E-03	1.89E-03	7.78E-04	-	-	-	-	-	-	-
RC FLARE	7.72E-05	-	4.54E-03	-	=	1.13E-04	-	1.13E-04	-	-	-	-	-	-	-

(g/s) = grams per second EC = Elemental Carbon

 HNO_3 = nitric acid

INCPM = total particulate matter emission

 NO_x = oxides of nitrogen

 NO_3 = nitrate

PM0005 = particulate matter 0.05 microns or less in diameter PM0010 = particulate matter 0.1 microns or less in diameter PM0015 = particulate matter 0.15 microns or less in diameter PM0020 = particulate matter 0.2 microns or less in diameter

PM0025 = particulate matter 0.25 microns or less in diameter PM0100 = particulate matter 1 microns or less in diameter

 $PM_{2.5}$ = particulate matter 2.5 microns or less in diameter PM_{10} = particulate matter 10 microns or less in diameter

PMC = Coarse Particulates

PMF = Fine Particulates

SO₂ = sulfur dioxide SO₄ = sulfate compound

SOA = Secondary Organic Aerosol

Revised Table 6
Annual Averaged Emission Inventory for CALPUFF (Annual NO_x, SO₂, and PM₁₀ Increment and Deposition Analyses)

Sources							PMC	PMF			S	OA			
(g/s)	SO ₂	SO ₄	NO _x	HNO_3	NO ₃	INCPM	(PM_{10})	(PM _{2.5})	PM0005	PM0010	PM0015	PM0020	PM0025	PM0100	EC
ASUCOOL1	-	-	-	-	-	2.71E-02	1.08E-02	1.62E-02	-	-	-	-	-	-	-
ASUCOOL2	-	-	-	-	-	2.71E-02	1.08E-02	1.62E-02	-	-	-	-	-	-	-
ASUCOOL3	-	-	-	-	-	2.71E-02	1.08E-02	1.62E-02	-	-	-	-	-	-	-
ASUCOOL4	-	-	-	-	-	2.71E-02	1.08E-02	1.62E-02	-	-	-	-	-	-	-
PWCOOL1	-	-	-	-	-	3.63E-02	1.45E-02	2.18E-02	-	-	-	-	-	-	-
PWCOOL2	-	-	-	-	-	3.63E-02	1.45E-02	2.18E-02	-	-	-	-	-	-	-
PWCOOL3	-	-	-	-	-	3.63E-02	1.45E-02	2.18E-02	-	-	-	-	-	-	-
PWCOOL4	-	-	-	-	-	3.63E-02	1.45E-02	2.18E-02	-	-	-	-	-	-	-
PWCOOL5	-	-	-	-	-	3.63E-02	1.45E-02	2.18E-02	-	-	-	-	-	-	-
PWCOOL6	-	-	-	-	-	3.63E-02	1.45E-02	2.18E-02	-	-	-	-	-	-	-
PWCOOL7	-	-	-	-	-	3.63E-02	1.45E-02	2.18E-02	-	-	-	-	-	-	-
PWCOOL8	-	-	-	-	-	3.63E-02	1.45E-02	2.18E-02	-	-	-	-	-	-	-
PWCOOL9	-	-	-	-	-	3.63E-02	1.45E-02	2.18E-02	-	-	-	-	-	-	-
PWCOOL10	-	-	-	-	-	3.63E-02	1.45E-02	2.18E-02	-	-	-	-	-	-	-
PWCOOL11	-	-	-	-	-	3.63E-02	1.45E-02	2.18E-02	-	-	-	-	-	-	-
PWCOOL12	-	-	-	-	-	3.63E-02	1.45E-02	2.18E-02	-	-	-	-	-	-	-
PWCOOL13	-	-	-	-	-	3.63E-02	1.45E-02	2.18E-02	-	-	-	-	-	-	-
GASCOOL1	-	-	-	-	-	2.85E-02	1.14E-02	1.71E-02	-	-	-	-	-	-	-
GASCOOL2	-	-	-	-	-	2.85E-02	1.14E-02	1.71E-02	-	-	-	-	-	-	-
GASCOOL3	-	-	-	-	-	2.85E-02	1.14E-02	1.71E-02	-	-	-	-	-	-	-
GASCOOL4	-	-	-	-	-	2.85E-02	1.14E-02	1.71E-02	-	-	-	-	-	-	-
EMERGEN1	2.09E-05	-	2.41E-03	-	-	3.37E-04	-	3.37E-04	-	-	-	-	-	-	-
EMERGEN2	2.09E-05	-	2.41E-03	-	-	3.37E-04	-	3.37E-04	-	-	-	-	-	-	-
HRSGSTK	5.44E-01	4.08E-01	4.83E+00	-	-	2.37E+00	-	-	8.88E-02	1.48E-01	1.36E-01	8.88E-02	6.51E-02	6.51E-02	1.37E+00
FIREPUMP	8.05E-06	-	2.64E-03	-	-	2.64E-05	-	2.64E-05	-	-	-	-	-	-	-
AUX_BOIL	9.13E-03	-	2.68E-02	-	-	2.24E-02	-	2.24E-02	-	-	-	-	-	-	-
TAIL_TO	2.43E-01	-	3.02E-01	-	-	1.01E-02	-	1.01E-02	-	-	-	-	-	-	-
SRUFLARE	1.07E-02	-	7.02E-03	-	-	1.76E-04	-	1.76E-04	-	-	-	-	-	-	-
GF_FLARE	3.41E-03	-	2.06E-01	-	-	1.89E-04	-	1.89E-04	-	-	-	-	-	-	-
GASVENTA	6.34E-04		7.46E-02			2.49E-03	-	2.49E-03							
GASVENTB	6.34E-04	-	7.46E-02	-	-	2.49E-03	-	2.49E-03	-	-	-	-	-	-	-
GASVENTC	6.34E-04	-	7.46E-02	-	-	2.49E-03	-	2.49E-03	-	-	-	-	-	-	-
DC1	-	-	-	-	-	5.82E-03	4.12E-03	1.70E-03	-	-	-	-	-	-	-
DC2	-	-	-	=	-	1.47E-02	1.04E-02	4.30E-03	-	-	-	-	-	-	-
DC3	-	-	-	=	-	3.63E-02	2.57E-02	1.06E-02	-	-	-	-	-	-	-
DC4	-	-	-	=	-	2.32E-02	1.64E-02	6.78E-03	-	-	-	-	-	-	-
DC5	-	-	-	=	-	2.23E-02	1.58E-02	6.50E-03	-	-	-	-	-	-	-
DC6	-	-	-	=	-	4.00E-04	2.83E-04	1.17E-04	-	-	-	-	-	-	-
RC_FLARE	7.72E-05	-	4.54E-03	-	-	1.13E-04	-	1.13E-04	-	-	-	-	-	-	_

particulate matter 0.05 microns or less in diameter particulate matter 10 microns or less in diameter (g/s)grams per second PM0010 particulate matter 0.1 microns or less in diameter PMC Coarse Particulates EC Elemental Carbon particulate matter 0.15 microns or less in diameter **PMF** Fine Particulates PM0015 = HNO_3 nitric acid SO_2 PM0020 particulate matter 0.2 microns or less in diameter sulfur dioxide INCPM total particulate matter emission PM0025 particulate matter 0.25 microns or less in diameter SO_4 = sulfate compound NO_x oxides of nitrogen particulate matter 1 microns or less in diameter SOA = Secondary Organic Aerosol PM0100 NO_3 nitrate particulate matter 2.5 microns or less in diameter

This Page Intentionally Left Blank

AIR QUALITY MODELING IMPACT ANALYSIS FOR FAR-FIELD CLASS I AREAS

Table 7
Size Distribution of EC (NPS, 2009)

Species Name	Size Distribution (%)	Geometric Mass Mean Diameter (microns)	Geometric Std. Deviation (microns)
SO ₄	100	0.48	0.50
NO_3	100	0.48	0.50
PM0005	15	0.05	0.00
PM0010	40	0.10	0.00
PM0015	63	0.15	0.00
PM0020	78	0.20	0.00
PM0025	89	0.25	0.00
PM0100	100	1.00	0.00

Notes:

 NO_3 = nitrate

NPS = National Park Service

PM0005 = particulate matter 0.05 microns or less in diameter
PM0010 = particulate matter 0.1 microns or less in diameter
PM0015 = particulate matter 0.15 microns or less in diameter
PM0020 = particulate matter 0.2 microns or less in diameter
PM0025 = particulate matter 0.25 microns or less in diameter
PM0100 = particulate matter 1 microns or less in diameter

SO₄ = sulfate compound EC = Elemental Carbon

3.2 CALPUFF Parameters

The CALPUFF options were selected to follow U.S. EPA's recommended settings for regulatory modeling or WRAP's BART modeling, along with suggestions from USFS. USFS suggested that a background concentration for ammonia in the San Joaquin Valley of 20 ppb should be used in the CALPUFF analysis.

Based upon the comments from USFS, the CALPUFF modeling analysis sets the regulatory default switch (MREG = 1) to force all model inputs to the U.S. EPA-approved regulatory settings.

Size parameters for dry deposition of nitrate, sulfate, and PM_{10} particles were based on default CALPUFF model options. Chemical parameters for gaseous dry deposition and wet scavenging coefficients were based on default values presented in the CALPUFF User's Guide. Calculation of total nitrogen deposition includes the contribution of nitrogen resulting from the ammonium ion of the ammonium sulfate compound. For the CALPUFF runs that incorporate deposition and chemical transformation rates (i.e. deposition and visibility), the full chemistry option of CALPUFF was turned on (MCHEM = 1). The nighttime loss for SO_2 , NO_x and HNO_3 was set at 0.2 percent per hour, 2 percent per hour and 2 percent per hour, respectively. CALPUFF was also configured to allow predictions of SO_2 , sulfate (SO_4), NO_x , HNO_3 , NO_3 and PM_{10} using the MESOPUFF II chemical transformation module.

Hourly ozone concentration files (OZONE.DAT) were obtained from the WRAP's BART modeling website for the same years (2001 through 2003) as the meteorological data. Monthly

AIR QUALITY MODELING IMPACT ANALYSIS FOR FAR-FIELD CLASS I AREAS

background ozone concentration for missing data from hourly ozone concentration file was set to 80 ppb. The monthly background ammonia concentration was set to 20 ppb, as recommended by the USFS for other projects in the San Joaquin Valley.

As described in Section 3.2, emissions were speciated in accordance with the NPS' PMS guideline (http://www2.nature.nps.gov/air/permits/ect/index.cfm). In doing so, the sulfur emissions were speciated to relative sulfur constituents of SO₂ and SO₄ to better account for gas to particulate conversion and visibility effects.

3.3 PSD Class I Increment Significance Analysis

CALMET/CALPUFF (Refined CALPUFF) was used to model ambient air impacts of NO_2 , PM_{10} , and SO_2 from the emission sources, and the modeling results were compared to PSD Class I Increment modeling significance thresholds. Modeling techniques for comparison with the PSD Class I Increments in this analysis are the same as in previous analyses for the HECA Project. The sources were modeled at full PTE for this analysis. The full chemistry option of CALPUFF was turned on (MCHEM =1, MESOPUFF II scheme), and a deposition option was turned on (MWET = 1 and MDRY = 1). The 3-hour averaged maximum SO_2 emission rate were modeled for 3-hour SO_2 increment analysis. Emission of total SO_2 from the natural gas combustion turbines was speciated based on NPS' PMS guideline. The 24-hour averaged maximum emission rates were modeled for 24-hour SO_2 and PM_{10} increment analyses. The annual averaged emission rates were modeled for annual averaged NO_x , SO_2 , and PM_{10} increment analyses. For 24-hour and annual PM incremental analyses, the total PM emission ("INCPM" in the modeling) was modeled without speciation, and the INCPM was treated as fine particulate matter in terms of geometric characteristics.

3.4 Class I Area Visibility Reduction Analysis

Refined CALPUFF was used to evaluate the potential for visibility reduction. Emissions from all sources are described in Section 3.2 above, including the speciation of emissions.

The emissions of fourteen chemical species, SO₂, SO₄, NO_x, HNO₃, NO₃, PM₁₀, PM_{2.5}, PM_{0.05}, PM_{0.01}, PM_{0.15}, PM_{0.20}, PM_{0.25}, PM_{1.0}, and SOA, were modeled in CALPUFF to predict the visibility impact based on PMS for natural gas turbine. Because only SO₂ emissions estimates were provided, one-third of the estimated SO₂ emission was assumed to be SO₄ emissions, and the remaining two-thirds remained as SO₂ emissions. For CTG/HRSG, the total PM emissions were speciated into EC and SOA. The EC is speciated again into PM_{0.05}, PM_{0.01}, PM_{0.15}, PM_{0.20}, PM_{0.25}, and PM_{1.0} (indicated as PM0005, PM0010, PM0015, PM0020, PM0025, and PM0100 in the modeling, respectively). For the other sources such as cooling towers, the total PM emissions were modeled as PM_{2.5} (PMF) and PM₁₀ (Coarse Particulates, PMC).

CALPOST was used to post-process the estimated 24-hour averaged ammonium nitrate, ammonium sulfate, EC, SOA, PM_{2.5} (PMF) and PM₁₀ (PMC) concentrations into an extinction coefficient value for each day at each modeled receptor, using the three years of CALMET meteorological data. To do so, it required the use of extinction efficiency values.

All the PM species (PM_{0.05}, PM_{0.01}, PM_{0.15}, PM_{0.20}, PM_{0.25}, and PM_{1.0}) were grouped as EC. Default extinction efficiencies of PM_{2.5} (PMF), PM₁₀ (PMC), SOA, EC, soil, ammonium sulfate,

and ammonium nitrate were used. $PM_{2.5}$ emission was assigned as PMF, with an extinction coefficient of 1.0. Any remaining PM_{10} , which is larger than 2.5 microns, was modeled as PMC, with an extinction coefficient of 0.6.

The CALPUFF modeling analysis used visibility calculation Method 2 (MVISBK = 2).

Background visibility and extinction coefficient values from the FLAG Phase I Report (December 2000) were used for the visibility reduction analysis. Background values for hygroscopic concentration, without adjustment for relative humidity (RH), $(0.6 \, \mu g/m^3)$ and the non-hygroscopic concentration $(4.5 \, \mu g/m^3)$ are reported for western wilderness areas. Therefore, BKSO4 = hygroscopic 0.6/3 = 0.2 and BKSOIL = non-hygroscopic = 4.5 were used. Modeled visibility reductions for each modeled year were compared to the level of acceptable change (LAC) of 5.0 percent and 10.0 percent.

3.5 Total Nitrogen and Sulfur Deposition Analysis

Refined CALPUFF was used to evaluate the potential for nitrogen and sulfur deposition; the techniques presented below are the same as those used in previous analyses. All sources were modeled at full PTE for this analysis. The annual average emission rates were used for the annual averaged nitrogen and sulfur deposition analyses. The NPS's PMS for natural gas combustion turbines was applied to speciate the emissions of SO₂ and PM from HRSG and turbine as it was done for increment and visibility analyses.

The total deposition rates for each pollutant were obtained by summing the modeled wet and/or dry deposition rates as follows.

For sulfur (S) deposition, the wet and dry fluxes of sulfur dioxide and sulfate are calculated, normalized by the molecular weight of S, and expressed as total S. Total nitrogen (N) deposition is the sum of N contributed by wet and dry fluxes of HNO_3 , NO_3 , ammonium sulfate $((NH_4)_2SO_4)$, and ammonium nitrate (NH_4NO_3) and the dry flux of oxides of nitrogen (NO_x) .

The total modeled nitrogen and sulfur deposition rates were compared to the National Park Service (NPS)/Fish and Wildlife Service (FWS) Deposition Analysis Threshold (DAT) for western states. The DAT for nitrogen and sulfur are each 0.005 kilogram per hectare per year (kg/ha-yr), which is equal to 1.59E-11 g/m²-s.

AIR QUALITY MODELING IMPACT ANALYSIS FOR FAR-FIELD CLASS I AREAS

4.0 CALPUFF MODELING RESULTS

Three years of CALPUFF modeling results are provided in Revised Table 8 through Revised Table 10. The model-predicted criteria pollutant increment concentrations were compared to the proposed Class I area Significant Impact Levels (SIL). Each criteria pollutant concentration is less than the corresponding SIL for the San Rafael Wilderness Class I area.

Modeled visibility reductions for each modeled year were compared to the level of acceptable extinction change (LAC) of 5.0 percent. The visibility impact is greater than 5 percent, but less than 10 percent of cumulative modeling threshold. The number of days that exceeds 5 percent of extinction change is 3 days for 2001, 4 days for 2002, and 2 days for 2003.

The visibility modeling analysis was performed based on emission rates of conservative operating scenario.

- It was assumed that the gasification flare operate for 24-hours of offline CTG wash operation. It is expected to take 12 hours for a turbine wash and only four turbine washes are planned annually. For example, NO_x emission from offline CTG wash is approximately 2,000 times greater than pilot operation. However, the model conservatively assumed that a full 24-hours of this event happens everyday.
- SRU Flare emission for 24-hour period was estimated based on 12 hours of startup/ shutdown flaring and remaining in pilot operation. This startup/shutdown is anticipated to occur only 40 hours of total per year. However, the model conservatively assumed that a full 24-hour of this event happens everyday.
- Emergency generator and firewater pump will be operated for 52 hours per year and 100 hours per year, respectively. However, the model conservatively assumed that a full 24-hours of this event happens everyday.
- HRSG NO_x emission was estimated based on 1 cold startup, 1 hot startup, and 1 shutdown for 24-hour period. The model conservatively assumed that a full 24-hour of this event happens everyday.

Not only each source emission rates was estimated based on worst-case scenario, the model conservatively assumed that all the sources will be operated at the same time everyday. Based on this conservative emission rates, it is expected that no significant visibility impact would occur due to the proposed Project.

Deposition thresholds of total N and total S are both 0.005 kg/ha/yr, which is equal to 1.59E-11 g/m²-s. Total N and S deposition impact do not exceed the threshold.

None of the results of criteria pollutant increment and deposition analyses exceeded the threshold, and the maximum visibility impact was less than 10 percent with only 2 to 4 days of exceedance of 5 percent despite of conservative operating scenario; therefore, the proposed Project sources will not have a significant impact on ambient air quality of the San Rafael Wilderness Class I area. Since the criteria pollutant concentration and deposition is less than its corresponding significance level, the Project sources will not have a significant impact on either

terrestrial resources such as soil and vegetation or aquatic resources. Therefore, no further analyses, including additional AQRV impacts were conducted.

AIR QUALITY MODELING IMPACT ANALYSIS FOR FAR-FIELD CLASS I AREAS

Revised Table 8
PSD Class I Increment Significance Analysis – CALPUFF Results

CI. I.	Pollutant	Annual NO _x	3-hr SO ₂	24-hr SO ₂	Annual SO ₂	24-hr PM ₁₀	Annual PM ₁₀
Class I Area	Unit	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	Annual
	Threshold	0.1	1	0.2	0.08	0.32	0.16
San Rafael	2001	3.93E-03	2.34E-01	5.27E-02	7.36E-04	8.70E-02	3.33E-03
Wilderness	2002	4.27E-03	2.46E-01	5.05E-02	8.65E-04	7.72E-02	3.80E-03
Area	2003	4.44E-03	2.70E-01	4.42E-02	8.71E-04	9.33E-02	3.78E-03
Exceed?		No	No	No	No	No	No

Notes:

 $\mu g/m^3 = micrograms per cubic meter$

 NO_x = oxides of nitrogen

 PM_{10} = particulate matter 10 microns or less in diameter

PSD = Prevention of Significant Deterioration

 SO_2 = sulfur dioxide

Revised Table 9 Visibility Analysis – CALPUFF Results

Class I Area	Pollutant	No.of Days > 5%	No.of Days >10%	Max Extinction Change	Day of Maximum Extinction Change
Class I Alca	Unit	Days	Days	%	Julian Day
	Threshold	0	0	10	
San Rafael	2001	3	0	9.48	308
	2002	4	0	8.07	287
Wilderness Area	2003	2	0	6.65	247
Exceed?				No	

Revised Table 10
Total Nitrogen and Sulfur Deposition Analysis – CALPUFF Results

	Pollutant	Deposition N	Deposition S
Class I Area	Unit	$g/m^2/s$	$g/m^2/s$
	Threshold	1.59E-11	1.59E-11
	2001	9.75E-13	3.85E-13
San Rafael Wilderness Area	2002	1.23E-12	5.04E-13
	2003	1.25E-12	4.54E-13
Exceed?		No	No

5.0 REFERENCES

- CDPHE. 2005. CALMET/CALPUFF BART Protocol for Class I federal Area Individual Source Attribution Visibility Impairment Modeling Analysis. Colorado Department of Public Health and Environment, Air Pollution Control District, Denver, Colorado. October 24.
- FLAG. 2000. U.S. Federal Land Managers' Air Quality Related Values Workgroup (FLAG) Phase I Report, U.S. Forest Service (FS), National Park Service (NPS), U.S. Fish and Wildlife Service, December 2000.
- Howard Gebhart. 2005. CALPUFF Reviewer's Guide (DRAFT) prepared for USDA Forest Service (Rich Fisher) and National Park Service (John Notar) (September, 2005)
- Interagency Workgroup on Air Quality Modeling (IWAQM). 1998. Interagency Workgroup on Air Quality Modeling (IWAQM) Phase 2 Summary Report and Recommendations for Modeling Long Range Transport Impact. EPA-454/R-98-019, December 1998
- National Park Service (NPS). 2009. Permit application PSD particulate matter speciation methodology developed by Don Shepherd, found at: http://www2.nature.nps.gov/air/permits/ect/index.cfm
- National Park Service (NPS). 2008. Class I Area Receptor Data, found at: http://www2.nature.nps.gov/air/Maps/Receptors/index.cfm
- U. S. Environmental Protection Agency (U. S. EPA). 1998. Interagency Working Group on Air Quality Modeling (IWAQM) Phase 2 Summary Report and Recommendations for Modeling Long Range Transport Impacts (December 1998)
- Western Regional Air Partnership (WRAP). 2006. CALMET/CALPUFF Protocol for BART Exemption Screening Analysis for Class I Areas in the Western United States (August 15, 2006)
- Western Regional Air Partnership (WRAP). 2008. BART CALPUFF Modeling, found at: http://pah.cert.ucr.edu/aqm/308/bart.shtml
- Wyoming Department of Environmental Quality, conversation with Josh Nall. 2006.