

1615 Murray Canyon Road, Suite 1000 San Diego, CA 92108 Phone: (619) 294-9400 Fax: (619) 293-7920

LETTER OF TRANSMITTAL

TO: Docket Unit

DATE: January 8, 2010

PROJECT: SES Solar One

DOCKET

08-AFC-13

DATE

JAN 08 2010

RECD.

JAN 08 2010

Enclosed/Attached please find the following:

- The Applicant's Submittal of CAISO Reports
- The Applicant's Submittal of the Corridor Conflict Analysis
- The Applicant's Submittal of the Geotechnical Engineering Report

The Applicant's Submittal of Responses to the CURE letter dated 12/28/2009				
For:	Review and Comment Signature and Return Appropriate Action		As Requested For Your Use	
12 hard12 hard12 election	ials included in this submittal are listed below: d copies of the Applicant's Submittal of the Corridopies of the Applicant's Submittal of the Geotetronic copies of the Applicant's Submittal of the e any questions or need any further information,	echnical Geotech	Engineering Report nnical Engineering Report	
Kindly,				

Corinne Lytle

Assistant Project Manager

Commence

Solar One Pisgah, California

January 4, 2010 Terracon Project No. 60095029

Prepared for:

Tessera Solar Phoenix, Arizona

Prepared by:

Terracon Consultants, Inc. Irvine, California

Offices Nationwide Employee-Owned

Established in 1965 terracon.com

January 6, 2010

Mr. Christopher Meyer

CEC Project Manager

Attn: Docket No. 08-AFC-13

California Energy Commission

1516 Ninth Street

Sacramento, CA 95814-5512

Mr. Jim Stobaugh

BLM Project Manager

Attn: Docket No. 08-AFC-13

Bureau of Land Management

P.O. Box 12000

Reno, NV 89520

RE:

SES Solar One Project

Applicant's Submittal of the Geotechnical Engineering Report

Dear Mr. Meyer and Mr. Stobaugh:

Tessera Solar hereby submits the Geotechnical Engineering Report. I certify under penalty of perjury that the foregoing is true, correct, and complete to the best of my knowledge.

Sincerely,

Camille Champion
Project Manager

January 4, 2010

Tessera Solar 4800 N. Scottsdale Road, Suite 5500 Scottsdale, Arizona 85251 Phoenix, AZ 85016

Attn: Mr. Robert Byall

PH: 602.773.4537 FAX: 602.421.5519

email: bob.byall@tesserasolar.com

Re: Geotechnical Engineering Report

Solar One Project Pisgah, California

Terracon Project No. 60095029

Terracon Consultants, Inc. (Terracon) has completed the geotechnical engineering services for the above referenced project. These services were performed in general accordance with our proposal number D6009028, dated June 3, 2009. This geotechnical engineering report presents the results of the subsurface exploration and provides geotechnical recommendations concerning earthwork and the design and construction of foundations and pavements for the proposed project.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report, or if we may be of further service, please contact us.

Sincerely,

Terracon Consultants, Inc.

Jinny Park

Senior Staff Engineer

60095029 Solar One Geotech Report.doc

Copies to:

Addressee (1 via email, 3 via mail)

Paul J. "Jeff" Ernst, P.E., G.E.

Office Manger

Geotechnical Engineering Report
Solar One ■ Pisgah, California
January 4, 2010 ■ Terracon Project No. 60095029

Table of Contents

1.0			; IION	
2.0	P	ROJECT	INFORMATION	2
	2.1	Project	Description	2
	2.2	Site Lo	cation and Description	2
3.0	SI	UBSURF	ACE CONDITIONS	3
	3.1	Site Ge	ology	3
	3.2	Soil Co	nservation Service - Soil Maps	3
	3.3	• •	Subsurface Profile	
	3.4	Field So	oil Resistivity Test Results	4
	3.5	Therma	ıl Resistivity Test Results	5
	3.6	Seismic	Shear Wave Tests	5
	3.7		water	_
4.0	RI	ECOMME	ENDATIONS FOR DESIGN AND CONSTRUCTION	6
	4.1	Geotec	hnical Considerations	6
	4.2	Earthwo	ork	6
		4.2.1	Site Preparation	7
		4.2.2	Subgrade Preparation	7
		4.2.3	Fill Materials and Placement	8
		4.2.4	Compaction Requirements	9
		4.2.5	Grading and Drainage	9
		4.2.6	Corrosion Potential	9
		4.2.7	Construction Considerations	10
	4.3	Four	ndations	10
		4.3.1	SunCatcherTM Foundation Design Recommendations	
		4.3.2	Preliminary Bridge Foundation Design Recommendations	12
		4.3	3.2.1Driven Pile Construction Recommendations	14
		4.3.3	Spread Footing Design Recommendations (Zone 1)	15
		4.3	3.3.1Spread Footing Construction Considerations	15
	4.4	Seisı	mic Considerations	16
	4.5	Floor	Slab	16
		4.5.1	Design Recommendations (Zone 1)	16
	4.6	Late	ral Earth Pressures	17
		4.6.1	Design Recommendations	17
		4.6.2	Construction Considerations	17
	4.7	Pave	ements	18
		4.7.1	Design Recommendations	18
		4.7.2	Construction Considerations	19
5.0	G	ENERAL	COMMENTS	20

Geotechnical Engineering Report
Solar One ■ Pisgah, California
January 4, 2010 ■ Terracon Project No. 60095029

TABLE OF CONTENTS- continued

TABLE OF CONTENTS – continued	
	Exhibit No
Appendix A – Field Exploration	
Site Plan and Boring Location Diagram	A1 thru A2
Dispersion Curves and Shear Wave Velocity Plots	A3 thru A-8
Boring Logs	A-9 thru A-54
Field Exploration Description	A-55 thru A-56
General Notes	A-57
Unified Soil Classification System	A-58
Appendix B – Laboratory Testing	
Laboratory Test Description	B-1
Atterberg Limits Results	B-2
Grain Size Distribution	B-3
Consolidation Test Results	B-4 to B-9
Direct Shear Results	B-10 to B-11
Expansion Index Test Results	B-12 to B-14
Collapse Potential	
Moisture-Density Relationship	B-18 to B-27
Resistance Value of Compacted Soil	
Corrosion Test Results	
Thermal Resistivity Test Results	
Appendix C – ASFE Insert	
ASFE Insert	C-1 to C-2

Solar One Pisgah, California

January 4, 2010 ■ Terracon Project No. 60095029

GEOTECHNICAL ENGINEERING REPORT SOLAR ONE PROJECT PISGAH, CALIFORNIA

Terracon Project No. 60095029 January 4, 2010

EXECUTIVE SUMMARY

This geotechnical executive summary should be used in conjunction with the entire report for design and/or construction purposes. It should be recognized that specific details were not included or fully developed in this section, and the report must be read in its entirety for a comprehensive understanding of the items contained herein. The section titled General Comments should be read for an understanding of the report limitations.

A geotechnical exploration has been performed for the Solar One Project located approximately 35 miles east of Barstow in the Pisgah area of San Bernardino County, California. Terracon's geotechnical scope of work included the advancement of 32 test borings and 14 test pits to approximate depths of 8 to 51½ feet below existing site grades. It should be noted that the numbering of the test borings and test pits were based off the BLM permit and included two long trenches across mapped earthquake fault (Alquist Priolo) zones. The fault trenches were not part of this scope of investigation and as such Trench 2 and Trench 22 were not excavated. Two of the test pits were advanced in locations determined by a URS geo-archeologist (TP-050 and TP-051). Proposed boring B-021 was also not advanced as a result of its proposed location between a utility easement and private property without right of entry. Terracon was unable to access proposed boring B-043 with a 4x4 rig and, therefore, did not advance a boring at this location. B-030 was depicted in the same location as B-031 on the permit and therefore only B-031 was excavated.

Based on the information obtained from our subsurface exploration, the site is suitable for development of the proposed project. The following geotechnical considerations were identified:

<u>Site Soils:</u> The site surface soils consisted of silty sands, poorly graded sands with silt and gravel and poorly graded sands in Zone 1 to the maximum depth explored, 51 ½ feet bgs. Zone 2, a smaller area east of Hector Road, consisted of fat clays to the maximum depth explored in this area, 26½ feet bgs. Groundwater was not encountered in any test boring at the time of drilling. On-site soils (excluding the fat clays) are suitable for use as engineered fill beneath foundations and floor slabs, pavements, and backfill.

<u>Foundations:</u> The SunCatcherTM units (the main feature at the site) are proposed to be supported by driven pipe piles, consisting of a 3/8"-thick, hollow steel pipe that is vibrated into the ground. The proposed bridge that crosses over the existing BNSF railroad will most likely be supported by driven piles. Any light-weight buildings at the site may be supported by shallow spread footings or mat foundations bearing on approved undisturbed soils. Pole mounted equipment may be supported by drilled shaft foundations.

<u>Floor Slabs:</u> The on-site surface and near surface soils over most of the site are expected to exhibit low expansion potentials when compacted and subjected to light loading conditions such as those imposed by floor slabs. Construction of floor slabs directly on compacted fills

Solar One Pisgah, California

January 4, 2010 Terracon Project No. 60095029

composed of approved non-expansive on-site soils or approved imported soils are considered acceptable for the project.

<u>Pavement Sections:</u> Automobile parking areas – 3" AC over 3" ABC or 5.5" PCC over 4" ABC; truck drives and drive lanes – 4" AC over 4" ABC or 6" PCC over 6" ABC.

Earthwork on the project should be observed and evaluated by Terracon. The evaluation of earthwork should include observation and testing of engineered fill, subgrade preparation, foundation bearing soils, and other geotechnical conditions exposed during construction

GEOTECHNICAL ENGINEERING REPORT SOLAR ONE PROJECT PISGAH, CALIFORNIA

Terracon Project No. 60095029 January 4, 2010

1.0 INTRODUCTION

This report presents the results of our geotechnical engineering services performed for the proposed Solar One Project to be located approximately 35 miles east of Barstow in the Pisgah area of San Bernardino County, California. The purpose of these services is to provide information and geotechnical engineering recommendations relative to:

subsurface soil conditions

groundwater conditions

earthwork

foundation design and construction

seismic considerations

floor slab design and construction

lateral earth pressure

pavement design and construction

Our geotechnical engineering scope of work for this project included the following field exploration.

SUBSURFACE EXPLORATION					
Exploration Type Quantity Depth					
Test Boring	32	12½ to 51½ feet			
Test Pit	14	8 to 14 feet			
Field Soil Resistivity Test	9	1 foot			
Seismic Shear Wave Test	3	1 foot (interpretation to 100 feet)			

Logs of the borings along with a Site Plan (Exhibit 1) and Boring Location diagram (Exhibit 2) are included in Appendix A of this report. The results of the laboratory testing performed on soil samples obtained from the site during the field exploration are included in Appendix B of this report. Descriptions of the field exploration and laboratory testing are included in their respective appendices.

January 4, 2010 Terracon Project No. 60095029

2.0 PROJECT INFORMATION

2.1 Project Description

ITEM	DESCRIPTION		
Site layout Refer to the Site Plan (Exhibit 1) and Boring Location Diag (Exhibit 2 in Appendix A)			
Structures	SunCatcher [™] Differentiators (solar dishes) – Founded on two-foot diameter driven pipe foundations with 3/8"-thick walls		
Structures	Bridge over railroad, approximately 30-feet wide		
	Maintenance & storage buildings – slab-on-grade foundation.		
	SunCatchers [™] :		
	Overturning Moment – 252 kip·ft		
Maximum loads	Torsion – 15.5 kip/ft		
Maximum loads	Dead Load – 7.2 tons		
	Factored Dead Load + Wind Load – 15.1 tons		
	Seismic Overturning Moment – 230 kip-ft		
Maximum allowable settlement	1-inch (assumed)		
Traffic loading	Assumed Traffic Index = 5.0 for Light Automobile Parking		
Traine loading	Assumed Traffic Index = 7.0 for Heavy Parking and Drive Areas		

2.2 Site Location and Description

ITEM	DESCRIPTION		
Location	Approximately 35 miles east of Barstow in the Pisgah area of San		
Location	Bernardino County, California		
	T8N R5E Sections 1,2,8-15; T8N R6E Sections 4-6,7-9,17,18,		
Section, Township, Range	T9N R5E Sections 35,36; T9N R6E Sections 31-33		
	(San Bernardino Meridian)		
	Native desert bisected by an east-west trending railroad line, a		
	Southern California Edison (SCE) electrical substation in the		
Existing site features	southeastern portion of the site, two SCE and Southern California		
(site interior)	Gas Company natural gas substations along the southern		
	boundary of the site, and several natural gas utility lines trending		
	east-west through the southern portion of the site.		
	North: Undeveloped native desert and hills.		
	East: Undeveloped native desert with one apparent residence.		
Surrounding developments	West: Undeveloped native desert.		
	South: Interstate 40 and National Trails Highway (Route 66),		
	beyond which is undeveloped native desert.		
Current ground cover	Light to moderate growth of grass, weeds, and cacti.		

Solar One Pisgah, California

January 4, 2010 Terracon Project No. 60095029

Existing topography	The site slopes gently approximately 1.4% to the southwest north of the existing railroad tracks, and even gentler, roughly 0.3%, to the northwest south of the tracks. The site generally drains to the west.
---------------------	--

3.0 SUBSURFACE CONDITIONS

According to Mr. Jim Shearer, Biologist for the California Bureau of Land Management, the site has been undeveloped native desert and cattle graze land. The existing railroad was constructed between the years of 2002 and 2005. The Pacific Gas & Electric gas pipelines were constructed in the 1950s and the Mohave gas pipeline was constructed in 1986.

3.1 Site Geology

The site is situated within the south central portion of the Mojave Desert Geomorphic Province in Southern California. Geologic structures within the Mojave Desert tend to consist of isolated mountain ranges separated by vast expanses of desert plains, with a predominate northwest-southeast faulting trend, with a secondary trend of east-west (parallel to the Transverse Ranges Province). Principal bounding faults include the San Andreas Fault to the southwest and the Garlock Fault to the north.^{1, 2}

Surficial geologic units mapped at the site³ consist mainly of alluvium of Holocene to Pleistocene age. The southeastern portion of thee site consists of basalt lava flow deposits from the Pisgah Crater. Rock outcrops in the northern portion of the site consist of Miocene volcanic rock.

Two Alquist-Priolo Earthquake Fault Zones intercept the site, one along the westerly edge of the property, and one in the east-central portion of the site. It should be noted that fault trenches to evaluate the location and activity levels of the faults were not within the scope of this investigation.

3.2 Soil Conservation Service - Soil Maps

The soils in the vicinity of the site have not been surveyed and classified by the U.S. Soil Conservation Service. The online soil survey indicated that a survey of the area of interest had not yet been completed.

-

Harden, D. R., "California Geology, Second Edition," Pearson Prentice Hall, 2004.

Norris, R. M. and Webb, R. W., "Geology of California, Second Edition," John Wiley & Sons, Inc., 1990.

³ Shawn Biehler, R.W. Tang, D.A. Ponce, H.W. Oliver, 1988, *Bouger Gravity Map of the San Bernadino Quadrangle, California*, California Division of Mines and Geology.

January 4, 2010 Terracon Project No. 60095029

3.3 Typical Subsurface Profile

Specific conditions encountered at each boring location are indicated on the individual boring logs. Stratification boundaries on the boring logs represent the approximate location of changes in soil types; in-situ, the transition between materials may be gradual. Details for each of the borings can be found on the boring logs included in Appendix A of this report. Based on the results of the borings, subsurface conditions on the project site were generalized into two major "zones" as follows:

Description	Approximate Depth to Bottom of Stratum (feet)	Material Encountered	Consistency/Density
Zone 1	0 to 51½	Silty sand, poorly graded sand with silt and gravel, and poorly graded sand. O to 51½ The gravel and cobble Loose to Very content varied as did the sand with varying amounts of silt and gravel.	
7 0	0 to 2	Silty sand with gravel	Loose
Zone 2	2 to 26½	Fat clay	Stiff to Very Stiff

Zone 1 includes over 90 percent of the project site and represents the typical conditions encountered within the project. Zone 2 is a comparatively small area near Hector Road in the southwest corner of the site. The approximate boundaries of Zone 1 and 2 are depicted on Exhibit 2. These boundaries of the zone are estimated and should be verified in the field during construction.

The silty sand and sand with silt soils in Zone 1 were non-plastic. The fat clay soils in Zone 2 had high plasticities with medium to high expansion potentials. The approximate locations of these zones are depicted on Exhibit 2.

Laboratory tests were conducted on selected soil samples and the test results are presented in Appendix B.

3.4 Field Soil Resistivity Test Results

Field resistivity testing was performed using a Nilsson Model 400 soil resistance meter and in general accordance with ASTM G57-95a. Tests were conducted by driving five test rods up to 12 inches deep into the ground and recording measurements using a uniform distance of 2, 4, 8, 16 and 20 feet in the same line. The testing was performed at nine boring/test pit locations (B-003, B-014, B-025, B-029, B-033, B-043, TP-044, and B-048) around the site. Test results and the field reports are enclosed in Appendix C. The test results indicate soil resistivity readings ranging from 0 to 1.7x10⁹ ohm-cm.

Solar One Pisgah, California

January 4, 2010 ■ Terracon Project No. 60095029

3.5 Thermal Resistivity Test Results

Soil thermal resistivity was determined for selected soils samples. We recommend that the thermal resistivity results be discussed with an electrical design team to determine the influence on cable type and backfill materials. Typically, a resistivity value of less than 200 °C-cm/Watt is considered acceptable for standard cable design without a need for engineered backfill. However, the design value is based on data obtained from multiple tests. The test results are presented in Appendix B.

3.6 Seismic Shear Wave Tests

In order to determine the Site Class of the project site, as outlined in the 2006 International Building Code (IBC), three geophysical surveys were conducted on the project site. The survey consisted of three 600-foot long seismic lines with 24 equally spaced geophones along each line. One line was located in the northwest portion of the project site (near B-005), the second line was located in the south-central portion of the project site (near B-031), and the last line was located in the northeast corner of the project site (near TP-044).

In each survey, seven sets of background micro-tremor data were collected. The data sets were processed using computer program SeisOpt[®]-Remi[™] to determine the shear wave velocity profile of the upper 100 feet of the soil. Based on this profile, the average shear wave velocity of the upper 100-foot soil was calculated to range from 1,313 ft/s to 2,018 ft/s. In accordance with Section 1613.5.2, Site Class Definitions of the 2006 IBC, these values classify the project site as Site Class C.

The p-f image with dispersion modeling picks, modeled dispersion curves, and shear wave velocity profiles of the upper 100 feet of soil are shown on Exhibits 3 through 8.

3.7 Groundwater

Groundwater was not observed in any test boring or test pit at the time of field exploration. These observations represent groundwater conditions at the time of the field exploration and may not be indicative of other times, or at other locations. Groundwater conditions can change with varying seasonal and weather conditions, and other factors.

Based upon review of State of California's Groundwater Bulletin 118 for the South Lahontan Hydrologic Region, Lower Mojave River Valley Groundwater Basin, regional groundwater predominates in water bearing Pliocene and younger alluvial fan deposits and an overlying Pleistocene and younger river channel and floodplain deposits. According to the bulletin, regional groundwater was encountered at estimated depths ranging from approximately 50 to 80 feet below the existing ground surface.

Zones of perched and/or trapped groundwater may also occur at times in the subsurface soils overlying bedrock, on top of the bedrock surface or within permeable fractures in the bedrock

Solar One Pisgah, California

January 4, 2010 ■ Terracon Project No. 60095029

materials. The location and amount of perched water is dependent upon several factors, including hydrologic conditions, type of site development, irrigation demands on or adjacent to the site, fluctuations in water features, seasonal and weather conditions.

4.0 RECOMMENDATIONS FOR DESIGN AND CONSTRUCTION

4.1 Geotechnical Considerations

The site appears suitable for the proposed construction based upon geotechnical conditions encountered in the test borings and test pits provided that the findings and recommendations presented herein are incorporated into project design and construction.

The vast majority of the site is underlain by silty sands and poorly graded sand with varying amounts of gravel. However, clayey soils were encountered in an area in the southwest portion of the site (borings B-005 through B-008) near Hector Road (Zone 2 discussed herein). Foundation design parameters for the SunCatcherTM units have been developed for each of these two major soil types. No building structures are planned in the areas underlain by clayey soils (Zone2) at this time. If the proposed layout of the solar development changes and lightly loaded buildings are planned near Hector Road, we would be pleased to discuss other construction alternatives with you upon request.

It appears that the majority of the on-site soils will be suitable for use as engineered fill beneath foundations, and pavements. Imported soils which may be required for the project must have potential expansion values in the "very low" range and they should satisfy the requirements contained in this report for low volume change soils.

Geotechnical engineering recommendations for foundation systems and other earth connected phases of the project are outlined below. The recommendations contained in this report are based upon the results of field and laboratory testing (which are presented in Appendices A and B), engineering analyses, and our current understanding of the proposed project.

4.2 Earthwork

The following presents recommendations for site preparation, excavation, subgrade preparation and placement of engineered fills on the project. The recommendations presented for design and construction of earth supported elements including foundations, slabs and pavements are contingent upon following the recommendations outlined in this section. All grading for each building structure should incorporate the limits of the proposed structure plus a minimum of five feet beyond proposed perimeter building walls and any exterior columns.

Earthwork on the project should be observed and evaluated by Terracon. The evaluation of earthwork should include observation and testing of engineered fill, subgrade preparation,

Solar One Pisgah, California

January 4, 2010 ■ Terracon Project No. 60095029

foundation bearing soils, and other geotechnical conditions exposed during the construction of the project.

No grading plans were reviewed as part of the scope of work for this report. Terracon should be retained to evaluate the grading plans as they are developed, and to provide updated recommendations based on review of those plans.

4.2.1 Site Preparation

Strip and remove existing vegetation, debris, and other deleterious materials from proposed building and pavement areas. Exposed surfaces should be free of mounds and depressions which could prevent uniform compaction.

Stripped materials consisting of vegetation and organic materials should be wasted from the site, or used to revegetate landscaped areas or exposed slopes after completion of grading operations. If it is necessary to dispose of organic materials on-site, they should be placed in non-structural areas, and in fill sections not exceeding 5 feet in height.

If fill is placed in areas of the site where existing slopes are steeper than 5:1 (horizontal:vertical), the area should be benched to reduce the potential for slippage between existing slopes and fills. Benches should be wide enough to accommodate compaction and earth moving equipment, and to allow placement of horizontal lifts of fill.

4.2.2 Subgrade Preparation

Subsequent to the surface clearing, grubbing and fill removal efforts, the exposed subgrade soils beneath proposed structures (not including SunCatcherTM units), exterior slabs, and pavement areas should be prepared to a minimum depth of 10 inches. Subgrade preparation should generally include some form of scarification (or removal), moisture conditioning, and compaction. The moisture content and compaction of subgrade soils should be maintained until slab or pavement construction. In the area of the SunCatcherTM units, the surface should be stripped of any existing vegetation, scattered trash and debris, and other deleterious materials.

Exposed areas which will receive fill, once properly cleared and benched where necessary, should be scarified to a minimum depth of ten inches, conditioned to near optimum moisture content, and compacted.

Areas of loose soils may be encountered at foundation bearing depth after excavation is completed for footings. When such conditions exist beneath planned footing areas, the subgrade soils should be surficially compacted prior to placement of the foundation system. If sufficient compaction can not be achieved in-place, the loose soils should be removed and replaced as engineered fill. For placement of engineered fill below footings, the excavation should be widened laterally, at least eight inches for each foot of fill placed below footing base elevations.

Solar One Pisgah, California

January 4, 2010 ■ Terracon Project No. 60095029

Large cobbles or boulder sized materials may be encountered beneath footing areas. Such conditions could create point loads on the bottom of footings, increasing the potential for differential foundation movement. If such conditions are encountered in the footing excavations, the cobbles and/or boulders should be removed and be replaced with engineered fill, conditioned to near optimum moisture content and compacted.

Subgrade soils beneath interior and exterior slabs, and beneath pavements should be scarified, moisture conditioned and compacted to a minimum depth of ten inches. The moisture content and compaction of subgrade soils should be maintained until slab or pavement construction.

4.2.3 Fill Materials and Placement

All fill materials should be inorganic soils free of vegetation, debris, and fragments larger than six inches in size. Pea gravel or other similar non-cementitious, poorly-graded materials should not be used as fill or backfill without the prior approval of the geotechnical engineer.

Clean on-site soils or approved imported materials may be used as fill material for the following:

- general site grading
 - .9
- foundation areas
- interior floor slab areas
- exterior slab areas
- pavement areas
- foundation backfill

Imported soils for use as fill material within proposed building and structure areas should conform to low volume change materials as indicated in the following specifications:

Gradation	Percent Finer by Weight (ASTM C 136)
6"	100
3"	70-100
No. 4 Sieve	50-100
No. 200 Sieve	59 (max)
Liquid Limit	30 (max)
Plasticity Index	15 (max)
Maximum Expansion Index*	20 (max)

^{*}ASTM D 4829

Engineered fill should be placed and compacted in horizontal lifts, using equipment and procedures that will produce recommended moisture contents and densities throughout the lift. Fill lifts should not exceed ten inches loose thickness.

Solar One Pisgah, California

January 4, 2010 ■ Terracon Project No. 60095029

4.2.4 Compaction Requirements

Recommended compaction and moisture content criteria for engineered fill materials are as follows:

	Per the Standard Proctor Test (ASTM D 1557)			
Material Type and Location	Minimum Compaction Requirement (%)	Range of Moisture Contents for Compaction (% over optimum)		
	Requirement (%)	Minimum	Maximum	
On-site granular or approved imported fill soils:				
Beneath foundations:	90	0%	+4%	
Beneath slabs:	90	0%	+4%	
Beneath asphalt pavements:	95	0%	+4%	
Beneath concrete pavements:	95	0%	+4%	
Aggregate base (beneath slabs)	95	-3%	+3%	
Aggregate base (beneath pavements)	95	-3%	+3%	
Miscellaneous backfill	90	0%	+4%	

4.2.5 Grading and Drainage

Positive drainage should be provided during construction and maintained throughout the life of the development. Infiltration of water into utility trenches or foundation excavations should be prevented during construction. Planters and other surface features which could retain water in areas adjacent to the building or pavements should be sealed or eliminated. In areas where sidewalks or paving do not immediately adjoin the structure, we recommend that protective slopes be provided with a minimum grade of approximately five percent for at least 10 feet from perimeter walls. Backfill against footings, exterior walls, and in utility and sprinkler line trenches should be well compacted and free of all construction debris to reduce the possibility of moisture infiltration.

Downspouts, roof drains or scuppers should discharge into splash blocks or extensions when the ground surface beneath such features is not protected by exterior slabs or paving. Sprinkler systems should not be installed within five feet of foundation walls. Landscaped irrigation adjacent to the foundation systems should be minimized or eliminated.

4.2.6 Corrosion Potential

Results of soluble sulfate testing indicate that ASTM Type I/II Portland cement is suitable for all concrete on and below grade. Foundation concrete should be designed for low to moderate

Solar One Pisgah, California

January 4, 2010 ■ Terracon Project No. 60095029

sulfate exposure in accordance with the provisions of the ACI Design Manual, Section 318, Chapter 4.

Laboratory test results indicate that on-site soils have resistivities ranging from 360 to 8,000 ohm-centimeters, and pH values ranging from 8.16 to 8.93. These values should be used to determine potential corrosive characteristics of the on-site soils with respect to contact with the various underground materials which will be used for project construction.

Refer to Summary of Laboratory Results contained in Appendix B for the complete results of the various corrosivity testing conducted on the site soils in conjunction with this geotechnical exploration.

4.2.7 Construction Considerations

It is anticipated that excavations for the proposed construction can be accomplished with conventional earthmoving equipment.

Some additional effort may be necessary to extract boulder sized materials, particularly in deep narrow excavations such as utility trenches. Consideration should be given to obtaining a unit price for difficult excavation in the contract documents for the project.

Based upon the subsurface conditions determined from the geotechnical exploration, subgrade soils exposed during construction are anticipated to be relatively stable. However, the stability of the subgrade may be affected by precipitation, repetitive construction traffic or other factors. If unstable conditions develop, workability may be improved by scarifying and drying. During and after periods of heavy rain, overexcavation of wet zones and replacement with granular materials may be necessary. Lightweight excavation equipment may be required to reduce subgrade pumping.

The individual contractor(s) is responsible for designing and constructing stable, temporary excavations as required to maintain stability of both the excavation sides and bottom. Excavations should be sloped or shored in the interest of safety following local, and federal regulations, including current OSHA excavation and trench safety standards.

4.3 Foundations

Where applicable, structures can be supported by driven pile foundations or spread footings. It is our understanding that the SunCatcherTM units are planned to be supported on driven pipe pile foundations. The bridge crossing the railroad tracks should be supported on a driven pile foundation system. Any light weight building structures may be supported by spread footings. Design recommendations for foundations for the proposed structures and related structural elements are presented in the following paragraphs.

4.3.1 SunCatcher[™] Foundation Design Recommendations

DESCRIPTION	VALUE	
Foundation Type	Driven pipe piles	
Structures	SunCatcher [™] solar dishes	
Bearing Material	Undisturbed soils below surface clearing and grubbing efforts	

Foundations for the SunCatchers[™] will consist of a driven pipe pile foundation. The controlling factor to consider during design will be the amount of lateral support the foundation element can transfer to the surrounding soil.

Recommended soil parameters for lateral load analysis of driven pipe pile foundations have been developed for use in LPILE or COM624 computer programs. Engineering properties have been estimated as outlined below:

Zone 1:

Lateral Load Analysis Estimated Engineering Properties of Soils						
Top Depth	The tronging of tronging of the tronging of tronging of the tronging of tronging of tronging of tronging of tronging of tronging of tronging o					
Bottom Depth	(pcf)	Туре	ф	Reaction K _s (pci) ¹		
2	115	115 SM	28°	90 ²		
5		Olvi				
5	440	SP-SM	32°	225 ²		
15	110	OI JOINI	32	220		

¹ Note: These values are based upon parameters for LPILE or COM624P analyses.

Zone 2:

Lateral Load Analysis				
Estimated Engineering Properties of Soils				
Top Depth	Unit Weight USCS Soil Cohesion			
Bottom Depth	(pcf)	Туре	(psf)	
2	100	100 CH	750	0.010
15	100			

^{2.} Note: This value increases linearly with depth an amount equal to the modulus and is independent of shaft diameter.

January 4, 2010 Terracon Project No. 60095029

Based on these soil parameters, L-Pile analyses were conducted for a 24-inch %-inch wall steel pipe pile. These values are preliminary and will change if the diameter of the foundation element or wall thickness for the steel pipe piles varies from what was used in the analysis.

Zone 1:

L-PILE ANALYSES RESULTS			
Foundation Element	Depth of Installation (ft)	Pile Head Deflection Required to obtain 252 kip-ft of Moment in the Pile (in)	
3/8" Wall, 24" OD Steel Pipe Pile	12	11⁄4	
	14	3/4	
	16	1/2	

Zone 2:

L-PILE ANALYSES RESULTS				
Foundation Element	Depth of Installation (ft)	Pile Head Deflection Required to obtain 252 kip-ft of Moment in the Pile (in)		
3/8" Wall, 24" OD Steel Pipe Pile	14	>1½		
	16	1		
	18	3/4		
	20	3/4		
	22	1/2		

4.3.2 Preliminary Bridge Foundation Design Recommendations

DESCRIPTION	VALUE	
Foundation Type	Driven Piles	
Structures	Proposed bridge crossing over railroad	

The following preliminary geotechnical design recommendations are for driven pile foundations at the proposed bridge abutment and pier locations. As we understand it, the bridge will consist of two abutments placed within proposed fill slopes, and two piers positioned on each side of the existing railroad and will provide a means for crossing the railroad tracks during and after construction of the solar field. Design information regarding the bridge abutments and piers have been provided by Tessera Solar.

Preliminary Design recommendations are based on:

Preliminary design drawings prepared by URS

Solar One Pisgah, California

January 4, 2010 Terracon Project No. 60095029

- Design information provided by Tessera Solar
- Subsurface information obtained by Terracon

The recommendations in this section are considered preliminary in nature and need to be further refined as the bridge designs become finalized. The preliminary design drawings indicate that the abutments will be supported on a pile group having 2 rows with 8 piles in each row. The interior row of piles will be installed at a batter. The piers are shown to be supported on a pile group having 6 rows with 7 piles in each row, per pier. Crash walls are also proposed on the interior of the piers, adjacent to the railroad.

A driven pile foundation system has been analyzed for support of the proposed bridge abutments and piers, based upon the geotechnical data gathered from the borings. Driven pile capacities for compressive loads have been developed for the project based upon the procedures outlined in Section 4.5 of AASHTO Standard Specifications for Highway Bridges, 17th Edition (2002) and the computer program AllPile.

The results of our analyses for selected driven piles are shown below. The pile spacing is unknown a this time; however, if the pile spacing is greater than 3 pile diameters, no reduction in capacity is needed to account for group effects. Otherwise, a reduction in capacity will need to be accounted for.

Pile Type	Location	Applicable Borings	Pile Length	Allowable Capacity (tons)
HP 10x57	North of Railroad	B-009	50	61
Ub 10x27	South of Railroad	B-011	50	41
HP 12x63	North of Railroad	B-009	50	81
	South of Railroad	B-011	50	52
HP 14x89	North of Railroad	B-009	50	104
	South of Railroad	B-011	50	68

An aggressive subsurface environment where corrosion can deteriorate the piles over their design life can generally identified by soil resistivity and pH tests. According to the FHWA-HI-97-013 Manual, Design and Construction of Driven Pile Foundations (1998), a pH value less than 4.5 or resistivity less than 2000 ohms-cm should be treated as an aggressive environment. If resistivity results are between 2000 and 5000 ohms-cm then chloride ion and sulfate ion content tests should be performed. If these tests indicate chloride ion content greater than 100 parts per million (ppm) or sulfate ion content greater than 200 ppm, then the soil should be classified as aggressive. Resistivity values greater than 5000 ohms-cm are considered non-aggressive.

Solar One Pisgah, California

January 4, 2010 Terracon Project No. 60095029

Preliminary corrosion testing was conducted on one selected sample retrieved from boring B-009, with the results presented in the table below. Based on the FHWA (1998) corrosion criteria and the preliminary test results, the subsurface materials at the bridge location may be considered non-aggressive; however, additional corrosion testing should be conducted to confirm these results.

Boring	Sample Depth (feet)	рН	Chlorides (ppm)	Sulfates (ppm)	Resistivity (ohms-cm)
B-009	0 to 5	8.18	61	1	5,900

4.3.2.1 Driven Pile Construction Recommendations

The most effective means of verifying pile capacities for either tension or axial loads is through pile load tests. Preliminary foundation design can be based upon calculated capacities utilizing soil strength criteria determined from the field and laboratory testing conducted during exploration.

Lateral resistance to horizontal forces can be enhanced by battered piles. The vertical and horizontal components of the load will depend on the batter inclinations. Batters should not exceed 1:4 (horizontal:vertical).

The contractor should select a driving hammer and cushion combination which is capable of installing the selected piling without overstressing the pile material. The contractor should submit the pile driving plan and the pile hammer-cushion combination to the engineer for evaluation of the driving stresses in advance of pile installation.

Some ground heave may be experienced as a result of pile driving at each site. Therefore, it is recommended that the top elevations of the initial piles driven be surveyed. If any heave is noted after the driving of subsequent piles, the piles should be redriven to their original top elevation. This problem can be particularly acute in pile groups.

All piles should be provided with driving shoes to protect the pile tip from damage when penetrating the dense granular soils. A representative of the geotechnical engineer should observe pile driving operations on a full-time basis. Each pile should be observed and checked for buckling, crimping and alignment in addition to recording penetration resistance, depth of embedment, and general pile driving operations.

January 4, 2010 ■ Terracon Project No. 60095029

4.3.3 Spread Footing Design Recommendations (Zone 1)

DESCRIPTION	VALUE
Foundation Type	Conventional Shallow Spread Footing
Structure	Light-weight Buildings
Bearing Material	Undisturbed Soils
Allowable Bearing Pressure	2,000 psf
Minimum Width for Continuous and Column Footings	16 inches and 24 inches, respectively
Minimum Embedment Depth Below Finished Grade	2 feet
Total Allowable Settlement	1-inch (assumed)
Estimated Differential Settlement	½ to ¾ inch over 100 feet

The allowable foundation bearing pressures apply to dead loads plus design live load conditions. The design bearing pressure may be increased by one-third when considering total loads that include wind or seismic conditions. The weight of the foundation concrete below grade may be neglected in dead load computations.

The general bearing capacity equation developed by Terzaghi was used to obtain the ultimate bearing pressure for the value provided in the table above.

Footings should be proportioned to reduce differential foundation movement. Proportioning on the basis of equal total settlement is recommended; however, proportioning to relative constant dead-load pressure will also reduce differential settlement between adjacent footings. Additional foundation movements could occur if water from any source infiltrates the foundation soils; therefore, proper drainage should be provided in the final design and during construction.

The above recommendations pertain to shallow slab-on-grade foundations in Zone 1. If buildings are planned in the area of Zone 2 (where expansive soils are present), then Terracon should be consulted and modified recommendations should be prepared.

4.3.3.1 Spread Footing Construction Considerations

For shallow spread footings bearing on undisturbed soil, the foundation excavations must be observed by a geotechnical engineer or a qualified representative to evaluate the bearing conditions prior to the placement of reinforcing steel and concrete. If undesirable (e.g., soft, loose, water softened, low density) materials are encountered in the foundation excavations, the excavations should be deepened to extend completely through the undesirable bearing materials. A lean concrete (slurry ABC with a minimum cement content of 2 sacks per cubic yard) material may be used as backfill to obtain a shallow, uniform footing depth for those foundation excavations that have been deepened. Alternatively, for the case where only a

Solar One Pisgah, California

January 4, 2010 Terracon Project No. 60095029

minor amount (i.e., less than six inches in thickness) of soft, loose, or disturbed soil is encountered at the base of a foundation excavation, the bottom could be mechanically compacted (hand tamped) to densify and improve this limited thickness of unsuitable soil, with the approval of the geotechnical engineer.

Foundations should be reinforced as necessary to reduce the potential for distress caused by differential foundation movement. The use of joints at openings or other discontinuities in masonry walls is recommended.

4.4 Seismic Considerations

DESCRIPTION	VALUE
2006 International Building Code Site Classification (IBC) ¹	С
Site Latitude	N 34° 48' 56"
Site Longitude	W 116° 25' 40"
S _s Spectral Acceleration for a Short Period	1.18
S _s Spectral Acceleration for a 1-Second Period	0.40
F _a Site Coefficient for a Short Period	1.0
F _v Site Coefficient for a 1-Second Period	1.4

¹ Note: In general accordance with the *2006 International Building Code*, Table 1613.5.2. IBC Site Class is based on seismic shear wave tests.

4.5 Floor Slab

4.5.1 Design Recommendations (Zone 1)

DESCRIPTION	VALUE	
Interior floor system	Slab-on-grade concrete.	
Floor slab support	On-site soils or approved imported soils placed and compacted in	
i looi slab support	accordance with Earthwork section of this report.	

Provided they are relatively lightly loaded (<100 psf), construction of floor slabs directly on firm, undisturbed soils or compacted fills composed of on-site granular soils are considered acceptable for the project. Where buildings are planned, the on-site soils, on most of the site, generally have no to low plasticity and low expansive potential under light loading conditions such as those imposed by floor slabs.

In areas of exposed concrete, control joints should be saw cut into the slab after concrete placement in accordance with ACI Design Manual, Section 302.1R-37 8.3.12 (tooled control joints are not recommended). Additionally, dowels should be placed at the location of proposed construction joints. To control the width of cracking (should it occur) continuous slab reinforcement should be considered in exposed concrete slabs.

Solar One Pisgah, California

January 4, 2010 Terracon Project No. 60095029

Positive separations and/or isolation joints should be provided between slabs and all foundations, columns or utility lines to allow independent movement. Interior trench backfill placed beneath slabs should be compacted in accordance with recommendations outlined in the Earthwork section of this report. Other design and construction considerations, as outlined in the ACI Design Manual, Section 302.1R are recommended.

The above recommendations pertain to lightly loaded floor slabs in Zone 1. If buildings are planned in the area of Zone 2 (where expansive soils are present) or heavier floor slabs are anticipated, then Terracon should be consulted and modified recommendations should be prepared.

4.6 Lateral Earth Pressures

4.6.1 Design Recommendations

The lateral earth pressure recommendations herein are applicable to the design of rigid retaining walls subject to slight rotation, such as cantilever, or gravity type concrete walls, with a level ground surface behind the wall. These recommendations are not applicable to the design of modular block - geogrid reinforced backfill walls. Recommendations covering these types of wall systems are beyond the scope of services for this assignment. However, we would be pleased to develop recommendations for the design of such wall systems upon request.

ITEM	VALUE ¹
Active Case	40 psf/ft
Passive Case	300 psf/ft
At-Rest Case	40 psf/ft
Coefficient of Base Friction or Adhesion at Base of Footing	0.35 ² psf

¹Note: The values are based on the on-site soils used as backfill.

Fill against foundation and retaining walls should be compacted to densities specified in the Earthwork section of this report. Compaction of each lift adjacent to walls should be accomplished with hand-operated tampers or other lightweight compactors.

4.6.2 Construction Considerations

To control the water level behind walls, we recommend a perimeter drain be installed at the foundation level as shown on the adjacent conceptual sketch and described in the following notes.

²Note: The coefficient of base friction should be reduced to 0.30 when used in conjunction with passive pressure.

- Free-draining granular backfill in this case should consist of ASTM D448 No. 57 Stone or other coarse granular material with less than 5 percent passing the No. 200 sieve. The freedraining material should be encapsulated in a filter fabric.
- Perforated pipe should be rigid PVC, sized to transport the expected water.
- Slope to drain away from building Layer of cohesive fill Foundation wall Backfill (see report requirements) Free-draining graded granular filter material or non-graded free-draining material encapsulated in an appropriate filter Native, undisturbed fabric (see report) soil or engineered fill Perforated drain pipe (Rigid PVC unless stated otherwise in report)
- Drainage pipe could be omitted if weep holes that are hydraulically connected to the granular drainage material are installed through the face of the wall, and the discharge water is conveyed away from the wall or other structures.
- Exterior ground surface should consist of a 12 inch clay cap sloped to drain from walls.
- The clay cap can be replaced by a pavement section

4.7 Pavements

4.7.1 Design Recommendations

A design R-Value of 50 was used to calculate the asphaltic concrete pavement thickness sections and a modulus of subgrade reaction value (k) of 175 pounds per cubic inch (pci) was used in calculating the Portland cement concrete pavement sections. R-value testing should be completed prior to pavement construction to verify the design R-value.

Assuming the pavement subgrades will be prepared as recommended within this report, the following pavement sections should be considered minimums for this project for the traffic indices assumed in the table below. As more specific traffic information becomes available, we should be contacted to reevaluate the pavement calculations.

Solar One Pisgah, California

January 4, 2010 Terracon Project No. 60095029

	Recommended Pavement Section Thickness (inches)*		
	Light (Automobile) Parking Assumed Traffic Index (TI) = 5.0	Heavy Parking and Drive Areas Assumed TI = 7.0	
Section I Portland Cement Concrete (4,000 psi, Air Entrained)	5.5" Concrete 4.0" Class II Aggregate Base	6.0" Concrete 6.0" Class II Aggregate Base	
Section II	3" Asphaltic Concrete over	4" Asphaltic Concrete over	
Asphaltic Concrete	3" Class II Aggregate Base	4" Class II Aggregate Base	
* All materials should meet the CALTRANS Standard Specifications for Highway Construction.			

These pavement sections are considered minimal sections based upon the expected traffic and the existing subgrade conditions. However, they are expected to function with periodic maintenance and overlays if good drainage is provided and maintained.

All concrete for rigid pavements should have a minimum 28-day compressive strength of 4,000 psi (i.e. MAG AA or equivalent), and be placed with a maximum slump of four inches. Although not required for structural support, the base course layer is recommended to help reduce potentials for slab curl, shrinkage cracking, and subgrade "pumping" through joints. Proper joint spacing will also be required to prevent excessive slab curling and shrinkage cracking. All joints should be sealed to prevent entry of foreign material and dowelled where necessary for load transfer.

4.7.2 Construction Considerations

Materials and construction of pavements for the project should be in accordance with the requirements and specifications of the State of California Department of Transportation, or other approved local governing specifications.

Base course or pavement materials should not be placed when the surface is wet. Surface drainage should be provided away from the edge of paved areas to minimize lateral moisture transmission into the subgrade.

Preventative maintenance should be planned and provided for through an on-going pavement management program in order to enhance future pavement performance. Preventative maintenance activities are intended to slow the rate of pavement deterioration, and to preserve the pavement investment.

Preventative maintenance consists of both localized maintenance (e.g. crack sealing and patching) and global maintenance (e.g. surface sealing). Preventative maintenance is usually

Solar One Pisgah, California

January 4, 2010 Terracon Project No. 60095029

the first priority when implementing a planned pavement maintenance program and provides the highest return on investment for pavements.

5.0 GENERAL COMMENTS

Terracon should be retained to review the final design plans and specifications so comments can be made regarding interpretation and implementation of our geotechnical recommendations in the design and specifications. Terracon also should be retained to provide observation and testing services during grading, excavation, foundation construction and other earth-related construction phases of the project.

The analysis and recommendations presented in this report are based upon the data obtained from the borings performed at the indicated locations and from other information discussed in this report. This report does not reflect variations that may occur between borings, across the site, or due to the modifying effects of construction or weather. The nature and extent of such variations may not become evident until during or after construction. If variations appear, we should be immediately notified so that further evaluation and supplemental recommendations can be provided.

The scope of services for this project does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.

This report has been prepared for the exclusive use of our client for specific application to the project discussed and has been prepared in accordance with generally accepted geotechnical engineering practices. No warranties, either express or implied, are intended or made. Site safety, excavation support, and dewatering requirements are the responsibility of others. In the event that changes in the nature, design, or location of the project as outlined in this report are planned, the conclusions and recommendations contained in this report shall not be considered valid unless Terracon reviews the changes and either verifies or modifies the conclusions of this report in writing.

APPENDIX A FIELD EXPLORATION

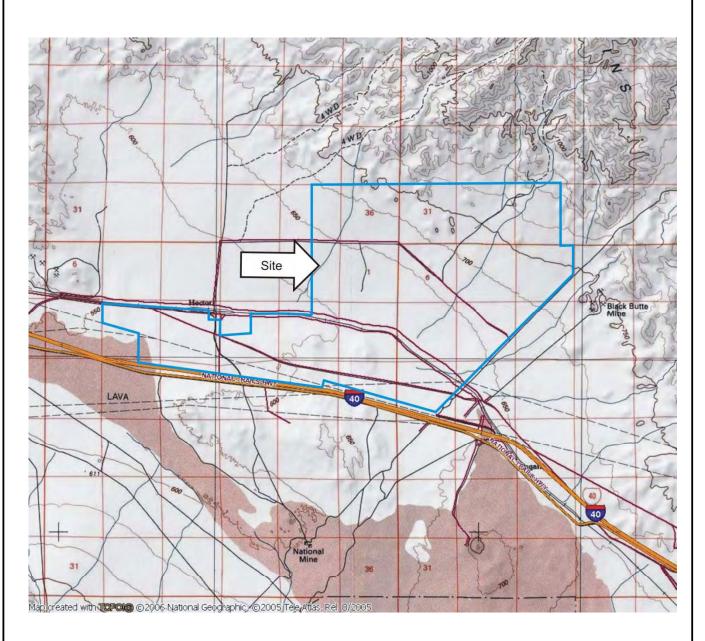


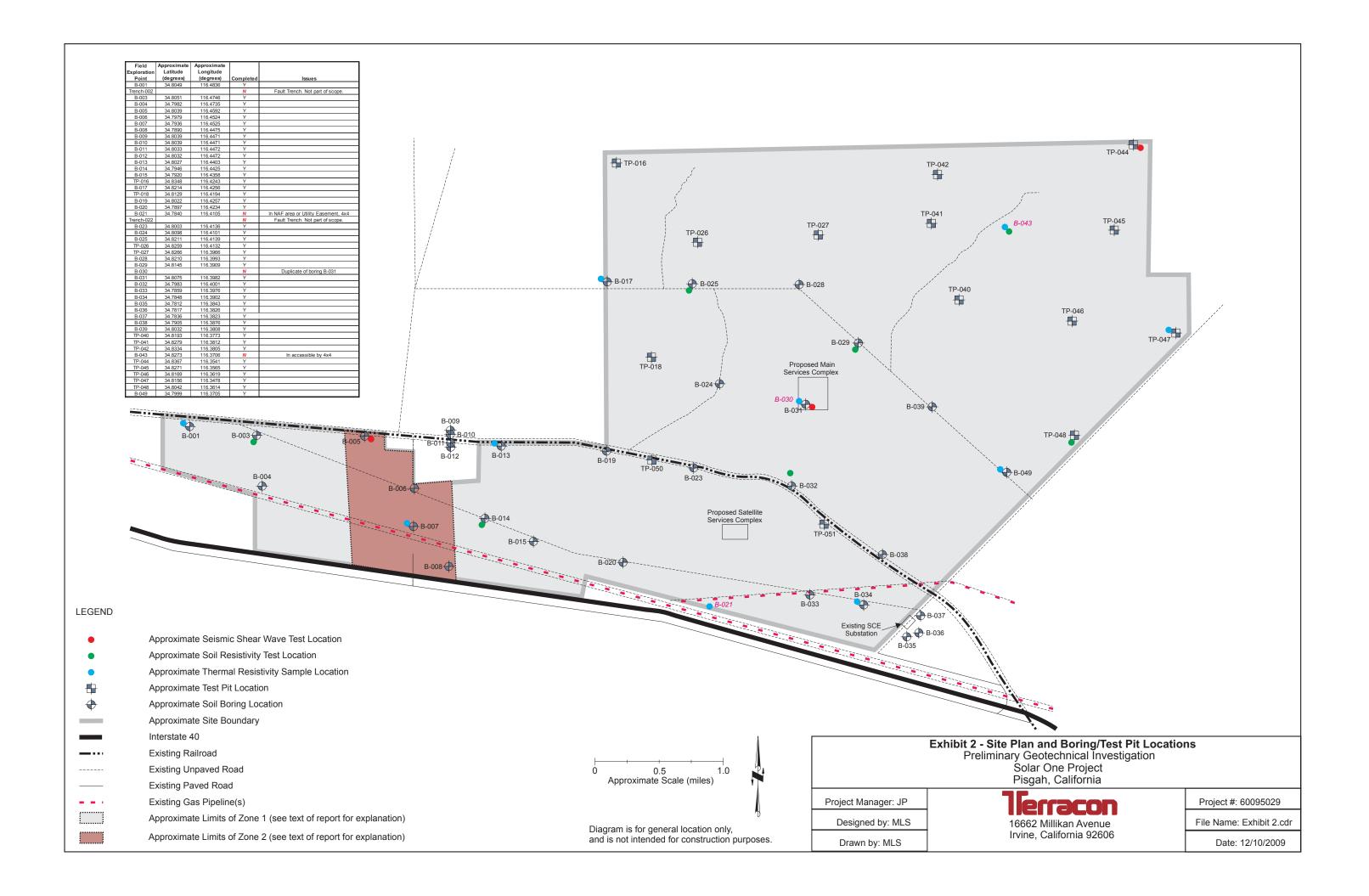
DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

Project Manag	jer: JP
Drawn by:	JP
Checked by:	PJE
Approved by:	P.IF

Project No.
60095029
Scalg:
See scale bar
File Name:
Exhibit A-1
Date:
12/10/2009

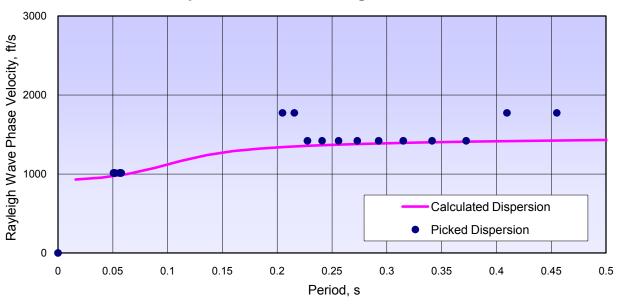
Tilerracon
Consulting Engineers & Scientists

18662 Millikan Avenue Irvine, California 92606
PH. (949) 660-9718 FAX. (949) 660-9732

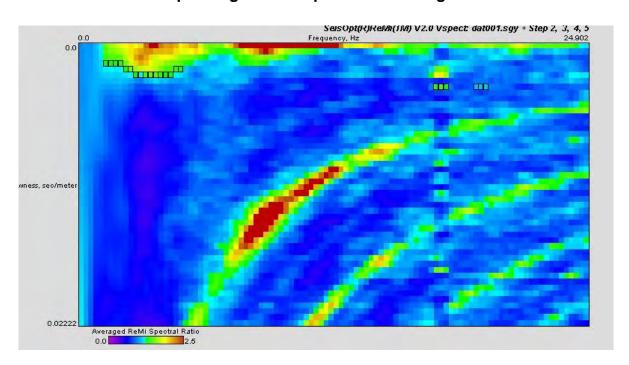

SITE VICINITY MAP

Solar One Project

Pisgah, California

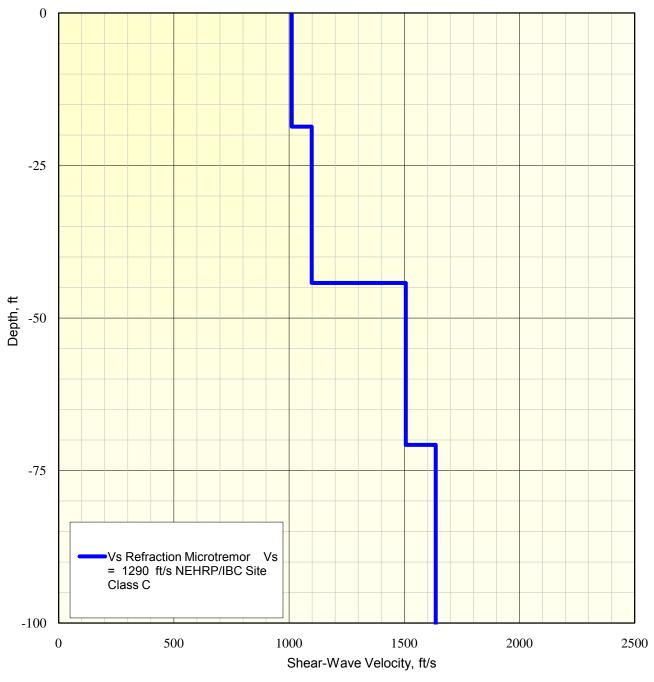

Exhibit No.

1

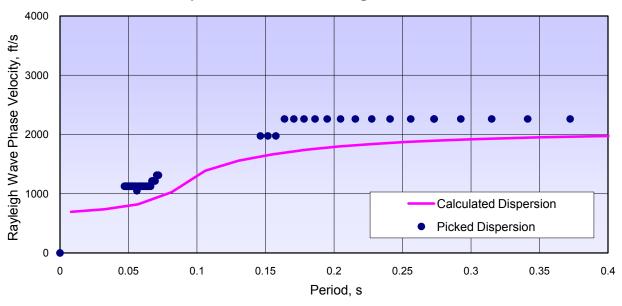


Stirling Energy System Calico - Solar One B-005 Terracon Project No. 60095029

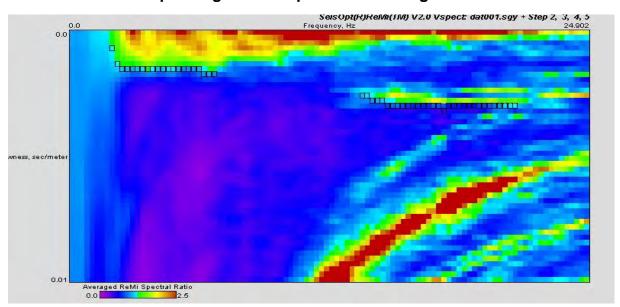
Dispersion Curve Showing Picks and Fit



p-f Image with Dispersion Modeling Picks


Stirling Energy System Calico - Solar One B-005 Terracon Project No. 60095029

Shear-Wave Velocity Profile from SeisOpt ReMi Software Analysis



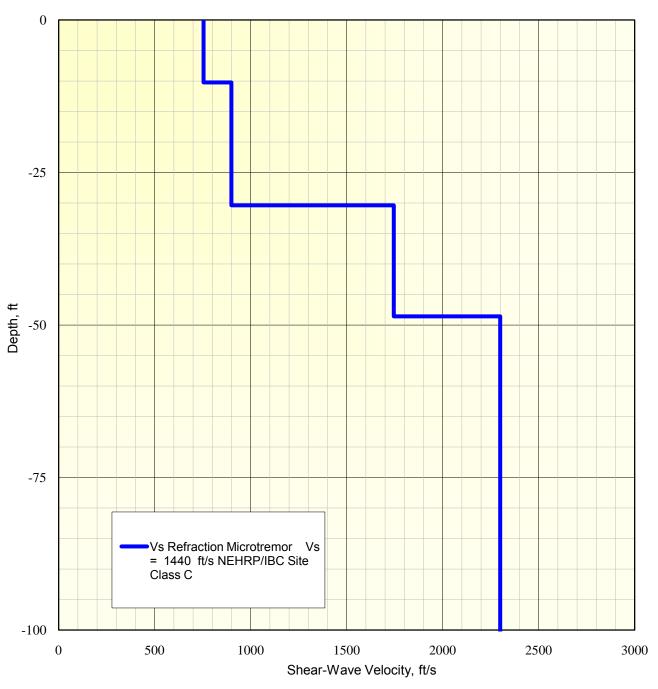
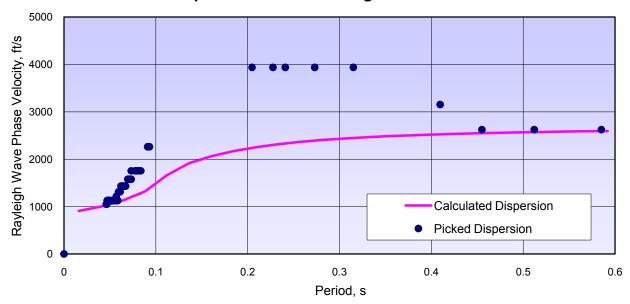
Stirling Energy System Calico - Solar One B-031 Terracon Project No. 60095029

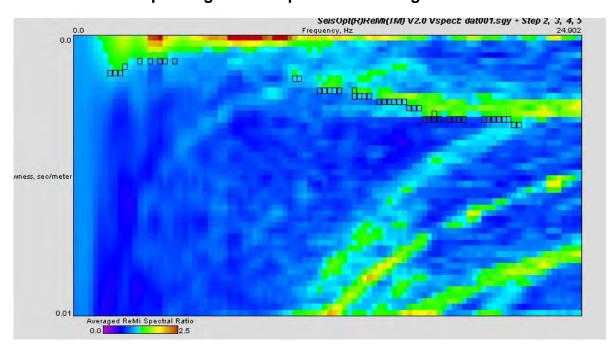
Dispersion Curve Showing Picks and Fit

p-f Image with Dispersion Modeling Picks

Stirling Energy System Calico - Solar One B-031 Terracon Project No. 60095029

Shear-Wave Velocity Profile from SeisOpt ReMi Software Analysis


Exhibit 6

Stirling Energy System Calico - Solar One T-044 Terracon Project No. 60095029

Dispersion Curve Showing Picks and Fit

p-f Image with Dispersion Modeling Picks

Stirling Energy System Calico - Solar One T-044 Terracon Project No. 60095029

Shear-Wave Velocity Profile from SeisOpt ReMi Software Analysis

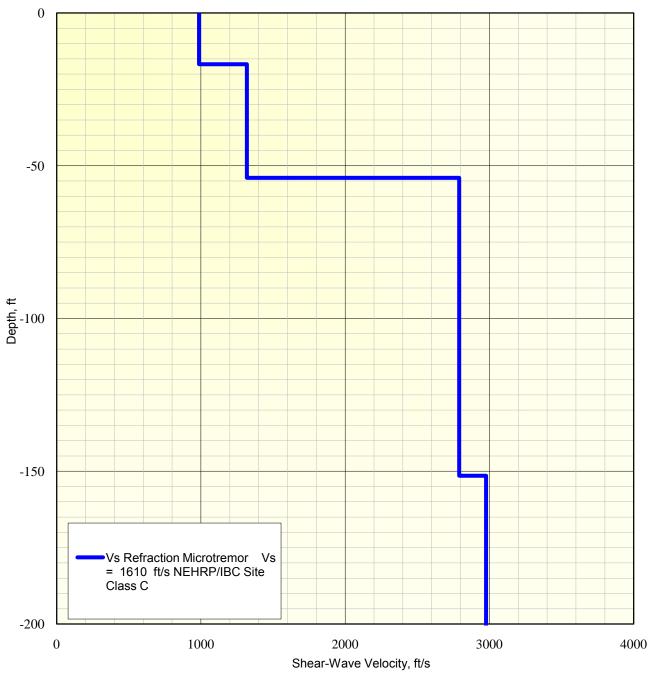


Exhibit 8

		L	OG OF BO	DRIN	IG I	10.	В	-00°	1				F	age 1	of 1
CLI	ENT Stirling	Energy Syste	ome											. J -	
SIT		Ellergy Syste	#IIIS		PRO	JEC	Γ								
	East of E	Barstow, Calif	ornia					0.	A A 4 D L F		r One		TEOTO		
								SA	AMPLE	=			TESTS		
GRAPHIC LOG	DE Approx. Surface Elev.:	SCRIPTION			DЕРТН, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	SILTY SAND Beig fine to medium grained sand, and	ained sand, sor	nse with me coarse		2—	SM		BS							
	POORLY GRADEI Beige, medium de	ense to dense,	SILT with fine	1804		SP- SM	X	RS		55	3	93			
	to medium grained grained sand and	d sand, some o trace fine grav	oarse el.		6—	SP- SM	X	RS		79	3	96			
					8										
					_	SP- SM	X	RS		73	7	98			
					12 —										
					16—	SP- SM	X	RS		65	11	92			
					18—										
					_	SP- SM	X	RS		79	8	103			
60					24 —										
GDT 12/11.	26 Bottom of boring. Groundwater not	encountered		1781		SP- SM	X	SPT		50/5"	5				
BOREHOLE 2000 60095029 BORING LOGS.GPJ TERR2000.GDT 12/1/10g The Manual Company of the Company	Boring backfilled v	with soil cutting	S.												
The betw	stratification lines represent the een soil and rock types: in-situ	e approximate bour u, the transition ma	ndary lines y be gradual.								<u> </u>		1	1	
WA	TER LEVEL OBSERVAT		-						BOF	RING S	TARTE	-D		10	-5-09
WL	∑ NE Ā		76-		~					RING C	OMPL	ETED		10	-5-09
WL	$ar{ar{\Lambda}}$		Ter		JL	J			RIG		CME		OREM		JP
ML WL												JO	OB#	6009	5029

	LOG OF BOR	ING	VО	. B	-00	3				F	Page 1	of 1
CLI	ENT Stirling Energy Systems											
SIT		PRO	JEC	T								
	East of Barstow, California							r One				
					SA	AMPLI	=			TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 1824 ft	DEPTH, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	SILTY SAND Beige, loose with fine to coarse grained sand and some sub-angular 1822.	-	SM	M	SPT		8					
	\fine gravel.	2-	SP	X	RS		34	4	99			
	POORLY GRADED SAND Beige, medium dense to very dense with fine to coarse	4-	SP	X	SPT		65					
	grained sand.		SP	X	RS		50/5"	2	112			
	7.5 1816.	6-	SP	X	SPT		55					
	SILTY SAND Beige, dense with fine to coarse grained sand and trace sub-angular	8 —	SM	X	RS		78	10	99			
	9.5 fine gravel. SANDY SILT Beige, hard with fine	10—	SM	X	SPT		23	4	109			
	grained sand.		ML	X	RS		80					
		12-	ML	X	SPT		53					
0.50.415	14.5	14-	ML	X	SPT		26					
	POORLY GRADED SAND WITH SILT Beige, very dense with fine to coarse	16—	SP- SM	X	RS		50/5"	3	112			
	grained sand.		SIVI									
		18—										
	20 1804 SANDY SILT Beige, hard with fine	20 _	ML		RS		50/4"	3	107			
	grained sand.	22-										
1/09		24—										
12/1	26.5	26 —	ML	X	SPT		54	14				
BORHOLE 2000 60095029 BORING LOGS.GPJ 1EKK2000.GDJ 12/1/09 AM L WL	Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.											
The	stratification lines represent the approximate boundary lines /een soil and rock types: in-situ, the transition may be gradual.				· · · · ·							
WA	TER LEVEL OBSERVATIONS, ft					BOF	RING S	TARTE	ΞD		10	-5-09
WL						BOF	RING C					-5-09
WL	ž ž Ž Ž	حال	_C			RIG		CME		OREM		MLS
Mr Mr									J(OB#	6009	5029

			L	OG OF	BORI	NG I	VО	. B	-004	4				F	Page 1	of 1
CLI	IENT	Sti	rling Energy Syst	ems												
SIT	Έ					PRO	JEC	Т			Colo	r One				
		Eas	t of Barstow, Calif	ornia					SA	AMPLI		r One		TESTS	3	
GRAPHIC LOG	Appro	x. Surface Ele	DESCRIPTION			DЕРТН, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
		SILTY SAND loose with fin	WITH GRAVEL Bei e to coarse grained gular fine gravel.	ge, sand and		2-	SM		RS		31	6	115			
	•	POORLY GR dense to very grained sand	ADED SAND Beige dense with fine to	, medium coarse	1825.5	4— — — 6—	SP	X	RS		32	5	113			
			onate observed aro	ound 8 feet	1820	8	SP	X	RS		32	7	117			
	11.5	dense with fir some sub-an	WITH GRAVEL Beine to coarse grained gular fine gravel. ADED SAND Beige	d sand and	1818.5	10—	SM	X	RS		61	10	113			
	14.5	to very dense sand. POORLY GR	with fine to coarse ADED SAND WITH S	grained SILT	1815.5	14	SP-		RS		50/6"	11	101			
	;		L Beige, very dense grained sand and g gravel.			16— ———————————————————————————————————	SM									
60/						22	SP- SM		RS		50/2"	11	108			
The bety WL WL WL			ring. not encountered. lled with soil cutting	S.	1804.5	_	SP- SM		SPT		50/6"					
BORING LOGS.	etratifica	ution lines repres	ant the approximate have	ndany lines												
betv			ent the approximate bour in-situ, the transition ma													
WA		EVEL OBSEF	RVATIONS, ft ▼								RING S					-5-09
WL WL	.,_	<u> </u>	<u>¥</u>	7 [e	CC:	٦ſ	-6	71		BOF	RING C			OREM)-5-09 MLS
WL			<u> </u>							0		OIVIL		ORLIVI OB#		95029

	LOG OF E	30RI	NG I	VО	. B	-00	5				F	Page 1	of 1
CLI	ENT Stirling France Systems												
SIT	Stirling Energy Systems		PRO	JFC									
	East of Barstow, California				•			Sola	r One				
						SA	AMPLE	<u> </u>			TESTS	; 	
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 1852 ft		DEPTH, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	SILTY SAND WITH GRAVEL Beige, loose with fine to coarse grained sand and			SM	H	SPT		13					
	2.5 some sub-angular fine gravel.	1849.5	2-	SM		RS		21	22	96			
	FAT CLAY Red-brown, stiff with low to medium plasticity fines. Calcium Carbonate observed around 3 feet		4-	СН	X	SPT		14					
	bgs.		Ξ	СН		RS		32	27	92	58	31	
	Contains fine grained sand and is very stiff.		6—	СН	A	SPT		10	<u> </u>	J <u>Z</u>	30	01	
			8-	СН		RS		38	27	98			
			10-	СН	A	SPT		14					
			- - -	СН		RS		42	27	96			
			12	СН	X	SPT							
			14-	СН	X	SPT							
	Trace fine sub-angular gravel observed around 15 feet bgs.		16—	СН	X	RS		29	26	95			
	Ç		18—										
			20—										
				СН	X	RS		36	28	97			
			22—										
			24-										
	26.5	1825.5	26—	СН	X	SPT		20	29				
The betw WL WL WL	Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.												
The	stratification lines represent the approximate boundary lines			<u> </u>									
betw	reen soil and rock types: in-situ, the transition may be gradual. TER LEVEL OBSERVATIONS, ft						R∩⊏	RING S	ΤΔΡΤΕ	-D		10	-5-09
WL								ING S)-5-09)-5-09
WL	Ā NE Ā Ā	rr a	30				RIG		CME		OREM		MLS
WL		`				_				J	OB#	6009	95029

	LOG OF BO	ORII	NG I	NO	. B	-00	6				F	Page 1	of 1
CLI	ENT Stirling Energy Systems											<u> </u>	
SIT			PRO	JEC	T								
	East of Barstow, California						A A A D L F		r One				
						SA	AMPLE	=			TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 1878 ft		DEPTH, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	SILTY SAND WITH GRAVEL Beige, loose with fine to coarse grained sand and		=	SM	X	SPT		47					
	2.5 some sub-angular fine gravel.	875.5	2-	SM	X	RS		50/5"	4	105			
	FAT CLAY Red-brown, stiff to very stiff with low to medium plasticity fines.		4-	СН	X	SPT		35					
			Ξ	СН	X	RS		38	12				
			6—	СН	X	SPT		33	12				
			8-	СН		RS		45	23	90			
			10—	СН	X	SPT		26					
			=	СН	X	RS		65	26	98			
			12—	СН	X	SPT		19					
			14 —	СН	X	SPT		30					
			16—	СН	X	RS		54	24	101			
			18— —										
			20 —	СН		RS		42	25	94			
			22—										
			24—										
				СН	A	BS		22	24				
	26.5 Bottom of boring.	851.5	26—	CIT	 	ВЗ			24				
The Source Codes Ground Today Multiple Codes Ground Today	Groundwater not encountered. Boring backfilled with soil cuttings.												
The	stratification lines represent the approximate boundary lines												
betw	reen soil and rock types: in-situ, the transition may be gradual.						B 6 :-	W. 10. 51					. =
WA WL	TER LEVEL OBSERVATIONS, ft							RING S)-5-09)-5-09
WL	A NE A A A A A A A A A A A A A A A A A A	'ſż	36				RIG		CME		OREM		JP
WL WL		_ •							-··· -		OB #		95029

	LOG OF	BORI	NG I	VО	. B	-00	7				F	Page 1	of 1
CLI	ENT Stirling Energy Systems												
SIT	Stirling Energy Systems		PRO	JEC	T								
	East of Barstow, California				•			Sola	r One				
						SA	AMPLI	E I			TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 1895 ft		DEPTH, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	SILTY SAND WITH GRAVEL Beige, loose with fine to coarse grained sand and		_	SM	М	SPT		16					
	2.5 some sub-angular fine gravel.	1892.5	2-	SM		RS		29	3				
	CLAYEY SAND Red-brown, medium dense with fine to medium grained sand.		4—	sc	X	SPT		25					
	Lightly cemented.	4000	=	sc		RS		43	24	93			
	FAT CLAY Red-brown, stiff to hard with low to medium plasticity fines and trace fine	1889	6—	СН	X	SPT		25	4	55			
	to medium grained sand.		8-	СН	X	RS		46	29	84			
			10-	СН	X	SPT		25					
	Crystalline mica observed at 10 feet bgs. Increasingly plastic.		=	СН	X	RS		50	27	97	69	41	
	3 ,1		12	СН	A	SPT		22					
			14-	СН	X	SPT		60					
			16—	СН	X	RS		50/5"	22	104			
			18—										
			20—										
			=	СН	X	RS		73	23	105			
			22-										
			24-										
	26.5	1868.5	26—	СН	X	SPT		37	26				
The betw WL WL WL	Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.		_										
5 The	stratification lines represent the approximate boundary lines												
betw	een soil and rock types: in-situ, the transition may be gradual.												
WA	TER LEVEL OBSERVATIONS, ft ☐ NE ▼ NE							RING S					-5-09
WL	¥	CC :	٦ſ	-6	71		RIG	RING C	CME		OREM		-5-09 JP
K WL				-•			1110		OIVIL		ORLIVIA OB#		95029

SITE East of Barstow, California DESCRIPTION Approx. Surface Elev.: 1921 ft SiLTY SAND WITH GRAVEL Beige, loose with fine to coarse grained sand and some sub-angular fine gravel. FAT CLAY Red-brown, very stiff to hard with low to medium plasticity fines. PROJECT Solar One SAMPLE TESTS ALUMAN SAMPLE TESTS SAMPLE TESTS ALUMAN SAMPLE TESTS SAMPLE TESTS ALUMAN SAMPLE TESTS SAMPLE TESTS ALUMAN SAMPLE TESTS SAMPLE TESTS ALUMAN SAMPLE	ge 1 of 1
East of Barstow, California DESCRIPTION Approx. Surface Elev.: 1921 ft Siltry Sand With fine to coarse grained sand and some sub-angular fine gravel. FAT CLAY Red-brown, very stiff to hard with low to medium plasticity fines. FAT CLAY Red-brown, Plasticity fines. PROJECT Solar One SAMPLE TESTS SOLAR OLD SAMPLE TESTS A Light Sill Sill Sill Sill Sill Sill Sill Sil	
East of Barstow, California DESCRIPTION Approx. Surface Elev.: 1921 ft SILTY SAND WITH GRAVEL Beige, loose with fine to coarse grained sand and some sub-angular fine gravel. FAT CLAY Red-brown, very stiff to hard with low to medium plasticity fines. FAT CLAY Red-brown, Very stiff to hard with low to medium plasticity fines. SIM RS 37 22 95 CH RS 44 27 96 CH RS 51 30 92 10 CH RS 51 30 92	-
DESCRIPTION Approx. Surface Elev.: 1921 ft Siltry SAND With GRAVEL Beige, loose with fine to coarse grained sand and some sub-angular fine gravel. 1918.5 FAT CLAY Red-brown, very stiff to hard with low to medium plasticity fines. 1918.5 CH RS 44 27 96 10	-
SILTY SAND WITH GRAVEL Beige, loose with fine to coarse grained sand and some sub-angular fine gravel. 1918.5 SM RS 37 22 95	-
Some sub-angular fine gravel. 1918.5 SM RS 37 22 95	INDEX
With low to medium plasticity fines. 4	
8— CH RS 44 27 96 10— CH RS 51 30 92 12— 14— 14— 16— CH RS 47 26 98	
10 — CH RS 51 30 92 12— 14— 14— 16— CH RS 47 26 98 18— 20	38
CH RS 51 30 92 12— 14— 16— CH RS 47 26 98	
CH RS 51 30 92 12— 14— 16— CH RS 47 26 98	
14— 16— CH RS 47 26 98	
16—CH RS 47 26 98	
20 — CH RS 50/6" 26 100	
24—	
26.5 1894.5 26 CH SPT 23 27	
Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings. The stratification lines represent the approximate boundary lines between soil and rock types: in-situ, the transition may be gradual. WATER LEVEL OBSERVATIONS, ft WL V NE WL	
The stratification lines represent the approximate boundary lines between soil and rock types: in-situ, the transition may be gradual.	
WATER LEVEL OBSERVATIONS, ft BORING STARTED	10-6-09
WL Y NE Y BORING COMPLETED RIG CME-75 FOREMAN	10-6-09
WL Y I PRICE CME-75 FOREMAN JOB# 6	MLS 60095029

	LOG OF BOR	ING I	NO.	В	-00	9				F	age 1	of 2
CL	IENT Stirling Energy Systems											
SIT	E	PRO	JEC	Т								
	East of Barstow, California				9	AMPLE		r One		TESTS		
GRAPHIC LOG	DESCRIPTION	DЕРТН, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIMIT	PLASTICITY INDEX	
	Approx. Surface Elev.: 1882 ft POORLY GRADED SAND Beige, medium dense with fine to coarse grained sand and some fine sub-angular gravel.		SP		BS	Ľ.	_				ш <u>=</u>	
		4-	SP	X	RS		28	1	114			
	POORLY GRADED SAND WITH SILT AND GRAVEL Beige to light-brown, dense with fine grained sand and some fine	6-	SP- SM	X	RS		71	3	119			
	sub-angular gravel. Very dense with calcium carbonate observed around 8 feet bgs.	8	SP- SM	X	RS		50/5"	3	122			
	Dense with decreased gravel size around 10 feet bgs	10-	SP- SM	X	RS		71	5	115			
		12—										
	Increased fines around 16 feet bgs.	16-	SP- SM	X	RS		90	3	102			
		18—										
		22-	SP- SM		RS		50/5"	4	111			
1/09		24-										
GDT 12/1		26-	SP- SM	X	RS		70	10				
BOREHOLE 2000 60095029 BORING LOGS.GPJ TERR2000.GDT 12/1/1/09 TAM	29 1853 SILT Beige, hard with fine grained sand	28-										
OGS.GPJ	and coarse sub-angular gravel.	30-	ML	×	RS		50/6"	13	90			
SORING L	Continued Next Page	32—										
The bet	stratification lines represent the approximate boundary lines ween soil and rock types: in-situ, the transition may be gradual.											
009 W <i>A</i>	ATER LEVEL OBSERVATIONS, ft					BOF	RING S	TARTE	ED		10	-8-09
JWL		7					RING C					-8-09
WL WL	i i i i i i i i i i i i i i i i i i i	عل		Ji		RIG		CME		OREMA		MLS 95029

	LOG OF BOI	RIN	G I	NO	. В	-00	9				F	Page 2	of 2
CL	ENT Stirling Energy Systems												
SIT	E	F	PRO	JEC [°]	T			Cala	. 0				
	East of Barstow, California					S	AMPL		r One		TESTS		
GRAPHIC LOG	DESCRIPTION		DEPTH, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	<u>SILT</u> Beige, hard with fine grained sand and coarse sub-angular gravel.	3	34 —										
	No gravel observed in 35 foot sample. 37 18		86—	ML	X	RS		46	13				
	POORLY GRADED SAND WITH SILT AND GRAVEL Beige to light-brown, dense to very dense with fine grained sand and some fine sub-angular gravel.	3	38— ———————————————————————————————————										
				SP- SM		RS		50/5"	19	83			
		4	 	SP- SM	X	RS		56	11				
			18— —	SIVI									
	51 18 Bottom of boring.		50 —	SP- SM	X	SPT		50/4"	28	73			
60095029 BORING LOGS.GPJ TERR2000.GDT 12/11/09 Appl Appl Appl Appl Appl Appl Appl App	Groundwater not encountered. Boring backfilled with soil cuttings.												
The bety	stratification lines represent the approximate boundary lines veen soil and rock types: in-situ, the transition may be gradual.	ı						l			I		
WA	TER LEVEL OBSERVATIONS, ft						BOF	RING S	TARTE	ΞD		10	-8-09
WL 300	1.12	_						RING C					-8-09
DONE TO THE TOWN TWO THE TWO THE TOWN TWO THE	ă IGU			_L	J		RIG		CME		DREMA DB#		MLS 95029

	LOG OF B	ORII	NG I	10 .	В.	-01	0				F	Page 1	of 1
CLI	ENT Stirling Energy Systems												
SIT	E		PRO	JEC	Т				_				
	East of Barstow, California					SA	AMPLE		r One		TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 1882 ft		DЕРТН, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	POORLY GRADED SAND WITH SILT AND GRAVEL Beige to light-brown, dense with fine grained sand and some fine sub-angular gravel.		2	SP- SM	X	RS		41	1	95			
			6-	SP- SM	X	RS		50/6"	3	113			
	In an analysis are the second 40 foot		10-	SP- SM	0	NR		50/5"		440			
	Increased gravel content around 10 feet bgs.		12	SP- SM		RS		50/2"	5	113			
			16—	SP- SM	×	RS		50/3"	2	122			
			20—————————————————————————————————————	SP- SM		RS		50/6"	4	118			
00.GDT 12/11/09	26.5 Bottom of boring. Groundwater not encountered.	1855.5	26	SP- SM	X	SPT		50/3"	11				
BOREHOLE 2000 60085029 BORING LOGS.GPJ TERR2000.GDT 12/1/1/09 TAM	Boring backfilled with soil cuttings.												
The betw	stratification lines represent the approximate boundary lines een soil and rock types: in-situ, the transition may be gradual.												
WA	TER LEVEL OBSERVATIONS, ft							RING S					-8-09
JW WL	Ā NE Ā Ā	re :	7r	-6	7		BOF RIG	RING C	OMPL CME		OREM		-8-09 MLS
WL WE		11 (ار		KIG		CIVIE		OREM OB#		MLS 95029

	LOG OF BOR	ING	NO	. B	-01	1				F	age 1	of 2
С	IENT Stirling Energy Systems										<u>g</u>	
S	TE	PRO	JEC	T								
	East of Barstow, California					AMPLE		r One		TESTS		
GRAPHIC LOG	DESCRIPTION	ЭЕРТН, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIMIT	PLASTICITY INDEX	
GF	Approx. Surface Elev.: 1883 ft POORLY GRADED SAND Beige, medium dense with fine to medium grained sand.	<u> </u>	SP	M	 SPT		ਜੂ 14	%O S	D G		되고 기기	
	Fine to coarse grained sand and trace sub-angular gravel.	2-	SP SP	X	RS SPT		47	2	115			
	4.5 1878.5 SILTY SAND Beige to light-brown, very	4-						4	444			
	dense with fine to coarse grained sand and trace sub-angular gravel.	6-	SM SM	A	RS SPT		50/4"	4	114			
	No gravel observed at 8 feet bgs.	8-	SM	_	RS		50/5"	4	114			
	9.5 POORLY GRADED SAND WITH SILT	10-	SM		SPT		50/3"	7	117			
	AND GRAVEL Beige, very dense with fine to coarse grained sand, some		SP-	X	RS		50/3"	3	117			
	sub-angular gravel, and non-plastic fines.	12-	SM SP-	M	SPT		50/6"					
		14-	SM SP-		SPT		77					
		16-	SM SP- SM	X	RS		50/6"	7	114			
		18—										
	Calcium carbonate observed at 20 feet bgs.	22—	SP- SM	X	RS		50/4"	5	107			
6	24 1859 SILTY SAND Beige to light-brown, very	24										
17/21 106	dense with fine to coarse grained sand and trace sub-angular gravel.	26-	SM	×	SPT		50/6"	4	99			
OREHOUSE ZOOD BOUGSOLGE GEORGE COCS. GFO TERREZOOD. GEOT TETTINGS M. M		28-										
GS.GPJ		30-	SM	X	RS		50/5"	15	94			
SING FO	Continued Next Page	32										
Tr	e stratification lines represent the approximate boundary lines											
be VV	ween soil and rock types: in-situ, the transition may be gradual. ATER LEVEL OBSERVATIONS, ft					BOR	RING S	TARTE	-D		10	-6-09
W							RING C)-6-09
W		30			П	RIG		CME		OREM		MLS
g w				_	_				J(OB#	6009	5029

		LOG OF BO	וואכ	101	V	. D	-U I	1				F	Page 2	of 2
CLIE		nergy Systems												
SITE	<u> </u>			PRO	JEC	T								
	East of Bar	stow, California				1	0	AMPLI		r One		TESTS		
							3/	-NVIF LI	_			ILSIS		
FOG:				ند	MBOL			RY (in)	Ţ.	T, %	ISITY		Υ	
GRAPHIC LOG	DESC	RIPTION		DЕРТН, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
O	SILTY SAND Beige t	o liaht-brown, verv))		Ĺ	<u>x</u>	В	≥0	۵		⊒≤	
	dense with fine to coatrace sub-angular gra	arse grained sand and		34 —										
				36-	SM	X	SPT		59	21				
				38-										
				40-	SM		RS		50/2"	14	103			
				42-	SIVI		KO		50/2	14	103			
				44-										
				46—	SM	M	SPT		69	21				
				=										
				48—										
,	51.5	18	331.5	50-	SM	X	RS		75	21	98			
	Bottom of boring. Groundwater not end Boring backfilled with	ountered.		_										
The s	stratification lines represent the ap	proximate boundary lines												
	een soil and rock types: in-situ, th							BOF	RING S	TARTI	ED.		10	-6-0
	V NE VE OBOLITATION		-						RING C)-6-0!
	Δ̄ Ā	7[er	ſ		ַ_[RIG		CME		OREM.		MLS
WL	,						_				JC	OB#	6009	5029

		L	OG OF E	30RI	NG I	10	. B	-012	2				P	age 1	of 1
CLI	ENT Stir	rling Energy Syste	ıme												
SITI	E				PRO	JEC	Т								
	East	of Barstow, Califo	ornia					S/	AMPLE		r One		TESTS		
GRAPHIC LOG	Approx. Surface Ele	DESCRIPTION			DEPTH, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	SILTY SAND	Beige to light-brown				SM	М	SPT		19					
	dense with fir trace sub-ang	ie to coarse grained jular gravel.	sand and		2-	SM		RS		82	3	119			
					4-	SM	M	SPT		35					
	6			1877	=	SM		RS		50/4"	4	120			
	POORLY GRA	ADED SAND WITH S Beige, very dense	SILT with	1077	6—	SP- SM	M	SPT		50/6"					
	fine to coarse	grained sand, some gravel, and non-plas	Э			SP- SM	X	RS		50/6"	4	117			
	oub ungulai g	ravoi, and non plac				SP- SM	M	SPT		50/6"					
					_	SP-	×	RS		50/6"	3	114			
	13.5			1960 F	12	SM SP-	M	SPT		72					
	POORLY GRA	ADED SAND Beige,		1869.5	14-	SM SP		SPT		77					
	SILTY SAND	ne to coarse grained Beige to light-brown ne to coarse grained nular gravel.	n, very	1868	16— ———————————————————————————————————	SM	×	RS		50/6"	3	112			
90					20	SM	X	RS		50/2"	12	84			
12/11/	26.5			1856.5	26—	SM	M	SPT		66	8				
BORHOLE 2000 60085029 BORING LOGS.GPJ TERR2000.GDT 12/1/109 AM Pag and Terrace to the control of	Bottom of bor Groundwater	ing. not encountered. led with soil cuttings	3 .	1030.3	_										
50 The	stratification lines represe een soil and rock types:														
WA	TER LEVEL OBSER		, se graduar.						BOF	RING S	TARTE	ED .		10	-5-09
WL	Ÿ NE	Ť	76	.			•		BOR	RING C					-5-09
WL	Ā	<u>V</u>	16		JL	L	J		RIG		CME		OREM		MLS
ML WL												JO	OB#	6009	5029

	LOG OF BOR	ING I	NO	. B	-01	3				F	Page 1	of 1
CLI	ENT Stirling Energy Systems											
SIT	E	PRO	JEC	Т			Oala	0				
	East of Barstow, California				S	AMPLI		r One		TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 1903 ft	DEPTH, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	POORLY GRADED SAND Beige, medium dense with fine to medium grained sand.	2	SP		RS		58	2	129			
		4-	5	Ă	110		30		129			
	7 1896	6-	SP	X	RS		87	3	110			
	POORLY GRADED SAND WITH SILT AND GRAVEL Beige, very dense with	8-	SP-		RS		50/5"	2	115			
	fine to coarse grained sand, some sub-angular gravel, and non-plastic fines.		SM									
	Sub drigular graver, and non plastic lines.	10	SP-	X	RS		50/3"	5	108			
		12— 	SM									
			SP-		RS		50/6"	2	106			
		16—	SM									
		20-	SP-		RS		50/4"	4	112			
	22 1881	22-	SM					·	- · · -			
66	<u>SILTY SAND</u> Beige to light-brown, very dense with fine to coarse grained sand and trace sub-angular gravel.	24-										
12/11/	26.5 1876.5	26—	SM	M	SPT		47	4				
BOREHOLE 2000 60095029 BORING LOGS GPJ TERR2000 GDT 12/1/09 APA APA APA APA APA APA APA APA APA AP	Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.											
The	stratification lines represent the approximate boundary lines											
betv VV/A	veen soil and rock types: in-situ, the transition may be gradual. TER LEVEL OBSERVATIONS, ft					BOF	RING S	TARTE	-D		10	-5-09
00/ WL							RING C)-5-09)-5-09
ᆔ WL	A A A A A A A A A A A A A A A A A A A	30				RIG		CME		OREM		MLS
WL					_				J	OB#	6009	95029

	LOG OF BO	RING	NO	. B	3-01 ₄	4				F	age 1	of 1
CLI	ENT Stirling Energy Systems											
SIT	E	PRC	JEC	Т				_				
	East of Barstow, California				S	AMPI I		r One		TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 1918 ft SILTY SAND Beige to light-brown, medium dense with fine grained sand. 4.5 POORLY GRADED SAND WITH SILT AND GRAVEL Beige, medium dense with fine to medium grained sand. Red-brown.	3.5 4— 6— 8—	SM OSCS SAMBOL SP-SM	X	BS RS RS	RECOVERY (in)		2 WATER CONTENT, %	107 111 118	GINOII]	PLASTICITY INDEX	
60/	Calcium carbonate observed around 11 feet bgs.	10 — 12 — 14 — 16 — 18 — 20 — 22 — 24 —	SP- SM	×	RS		50/4" 50/6"	5 9	116			
The Sound So	Increased silt content and trace gravel. 26.5 Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.	26 _	SP- SM		SPT		85	5				
The betv	stratification lines represent the approximate boundary lines /een soil and rock types: in-situ, the transition may be gradual.											
WA	TER LEVEL OBSERVATIONS, ft					BOF	RING S	TARTE	ED		10	-6-09
WL							RING C					-6-09
WL	Y Y TO THE TO TH				\prod	RIG		CME	-75 F	OREM		MLS
# WL					_				J(OB#	6009	5029

		LOG	OF BORI	NG I	10	. В	-01	5				F	Page 1	of 1
	CLII	ENT Stirling Energy Systems												
r	SITI	E		PRO	JEC.	Т				_				
H		East of Barstow, California	a				SA	AMPLI		r One		TESTS		
	GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 1948 ft		DЕРТН, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
		POORLY GRADED SAND Beige, med dense with fine to coarse grained san	dium d.	2-	SP		RS		40	4	111			
		4.5	1943.5	4	SF.	X	KS		40	4	111			
		POORLY GRADED SAND WITH SILT Beige, medium dense with fine graine sand.		6-	SP- SM	X	RS		50/4"	18	86			
		Trace sub-angular gravel and calcium	1	8-	SP-	X	RS		50/4"	9	105			
-		9.5 carbonate observed around 8 feet bgs SILTY SAND Beige to light-brown, ve	s. <u>1938.5</u>	10—	SM									
		dense with fine grained sand.	'y	——————————————————————————————————————	SM	X	RS		50/5"	9	101			
				12										
				16—	SM		RS		50/5"	7	103			
				20 —	SM	X	RS		50/5"	25	84			
12/11/09				22—24—	SM		SPT		32	18				
BOREHOLE 2000 60095029 BORING LOGS.GPJ TERR2000.GDT 12/11/09		Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.	1921.5	26—										
5029 B	The s	stratification lines represent the approximate boundary leen soil and rock types: in-situ, the transition may be g	ines radual.											
6009		TER LEVEL OBSERVATIONS, ft						BOF	RING S	TARTE	ED		10	-6-09
2000	WL		L	_				BOF	RING C	OMPL	ETED			-6-09
EHOLE	WL	<u>Λ</u>	Jerra					RIG		CME		OREM		MLS
Ã.	WL										J	OB#	6009	95029

	LOG OF I	BORI	NG I	10	. B	-01	7				F	Page 1	of 1
CLI	ENT Stirling Energy Systems												
SIT	E		PRO	JEC	Т								
	East of Barstow, California					9/	AMPLI		r One		TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 2122 ft		DЕРТН, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	POORLY GRADED SAND WITH SILT AND GRAVEL Beige, medium dense with fine to medium grained sand. 4.5	2117.5	2— 2— 4—	SP- SM	X	RS		37	1	118			
。 。) p	POORLY GRADED SAND WITH GRAVEL Beige, dense with fine to coarse grained sand.	2117.5	6—	SP	X	RS		38	1	114			
。 ° О	Decreased gravel content.		8-	SP	X	RS		47	1	112			
). Ø			10-	SP	X	RS		55	1				
。 () () ()			12										
	Very dense with an increased gravel content.		16— 	SP		RS		50/3"	1	116			
	24	2098	22	SP	X	RS		50/6"	1	125			
0.GDI 12/11/09	SILTY SAND Beige to light-brown, dense with fine grained sand and trace sub-angular gravel. Bottom of boring. Groundwater not encountered.	2095.5	26	SM	X	SPT		90	1				
BORHAULE 2000 60085029 BORING LOGS.GPJ LERREZ000.GDJ 12/17/109 Petw Body WL	Boring backfilled with soil cuttings.												
The betw	stratification lines represent the approximate boundary lines een soil and rock types: in-situ, the transition may be gradual.						5 .5.5						
WA WL	TER LEVEL OBSERVATIONS, ft Very NE Very NE							RING S)-8-09)-8-09
WL	¥ ¥ ¥ 16	rr:	30				RIG	۷	CME		OREM		MLS
WL WL		`				_					OB#	6009	95029

CLIENT Stirling Energy Systems SITE East of Barstow, California PROJECT Solar One SAMPLE VI LI	DRY DENSITY pcf LIQUID LIQUID LIMIT	
SITE PROJECT East of Barstow, California Solar One SAMPLE		
SAMPLE		
1. LOG MBOL T.	Sf QUID MIT	CITY
Approx. Surface Elev.: 1943 ft		PLASTICITY INDEX
SILTY SAND Beige to light-brown, very dense with fine grained sand. 2 SM RS 64 9	112	
7.5 1935.5 4 5	113	
POORLY GRADED SAND WITH SILT Beige, medium dense with fine grained sand. 8 SP- RS 43 3 9.5 SM	113	
POORLY GRADED SAND Beige, very	112	
dense with fine to coarse grained sand. POORLY GRADED SAND WITH SILT Beige, dense with fine grained sand. 12— 14— 14—		
16 SP- RS 50/6" 4	101	
20 SP- RS 50/6" 3 22 SM 22 SM	109	
Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.		
Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings. The stratification lines represent the approximate boundary lines between soil and rock types: in-situ, the transition may be gradual. WATER LEVEL OBSERVATIONS ft		
The stratification lines represent the approximate boundary lines between soil and rock types: in-situ, the transition may be gradual.		
	D	10-6-09
WL Y NE Y BORING COMPLETE WL Y Y STATE OF THE RIG CME-TO THE RIG C	TED	10-6-09
WL Y NE Y BORING COMPLE RIG CME-7	75 FOREM JOB#	1AN MLS 60095029

	LOG OF B	ORI	NG I	NO.	В.	-02	0				F	Page 1	of 1
CLI	ENT Stirling Energy Systems												
SIT	E		PRO	JEC	Τ								
	East of Barstow, California					S	AMPLE		r One		TESTS		
GRAPHIC LOG	DESCRIPTION		ЭЕРТН, ft.	SSYMBOL		111	RECOVERY (in)	3LOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf		PLASTICITY INDEX	
GRA	Approx. Surface Elev.: 2039 ft		DEP	nscs		TYPE	REC	BLO	WAT	DRY pcf	LIMIT	PLAS INDE	
	SILTY SAND Beige, medium dense with fine grained sand.	2036.5	2—	SM	A	BS							
о О	Beige, medium dense with fine to medium grained sand and some sub-angular gravel	2034.5	4-	SP	X	RS		52	1	98			
	SILTY SAND WITH GRAVEL Beige to light-brown, dense with fine to coarse grained sand and some sub-angular gravel.		6-	SM	X	RS		49	6	123			
			8-	SM	X	RS		55	11	104			
			10 —	SP-		RS		50/5"	7	104			
	POORLY GRADED SAND WITH SILT AND GRAVEL Red-brown, dense with fine to coarse grained sand.	2027	12	SM									
	19	2020	16	SP- SM	X	RS		78	7	114			
	SILTY SAND WITH GRAVEL Red-brown, very dense with fine grained sand and some sub-angular gravel.	2020	20	SM	X	RS		50/6"	7	101			
12/11/09	No gravel around 25 feet bgs.		24	SM		SPT		30					
BOREHOLE 2000 60095029 BORING LOGS.GPJ TERR2000.GDT 12/1/109 TAM	Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.	2012.5	26—										
The betw	stratification lines represent the approximate boundary lines reen soil and rock types: in-situ, the transition may be gradual.								<u>'</u>				
WA	TER LEVEL OBSERVATIONS, ft						BOF	ING S	TARTE	ED		10-	22-09
% WL	Ā NE Ā	rø:	3 6	-	7			RING C		-			22-09
MF MF	ă IIGI		IJL	_L	J		RIG		B		OREM		MLS
M VVL										J	OB#	2000	5029

		LOG OF BOR	ING	NO	. В	-02	3				F	Page 1	of 1
	CLI	ENT Stirling Energy Systems											
ľ	SIT	E	PRO	JEC	Т								
ŀ		East of Barstow, California				S	AMPLI		r One		TESTS	<u> </u>	
	90			30L					%	≽			
	GRAPHIC LOG	DESCRIPTION	DЕРТН, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	<u> </u>	Approx. Surface Elev.: 1986 ft SILTY SAND Beige, medium dense with	<u> </u>	5			R.	В	≩ઇ	<u>P</u> 8	==	굽롣	
		fine to coarse grained sand and some sub-angular gravel.	2—										
			_ =	SM	X	RS		42	3	115			
		4.5 POORLY GRADED SAND WITH SILT	4 =										
		Beige, very dense with fine grained sand and some sub-angular gravel.	6	SP- SM	X	RS		74	3	120			
			8-	SP-	V	RS		41	3	113			
	Ш	9.5		SM									
		<u>SILTY SAND WITH GRAVEL</u> Beige, very dense with fine grained sand.	10-	SM	V	RS		62	3	117			
		G	12-										
			14-										
		Contains some sub-angular gravel.	16-	SM	X	RS		50/5"	4	111			
		19 1967	18—										
		POORLY GRADED SAND WITH SILT Beige, very dense with fine grained sand.	20—		L								
		beige, very derise with fine grained sand.	- =	SP-	X	RS		50/3"					
			22-										
60.			24-										
12/11/		25.5 1960.5 Bottom of boring.	= =	SP-	M	SPT		50/4"	2				
SOREHOLE 2000 60095029 BORING LOGS.GPJ TERR2000.GDT 12/11/09		Groundwater not encountered. Boring backfilled with soil cuttings.		SM									
3PJ TERF													
G LOGS.C													
ORIN													
5029 B	The	stratification lines represent the approximate boundary lines veen soil and rock types: in-situ, the transition may be gradual.											
-		TER LEVEL OBSERVATIONS, ft					BOF	RING S	TARTE	ED .		10	-6-09
2000	WL							RING C					-6-09
- 무 무	WL	¥ ¥ Terr	ar				RIG		CME		OREM		MLS
ORE F	WL										OB#		95029

		L	OG OF BO	RING	NO	. B	-02	4				F	Page 1	of 1
CLI	ENT Stir	ling Energy Syste	ame											
SIT	E			PRO	JEC	Т								
	East	of Barstow, Calif	ornia		_		S	AMPLI		r One		TESTS	;	
GRAPHIC LOG	Approx. Surface Elev	DESCRIPTION		DEPTH, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	3LOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	POORLY GRA	DED SAND WITH O		2- 	SP	X	RS		56	2	127			
	Less gravel.	DED SAND WITH S		6-	SP	X	RS		42	2	117			
	AND GRAVEL dense with fine	Beige, dense to verse to coarse grained	ery d sand,	8-	SP- SM		RS		42	1	117			
	fines.	ular gravel, and no	•	10-	SP-		RS		56	2	119			
				14-	SP-	. 🗶	RS		50/5"	1	120			
	Increased silt	content.		20— 22—	SP- SM		RS		50/4"	3	118			
ERR2000 GDT 12/11/09		ng. not encountered. ed with soil cutting	<u>201</u> S.	9.5	SP-		SPT		50/5"	1				
BOREHOLE 2000 60095029 BORING LOGS.GPJ TERR2000.GDT 12/1/09 What and American Americ	stratification lines represer een soil and rock types: i	nt the approximate bour n-situ, the transition ma	ndary lines y be gradual.											
WA	TER LEVEL OBSER		-					BOF	RING S	TARTE	ED.		10	-8-09
WL 200	112	Ţ	75		_,	-			RING C					-8-09
WL WI	Ā	<u>V</u>	7 Teri	ال	_[J		RIG		CME		DREM.		MLS
WL WL											JC	OB#	6008	5029

\bigcap	LOG OF BOR	ING I	NO	. B	-02	5				F	age 1	of 1
CL	IENT Stirling Energy Systems											
SI	ΓE	PRO	JEC	Т								
	East of Barstow, California			<u> </u>	S	AMPLI		r One		TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 2164 ft	DEPTH, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
<u>ن</u>	POORLY GRADED SAND WITH GRAVEL		_				ш_	70	<u> </u>		ш_	
	sand and some sub-angular gravel.	2	SP	X	RS		65	2	127			
	4.5 2159.5 POORLY GRADED SAND WITH SILT	4 =										
	AND GRAVEL Beige, dense to very dense with fine to coarse grained sand, some sub-angular gravel, and non-plastic	6	SP- SM	X	RS		67	1				
	fines.	8-	SP- SM	X	RS		88	2	127			
	9.5 2154.5 POORLY GRADED SAND WITH GRAVEL	10-										
o. (Beige, very dense with fine to coarse grained sand and some sub-angular gravel.	10 -	SP	X	RS		50	2	119			
, O	14 2150	_										
	POORLY GRADED SAND WITH SILT AND GRAVEL Beige, dense to very	`` =	00		D0		F0/0"					
	dense with fine to coarse grained sand, some sub-angular gravel, and non-plastic fines.	16-	SP- SM		RS		50/6"	1				
	illies.	18-										
		20	SP-	X	RS		50/5"	1	116			
		22—	SM									
	24 2140 SILTY SAND WITH GRAVEL Beige, very	24										
	dense with fine grained sand and some	_	SM	H	SPT		50/6"	2				
	sub-angular gravel. 2138 Increased fines and less gravel.	26—										
	Bottom of boring. Groundwater not encountered.											
	Boring backfilled with soil cuttings.											
	e stratification lines represent the approximate boundary lines ween soil and rock types: in-situ, the transition may be gradual.											
W	ATER LEVEL OBSERVATIONS, ft					BOF	RING S	TARTE	ΕD		10	-8-09
WL				.			RING C	OMPL	ETED		10	-8-09
WI		حال	_[RIG		CME	-75 F	OREM		MLS
WI	.								Jo	OB#	6009	5029

Š

	LOG OF BOR	ING I	NO	. B	-02	8				F	Page 1	of 1
CLI	ENT Stirling Energy Systems											
SIT	E	PRO	JEC	Т								
	East of Barstow, California			I	S	AMPLE		r One		TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 2209 ft	DEPTH, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	POORLY GRADED SAND WITH SILT AND GRAVEL Beige, dense with fine to coarse grained sand. 4.5	2— 2— 4—	SP- SM	X	RS		44	1	85			
	<u>SILTY SAND</u> Beige, dense with fine grained sand and trace sub-angular gravel.	6-	SM	X	RS		37	1				
	7.5 2201.5 POORLY GRADED SAND WITH GRAVEL Beige, very dense with fine to coarse grained sand and some sub-angular gravel.	8—	SP	X	RS		68					
	g. sou cana and como cab angular graver.	10	SP	X	RS		71	1	122			
		14										
		16-	SP	X	RS		61	1	120			
		18—			DO		07		400			
		22-	SP	X	RS		67	1	122			
7/11/09 O	24 2185 POORLY GRADED SAND WITH SILT AND GRAVEL Beige, dense with fine to	24	SP-		SPT		78	1				
BOREHOLE 2000 60095029 BORING LOGS.GPJ LERRE2000.GDJ 12/17/109 AM L WL	coarse grained sand, some sub-angular gravel, and non-plastic fines. Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.	<u>5</u> 26—	SM		5. 1		,3	•				
The betw	stratification lines represent the approximate boundary lines reen soil and rock types: in-situ, the transition may be gradual.											
WA	TER LEVEL OBSERVATIONS, ft					BOF	RING S	TARTE	ED		10	-7-09
WL	¥ NE ¥	7		7			RING C					-7-09
ML ML	A A A A A A A A A A A A A A A A A A A	۵L	_L	J		RIG		CME		OREM OB#		MLS 95029

	LOG OF BO	RING	NO	. B	3-02	9				F	Page 1	of 1
CLI	ENT Stirling Energy Systems											
SIT	E	PR	DJEC	Т								
	East of Barstow, California				S/	AMPLI		r One		TESTS	;	
0	DESCRIPTION Approx. Surface Elev.: 2188 ft POORLY GRADED SAND WITH GRAVEL Beige to light-brown, medium dense with	DEPTH, ft.	S USCS SYMBOL	Å	SB TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	fine to medium grained sand.	4-	SP	Y	RS		43	1	122			
) , ()	POORLY GRADED SAND WITH SILT	181	SP	0	NR		55	2	100			
	AND GRAVEL Beige, dense to very dense with fine to coarse grained sand,	8-	SP- SM		RS		70	1	117			
	some sub-angular gravel, and non-plastic fines. Fine grained sand and decreased gravel.	10-	SP-		RS		50/6"	2	124			
		12-										
		16-	SP- SM	X	RS		50/6"	2	147			
		20-	SP- SM		RS		50/6"	3	117			
11/09	CILTY CAND Doign your donor with fine	24-	014		ODT		F0/0"	0				
BOREHOLE 2000 60095029 BORING LOGS.GPJ TERR2000.GDT 12/1/09	26 SILTY SAND Beige, very dense with fine grained sand. Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.	162 26 -	SM		SPT		50/2"	2				
The	stratification lines represent the approximate boundary lines											
betw WA	reen soil and rock types: in-situ, the transition may be gradual. TER LEVEL OBSERVATIONS, ft					BOF	RING S	TARTE	ED .		10	-7-09
WL 5000			_			BOF	RING C)-7-09
WL WL	A NE A I		L	J		RIG		CME		OREM OB#		MLS 95029

		L	OG OF BOR	ING I	NO	. B	-03	1				F	Page 1	of 2
CLI	ENT Sti	rling Energy Syst	ems											
SIT	E			PRO	JEC	Т								
	Eas	t of Barstow, Calif	ornia			1	S	AMPLI		r One		TESTS	<u> </u>	
GRAPHIC LOG	Approx. Surface Ele	DESCRIPTION		DEPTH, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	POORLY GR Beige to light	ADED SAND WITH (-brown, medium de m grained sand.		2—	SP	X	RS		32	1	113			
	<u>'</u>	es and gravel size.	2070	4— - - 6—	SP	X	RS		37	2	109			
٥	8.5 dense with fine sub-angular of	WITH GRAVEL Beine grained sand and gravel. ADED SAND WITH	d some 2068.5		SM	X	RS		28	3	109			
。() () ()	Beige to light	-brown, medium de ne to medium graine	nse to very	10—	SP	X	RS		44	2	112			
。 。 。 。	_	-		14-										
6 () 				16	SP	X	RS		53	2	121			
。 。 ()				18—										
, O				22-	SP	X	RS		65	1	111			
711/09 O O				24-	SP		NR		50/6"					
000 GDI 12				26— — — — 28—	31		INIX		30/0					
GPJ IERRZ				30-	SP	0	NR		50/5"					
BORHAULE 2000 60085029 BORNOG LOGS GFU TENEZD00 GDT 12/1/109 Per	C	ontinued Next Pag	10	32			INIX		30/3					
The	stratification lines represe	ent the approximate bou	ndary lines											
betw	reen soil and rock types: TER LEVEL OBSEF		y be gradual.					B∩⊑	RING S	TARTE	-D		10	22-09
WL	IER LEVEL OBSER	TVATIONS, IL	7						RING S					22-09 22-09
WL WL	Ā	<u> </u>	1err	30				RIG			-53 F	OREM.	AN	MLS 95029

0: :=	·	LOG OF BOR				. 55	•				F	Page 2	of 2
CLIE	NT Stirling Energy S	ystems											
SITE			PRC	JEC	Т			Cala	O				
	East of Barstow, C	amorma				S	AMPL		r One		TESTS	<u> </u>	
GRAPHIC LOG	DESCRIPTIO	N	DЕРТН, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	POORLY GRADED SAND WI	TH GRAVEI) 5		F	~	▣	≶ Ō	□₫	==	Ē≤	
0	Beige to light-brown, medium dense with fine to medium ar	dense to very	34	SP	0	NR		50/5"					
			38— - - 40— - - 42—	SP	X	RS		50/5"	2	123			
δ , ,			44	SP		SPT		50/4"	2	116			
) ()	1	2026	48—	SP		RS		50/6"					
	Bottom of boring. Groundwater not encountere. Boring backfilled with soil cut	d.											
The st	ratification lines represent the approximate en soil and rock types: in-situ, the transition	boundary lines											
	ER LEVEL OBSERVATIONS, ft	3.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5					BOF	RING S	TARTE	ΞD		10-	22-0
	Z NE ¥	75			_			RING C					22-0
WL 2	Ā Ā	 1 err	ال			П	RIG		В	-53 F	OREM	AN	MLS
WL						_				JC	OB#	6009	9502

	LOG OF BO	RIN	IG I	10	. B	3-03	2				P	age 1	of 1
CLI	ENT Stirling Energy Systems												
SIT	E		PRO	JEC	Т								
	East of Barstow, California	_			<u> </u>		A M I DI		r One		TECTO		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 2024 ft POORLY GRADED SAND Beige, loose with fine grained sand and trace sub-angular gravel. 4.5 POORLY GRADED SAND WITH SILT AND GRAVEL Beige, medium dense with fine to coarse grained sand, trace sub-angular gravel, and non-plastic fines. Calcium carbonate observed around 8 feet bgs. Dense.	19.5	2 GEDLH H. L.	SP-SM SP-SM SP-SM SP-SM	X	RS RS RS RS RS	RECOVERY (in)		T One % 'MATER' % 3 3 3	107 122 110 95	TESTS GINOIT	PLASTICITY INDEX	
betw WA	stratification lines represent the approximate boundary lines veen soil and rock types: in-situ, the transition may be gradual. TER LEVEL OBSERVATIONS, ft							RING S				10-:	22-09
WL	Ÿ NE ¥	. -	7					RING C	OMPL	ETED		10-	22-09
WL	¥ ¥ Ter	Γσ	JĽ			\prod	RIG		В	-53 F	OREM/	AN	MLS
WL						_				JC)B #	6009	5029

	LOG	OF BORI	NG I	VO.	. B	-03	3				F	age 1	of 1
CLI	ENT Stirling Energy Systems												
SIT	Ē		PRO	JEC	Т								
	East of Barstow, California					SA	AMPLI		r One		TESTS		
GRAPHIC LOG	DESCRIPTION		DEPTH, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
9	Approx. Surface Elev.: 2040 ft SILTY SAND Beige, medium dense with fine to coarse grained sand and trace sub-angular gravel.	1	2-	SM		RS	<u>«</u>	47	4	111		ه ≤	
	Some sub-angular gravel.		4	SM	X	RS		57	5	105			
	9 Very dense. POORLY GRADED SAND WITH SILT	2031	8-	SM	X	RS		91	4	110			
	AND GRAVEL Beige, very dense with fine to coarse grained sand, some sub-angular gravel, and non-plastic fine:	S.	10—	SP- SM	X	RS		67	3	116			
			14 — 16 — 18 —	SP- SM	X	RS		50/6"	3	122			
	Little to no gravel.			SP- SM	X	RS		50/4"	5	115			
00.GDT 12/11/09	26.5 Bottom of boring. Groundwater not encountered.	2013.5	26	SP- SM	X	SPT		69	3				
BOREHOLE 2000 60095029 BORING LOGS.GPJ TERR2000.GDT 12/1/109 AM Log Management of the Company of	Boring backfilled with soil cuttings.												
The betw	stratification lines represent the approximate boundary line een soil and rock types: in-situ, the transition may be grad												
WA	TER LEVEL OBSERVATIONS, ft						BOF	RING S	TARTE	ED		10	-6-09
WL								RING C	OMPL	ETED		10	-6-09
WL	<u>Ā</u>	<u>err</u>	JL		J		RIG		CME		OREM		MLS
WL WL										J(OB#	6009	5029

	L	OG OF BOR	ING I	10	. B	-03	4				F	Page 1	of 2
CL	ENT Stirling Energy Syst	ome											
SIT	E		PRO	JEC	Т								
	East of Barstow, Calif	fornia				S	AMPLI		r One		TESTS	<u> </u>	
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 2061 ft		ОЕРТН, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	POORLY GRADED SAND WITH AND GRAVEL Beige, dense with coarse grained sand and some s gravel.	n fine to	2—	SP-		RS		65	4	115			
	Calcium carbonate observed aro	ound 5 feet	4	SM SP- SM	X	RS		58	6	113			
	Decreased gravel size and conte	ent.		SP- SM	X	RS		50/6"	5	119			
			10 —	SP- SM		RS		67	4	112			
			18—	SP- SM		RS		50/5"	4	111			
60/	Fine grained sand.		22—	SP- SM		RS		50/5"	3	117			
BOREHOLE 2000 60085029 BORING LOGS GPJ TERR2000 GDT 12/1/109 APP			26—	SP- SM	X	SPT		71	3				
ORING LOGS.GPJ	Beige to light-brown. Calcium ca observed around 31 feet bgs. Continued Next Pag		30—	SP- SM	X	RS		50/5"	4	116			
The	stratification lines represent the approximate bour	ndary lines											
6009 WA	TER LEVEL OBSERVATIONS, ft	y as gradual.					BOF	RING S	TARTE	ΞD		10	-7-09
WL	Ÿ NE ¥	76					BOF	RING C					-7-09
WL WL	Ā Ā][err	حال	_L	J		RIG		CME		OREM OB#		MLS 95029

	LOG OF B	ORI	NG I	NO	. B	-03	4				F	Page 2	of 2
CLI	ENT Stirling Energy Systems												
SIT	E		PRO	JEC ⁻	T								
-	East of Barstow, California					S	AMPL		r One		TESTS		
GRAPHIC LOG	DESCRIPTION		DEPTH, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	POORLY GRADED SAND WITH SILT AND GRAVEL Beige, dense with fine to coarse grained sand and some sub-angular gravel.		34-36-38-38-	SP-	×			50/4"	5				
	Increased gravel content.		40—	SP- SM	×	RS		50/5"	4	108			
	Decreased gravel content.		46 —	SP- SM		SPT		50/4"	5				
BOREHOLE 2000 60095029 BORING LOGS.GPJ TERR2000.GDT 12/11/09 The Apart	Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.	2010	50 =	SP- SM		RS		50/4"	3				
The	stratification lines represent the approximate boundary lines												
betv	veen soil and rock types: in-situ, the transition may be gradual. ATER LEVEL OBSERVATIONS, ft						R∩⊑	RING S	TARTI	-D		10	-7-09
000 WL		. .						RING S)-7-09)-7-09
₩L	Å Å Å Å	[36				RIG		CME		DREM		MLS
WL WL										JC)B#	6009	5029

		L	OG OF BORI	NG I	NO.	В.	-03	5				F	Page 1	of 1
CLI	ENT Stir	rling Energy Syst	ems											
SIT	E			PRO	JEC	Τ			•					
	East	of Barstow, Calif	rornia				SA	AMPLE		r One		TESTS		
GRAPHIC LOG	Approx. Surface Ele	DESCRIPTION		DЕРТН, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	POORLY GRAND GRAVEI	ADED SAND WITH S Beige, medium d grained sand and	ense with	2—	SP- SM	A	BS			-				
	sub-angular g	jravei.		4-	SP- SM	X	RS		40	6	110			
	Dense.			6-	SP- SM	X	RS		65	5	106			
				8-	SP- SM	X	RS		79	3	115			
	Very dense.			10-	SP-	0	NR		50/5"					
				12— ———————————————————————————————————	SM									
				16—	SP- SM		RS		50/3"	4	118			
				20	SP- SM	X	RS		50/5"	5	122			
12/11/09				24 —	SP-		SPT		59	4				
BOREHOLE 2000 60095029 BORING LOGS.GPJ TERR2000.GDT 12/1/1/09 M		ing. not encountered. led with soil cutting	2058.5 S.	20 _	SM									
The betw	stratification lines represe veen soil and rock types:	ent the approximate bou in-situ, the transition ma	ndary lines ny be gradual.									ı		
WA	TER LEVEL OBSER								RING S					-7-09
WL WL		Ā Ā	7 Terra	٦ſ		1		BOF RIG	RING C	OMPL CME		OREM		-7-09 MLS
WL WL		 -				ار		KIG		CIVIE		OREM OB#		MLS 95029

		L	OG OF BORI	NG I	NO.	. B	-03	6				F	Page 1	of 1
CLI	ENT Stir l	ling Energy Syst	ems											
SIT	E	of Barstow, Calif		PRO	JEC ⁻	Т			Colo	r One				
	Last	or Barstow, Cam	Office				SA	AMPLE		One		TESTS		
GRAPHIC LOG	Approx. Surface Elev	DESCRIPTION v.: 2090 ft		DEPTH, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	AND GRAVEL	DED SAND WITH S Beige, medium d grained sand and s ravel.	ense with	2-	SP-		RS		49	2	121			
				4— — 6—	SM SP- SM	X	RS		47	3	115			
	Very dense.			8-	SP- SM	X	RS		50/4"	2	129			
	Dense.			10—	SP- SM	X	RS		73	3	117			
	Light brown			14	0.0		DO		7.4		440			
	Light-brown.			16— — — — 18—	SP- SM	X	RS		74	3	113			
				20	SP-		RS		50/5"	4	111			
				22— — — 24—	SM									
GDT 12/11/09	26.5 Bottom of bori	na.	2063.5	26—	SP- SM	X	SPT		75	3				
DAN DAN	Groundwater r	not encountered. ed with soil cutting	s.											
The betw	stratification lines represer een soil and rock types: in	nt the approximate bour n-situ, the transition ma	ndary lines y be gradual.											
8 WA	TER LEVEL OBSER								RING S					-7-09
JW JS WL	1.1-	<u>Y</u>	Terra	٦ſ	-6	71		BOF RIG	RING C			2DC: 1)-7-09
MF MF	-	-						KIG		CME		OREM OB#		MLS 95029

\bigcap	LOG OF BO	RING	NO	. B	-03	7				F	Page 1	of 1
CL	ENT Stirling Energy Systems										_ J _	
SIT	E	PRC	JEC	T								
	East of Barstow, California			I	SA	AMPI F		r One		TESTS	<u> </u>	
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 2086 ft SILTY SAND Beige to light-brown, medium dense to dense with fine grained sand and trace sub-angular gravel. Calcium carbonate observed around 3 feet bgs. POORLY GRADED SAND WITH SILT AND GRAVEL Beige, very dense with fine to coarse grained sand, sub-angular gravel, and non-plastic fines. SILTY SAND WITH GRAVEL Beige to light-brown, very dense with fine to coarse grained sand and sub-angular gravel. POORLY GRADED SAND WITH SILT AND GRAVEL Beige, very dense with fine to coarse grained sand, sub-angular gravel, and non-plastic fines. 2009 2019 2020 2030 2031 2040 2051 2	1.5 4— 1.5 4— 1.5 10— 1.6 — 1.6 — 1.6 — 1.6 — 1.7 12— 1.7 12— 1.7 12— 1.7 12— 1.8 — 1.8 — 1.9 —	SMBOL SM SP-SM SP-	X X X	SPT RS SPT RS SPT RS SPT RS SPT	RECOVERY (in)		**NATER	115 114 117 111 111	DINOTITION OF THE PROPERTY OF	PLASTICITY INDEX	
	stratification lines represent the approximate boundary lines											
	veen soil and rock types: in-situ, the transition may be gradual. TER LEVEL OBSERVATIONS, ft					BOF	RING S	TARTE	-D		10	-7-09
WL							RING C)-7-09)-7-09
WL	A NE A A A A A A A A A A A A A A A A A A	'a (Π	RIG		CME		OREM		MLS
WL					_				J	OB#	6009	95029

Š

	LOG	OF BORI	NG I	NO	. B	-03	8				F	Page 1	of 1
CLI	ENT Stirling Energy Systems										•	-g- '	<u> </u>
SIT	E		PRO	JEC	Т								
	East of Barstow, California	a				SA	AMPLI		r One		TESTS		
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 2065 ft POORLY GRADED SAND Beige. med dense with fine to coarse grained sand	dium d.	DEPTH, ff.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
				SP	X	RS		47	2	115			
	POORLY GRADED SAND WITH SILT AND GRAVEL Beige, dense with fine coarse grained sand and sub-angular gravel.	2060.5 to	6-	SP- SM	X	RS		64	4	118			
° .⊜	POORLY GRADED SAND WITH GRAV Red-brown, very dense with fine to co	VEL parse	8-	SP	X	RS		50/5"	4	117			
) Ø . ()	grained sand and sub-angular gravel.		10-	CD		DC		00					
о • О	12.5	2052.5	12—	SP	X	RS		92					
SOREHOLE	Bottom of boring. Groundwater not encountered. Boring backfilled with soil cuttings.			SP		SPT		50/3"					
The bety	stratification lines represent the approximate boundary liveen soil and rock types: in-situ, the transition may be grant and rock types: in-situ, the transition may be grant and the strategy of the strategy	lines _I radual.											
WA WL	TER LEVEL OBSERVATIONS, ft							RING S					22-09 22-09
WL WL	<u>Ā</u>	Jerra					RIG	10 0			DREMA		MLS
WL WL						_				JC)B#	6009	5029

				L	OG OF BOI	RING	NO	. В	3-03	9				F	Page 1	of 1
С	:LI	ENT	St	tirling Energy Syst	ems											
S	IT	Έ				PRO	JEC	Т				_				
\vdash			Eas	st of Barstow, Cali	rornia		Τ	Т	S	AMPL		r One		TESTS	<u> </u>	
GRAPHICLOG		Appr	ox. Surface El	DESCRIPTION		DEPTH, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	3LOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
		, (pp.	POORLY GR	RADED SAND WITH	SILT		+-		'		_					
			Beige, medi grained sand	um dense with fine t d and trace sub-ang	o coarse ular gravel.	2-	SP.		RS		22	1	106			
						4-	SM					-		-		
			Increased gi	ravel content. Less f	ines.	6-	SP- SM	X	RS		54	2	122			
			Dense with i	increased coarse sa	nd.	8-	SP. SM		RS		48	1	122			
			Very dense.			10-	SP.		RS		69	2	117			
			,			12-	SM					_				
						14-	SP.		RS		50/5"	1	118			
						16—	SM		NO.		30/3	·	110			
						18-										
						20-	SP.		RS		50/5"	1	125			
						22— - - 24—										
12/11/09		25.5	POORLY GE	RADED SAND Light-	brown 2152	5	SP	М	SPT		57	2				
BOREHOLE 2000 60095029 BORING LOGS.GPJ TERR2000.GDT 12/1/09 M		26.5	medium den Bottom of bo Groundwate	r not encountered.	sand.	.5 20 _										
GS.GPJ TEI			Boring back	filled with soil cutting	JS.											
SORING LC																
1T 92059 E	he etw	stratific	cation lines represoil and rock types	sent the approximate bou : in-situ, the transition ma	ndary lines ay be gradual.											
000 V				RVATIONS, ft						BOF	RING S	TARTE	ΞD		10	-7-09
W 5000	/L	∑N	E	Ā	75-						RING C	OMPL	ETED		10	-7-09
W		Ā		$oldsymbol{arY}$	Jler	حال	_(RIG		CME		OREM		MLS
g W	′L												J	OB#	6009	95029

				L	OG OF E	BORI	NG I	NO.	. В	-049	9				F	age 1	of 1
	CLII	ENT	Sti	rling Energy Syst	ems												
ľ	SIT	E					PRO	JEC ⁻	Т				_				
H			East	t of Barstow, Calif	ornia					S/	AMPLI		r One		TESTS		
	GRAPHIC LOG	Annrox	. Surface Ele	DESCRIPTION			DEPTH, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
		<u> </u>	POORLY GR	ADED SAND WITH S				SP-		RS							
		f	AND GRAVE ine to mediu sub-angular (L Beige, very densem grained sand and gravel.	e with d		2-	SM SP-	X	RS		50/6"	1	125			
							4	SM									
			ncreased co sub-angular (arse grained sand a gravel.	and fine		6	SP- SM	X	RS		55	0	124			
							8-	SP- SM	X	RS		64	2	117			
		7	Thin zone of	increased fines.			10 —	SP-		RS		69	2	116			
							12-	SM									
			ncreased gra	avel content.			14— — — 16—	SP- SM	X	RS		50/5"	1	111			
		_	.				18—						_				
		L	Jecreased gi	ravel content.			22-	SP- SM		RS		50/3"	3	114			
11/09		25.5				2488.5	24—										
BOREHOLE 2000 60095029 BORING LOGS.GPJ TERR2000.GDT 12/11/09	. 4.1.	E	Bottom of boo Groundwater Boring backfi	ring. not encountered. lled with soil cutting		2+00.0	26	SP-	0	NR		50/5"					
ORING																	
5029 B	The betw	stratificati	on lines represe	ent the approximate bour in-situ, the transition ma	ndary lines												
6009				RVATIONS, ft	<i>y</i> = 2 0.2.2.3						BOF	RING S	TARTE	ED.		10	-7-09
2000	ΝL	∑ NE		Ā	75	. .						RING C					-7-09
EHOLE	ΝL	Ā		<u>V</u>	16	rra					RIG		CME	-75 F	OREM	٩N	MLS
β N	ΝL													J	OB#	6009	5029

	LOG OF TEST	PIT I	10	. T	P-0	16				F	age 1	of 1
CLI	ENT Stirling Energy Systems											
SIT		PRO	JEC	T								
	East of Barstow, California					^ ^ ^ ^ 		r One		TECTO		
GRAPHIC LOG		DEPTH, ft.	JE TORWAS SOSO	T	SB DYPE	RECOVERY (in) A		r One WATER CONTENT, %	DRY DENSITY pcf	TESTS	PLASTICITY INDEX	
0 00095029 BORING LOGS The betw	stratification lines represent the approximate boundary lines reen soil and rock types: in-situ, the transition may be gradual. TER LEVEL OBSERVATIONS, ft					TES	T PIT S	START	ED		10-:	21-09
WL	Ÿ NE Ÿ TCGG								LETED		10-	21-09
WL	¥ ¥ TENE	عال				BAC	KHOE	В	-95 F	OREM	AN	MLS
WL									J	OB#	6009	5029

	LOG OF TEST	PIT I	10.	T	P-0	18				F	age 1	of 1
CLI	ENT Stirling Energy Systems											
SIT	Stirling Energy Systems	PRO	JEC	Т								
	East of Barstow, California							r One				
					SA	AMPLE	<u> </u>			TESTS		
	DESCRIPTION Approx. Surface Elev.: 2281 ft 0.5 SILTY SAND Beige with fine grained sand and some sub-angular gravel. POORLY GRADED SAND WITH GRAVEL Beige with fine to coarse grained sand and sub-angular gravel and cobble. Intermittent layers of increased fines and increased gravels. Calcium carbonate buildup observed on test pit walls at 5 feet bgs. 14 Sottom of test pit. Groundwater not encountered. Test pit backfilled with soil cuttings.	2 4 6 8 10 12	USCS SYMBOL		BS BS	RECOVERY (in)	BLOWS/FT.	T WATER CONTENT, %	DRY DENSITY pcf	TESTS QINDIT	PLASTICITY INDEX	
betw WA	stratification lines represent the approximate boundary lines leen soil and rock types: in-situ, the transition may be gradual. TER LEVEL OBSERVATIONS, ft						T PIT S					21-09
WL	A A A A A A A A A A A A A A A A A A A	7	-	71					LETED			21-09
로 WL	$\bar{\mathbf{A}}$	۵L	_L			BAC	KHOE	В		OREM		MLS
WL									JC	OB#	6009	5029

CLIENT Stirling Energy Systems SITE East of Barstow, California Solar O SAMPLE		TESTS	1 of 1
SITE PROJECT East of Barstow, California Solar O		TESTS	
		TESTS	
SAMPLE SAMPLE		TESTS	
	_%		
DESCRIPTION Approx. Surface Elev.: 2049 ft Silty SAND Sand and some sub-angular gravel. POORLY GRADED SAND WITH GRAVEL DESCRIPTION Approx. Surface Elev.: 2049 ft DESCRIPTION Approx. Surface Elev	CONTENT, % DRY DENSITY pcf	LIQUID LIMIT PLASTICITY	
Beige with fine to coarse grained sand and sub-angular gravel and cobble. Calcium carbonate buildup observed on test pit walls at 5 feet bgs.			
Intermittent layers of increased fines and increased gravels.	2		
14 2035 Bottom of test pit.	2		
The stratification lines represent the approximate boundary lines between soil and rock types: in-situ, the transition may be gradual. WATER LEVEL OBSERVATIONS, ft WL V NE WL WL WL WL NE WL W			
The stratification lines represent the approximate boundary lines between soil and rock types: in-situ, the transition may be gradual.			
WATER LEVEL OBSERVATIONS, ft TEST PIT STA	RTED	1	0-21-09
WL Y NE Y TEST PIT COL BACKHOE			0-21-09
WL Y BACKHOE BACKHOE		OREMAN OB # 60	MLS 095029

	LOG OF TEST	PIT I	10	. T	P-02	27				F	Page 1	of 1
CL	ENT Stirling Energy Systems											
SIT		PRO	JEC	T								
	East of Barstow, California		l			A N A D L F		r One		TECTO		
GRAPHIC LOG		DEPTH, ft.	USCS SYMBOL III	1	BS BS	RECOVERY (in) HA		NATER CONTENT, %	DRY DENSITY pcf	TESTS	PLASTICITY INDEX	
betv	stratification lines represent the approximate boundary lines veen soil and rock types: in-situ, the transition may be gradual. STER LEVEL OBSERVATIONS, ft NE NE V V V V V V V V V V V V V	30				TES	T PIT S T PIT (COMP	LETED	DREMA	10-	21-09 21-09 MLS
WL									JC)B #	6009	5029

CLIEN			10	. !	P-04	40				F	Page 1	of 1
	IT Stirling Energy Systems											
SITE		PRO	JEC	Т			Cala	0				
	East of Barstow, California				Si	AMPLE		r One		TESTS	<u> </u>	
GRAPHIC LOG	DESCRIPTION Deprox. Surface Elev.: 2341 ft POORLY GRADED SAND WITH GRAVEL Beige with fine to coarse grained sand and sub-angular gravel and cobble. Intermittent layers of increased fines and increased gravels. Calcium carbonate buildup observed on test pit walls at 5.5 feet bgs.	# HLd30 2	USCS SYMBOL	1	BS BS	RECOVERY (in) H			DRY DENSITY pcf	GINOITI	PLASTICITY	
between	atification lines represent the approximate boundary lines in soil and rock types: in-situ, the transition may be gradual. ER LEVEL OBSERVATIONS, ft NE Y Term					TES			ED LETED		10- 10-	

Stirling Energy Systems SITE East of Barstow, California DESCRIPTION Approx. Surface Elev: 2452 ft Solar One SAMPLE TESTS Approx. Surface Elev: 2452 ft Solar One SAMPLE DESCRIPTION Light Start Samp Bage with fine grained and and and and and sone sub-angular gravel cobile. Informittent layers of increased fines and increased gravels. Calcium carbonate buildup observed on test pit walls at 4 feet bgs. Bottom of test pit. Groundwater not encountered. Test pit backfilled with soil cuttings. The stratification lines represent the approximate boundary lines between soil and not types: In-situ. The transition may be gradual. WATER LEVEL OBSERVATIONS, ft W Y Y Y Y Y Y Y Y Y Y Y Y TEST PIT STARTED TEST PIT COMPLETED 10-20-0 BACKHOE B-95 FOREMAN ML.		LOG OF	TEST	PIT N	NO.	. T	P-04	41				F	age 1	of 1
East of Barstow, California DESCRIPTION Approx. Surface Elev.: 2452 ft SiltY SAND Beige with fine grained sub-angular gravel. PROMEY GRADED SAND WITH GRAVEL Beige with fine to coarse grained sand and sub-angular gravels. Calcium carbonate buildup observed on test pit walls at 4 feet bgs. Bottom of test pit. Groundwater not encountered. Test pit backfilled with soil cuttings. The stratification lines represent the approximate boundary lines believed in order to the sub-angular gravel in strain to the sub-angular gravel in sub-angular gravels. Authorized the sub-angular gravel in the grained on test pit walls at 4 feet bgs. The stratification lines represent the approximate boundary lines believed in soil and rock types: in-situ, the transition may be gradual. WATER LEVEL OBSERVATIONS, ft Y. NE Y. TEST PIT STARTED 10-20-0 TEST PIT STARTED 10-20-0 TEST PIT STARTED 10-20-0 TEST PIT COMPLETED 10-20-0 TEST PIT COMPLET	CLIE													
DESCRIPTION Approx. Surface Elev. 2452 ft Sitty SAND Rejease with fine grained sand and sub-angular gravel cobble intermittent layers of increased fines and increased gravels. Calcium carbonate buildup observed on test pit walls at 4 feet bgs. Bottom of test pit. Groundwater not encountered. Test pit backfilled with soil cuttings. The straitfication lines represent the approximate boundary lines between soil and rock types. In-situ the franction may be gradual. WATER LEVEL OBSERVATIONS, ft. WATER LEVEL OBSERVATIONS, ft. WATER LEVEL OBSERVATIONS, ft. Y P TIEST DIT STARTED 10-20-0 DESCRIPTION SAMPLE SAM	SITF			PRO	JEC	T								
DESCRIPTION Approx. Surface Elev.: 2452 ft 1.5 SiLTY SAND Beige with fine grained sand and assub-angular gravel cobble. Intermittent layers of increased fines and increased gravels. Calcium carbonate buildup observed on test pit. Groundwater not encountered. Test pit backfilled with soil cuttings. The stratification lines represent the approximate boundary lines between soil and rock types: in-situ, the transition may be gradual. Whater Level Observations, fill was a sub-angular gravel of test pit. Groundwater not encountered. Test pit backfilled with soil cuttings. The stratification lines represent the approximate boundary lines between soil and rock types: in-situ, the transition may be gradual. Whater Level Observations, fit. It is a sub-angular provided to the provided and the provi										r One	1			
SLTY SAND Beige with fine grained 2450.5							S	AMPLE				TESTS		
SiLTY SAND Beige with fine to bandular gravel. 2450.5	GKAPHIC LUG			DЕРТН, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
Bottom of test pit. Groundwater not encountered. Test pit backfilled with soil cuttings.	0	SILTY SAND Beige with fine grained sand and some sub-angular gravel. POORLY GRADED SAND WITH GRAVEL Beige with fine to coarse grained sand and sub-angular gravel cobble. Intermittent layers of increased fines and		2— 2— 4—										
Bottom of test pit. Groundwater not encountered. Test pit backfilled with soil cuttings.	\wedge	Calcium carbonate buildup observed on		6-		1	BS			3				
Bottom of test pit. Groundwater not encountered. Test pit backfilled with soil cuttings. The stratification lines represent the approximate boundary lines etween soil and rock types: in-situ, the transition may be gradual. VATER LEVEL OBSERVATIONS, ft TEST PIT STARTED TEST PIT STARTED TEST PIT COMPLETED TO TEST PIT COMPLETED	* - * II	test pit walls at 4 feet bgs.		8-										
Bottom of test pit. Groundwater not encountered. Test pit backfilled with soil cuttings. The stratification lines represent the approximate boundary lines between soil and rock types: in-situ, the transition may be gradual. WATER LEVEL OBSERVATIONS, ft ML V NE V Y TEST PIT STARTED TEST PIT STARTED TEST PIT COMPLETED 10-20-0 BACKHOE B-95 FOREMAN ML	3: · ·			10-		1	BS			4				
Bottom of test pit. Groundwater not encountered. Test pit backfilled with soil cuttings. The stratification lines represent the approximate boundary lines between soil and rock types: In-situ, the transition may be gradual. WATER LEVEL OBSERVATIONS, ft WL V NE VL V SE FOREMAN ML	0			12-		•								
between soil and rock types: in-situ, the transition may be gradual. WATER LEVEL OBSERVATIONS, ft WL V NE WL V DE WL														
WL Y ICTACON BACKHOE B-95 FOREMAN ML	betwe WA	een soil and rock types: in-situ, the transition may be gradual. TER LEVEL OBSERVATIONS, ft						TES	T PIT (START	ED		10-	20-0
WL Y BACKHOE B-95 FOREMAN ML	WL	ŸNE Į Ţ T_									LETED		10-	20-09
	WL WL	Ā	211	عال				BAC	KHOE	В				MLS

	LOG OF TEST	PIT I	NO.	. T	P-0	42				F	Page 1	of 1
CLI	ENT Stirling Energy Systems											
SIT	E	PRC	JEC	Т								
	East of Barstow, California					A N A DU .		r One		TEOTO		
					5/	AMPLE	=			TESTS	, 	
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 2572 ft	DEPTH, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	SILTY SAND Beige with fine grained sand and some sub-angular gravel.	_	†									
υ, Ο,	POORLY GRADED SAND WITH GRAVEL Beige with fine to coarse grained sand and sub-angular gravel and cobble. Intermittent layers of increased fines and increased gravels.	2 - 2		1	BS			3				
	Calcium carbonate buildup observed on test pit walls at 6 feet bgs.	6— 8— 10— 12—		•	ВЗ			3				
ت:	14 255	3 14		1	BS			2				
	Bottom of test pit. Groundwater not encountered. Test pit backfilled with soil cuttings.											
The betw	stratification lines represent the approximate boundary lines /een soil and rock types: in-situ, the transition may be gradual.											
	TER LEVEL OBSERVATIONS, ft					TES	T PIT S	START	ED		10-	20-09
WL							T PIT (LETED)	10-	20-09
WL	¥ ¥ IEII					BAC	KHOE	В		OREM		MLS
WL									J	OB#	6009	95029

	LOG OF TEST	PIT I	10.	. T	P-04	44				P	age 1	of 1
CLI	ENT Stirling Energy Systems											
SIT		PRO	JEC	Т								
	East of Barstow, California					^ ^ ^ ^ 		r One		TECTO		
O O O O O O O O O O O O O O O O O O O	DESCRIPTION Approx. Surface Elev.: 2865 ft 1 — SILTY SAND Beige with fine grained sand and some sub-angular gravel. POORLY GRADED SAND WITH GRAVEL Beige with fine to coarse grained sand and sub-angular gravel and cobble. Intermittent layers of increased fines and increased gravels. Calcium carbonate buildup observed on test pit walls at 3.5 feet bgs.	PRO #HLd30	JE OSCS SYMBOL		BS BS	RECOVERY (in) H		r One % MATER 2 2	DRY DENSITY pcf	TESTS	PLASTICITY INDEX	
betw	stratification lines represent the approximate boundary lines yeen soil and rock types: in-situ, the transition may be gradual. TER LEVEL OBSERVATIONS, ft						T PIT S		ED LETED			20-09
WL	Σ NE Σ TELL	30					KHOE			DREM		MLS
WL WL)B#		5029

	LOG OF TEST	PIT I	NO.	. T	P-04	45				F	Page 1	of 1
CLIE	ENT Stirling Energy Systems											
SITE		PRO	JFC									
JIIL	East of Barstow, California		J_0				Sola	r One)			
	·				S/	AMPLI				TESTS	5	
- 1 1	DESCRIPTION Approx. Surface Elev.: 2654 ft SILTY SAND Beige with fine grained	DEPTH, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	1.5 sand and some sub-angular gravel. 2652.5											
3	POORLY GRADED SAND WITH GRAVEL Beige with fine to coarse grained sand and	2		1	BS			1				
::1	sub-angular gravel and cobble. Calcium carbonate buildup observed on	4-		+	טט			'				
2	test pit walls from 1.5 to 3 feet bgs.	_	_	1	BS			2				
)	Intermittent layers of increased fines and increased gravels.	6-		+	D3							
ζ. Ο		8										
0		12-			BS			2				
	Groundwater not encountered. Test pit backfilled with soil cuttings.											
betwe WA	stratification lines represent the approximate boundary lines een soil and rock types: in-situ, the transition may be gradual. FER LEVEL OBSERVATIONS, ft						T PIT S					20-0
	ā de la	7							LETED			20-0
	ā ligit	عال	_L			BAC	KHOE	В		OREM		ML
WL									J	OB#	6009	9502

	LOG OF TEST	PIT I	NO.	. Т	P-04	46				F	Page 1	of 1
CLI	IENT CONTROL CONTROL									-	g-	
SIT	Stirling Energy Systems	PRO	JFC	T								
	East of Barstow, California							r One				
					S/	AMPLE	<u> </u>			TESTS	; 	
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 2447 ft POORLY GRADED SAND WITH GRAVEL	DEPTH, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
\bigcirc	Beige with fine to coarse grained sand and			•								
	sub-angular gravel and cobble.	2-		Ţ	BS			1				
O:	Calcium carbonate buildup observed on test pit walls at 3 feet bgs.	4-		*	BS			3				
	Intermittent layers of increased fines and increased gravels. 14 Bottom of test pit. Groundwater not encountered. Test pit backfilled with soil cuttings.	6 — 8 — 10 — 12 — 12 — 3 14 —			BS			2				
betv	stratification lines represent the approximate boundary lines ween soil and rock types: in-situ, the transition may be gradual. ATER LEVEL OBSERVATIONS, ft						T PIT S)		20-09
betv WA	ween soil and rock types: in-situ, the transition may be gradual. ATER LEVEL OBSERVATIONS, ft					TES	T PIT S	COMP	LETEC) OREM	10-	20-09 20-09 MLS

		LC	OG OF TEST	PIT N	NO.	. T	P-04	47				F	Page 1	of 1
CLIE		tirling Energy Syste	ome											
SITE		uring Energy Syste	#IIIS	PRO	JFC	т —								
0		st of Barstow, Calif	ornia		0_0					r One				
							S/	AMPLI	E I			TESTS	5	
	Approx. Surface E			DEPTH, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
	1. <u>5</u> _ sand and so	Deige with fine gramme sub-angular grav	/el2 <u>472.5</u>	_ 										
3	POORLY GF	RADED SAND WITH (ine to coarse grained	<u>GRAVEL</u> I sand and	2		A	DC			4				
\ \ \	sub-angular Calcium car test pit walls	gravel and cobble. bonate buildup obsers at 1.5 feet bgs. layers of increased fi	rved on	4— 4— 6— 8—		\	BS			4				
			2460	10—	-	•	BS			3				
		er not encountered. kfilled with soil cutting	gs.											
betwe	een soil and rock types	sent the approximate bour : in-situ, the transition ma	ndary lines y be gradual.					TEC	T PIT S	TAD:	TED.		10	10.0
W/A I	TER LEVEL OBSE $^{ abla}$ NE	RVATIONS, ft									LETED			19-0 19-0
		· -					_	I ⊏O	1 611	JUIVIP	ᆫᆝᆮᅱ		11.7-	13-U
WL	Ā → NE	<u> </u>][err	ar				BAC	KHOE			OREM		MLS

	LOG OF TEST	PIT I	NO.	. T	P-04	48				F	Page 1	of 1
CLI	ENT Stirling Energy Systems											
SIT		PRO	JEC	Т								
	East of Barstow, California							r One				
					S	AMPLI	<u>=</u>			TESTS	<u> </u>	
G GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 2280 ft POORLY GRADED SAND WITH GRAVEL	DEPTH, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
\bigcirc	Beige with fine to coarse grained sand and sub-angular gravel and cobble.											
	Calcium carbonate buildup observed on test pit walls at 3 feet bgs. Intermittent layers of increased fines and increased gravels.	2— - 4— - 6—		1	BS			1				
	POORLY GRADED SAND WITH GRAVEL Beige with fine to coarse grained sand and sub-angular gravel and cobble. Calcium carbonate buildup observed on test pit walls at 3 feet bgs. Intermittent layers of increased fines and increased gravels.	8— 8— 10— 12—	-	1	BS							
	Bottom of test pit. Groundwater not encountered. Test pit backfilled with soil cuttings.											
The	stratification lines represent the approximate boundary lines											
	veen soil and rock types: in-situ, the transition may be gradual. ATER LEVEL OBSERVATIONS, ft					TES	T PIT S	START	ED		10-	19-09
WL				_			T PIT ()		19-09
WL	ă ă Î	عال			П	BAC	KHOE	В	-95 F	OREM		MLS
WL									J	OB#	6009	95029

	LOG OF TEST	PIT I	O	. T	P-0	50				F	Page 1	of 1
CLIE											3-	
SITE	Stirling Energy Systems	PRO	JEC	т								
SIIL	East of Barstow, California	FRO	JLC	'			Sola	r One	!			
	,				S/	AMPLI				TESTS	5	
GRAPHIC LOG	DESCRIPTION	DЕРТН, ft.	USCS SYMBOL		TYPE	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX	
<u>ا .</u> ب	POORLY GRADED SAND WITH GRAVEL	_										
٥	Beige with fine to coarse grained sand and sub-angular gravel and cobble.	2-	-									
Э:				1	BS			2				
ς Ο Ο	Calcium carbonate buildup observed on test pit walls at 4 feet bgs. Intermittent layers of increased fines and	6—										
0.	increased gravels.	0-										
.⊜E	Bottom of test pit.	8-		Į.	BS			2				
betwe	tratification lines represent the approximate boundary lines een soil and rock types: in-situ, the transition may be gradual.											
	TER LEVEL OBSERVATIONS, ft ▼ NE ▼						T PIT					19-0
	v ve	$\mathbf{A}^{\mathbf{r}}$	-6		n		KHOE		LETED -95 F	OREM		19-0 ML
WL				ال		DAC	INHUE	В				9502
v L									J	OB#	000	20

	LOG OF TEST	PIT I	NO.	. T	P-0	51				F	age 1	of 1	
CLI	ENT Stirling Energy Systems												
SIT	E	PRO	JEC.	Т				_					
-	East of Barstow, California				S/	AMPLE		r One		TESTS			
GRAPHIC LOG	DESCRIPTION	DЕРТН, ft.	USCS SYMBOL		ТҮРЕ	RECOVERY (in)	BLOWS/FT.	WATER CONTENT, %	DRY DENSITY pcf	LIQUID	PLASTICITY INDEX		
<u>، ب</u>	POORLY GRADED SAND WITH GRAVEL		ļ —			_							
	Beige with fine to coarse grained sand and sub-angular gravel and cobble.	2— 2— 4—		1	BS			1					
	Intermittent layers of increased fines and increased gravels.	6— 8—	-	1	BS BS			2					
. O:	Calcium carbonate buildup observed on test pit walls at 9 feet bgs.	10-		Ì	BS			5					
60095029 BORING LOGS. GPJ TERR2000. GDT 12/11/09 Apply Apply Apply	Bottom of test pit. Groundwater not encountered. Test pit backfilled with soil cuttings.												
betw	stratification lines represent the approximate boundary lines veen soil and rock types: in-situ, the transition may be gradual.					TEC	TOIT	OT 4 D T	ED		40	10.00	
9 WA WL	TER LEVEL OBSERVATIONS, ft						T PIT S		ETED			19-09 19-09	
JW J		30					KHOE		-95 F	OREM	AN	MLS	
ML WL									J(OB#	6008	5029	

December 10, 2009 Terracon Project No. 60095029

Field Exploration Description

A total of 32 test borings and 14 test pits were drilled/excavated at the site between October 5 and October 22, 2009. The borings were drilled to depths ranging from approximately 12½ to 51 feet below the ground surface and the test pits were excavated to depths ranging from 8 to14 feet bgs at the approximate locations shown on the attached Field Exploration Locations diagram, Exhibit 2. The test borings and test pits were located as follows:

Boring	Approximate Latitude (degrees)	Approximate Longitude (degrees)	Completed	Issues
B-001	34.8049	116.4836	Y	
Trench- 002			N	Fault Trench. Not part of scope.
B-003	34.8051	116.4746	Y	<u> </u>
B-004	34.7982	116.4735	Υ	
B-005	34.8039	116.4592	Y	
B-006	34.7979	116.4524	Y	
B-007	34.7936	116.4525	Y	
B-008	34.7890	116.4475	Y	
B-009	34.8039	116.4471	Y	
B-010	34.8039	116.4471	Y	
B-011	34.8033	116.4472	Y	
B-012	34.8032	116.4472	Y	
B-013	34.8027	116.4403	Y	
B-014	34.7946	116.4425	Y	
B-015	34.7920	116.4358	Y	
TP-016	34.8348	116.4243	Y	
B-017	34.8214	116.4256	Y	
TP-018	34.8129	116.4194	Y	
B-019	34.8022	116.4257	Y	
B-020	34.7897	116.4234	Y	
B-021	34.7840	116.4105	N	In NAF area or Utility Easement, 4x4
Trench- 022			N	Fault Trench. Not part of scope.
B-023	34.8003	116.4136	Y	·
B-024	34.8098	116.4101	Y	
B-025	34.8211	116.4139	Y	
TP-026	34.8259	116.4132	Y	
TP-027	34.8266	116.3966	Υ	
B-028	34.8210	116.3993	Y	
B-029	34.8145	116.3909	Y	
B-030			N	Duplicate of boring B-031
B-031	34.8075	116.3982	Y	
B-032	34.7983	116.4001	Y	
B-033	34.7859	116.3976	Y	

Geotechnical Engineering Report

Solar One Pisgah, California

December 10, 2009 Terracon Project No. 60095029

Boring	Approximate Latitude (degrees)	Approximate Longitude (degrees)	Completed	Issues
B-034	34.7848	116.3902	Y	
B-035	34.7812	116.3843	Υ	
B-036	34.7817	116.3826	Υ	
B-037	34.7836	116.3823	Υ	
B-038	34.7905	116.3876	Υ	
B-039	34.8032	116.3808	Υ	
TP-040	34.8193	116.3773	Υ	
TP-041	34.8279	116.3812	Υ	
TP-042	34.8334	116.3805	Υ	
B-043	34.8273	116.3706	N	In accessible by 4x4
TP-044	34.8367	116.3541	Υ	
TP-045	34.8271	116.3565	Υ	
TP-046	34.8169	116.3619	Υ	
TP-047	34.8156	116.3478	Υ	
TP-048	34.8042	116.3614	Υ	
B-049	34.7999	116.3705	Y	

The test borings were advanced with a truck-mounted CME-75 drill rig utilizing 8-inch diameter hollow-stem augers and the test pits were excavated with a backhoe.

The borings and test pits were located in the field using the proposed site plan and an aerial photograph of the site, and a handheld gps unit. The accuracy of field exploration locations should only be assumed to the level implied by the method used.

Continuous lithologic logs of each boring were recorded by the field geologist during the drilling operations. At selected intervals, samples of the subsurface materials were taken by driving split-spoon or ring-barrel samplers. Bulk samples of subsurface materials were also obtained.

Penetration resistance measurements were obtained by driving the split-spoon and ring-barrel samplers into the subsurface materials with a 140-pound automatic hammer falling 30 inches. The penetration resistance value is a useful index in estimating the consistency or relative density of materials encountered.

Groundwater conditions were evaluated in each boring at the time of site exploration.

GENERAL NOTES

DRILLING & SAMPLING SYMBOLS:

SS:	Split Spoon - 1-3/8" I.D., 2" O.D., unless otherwise noted	HS:	Hollow Stem Auger
ST:	Thin-Walled Tube - 2" O.D., unless otherwise noted	PA:	Power Auger
RS:	Ring Sampler - 2.42" I.D., 3" O.D., unless otherwise noted	HA:	Hand Auger
DB:	Diamond Bit Coring - 4", N, B	RB:	Rock Bit

BS: Bulk Sample or Auger Sample WB: Wash Boring or Mud Rotary

The number of blows required to advance a standard 2-inch O.D. split-spoon sampler (SS) the last 12 inches of the total 18-inch penetration with a 140-pound hammer falling 30 inches is considered the "Standard Penetration" or "N-value". For 3" O.D. ring samplers (RS) the penetration value is reported as the number of blows required to advance the sampler 12 inches using a 140-pound hammer falling 30 inches, reported as "blows per foot," and is not considered equivalent to the "Standard Penetration" or "N-value."

WATER LEVEL MEASUREMENT SYMBOLS:

WL:	Water Level	WS:	While Sampling	N/E:	Not Encountered
WCI:	Wet Cave in	WD:	While Drilling		
DCI:	Dry Cave in	BCR:	Before Casing Removal		
AB:	After Boring	ACR:	After Casing Removal		

Water levels indicated on the boring logs are the levels measured in the borings at the times indicated. Groundwater levels at other times and other locations across the site could vary. In pervious soils, the indicated levels may reflect the location of groundwater. In low permeability soils, the accurate determination of groundwater levels may not be possible with only short-term observations.

DESCRIPTIVE SOIL CLASSIFICATION: Soil classification is based on the Unified Classification System. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; their principal descriptors are: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are principally described as clays if they are plastic, and silts if they are slightly plastic or non-plastic. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse-grained soils are defined on the basis of their in-place relative density and fine-grained soils on the basis of their consistency.

CONSISTENCY OF FINE-GRAINED SOILS

RELATIVE DENSITY OF COARSE-GRAINED SOILS

Unconfined	Standard Standard		Standard Standard		
<u>Compressive</u> Strength, Qu,	Penetration or N-value (SS)		<u>Penetration or</u> N-value (SS)	Ring Sampler	
psf	Blows/Ft.	Consistency	Blows/Ft.	(RS) Blows/Ft.	Relative Density
< 500	<2	Very Soft	0 – 3	0-6	Very Loose
500 - 1,000	2-3	Soft	4 – 9	7-18	Loose
1,001 - 2,000	4-6	Medium Stiff	10 – 29	19-58	Medium Dense
2,001 - 4,000	7-12	Stiff	30 – 49	59-98	Dense
4,001 - 8,000	13-26	Very Stiff	50+	99+	Very Dense
8 000+	26+	Hard			

RELATIVE PROPORTIONS OF SAND AND GRAVEL

GRAIN SIZE TERMINOLOGY

PLASTICITY DESCRIPTION

Descriptive Term(s) of other	Percent of	Major Component	
<u>constituents</u>	Dry Weight	of Sample	Particle Size
Trace	< 15	Boulders	Over 12 in. (300mm)
With	15 – 29	Cobbles	12 in. to 3 in. (300mm to 75 mm)
Modifier	> 30	Gravel	3 in. to #4 sieve (75mm to 4.75 mm)
		Sand Silt or Clay	#4 to #200 sieve (4.75mm to 0.075mm)

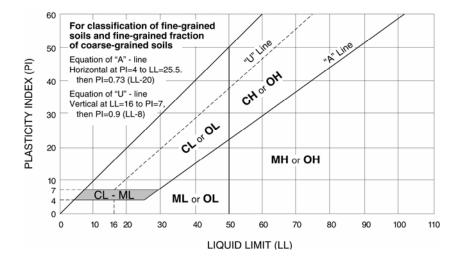
RELATIVE PROPORTIONS OF FINES

<u>Descriptive Term(s) of other</u> <u>constituents</u>	<u>Percent of</u> <u>Dry Weight</u>	<u>Term</u>	Plasticity Index
Trace	< 5	Non-plastic	0
With	5 – 12	Low	1-10
Modifiers	> 12	Medium	11-30
		Hiah	30+

Form 111—6/98 Exhibit A-6

UNIFIED SOIL CLASSIFICATION SYSTEM (USCS)

Criteria for Assigning Group Symbols and Group Names Using Laboratory Tests^A


Soil Classification

				Group Symbol	Group Name ^B
		Clean Gravels	$Cu \ge 4$ and $1 \le Cc \le 3^E$	GW	Well-graded gravel ^F
	Gravels More than 50% of coarse	Less than 5% fines ^C	Cu < 4 and/or 1 > Cc > 3 ^E	GP	Poorly graded gravel ^F
	More than 50% of coarse fraction retained on No. 4 sieve	Gravels with Fines	Fines classify as ML or MH	GM	Silty gravel ^{F,G, H}
Coarse Grained Soils		More than 12% fines ^c	Fines classify as CL or CH	GC	Clayey gravel ^{F,G,H}
Nore than 50% retained n No. 200 sieve		Clean Sands Less than 5% fines ^D	Cu \geq 6 and 1 \leq Cc \leq 3 ^E	SW	Well-graded sand ^l
II No. 200 sieve	Sands 50% or more of coarse		Cu < 6 and/or 1 > Cc > 3 ^E	SP	Poorly graded sand
	fraction passes No. 4 sieve	Sands with Fines	Fines classify as ML or MH	SM	Silty sand ^{G,H,I}
		More than 12% fines ^D	Fines Classify as CL or CH	SC	Clayey sand ^{G,H,I}
		inorgania	PI > 7 and plots on or above "A" line ^J	CL	Lean clay ^{K,L,M}
	Silts and Clays	inorganic s	PI < 4 or plots below "A" line ^J	ML	Silt ^{K,L,M}
ine-Grained Soils	Liquid limit less than 50	organic	Liquid limit – oven dried	OL	Organic clay ^{K,L,M,N}
		organic	Liquid limit – not dried	OL	Organic silt ^{K,L,M,O}
0% or more passes the lo. 200 sieve		inorganic	PI plots on or above "A" line	CH	Fat clay ^{K,L,M}
	Silts and Clays		PI plots below "A" line	MH	
	Liquid limit 50 or more	organic	Liquid limit – oven dried	ОН	Organic clay ^{K,L,M,P}
		organio	Liquid limit – not dried	ОП	Organic silt ^{K,L,M,Q}
Highly organic soils	Primarily o	organic matter, dark in color,	and organic odor	PT	Peat

^A Based on the material passing the 3-in. (75-mm) sieve

E Cu =
$$D_{60}/D_{10}$$
 Cc = $\frac{(D_{30})^2}{D_{10} \times D_{60}}$

Q PI plots below "A" line.

^B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.

^C Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.

D Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with silt, SP-SC poorly graded sand with clay

 $^{^{\}text{F}}$ If soil contains \geq 15% sand, add "with sand" to group name.

 $^{^{\}rm G}\, {\rm If}$ fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

^H If fines are organic, add "with organic fines" to group name.

 $^{^{\}text{I}}\,$ If soil contains \geq 15% gravel, add "with gravel" to group name.

J If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.

K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.

 $^{^{}L}$ If soil contains \geq 30% plus No. 200 predominantly sand, add "sandy" to group name.

 $^{^{\}rm M}$ If soil contains \geq 30% plus No. 200, predominantly gravel, add "gravelly" to group name.

 $^{^{\}text{N}}$ PI \geq 4 and plots on or above "A" line.

 $^{^{\}text{O}}\,\text{PI} < 4$ or plots below "A" line.

P PI plots on or above "A" line.

APPENDIX B LABORATORY TESTING

Geotechnical Engineering Report

Solar One Pisgah, California

December 10, 2009 Terracon Project No. 60095029

Laboratory Testing

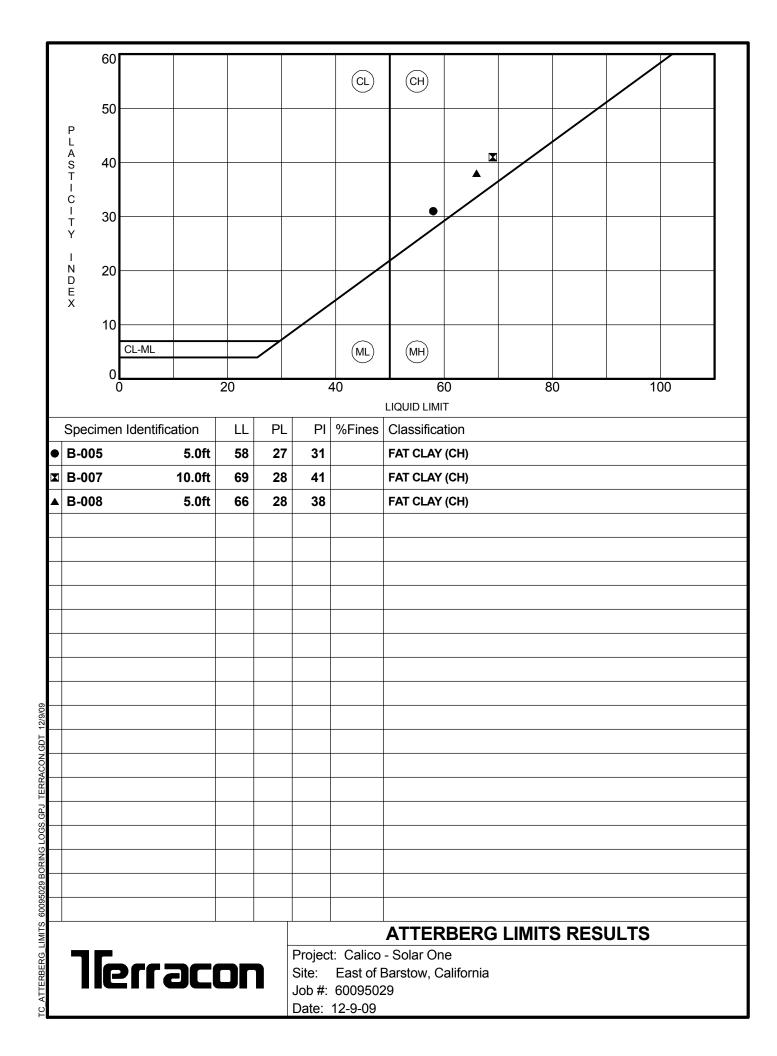
Samples retrieved during the field exploration were taken to the laboratory for further observation by the project geotechnical engineer and were classified in accordance with the Unified Soil Classification System (USCS) described in Appendix A. At that time, the field descriptions were confirmed or modified as necessary and an applicable laboratory testing program was formulated to determine engineering properties of the subsurface materials.

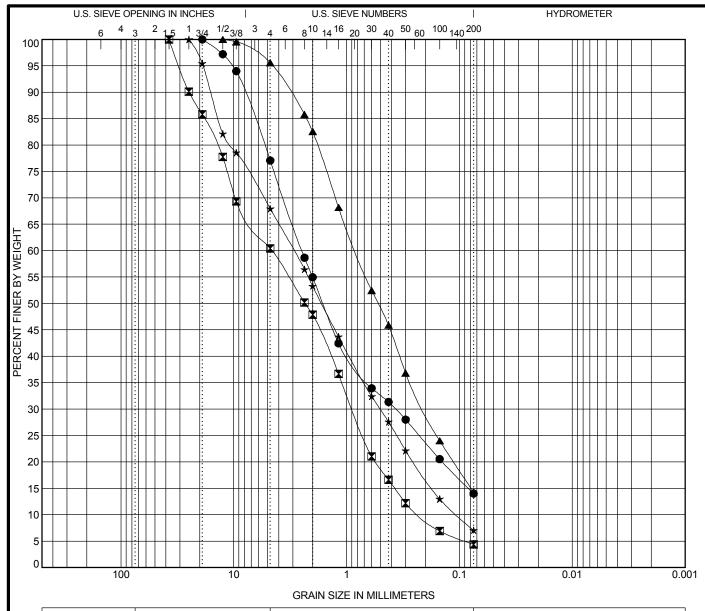
Laboratory tests were conducted on selected soil samples and the test results are presented in this appendix. The laboratory test results were used for the geotechnical engineering analyses, and the development of foundation and earthwork recommendations. Laboratory tests were performed in general accordance with the applicable ASTM, local or other accepted standards.

Selected soil samples obtained from the site were tested for the following engineering properties:

ConsolidationIn-situ Water Content

Sieve AnalysisIn-situ Dry Density


Atterberg Limits
 Moisture Density Relationship


Direct ShearRemolded Expansion/Swell

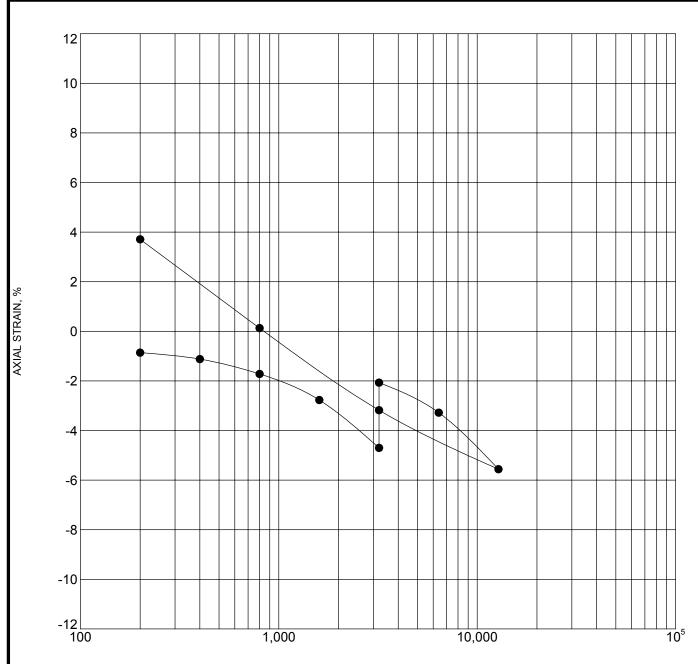
Soluble ChloridesSoluble Sulfates

pHMinimum Resistivity

Standard Proctor

CORRI ES	GRA	VEL		SAND)	SILT OR CLAY
COBBLES	coarse	fine	coarse	medium	fine	SILT OR CLAY

12/9/	S	Specimen Ide	entification		Cla	assification		L	L PL	PI	Сс	Cu
GDT	•	B-009	7.5ft	(SILTY SAND	with GRAVI	EL (SM)					
ESA.	X	B-010	5.0ft	POOR	LY GRADED	SAND with	GRAVEL (S	P)			0.8	20.5
ΑI	A	B-011	20.0ft		SILT	Y SAND (SM)						
2	*	B-036	7.5ft	POORLY	GRADED S	AND with SII	LT and GRA	VEL			0.8	27.7
SC												
사 소	S	Specimen Ide	entification	D100	D60	D30	D10	%Gravel	%Sand	%Sil	lt 9	6Clay
2	•	B-009	7.5ft	19	2.5	0.4		23	63		14	
ري ي	X	B-010	5.0ft	37.5	4.6	0.9	0.2	40	56		4	
J LO	•	B-011	20.0ft	12.5	0.8	0.2		4	81		14	
NE NE	*	B-036	7.5ft	25	2.9	0.5	0.1	32	61		7	·
29 BORING LOGS.GPJ TERRACON COSTA MESA.GDT									·			

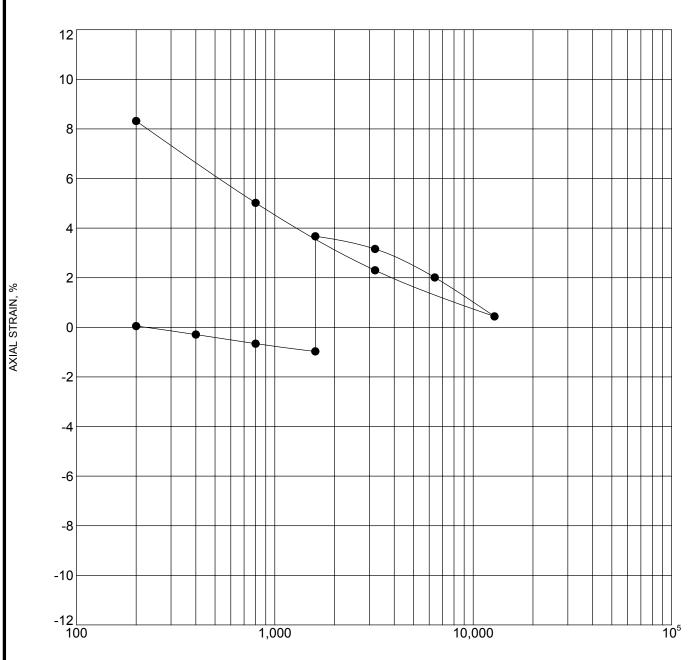


GRAIN SIZE DISTRIBUTION

Project: Calico - Solar One Site: East of Barstow, California

Job #: 60095029

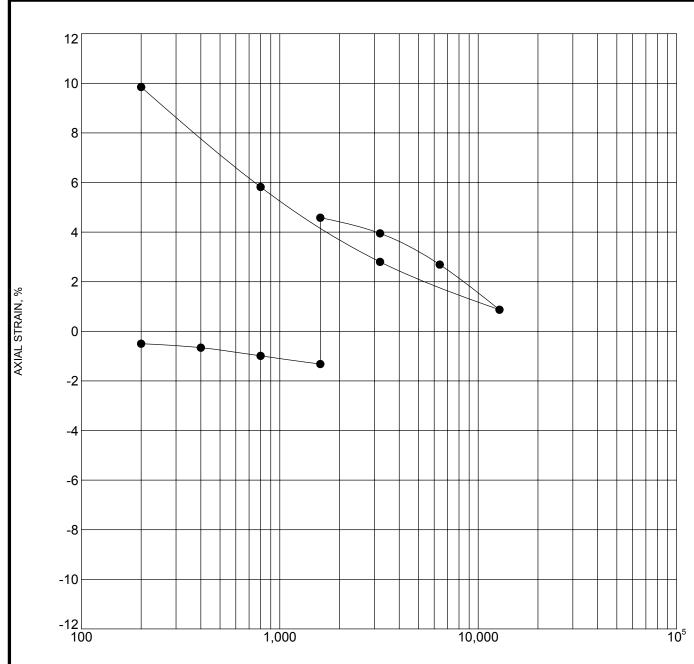
Date: 12-9-09 B-1


	Specimen I	dentification	Classification	γ_d ,	pcf WC,%
•	B-006	20.0 ft	FAT CLAY (CH)	94	25

Notes:

CONSOLIDATION TEST RESULTS

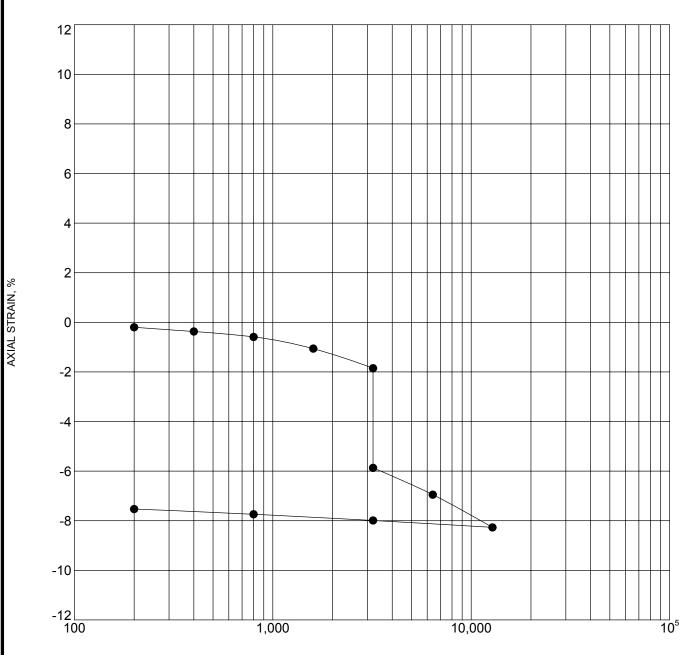
Project: Calico - Solar One Site: East of Barstow, California


Specimen Identification		Classification	$\gamma_{\!_{f d}}$, pcf	WC,%
•	B-007 15.0 ft	FAT CLAY (CH)	104	22

Notes:

CONSOLIDATION TEST RESULTS

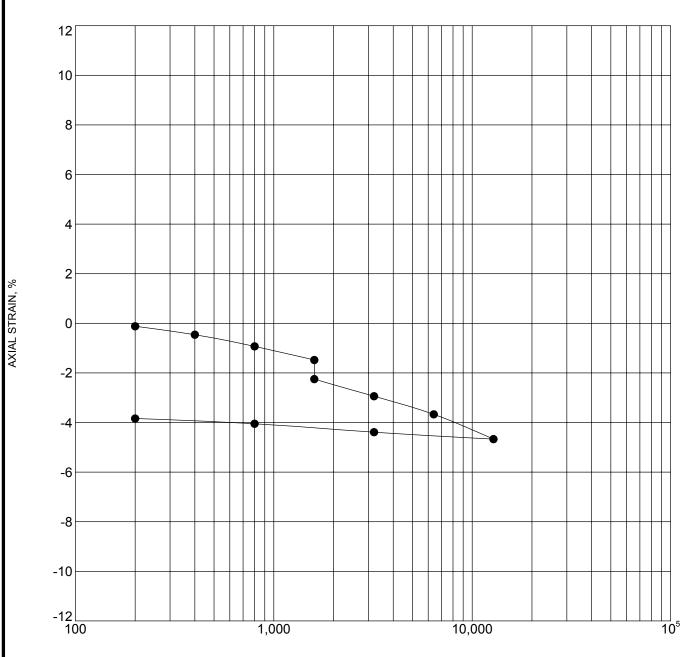
Project: Calico - Solar One Site: East of Barstow, California


Specimen Identification		entification	Classification	$\gamma_{\!_{f d}}$, pcf	WC,%
•	B-008	7.5 ft	FAT CLAY (CH)	96	27

Notes:

CONSOLIDATION TEST RESULTS

Project: Calico - Solar One Site: East of Barstow, California

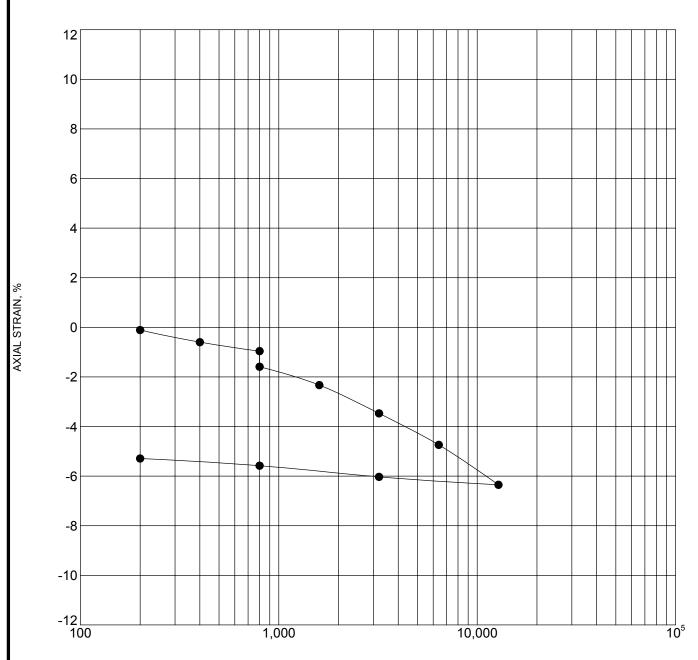

Specimen Identification		Identification	Classification	$\gamma_{\!\!d}$, pcf	WC,%
	B-009	20.0 ft	SILTY SAND with GRAVEL (SM)	111	4

Notes:

CONSOLIDATION TEST RESULTS

Project: Calico - Solar One Site: East of Barstow, California

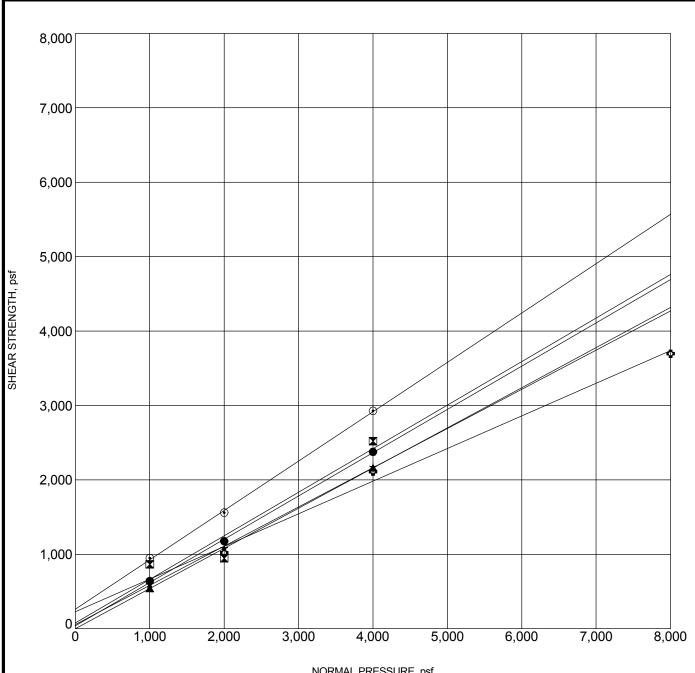
PRESSURE, psf


	Specimen Identification	Classification	$\gamma_{\rm d}$, pcf	WC,%	
•	B-029 10.0 ft	POORLY GRADED SAND with SILT and GRAVEL (SP-SM	/ I)	124	2	

Notes:

CONSOLIDATION TEST RESULTS

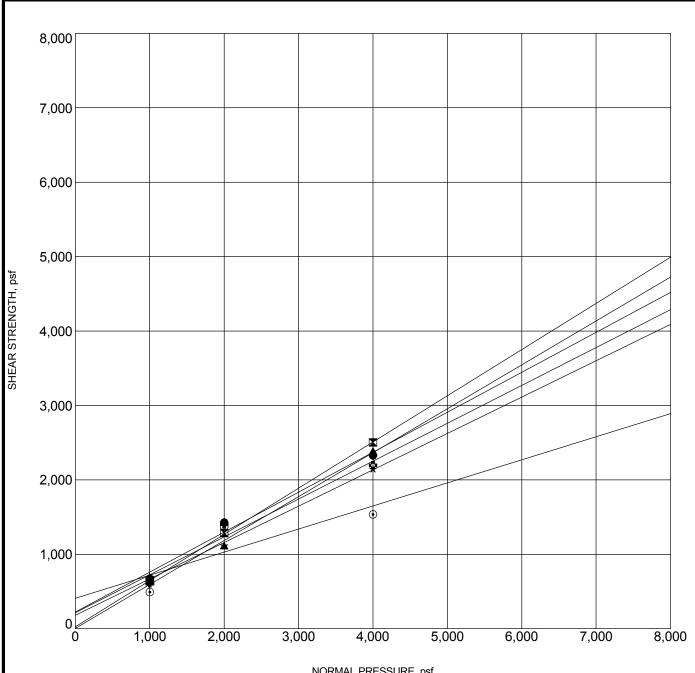
Project: Calico - Solar One Site: East of Barstow, California


Specimen Identification		dentification	Classification	$\gamma_{\!_{f d}}$, pcf	WC,%
	B-033	5.0 ft	SILTY SAND (SM)	105	5

Notes:

CONSOLIDATION TEST RESULTS

Project: Calico - Solar One Site: East of Barstow, California



TERRACON.	S	Specimen I	dentification	Classification	γ _d , pcf	WC,%	c, psf	ф°
TERR	•	B-001	5.0ft	POORLY GRADED SAND with SILT (SP-SM)	96	3	40	30
GPJ .		B-005	20.0ft	FAT CLAY (CH)	97	28	78	30
		B-009	2.5ft	POORLY GRADED SAND (SP)	114	1	0	28
NGL	*	B-009	5.0ft	SILTY SAND with GRAVEL (SM)	119	3	54	28
95029 BORING LOGS	•	B-009	30.0ft	SILT (ML)	90	13	264	34
95029	٥	B-009	40.0ft	SILTY SAND with GRAVEL (SM)	83	19	228	24

DIRECT SHEAR TEST

Project: Calico - Solar One Site: East of Barstow, California

TERRACON	S	Specimen	Identification	Classification	γ_d , pcf	WC,%	c, psf	ф°
TERR	•	B-011	10.0ft	SILTY SAND (SM)	117	3	222	28
GBJ		B-013	10.0ft P	OORLY GRADED SAND with SILT and GRAVEL (SP-SM) 108	5	26	32
		B-015	7.5ft	POORLY GRADED SAND with SILT (SP-SM)	105	9	4	31
NGL	*	B-031	7.5ft	SILTY SAND with GRAVEL (SM)	109	3	180	26
95029 BORING LOGS	•	B-035	2.5ft P	OORLY GRADED SAND with SILT and GRAVEL (SP-SM) 110	6	408	17
95028	0	B-037	7.5ft	SILTY SAND with GRAVEL (SM)	113	3	216	27

DIRECT SHEAR TEST

Project: Calico - Solar One Site: East of Barstow, California

Expansion Index

Project: Solar One
Proj. No.: 60095029

Tested By: CP Date: 10/29/2009

Soil	Boring No.:	B-006
- ფ. ლ	Sample No.:	NA
	Sample Depth:	10'
Sampl	Soil Classification (USCS Symbol):	Fat Clay (CH)
Š		

idard	UBC 18-2 ASTM D 4829
Test Stan Used	

Weight Prior to Screening	NA	g
Weight After Screening	NA	g
Percent Retained on #4 Sieve	NA	%

Moisture Determination	Units	Initial	Final
Assumed Moisture Content	%		
Tare Weight	g	214.1	105.3
Weight of Soil (Wet) + Tare	g	281.7	693.5
Weight of Soil (Dry) + Tare	g	270.1	575.3
Moisture Content	%	20.7%	43.1%
Density Determination			
Weight of Soil + Ring (Wet)	g	526.2	588.2
Weight of Ring	g	195.6	195.6
Wet Weight of Soil	g	330.6	392.6
Wet Density	pcf	100.5	
Final Sample Height	in		1.1037
Final Volume	ft ³		0.0080
Final Wet Density	pcf		107.9
Dry Density	pcf	83.3	75.4
Degree of Saturation (G _s = 2.7)	%	54.6	94.2

-		
Initial Dry Density	83.3	pcf
Initial MC	20.7	%
Initial Saturation	54.6	%
•		
Final Dry Density	75.4	pcf
Final MC	43.1	%
Final Saturation	94.2	%

_	Date	Time	Dial Reading	Deflection
Start	10/29/2009	9:50	0.0740	
Add Water (After 10 minutes)	10/29/2009	10:00	0.0881	0.0141
				-
				-
				-
				-
				-
				_
24 hours	10/30/2009	18:14	0.1777	0.0896

Expansion	Potential
Index, EI	Expansion
0-20	Very Low
21-50	Low
51-90	Medium
91-130	High
>130	Very High

El	Measured Expansion Index =	88	Recommend to use EI = 93
EI ₅₀	Expansion Index =	93	

Expansion Index

Project: Solar One
Proj. No.: 60095029

Tested By: CP

,			
	ъ		UBC 18-2
	dar	X	ASTM D 4829
	stan Ised		
	est (
	ř		

Date:

11/12/2009

Ε	Boring No.:	B-007
and Soil nation	Sample No.:	NA
le ar	Sample Depth:	7.5'
Sample Inforn	Soil Classification (USCS Symbol):	Fat Clay (CH)
ιχ		

Weight Prior to Screening NA g
Weight After Screening NA g
Percent Retained on #4 Sieve NA %

Moisture Determination	Units	Initial	Final
Assumed Moisture Content	%		
Tare Weight	g	214.1	105.3
Weight of Soil (Wet) + Tare	g	256.0	703.0
Weight of Soil (Dry) + Tare	g	248.7	572.8
Moisture Content	%	21.1%	47.9%
Density Determination			
Weight of Soil + Ring (Wet)	g	525.4	597.7
Weight of Ring	g	195.6	195.6
Wet Weight of Soil	g	329.8	402.1
Wet Density	pcf	100.3	
Final Sample Height	in		1.0890
Final Volume	ft ³		0.0079
Final Wet Density	pcf		112.0
Dry Density	pcf	82.8	75.7
	•		
Degree of Saturation (G _s = 2.7)	%	55.0	105.5

_		
Initial Dry Density	82.8	pcf
Initial MC	21.1	%
Initial Saturation	55.0	%
_		
_		
Final Dry Density	75.7	pcf
Final Dry Density Final MC	75.7 47.9	pcf %
		pcf % %

_	Date	Time	Dial Reading	Deflection
Start	11/5/2009	15:42	0.0311	
Add Water (After 10 minutes)	11/5/2009	15:52	0.0300	-0.0011
				-
				-
				-
				-
				-
				-
24 hours	11/6/2009	14:36	0.1201	0.0901

Expansion	Potential
Index, EI	Expansion
0-20	Very Low
21-50	Low
51-90	Medium
91-130	High
>130	Very High

EI	Measured Expansion Index =	90	Recommend to use EI = 95
EI ₅₀	Expansion Index =	95	

Expansion Index

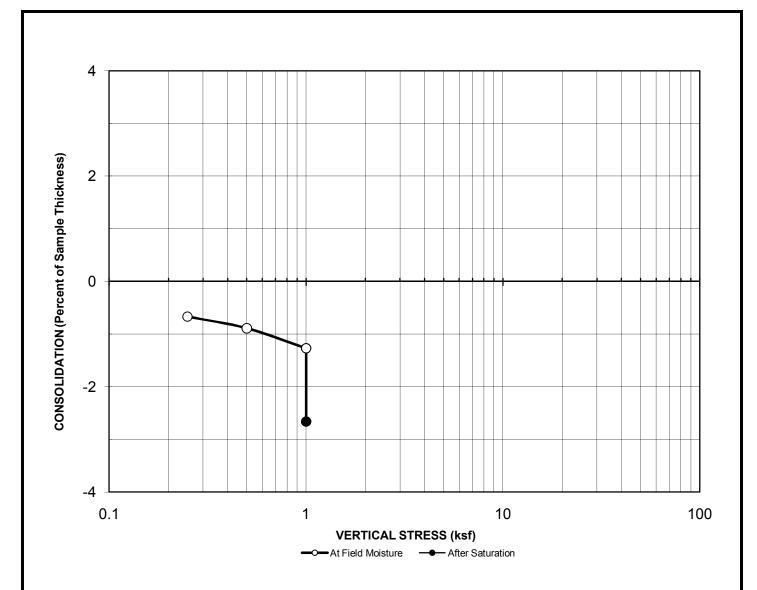
Project: Solar One
Proj. No.: 60095029

Tested By: CP Date: 11/5/2009

Soil	Boring No.:	B-008
	Sample No.:	NA
E a	Sample Depth:	2.5'
Sampl	Soil Classification (USCS Symbol):	Fat Clay (CH)
ιχ		

		UBC 18-2
ndar d	X	ASTM D 4829
Star		
Test		

Weight Prior to Screening	NA	g
Weight After Screening	NA	g
Percent Retained on #4 Sieve	NA	%


Moisture Determination	Units	Initial	Final
Assumed Moisture Content	%		
Tare Weight	g	214.1	105.3
Weight of Soil (Wet) + Tare	g	289.3	703.0
Weight of Soil (Dry) + Tare	g	278.6	586.2
Moisture Content	%	16.6%	41.0%
Density Determination			
Weight of Soil + Ring (Wet)	g	555.7	597.7
Weight of Ring	g	195.7	195.7
Wet Weight of Soil	g	360.0	402.0
Wet Density	pcf	109.4	
Final Sample Height	in		1.0890
Final Volume	ft ³		0.0079
Final Wet Density	pcf		111.9
Dry Density	pcf	93.9	79.4
Degree of Saturation (G _s = 2.7)	%	56.4	98.6

<u></u>		_
Initial Dry Density	93.9	pcf
Initial MC	16.6	%
Initial Saturation	56.4	%
<u> </u>	70.4	
Final Dry Density	79.4	pcf
<u> </u>	79.4 41.0	pcf %

	Date	Time	Dial Reading	Deflection
Start	11/5/2009	15:42	0.0311	
Add Water (After 10 minutes)	11/5/2009	15:52	0.0300	-0.0011
				=
				-
				-
				-
				-
				-
24 hours	11/6/2009	14:36	0.1201	0.0901

Expansion	Potential
Index, EI	Expansion
0-20	Very Low
21-50	Low
51-90	Medium
91-130	High
>130	Very High

El	Measured Expansion Index =	90	Recommend to use EI = 96
EI ₅₀	Expansion Index =	96	

Boring No.:

B-023

Sample No.:

NA

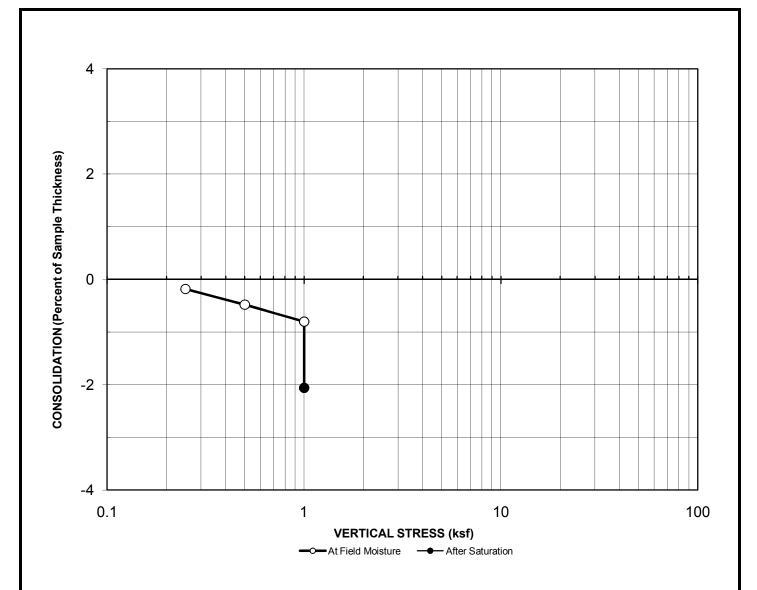
Depth (feet):

Sample Type:

Undisturbed

Soil Description:

Silty Sand (SM)


Initial Dry Unit Weight (pcf): 112.6
Initial Moisture Content (%): 3.1
Final Moisture Content (%): 15.2
Assumed Specific Gravity: 2.7
Initial Void Ratio: 0.50

COLLAPSE POTENTIAL ASTM D 5333

Collapse Potential (%):

1.4

Boring No.:

Sample No.:

NA

Depth (feet):

Sample Type:

Undisturbed

Soil Description:

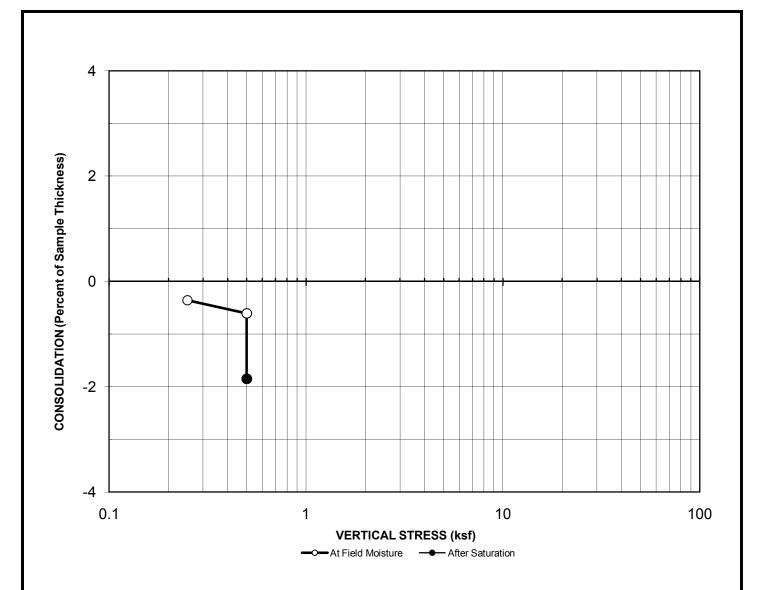
Silty Sand (SM)

Initial Dry Unit Weight (pcf): 111.8

Initial Moisture Content (%): 2.8

Final Moisture Content (%): 15.1

Assumed Specific Gravity: 2.7


Initial Void Ratio: 0.51

COLLAPSE POTENTIAL ASTM D 5333

Collapse Potential (%):

0.3

Boring No.:

Sample No.:

NA

Depth (feet):

Sample Type:

Undisturbed

Soil Description:

Silty Sand (SM)

Initial Moisture Content (%): 3.8

Final Moisture Content (%): 15.4

Assumed Specific Gravity: 2.7

Initial Void Ratio: 0.48

Initial Dry Unit Weight (pcf):

Collapse Potential (%): 1.2

COLLAPSE POTENTIAL ASTM D 5333

114.1

	00:	10710:				
	COMP	ACTION	ITEST			
Client Name : Tessera Project Name: Solar One Project No. : 60095029			Calculated By :		Date:	10/14/0 10/14/0
Location: Sample No. : B-001 Visual Sample Description: Yellowis	sh Brown Sand	(SW-SM)	•	O to 2.5	Date:	10/14/0
MOLD VOLUME (CLIET)	0.0333		Compaction Me		X ASTM D ASTM D X Moist	
MOLD VOLUME (CU.FT)					Dry	
Trail No.	1	2	3	4	5	6
Wt. Comp. Soil + Mold (gm.)	3651.8	3748.4	3836.0	3805.4		
Wt. of Mold (gm.)	1862.7	1862.7	1862.7	1862.7		
Net Wt. of Soil (gm.)	1789.1	1885.7	1973.3	1942.7		
Container No.						
Wt. of Container (gm.)	214.1	214.1	214.1	214.1		
Wet Wt. of Soil + Cont. (gm.)	431.7	450.1	520.7	527.9		
Dry Wt. of Soil + Cont. (gm.)	418.9	432.0	489.1	487.6		
Moisture Content (%)	6.3	8.3	11.5	14.7		
Wet Density (pcf)	118.4	124.8	130.6	128.6		
Dry Density (pcf)	111.5	115.3	117.2	112.1		
Maximum Dry Density (pcf)		117.5	Optimum I	Moisture Co	` ′ [10.
Assumed Specific Gravity = 2.70 PROCEDURE USED	1	30			100% sat. @ a	assumed Gs
Method A						
Soil Passing No. 4 (4.75 mm) Sieve						
Mold: 4 in. (101.6 mm) diameter Layers: 5 (Five)	1	20				
Blows per layer: 25 (twenty-five)	ı	20				
May be used if No.4 retained < 20% Method B						
Soil Passing 3/8 in. (9.5 mm) Sieve				b /		
Mold: 4 in. (101.6 mm) diameter Layers: 5 (Five)	1	10			$\overline{}$	
Blows per layer: 25 (twenty-five)						
Use if + No.4 > 20% and - 3/8 " < 20%						
Method C Soil Passing 3/4 in. (19.0 mm) Sieve	1	00				
Mold: 6 in. (152.4 mm) diameter Layers: 5 (Five) Blows per layer: 56 (fifty-six)	ı	0.00	10.00	2	20.00	30.00
Use if + 3/8 in >20% and + in <30%						

	COMPA	CTION	TEST				
Client Name: Tessera							
Project Name: Solar One			, <u> </u>	<u>zc</u>	Date:		
Project No. : 60095029 Location:			Calculated By : 2 Checked By : (ZC CP	Date: Date:		
Sample No. : B-007			_)-1		11/20/0	
Visual Sample Description: <u>Light Br</u>	own Sand W/ S						
		(Compaction Met	hod	X ASTM D		
		1	Preparation Met	hod	X Moist	3000	
MOLD VOLUME (CU.FT)	0.0333				Dry		
Trail No.	1	2	3	4	5	6	
Wt. Comp. Soil + Mold (gm.)	3725.1	3821.7	3881.1	3834.3			
Wt. of Mold (gm.)	1862.7	1862.7	1862.7	1862.7			
Net Wt. of Soil (gm.)	1862.4	1959.0	2018.4	1971.6			
Container No.							
Wt. of Container (gm.)	214.1	214.1	214.1	214.1			
Wet Wt. of Soil + Cont. (gm.)	420.6	424.9	406.1	412.9			
Dry Wt. of Soil + Cont. (gm.)	413.3	413.5	392.9	396.0			
Moisture Content (%)	3.7	5.7	7.4	9.3			
Wet Density (pcf)	123.3	129.7	133.6	130.5			
Dry Density (pcf)	118.9	122.7	124.4	119.4			
Maximum Dry Density (pcf		124.6	Optimum N	loisture Co	ntent (%)	6	
Assumed Specific Gravity = 2.60			100% sat. @ assumed Gs				
PROCEDURE USED	14	10					
Method A							
Soil Passing No. 4 (4.75 mm) Sieve Mold: 4 in. (101.6 mm) diameter			\				
Layers: 5 (Five)	13	30					
Blows per layer: 25 (twenty-five)	.,						
May be used if No.4 retained < 20% Method B							
Soil Passing 3/8 in. (9.5 mm) Sieve			8				
Mold: 4 in. (101.6 mm) diameter	12	20					
Layers: 5 (Five)				$\overline{}$			
Blows per layer: 25 (twenty-five) Use if + No.4 > 20% and - 3/8 " < 20%			•	\rightarrow			
Method C							
Soil Passing 3/4 in. (19.0 mm) Sieve	1.	10					
Mold: 6 in. (152.4 mm) diameter	1	0.00	10.00	2	20.00	30.00	
Layers: 5 (Five) Blows per layer: 56 (fifty-six)		0.00	10.00	2	.0.00	55.00	

	COMPA	ACTION	TEST				
Client Name: Tessera Project Name: Solar One Project No.: 60095029 Location: Sample No.: B-013 Visual Sample Description: Reddish	Solar One Tested By : ZC 60095029 Calculated By : ZC Checked By : CP Depth (ft) : 0-1						
MOLD VOLUME (CU.FT)	0.0333		Compaction Me		X ASTM DASTM DASTM Dry		
Trail No.	1	2	3	4	5	6	
Wt. Comp. Soil + Mold (gm.)	3725.9	3840.4	3990.3	3956.8			
Wt. of Mold (gm.)	1862.7	1862.7	1862.7	1862.7			
Net Wt. of Soil (gm.)	1863.2	1977.7	2127.6	2094.1			
Container No.							
Wt. of Container (gm.)	214.1	214.1	214.1	214.1			
Wet Wt. of Soil + Cont. (gm.)	423.8	467.5	427.5	422.5			
Dry Wt. of Soil + Cont. (gm.)	416.2	454.7	412.1	404.1			
Moisture Content (%)	3.8	5.3	7.8	9.7			
Wet Density (pcf)	123.4	130.9	140.9	138.6			
Dry Density (pcf)	118.9	124.3	130.7	126.4			
Maximum Dry Density (pcf)		130.5	Optimum I	Moisture Co	ntent (%)	7.0	
Assumed Specific Gravity = 2.70	12	10	100% sat. @ assumed Gs				
PROCEDURE USED Method A Soil Passing No. 4 (4.75 mm) Sieve Mold: 4 in. (101.6 mm) diameter Layers: 5 (Five)	.,						
Blows per layer: 25 (twenty-five) May be used if No.4 retained < 20% Method B Soil Passing 3/8 in. (9.5 mm) Sieve	13	30					
Mold: 4 in. (101.6 mm) diameter Layers: 5 (Five) Blows per layer: 25 (twenty-five) Use if + No.4 > 20% and - 3/8 " < 20% Method C Soil Passing 3/4 in. (19.0 mm) Sieve		20					
Mold: 6 in. (152.4 mm) diameter Layers: 5 (Five) Blows per layer: 56 (fifty-six) Use if + 3/8 in >20% and + in <30%	11	0.00	10.00	2	0.00	30.00	

	COMP	ACTION	ITEST			
Client Name: Tessera Project Name: Solar One Project No.: 60095029 Location: Sample No.: B-017 Visual Sample Description: Brown S	roject Name: Solar One Tested B roject No. : 60095029 Calculate ocation: Checked ample No. : B-017 Depth (ft)					
MOLD VOLUME (CU.FT)	0.0333		Compaction Me		X ASTM D ASTM D X Moist Dry	
Trail No.	1	2	3	4	5	6
Wt. Comp. Soil + Mold (gm.)	3794.1	3898.6	3934.2	3895.6		
Wt. of Mold (gm.)	1862.7	1862.7	1862.7	1862.7		
Net Wt. of Soil (gm.)	1931.4	2035.9	2071.5	2032.9		
Container No.						3838483848384838488
Wt. of Container (gm.)	214.1	214.1	214.1	214.1		
Wet Wt. of Soil + Cont. (gm.)	387.7	431.5	389.6	423.5		
Dry Wt. of Soil + Cont. (gm.)	375.2	411.4	369.8	396.3		
Moisture Content (%)	7.8	10.2	12.7	14.9		
Wet Density (pcf)	127.9	134.8	137.1	134.6		
Dry Density (pcf)	118.7	122.3	121.7	117.1		
Maximum Dry Density (pcf)		123.2	Optimum	Moisture Co	ntent (%)	11.5
Assumed Specific Gravity = 2.75	1	40			100% sat. @ a	assumed Gs
PROCEDURE USED Method A Soil Passing No. 4 (4.75 mm) Sieve Mold: 4 in. (101.6 mm) diameter Layers: 5 (Five)		30				
Blows per layer: 25 (twenty-five) May be used if No.4 retained < 20% Method B Soil Passing 3/8 in. (9.5 mm) Sieve Mold: 4 in. (101.6 mm) diameter Layers: 5 (Five) Blows per layer: 25 (twenty-five) Use if + No.4 > 20% and - 3/8 " < 20% Method C		20				
Soil Passing 3/4 in. (19.0 mm) Sieve Mold: 6 in. (152.4 mm) diameter Layers: 5 (Five) Blows per layer: 56 (fifty-six) Use if + 3/8 in >20% and + in <30%	1	0.00	10.00	2	20.00	30.00

	COMP	ACTION	ITEST				
Client Name : Tessera							
Project Name: Solar One			Tested By :	CP	Date:	11/04/0	
Project No. : 60095029			Calculated By :		Date:	11/04/0	
Location: B-021			Checked By:		Date:	11/04/0	
Sample No. :			Depth (ft):	0 to 1			
Visual Sample Description: Silty San	d (SM)		Commontion Ma	ا له م طا	X ASTM D	14557	
			Compaction Me	triou	ASTMIC		
			Preparation Met	thod	X Moist	7000	
MOLD VOLUME (CU.FT)	0.0333				Dry		
Trail No.	1	2	3	4	5	6	
Wt. Comp. Soil + Mold (gm.)	3738.8	3834.8	3864.4	3822.1			
Wt. of Mold (gm.)	1862.1	1862.1	1862.1	1862.1			
Net Wt. of Soil (gm.)	1876.7	1972.7	2002.3	1960.0			
Container No.							
Wt. of Container (gm.)	214.1	214.1	214.1	214.1			
Wet Wt. of Soil + Cont. (gm.)	382.9 411.1		499.0	483.6			
Dry Wt. of Soil + Cont. (gm.)	371.7	392.7	468.1	450.0			
Moisture Content (%)	7.1	10.3	12.1	14.2			
Wet Density (pcf)	124.2	130.6	132.6	129.8			
Dry Density (pcf)	116.0	118.4	118.2	113.6			
Maximum Dry Density (pcf)		119.0	Optimum N	Moisture Co	ntent (%)	11.	
Assumed Specific Gravity = 2.61					100% sat. @ a	assumed Gs	
PROCEDURE USED	1	40					
Method A							
Soil Passing No. 4 (4.75 mm) Sieve							
Mold: 4 in. (101.6 mm) diameter							
Layers: 5 (Five)	1	30					
Blows per layer: 25 (twenty-five)							
May be used if No.4 retained < 20%			 				
Method B			 				
Soil Passing 3/8 in. (9.5 mm) Sieve				\backslash			
Mold: 4 in. (101.6 mm) diameter	1	20					
Layers: 5 (Five)				X			
Blows per layer: 25 (twenty-five) Use if + No.4 > 20% and - 3/8 " < 20%				\ \			
Method C				/			
Soil Passing 3/4 in. (19.0 mm) Sieve				 			
Mold: 6 in. (152.4 mm) diameter	1	10	' 		+	-	
Layers: 5 (Five)		0.00	10.00	2	0.00	30.00	
Blows per layer: 56 (fifty-six)							
Use if + 3/8 in >20% and + in <30%							

	COMPA	ACTION	TEST				
Client Name : Tessera							
Project Name: Solar One			, <u> </u>	ZC	Date:		
Project No. : 60095029 Location:			Calculated By : 2 Checked By : (Date:		
Sample No. : B-031			· -	<u>CP</u>)-1	Date:	11/20/0	
•	sh brown Sand			•	-		
			Compaction Met	thod	X ASTM I		
			Preparation Met	hod	X Moist	D698	
MOLD VOLUME (CU.FT)	0.0333		rieparation iviet	nou	Dry		
•							
Trail No.	1	2	3	4	5	6	
Wt. Comp. Soil + Mold (gm.)	3708.4	3776.9	3825.9	3851.9			
Wt. of Mold (gm.)	1862.7	1862.7	1862.7	1862.7			
Net Wt. of Soil (gm.)	1845.7	1914.2	1963.2	1989.2			
Container No.							
Wt. of Container (gm.)	214.1	214.1	214.1	214.1			
Wet Wt. of Soil + Cont. (gm.)	386.8	428.4	431.3	449.2			
Dry Wt. of Soil + Cont. (gm.)	381.9	418.1	416.2	428.0			
Moisture Content (%)	2.9	5.0	7.5	9.9			
Wet Density (pcf)	122.2	126.7	130.0	131.7			
Dry Density (pcf)	118.7	120.6	120.9	119.8			
Maximum Dry Density (pcf)		122.4	Optimum N	loisture Co	ntent (%)	6	
Assumed Specific Gravity = 2.65	4.4	10	100% sat. @ assumed Gs				
PROCEDURE USED	14	10					
Method A			 	+			
Soil Passing No. 4 (4.75 mm) Sieve Mold: 4 in. (101.6 mm) diameter							
Layers: 5 (Five)	13	30					
Blows per layer: 25 (twenty-five)	1.						
May be used if No.4 retained < 20%			\longrightarrow				
Method B							
Soil Passing 3/8 in. (9.5 mm) Sieve Mold: 4 in. (101.6 mm) diameter							
Layers: 5 (Five)	12	20					
Blows per layer: 25 (twenty-five)							
Use if + No.4 > 20% and - 3/8 " < 20%							
Method C				\longrightarrow			
Soil Passing 3/4 in. (19.0 mm) Sieve	11	10 🕌		<u> </u>			
Mold: 6 in. (152.4 mm) diameter		0.00	10.00	2	20.00	30.00	
Layers: 5 (Five) Blows per layer: 56 (fifty-six)							

COMPACTION TEST Client Name: Tessera Project Name: Solar One Tested By: Date: 11/26/09 Calculated By : ZC Project No.: 60095029 Date: 11/26/09 Location: Checked By: Date: 11/26/09 Sample No.: B-0034 Depth (ft): Visual Sample Description: Light Brown Silty Sand (SM) Compaction Method **ASTM D1557** ASTM D698 Preparation Method Moist 0.0333 MOLD VOLUME (CU.FT) Dry Trail No. 1 2 3 4 6 Wt. Comp. Soil + Mold (gm.) 3827.3 3727.8 3883.1 3872.7 Wt. of Mold (gm.) 1862.7 1862.7 1862.7 1862.7 Net Wt. of Soil (gm.) 1964.6 1865.1 2020.4 2010.0 Container No. 214.1 Wt. of Container (gm.) 214.1 214.1 214.1 431.7 412.1 425.1 409.4 Wet Wt. of Soil + Cont. (gm.) 404.6 398.4 406.9 389.3 Dry Wt. of Soil + Cont. (gm.) Moisture Content (%) 14.2 7.4 9.4 11.5 123.5 130.1 133.8 133.1 Wet Density (pcf) 122.2 Dry Density (pcf) 113.9 114.9 119.4 9.5 Maximum Dry Density (pcf) 122.0 Optimum Moisture Content (%) 100% sat. @ assumed Gs Assumed Specific Gravity = 2.60 130 PROCEDURE USED Method A Soil Passing No. 4 (4.75 mm) Sieve Mold: 4 in. (101.6 mm) diameter Layers: 5 (Five) 120 Blows per layer: 25 (twenty-five) May be used if No.4 retained < 20% Method B Soil Passing 3/8 in. (9.5 mm) Sieve Mold: 4 in. (101.6 mm) diameter Layers: 5 (Five) 110 Blows per layer: 25 (twenty-five) Use if + No.4 > 20% and - 3/8 " < 20% Method C Soil Passing 3/4 in. (19.0 mm) Sieve Mold: 6 in. (152.4 mm) diameter 100 Layers: 5 (Five) Blows per layer: 56 (fifty-six) 0.00 10.00 20.00 30.00 Use if + 3/8 in >20% and + in <30%

	COMPA	ACTION	TEST				
Client Name: Tessera Project Name: Solar One Project No.: 60095029 Location: B-035 Sample No.:	eet Name: Solar One Tested By : ZC eet No. : 60095029 Calculated By : ZC ation: B-035 Checked By : CP						
Visual Sample Description: Yellow-I	3rown Silty Sar 0.0333	(Compaction Me		X ASTM E ASTM E X Moist Dry		
Trail No.	1	2	3	4	5	6	
Wt. Comp. Soil + Mold (gm.)	3872.6	3959.2	3966.2	3937.3			
Wt. of Mold (gm.)	1862.7	1862.7	1862.7	1862.7			
Net Wt. of Soil (gm.)	2009.9	2096.5	2103.5	2074.6			
Container No. Wt. of Container (gm.)	214.1	214.1	214.1	214.1			
Wet Wt. of Soil + Cont. (gm.)	433.1	436.1	436.2	430.4			
Dry Wt. of Soil + Cont. (gm.)	418.9	418.9	415.2	405.8			
Moisture Content (%)	6.9	8.4	10.4	12.8			
Wet Density (pcf)	133.1	138.8	139.3	137.3			
Dry Density (pcf)	124.4	128.0	126.1	121.7			
Maximum Dry Density (pcf)		128.0	Optimum I	Moisture Co	ntent (%)	9.5	
Assumed Specific Gravity = 2.70					100% sat. @ a	assumed Gs	
PROCEDURE USED Method A Soil Passing No. 4 (4.75 mm) Sieve Mold: 4 in. (101.6 mm) diameter Layers: 5 (Five) Blows per layer: 25 (twenty-five) May be used if No.4 retained < 20% Method B Soil Passing 3/8 in. (9.5 mm) Sieve		30					
Mold: 4 in. (101.6 mm) diameter Layers: 5 (Five) Blows per layer: 25 (twenty-five) Use if + No.4 > 20% and - 3/8 " < 20% Method C Soil Passing 3/4 in. (19.0 mm) Sieve Mold: 6 in. (152.4 mm) diameter Layers: 5 (Five) Blows per layer: 56 (fifty-six) Use if + 3/8 in > 20% and + in < 30%		10 0.00	10.00	2	20.00	30.00	

	COMPA	CTION	TEST				
Client Name : Tessera							
Project Name: Solar One			, <u> </u>	<u>zc</u>	Date:		
Project No. : 6005029			Calculated By:		Date:		
Location: Sample No. : B-043			_	<u>)-1</u>	Date:	11/26/0	
•	W/ Sand (GP)	•	<u>c</u>	, ,	<u>-</u>		
· · · · · · · · · · · · · · · · · · ·	, ,	(Compaction Met	hod	X ASTM I		
		_			ASTM I	D698	
MOLD VOLUME (CU.FT)	0.0333	ŀ	Preparation Met	hod	X Moist Dry		
MOLD VOLUME (CO.FT)	0.0333				ыу		
Trail No.	1	2	3	4	5	6	
Wt. Comp. Soil + Mold (gm.)	3705.4	3764.1	3804.1	3774.0			
Wt. of Mold (gm.)	1862.7	1862.7	1862.7	1862.7			
Net Wt. of Soil (gm.)	1842.7	1901.4	1941.4	1911.3			
Container No.							
Wt. of Container (gm.)	214.1	214.1	214.1	214.1			
Wet Wt. of Soil + Cont. (gm.)	412.8	401.8	435.3	418.9			
Dry Wt. of Soil + Cont. (gm.)	407.7	393.6	421.8	402.1			
Moisture Content (%)	2.6	4.6	6.5	8.9			
Wet Density (pcf)	122.0	125.9	128.5	126.5			
Dry Density (pcf)	118.9	120.4	120.7	116.2			
Maximum Dry Density (pcf)		121.0	Optimum N	loisture Co	ntent (%)	5	
Assumed Specific Gravity = 2.60			100% sat. @ assumed Gs				
PROCEDURE USED	14	10					
Method A			\perp				
Soil Passing No. 4 (4.75 mm) Sieve Mold: 4 in. (101.6 mm) diameter			- 				
Layers: 5 (Five)			+++++				
Blows per layer: 25 (twenty-five)	13	30					
May be used if No.4 retained < 20%							
Method B			\rightarrow				
Soil Passing 3/8 in. (9.5 mm) Sieve			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
Mold: 4 in. (101.6 mm) diameter Layers: 5 (Five)	12	20					
Blows per layer: 25 (twenty-five)							
Use if + No.4 > 20% and - 3/8 " < 20%			7				
Method C							
Soil Passing 3/4 in. (19.0 mm) Sieve	11	10					
Mold: 6 in. (152.4 mm) diameter		0.00	10.00	2	0.00	30.00	
Layers: 5 (Five) Blows per layer: 56 (fifty-six)							

	COMPA	CTION	TEST				
Client Name : Tessera							
Project Name: Solar One			_	ZC	Date:		
Project No. : <u>60095026</u> Location: B-049			Calculated By : 2 Checked By :		Date: Date		
Sample No. :)-5	Dak	<u>. 077117</u>	
Visual Sample Description: Gravel V	// Sand (GP)		_		· 		
		C	Compaction Met	thod	X ASTM [
		F	reparation Met	hod	X Moist	2090	
MOLD VOLUME (CU.FT)	0.0333		•		Dry		
Trail No.	1	2	3	4	5	6	
Wt. Comp. Soil + Mold (gm.)	3695.2	3790.7	3823.8	3822.1			
Wt. of Mold (gm.)	1862.7	1862.7	1862.7	1862.7			
Net Wt. of Soil (gm.)	1832.5	1928.0	1961.1	1959.4			
Container No.							
Wt. of Container (gm.)	214.1	214.1	214.1	214.1			
Wet Wt. of Soil + Cont. (gm.)	434.1	471.2	520.9	483.6			
Dry Wt. of Soil + Cont. (gm.)	427.3	459.2	501.4	460.7			
Moisture Content (%)	3.2	4.9	6.8	9.3			
Wet Density (pcf)	121.3	127.6	129.8	129.7			
Dry Density (pcf)	117.6	121.7	121.6	118.7			
Maximum Dry Density (pcf)		122.5	Optimum N	loisture Co	ntent (%)	6.	
Assumed Specific Gravity = 2.63	4./	10	100% sat. @ assumed Gs				
PROCEDURE USED	14	10					
Method A Soil Passing No. 4 (4.75 mm) Sieve				+			
Mold: 4 in. (101.6 mm) diameter							
Layers: 3 (Three)	13	30					
Blows per layer: 25 (twenty-five)	10						
May be used if No.4 retained < 20%			\longrightarrow				
Method B Soil Passing 3/8 in. (9.5 mm) Sieve			 	\			
Mold: 4 in. (101.6 mm) diameter	4.0	,					
Layers: 3 (Three)	12	20	B				
Blows per layer: 25 (twenty-five)							
Use if + No.4 > 20% and - 3/8 " < 20%				\longrightarrow			
Method C				+			
Soil Passing 3/4 in. (19.0 mm) Sieve Mold: 6 in. (152.4 mm) diameter	11	10					
Layers: 3 (Three)		0.00	10.00	2	20.00	30.00	
Blows per layer: 56 (fifty-six)							

AP Engineering & Testing, Inc.

R-VALUE TEST DATA

ASTM D2844

Project Name: Solar One Tested By: ST/KM Date: 11/17/09

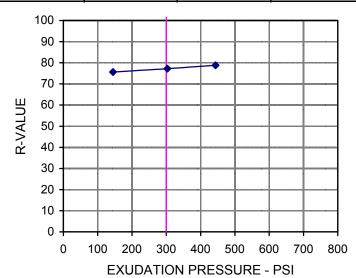
Project Number: 60095029 Checked By: AP Date: 11/18/09

Boring No.: B-020

Sample No.: Bulk Depth (ft.): 0-5

Location: N/A

Soil Description: Pale Red Silty Sand


Mold Number	В	С	D	
Water Added, g	10	107	104	
Compact Moisture(%)	2.3	12.2	11.9	
Compaction Gage Pressure, psi	200	200	200	
Exudation Pressure, psi	443	145	303	
Sample Height, Inches	2.7	2.7	2.7	
Gross Weight Mold, g	3065	3068	3071	
Tare Weight Mold, g	1967	1969	1971	
Net Sample Weight, g	1098	1099	1100	
Expansion, inchesx10 ⁻⁴	0	0	0	
Stability 2,000 (160 psi)	14/25	17/30	16/26	
Turns Displacement	4.25	4.19	4.57	
R-Value Uncorrected	76	72	74	
R-Value Corrected	79	76	77	
Dry Density, pcf	120.4	110.0	110.4	
Traffic Index	8.0	8.0	8.0	
G.E. by Stability	0.36	0.41	0.39	
G.E. by Expansion	0.00	0.00	0.00	

R-Value by Exudation = 77 R-Value by Expansion = N/A Equilibrium R-Value = 77

(by Exudation)

Remarks: $G_f = 1.5$

0.0 % Retained on the 3/4"

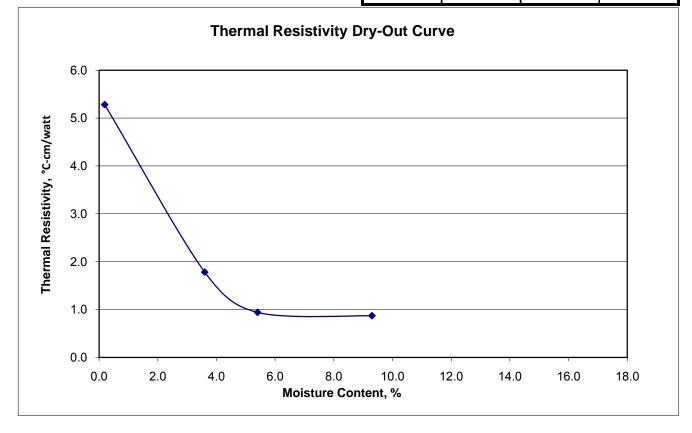
CORROSION TEST RESULTS

Client Name: Tessera

Project Name: Solar One

Project No.: 60095029

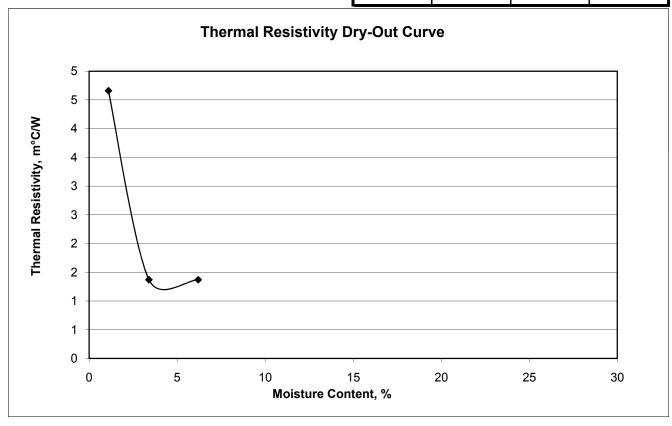
Date: 11/6/2009


Boring No.	Sample No.	Depth (ft)	Soil Type	Minimum Resistivity (ohm-cm)	рН	Temp. (°C)	Sulfate Content (ppm	Chloride Content (ppm)
				•				
B-001	-	0 to 2	SM	1,300	8.93	14.6	25	61
B-009	-	0 to 5	SP	5,900	8.18	14.8	1	61
B-014	-	0 to 2	SM	360	8.23	14.8	715	62
B-035	-	0 to 5	SP-SM	3,900	8.30	14.8	6	65
B-049	-	0 to 1	SP-SM	8,000	8.28	14.7	2	62
TP-045	-	5	SM	4,000	8.16	14.8	20	61

NOTES: Resistivity Test and pH: California Test Methods 643

Sulfate Content : California Test Method 417 Chloride Content : California Test Method 422

ND = Not Detectable NA = Not Sufficient Sample NR = Not Requested


Project Name: Project Number:	Tessera Solar 60095029	Thermal Resistivity Test Results							
4		Moisture Content (%)	Dry Unit Weight (pcf)	Meter- Degrees (°C-cm/watt)	Temperature (°C)				
Sample ID:	B-01 0'-2.5'	0.2	116.6	5	46.4				
Soil Type:		3.6	116.6	2	22.6				
Standard/Modified Proctor:	Modified ASTM D-1557	5.4	112.9	1	22.3				
Max Dry Density, pcf:	117.5	9.3	113.4	1	22.2				
Opt. Moisture Content, %:	10.00%								
Target % Compaction:	95%								
Target Dry Density:	111.63								

Run By: Approved By:

Thermal Resistivity Test Results

,		Average Moisture Content (%)	Compaction (%)	Meter- Degrees (°C-cm/watt)	Average Temperature (°C)
Sample ID:	B-007, 0,0' to 2.5'	6.2	98.0	1	22.5
Soil Type:	Br. Fat Clay	3.4	93.0	1	23.1
Standard/Modified Proctor:	Modified ASTM D-1557A	1.1	93.0	5	22.7
Max Dry Density, pcf:	124.6				
Opt. Moisture Content, %:	6.50%				
Target % Compaction:	95%				

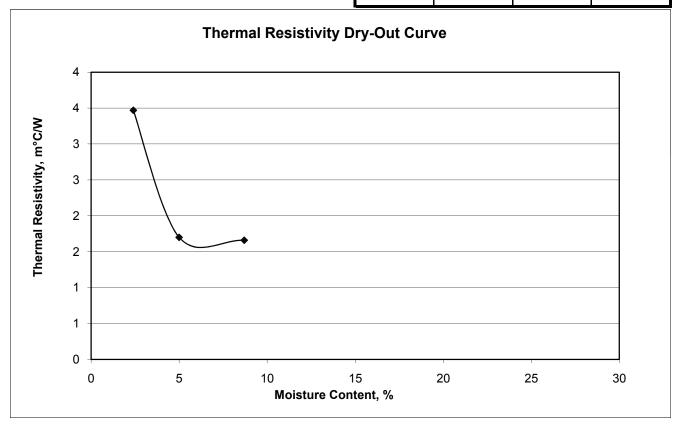
Run By: GL

Approved By: MG

lerracon

Thermal Resistivity Test Results

ŕ		Average Moisture Content (%)	Compaction (%)	Meter- Degrees (°C-cm/watt)	Average Temperature (°C)
Sample ID:	B-013, 0,0' to 1'	6.5	94.0	1	22.6
Soil Type:	Br. Sand with Gravel	3.7	89.0	1	22.7
Standard/Modified Proctor:	Modified ASTM D-1557A	1.0	97.0	4	22.8
Max Dry Density, pcf:	130.5				
Opt. Moisture Content, %:	7.00%				
Target % Compaction:	95%				

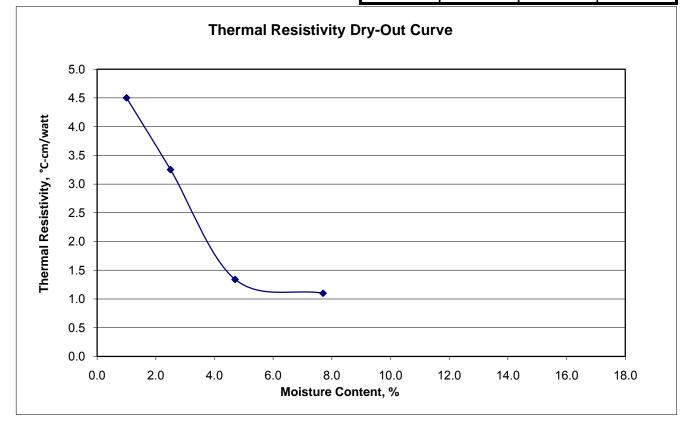

Run By: GL

Approved By: MG

. Tierracon

Thermal Resistivity Test Results

r roject Number.	00000020	Average Moisture Content (%)	Compaction (%)	Meter- Degrees (°C-cm/watt)	Average Temperature (°C)
Sample ID:	B-017, 0,0' to 1'	8.7	90.0	2	22.5
Soil Type:	Br. Sand with Gravel	5.0	91.0	2	24.1
Standard/Modified Proctor:	Modified ASTM D-1557A	2.4	96.0	3	23.4
Max Dry Density, pcf:	123.2				
Opt. Moisture Content, %:	11.50%				
Target % Compaction:	95%				

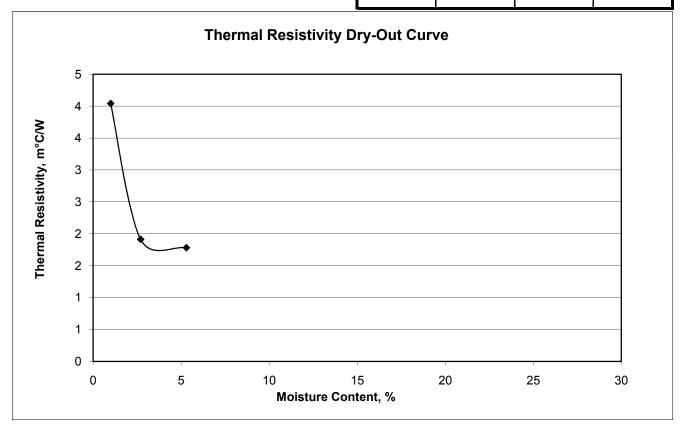


Run By: GL

Approved By: MG

. Tierracon

Project Name: Project Number:	Tessera Solar 60095029	Thermal Resistivity Test Results			
			5	Meter-	
		Moisture	Dry Unit	Degrees	Temperature
<u> </u>		Content (%)	Weight (pcf)	(°C-cm/watt)	(°C)
Sample ID:	B-021 0'-1'	7.7	108.5	1	20.8
Soil Type:		4.7	109.8	1	20.8
Standard/Modified Proctor:	Modified ASTM D-1557	2.5	109.0	3	20.2
Max Dry Density, pcf:	119	1.0	110.9	5	21.4
Opt. Moisture Content, %:	11.00%				
Target % Compaction:	95%				
Target Dry Density:	113.05				

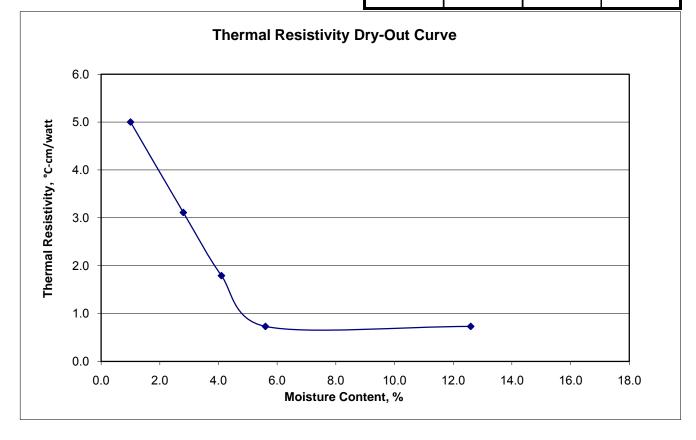


Run By: Approved By:

<u> Terraco</u>

Thermal Resistivity Test Results

r roject ramber.		Average Moisture Content (%)	Compaction (%)	Meter- Degrees (°C-cm/watt)	Average Temperature (°C)
Sample ID:	B-031, 0,0' to 5'	5.3	96.0	2	22.8
	Br. Sand with Gravel	2.7	96.0	2	22.4
Standard/Modified Proctor:	Modified ASTM D-1557A	1.0	98.0	4	23.0
Max Dry Density, pcf:	122.4				
Opt. Moisture Content, %:	6.00%				
Target % Compaction:	95%				

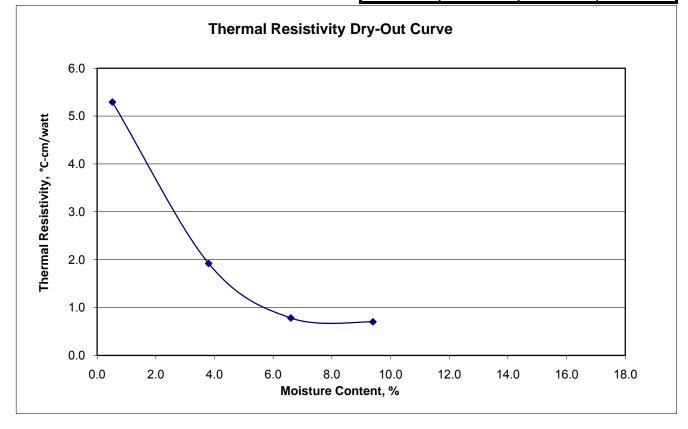


Run By: GL

Approved By: MG

<u>llerracon</u>

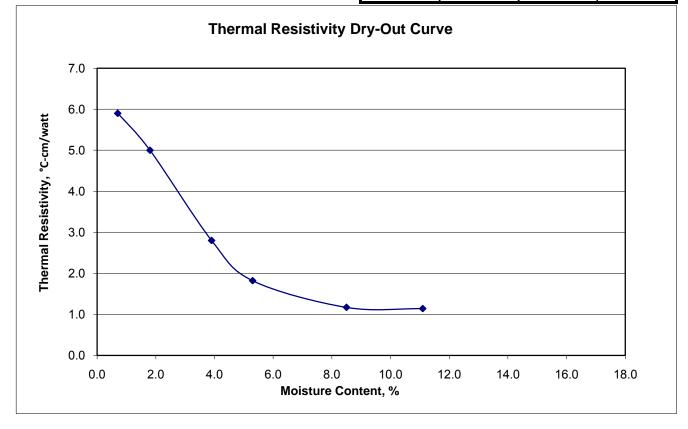
Project Name: Project Number:	•		esistivity Te	est Results	
		Moisture	Dry Unit	Meter-	Tomporatura
		Content (%)	Weight (pcf)	Degrees (°C-cm/watt)	Temperature (°C)
Sample ID:	B-034 0'-1'	12.6	120.1	1	22.1
Soil Type:		5.6	115.2	1	24.7
Standard/Modified Proctor:	Modified ASTM D-1557	4.1	114.9	2	24.5
Max Dry Density, pcf:	122	2.8	114.2	3	24.6
Opt. Moisture Content, %:	10.00%	1.0	117.9	5	47.8
Target % Compaction:	95%				
Target Dry Density:	115.9				



Run By:

Approved By:

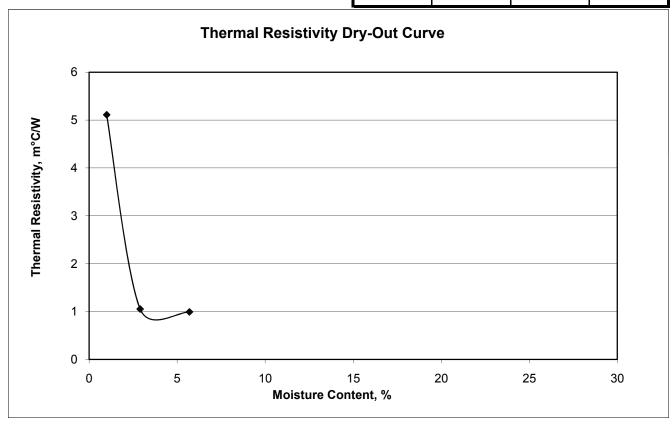
<u>llerracon</u>


Project Name: Project Number:	Tessera Solar 60095029	Thermal Resistivity Test Results			
		Moisture	Dry Unit	Meter- Degrees	Temperature
		Content (%)	Weight (pcf)	(°C-cm/watt)	(°C)
Sample ID:	B-035 0'-5'	0.5	122.1	5	41.9
Soil Type:		3.8	122.2	2	23.9
Standard/Modified Proctor:	Modified ASTM D-1557	6.6	125.1	1	22.2
Max Dry Density, pcf:	128	9.4	126.1	1	22.2
Opt. Moisture Content, %:	9.50%				
Target % Compaction:	95%				
Target Dry Density:	121.6				

<u> Terraco</u>

Run By: Approved By:

Project Name: Project Number:	Tessera Solar 60095029	Thermal Resistivity Test Results			
		Moisture	Dry Unit	Meter- Degrees	Temperature
		Content (%)	Weight (pcf)	(°C-cm/watt)	(°C)
Sample ID:	B-043 0'-1'	11.1	113.6	1	21.8
Soil Type:		8.5	115.2	1	22.5
Standard/Modified Proctor:	Modified ASTM D-1557	5.3	115.2	2	23.5
Max Dry Density, pcf:	121	3.9	114.3	3	23.5
Opt. Moisture Content, %:	5.50%	1.8	118.6	5	23.4
Target % Compaction:	95%	0.7	124.2	6	47.3
Target Dry Density:	114.95				


Run By:

Approved By:

lerracon

Thermal Resistivity Test Results

·		Average Moisture Content (%)	Compaction (%)	Meter- Degrees (°C-cm/watt)	Average Temperature (°C)
Sample ID:	B-049 0' to 5'	5.7	96.0	1	22.7
Soil Type:	Br. Sand with Gravel	2.9	99.0	1	22.8
Standard/Modified Proctor:	Modified ASTM D-1557A	1.0	98.0	5	22.8
Max Dry Density, pcf:	122.5				
Opt. Moisture Content, %:	6.00%				
Target % Compaction:	95%				

Run By: GL

Approved By: MG

. Tierracon

Site Name:	Solar One	Boring No.: B-0)14			
Site Address:	Hwy 40 and Hector Road, F	Hwy 40 and Hector Road, Pisgah, CA				
Report Prepared By:	CP	CP Field Test By: CP				
Description of the soil as seen at the site:						
Choose from the following descriptions that best describe the earth conditions:						
Good clay earth	Solid Rock					
Sandy Soil	High Rise Site					
Provide the following in	formation:					
Date of resistivity test:	10/21/2009	-				
Weather for the seven d (The last three days must have be	•	Clear and Sunny				
Model number of test in	strument:	Nilsson Model 40	0			
Serial number of test ins	strument:	4-7530				
RESITIVITY TESTING DATA AND RESULTS:						

A (ft) =	2	4	8	16	20
FORMULA D= (OHM-CM)	383*R	766*R	1532*R	3064*R	3830*R
AREA 1 MEASURED R	19	5.1	1.7	0.92	0.61
AREA 1 CALC D	7277	3907	2604	2819	2336

Site Name:	Solar One	Boring No.: B-014				
Site Address:	Hwy 40 and Hector Road, F	Pisgah, CA				
Report Prepared By:	СР	Field Test By: CP				
Description of the soil as seen at the site:						
Choose from the following descriptions that best describe the earth conditions:						
Good clay earth	Solid Rock					
Sandy Soil	High Rise	Site				
Provide the following inf	ormation:					
Date of resistivity test:	10/21/2009	_				
Weather for the seven da (The last three days must have be	•	Clear and Sunny				
Model number of test ins	strument:	Nilsson Model 400				
Serial number of test ins	trument:	4-7530				
PESITIVITY TESTING DA	TA AND PESIII TS:					

A (ft) =	2	4	8	16	20
FORMULA D= (OHM-CM)	383*R	766*R	1532*R	3064*R	3830*R
AREA 1 MEASURED R	20	6.7	3.2	3.2	3.2
AREA 1 CALC D	7660	5132	4902	9805	12256

Site Name:	Solar One	Boring No.:	B-033			
Site Address:	Hwy 40 and Hector Road, F	Hwy 40 and Hector Road, Pisgah, CA				
Report Prepared By:	CP	Field Test By:	: <u>CP</u>			
Description of the soil a	s seen at the site:					
Choose from the following descriptions that best describe the earth conditions:						
Good clay earth	Solid Rock					
Sandy Soil	High Rise Site					
Provide the following in	formation:					
Date of resistivity test:	10/21/2009	_				
Weather for the seven d (The last three days must have be	•	Clear and Su	nny			
Model number of test instrument:		Nilsson Mode	el 400			
Serial number of test ins	strument:	4-7530	_			
RESITIVITY TESTING DATA AND RESULTS:						

A (ft) =	2	4	8	16	20
FORMULA D= (OHM-CM)	383*R	766*R	1532*R	3064*R	3830*R
AREA 1 MEASURED R	660000	410000	740000	560000	200000
AREA 1 CALC D	252780000	314060000	1133680000	1715840000	766000000

Site Name:	Solar One	Boring No.:	B-048			
Site Address:	Hwy 40 and Hector Road, F	Hwy 40 and Hector Road, Pisgah, CA				
Report Prepared By:	CP	Field Test By:	: <u>CP</u>			
Description of the soil a	s seen at the site:					
Choose from the following descriptions that best describe the earth conditions:						
Good clay earth	Solid Rock					
Sandy Soil	High Rise Site					
Provide the following in	formation:					
Date of resistivity test:	10/21/2009	_				
Weather for the seven d (The last three days must have be	•	Clear and Su	nny			
Model number of test instrument:		Nilsson Mode	el 400			
Serial number of test ins	strument:	4-7530	-			
RESITIVITY TESTING DATA AND RESULTS:						

A (ft) =	2	4	8	16	20
FORMULA D= (OHM-CM)	383*R	766*R	1532*R	3064*R	3830*R
AREA 1 MEASURED R	1600	1300	1900	1800	8900
AREA 1 CALC D	612800	995800	2910800	5515200	34087000

Site Name:	Solar One	Boring No.:	B-029			
Site Address:	Hwy 40 and Hector Road, F	Hwy 40 and Hector Road, Pisgah, CA				
Report Prepared By:	CP	Field Test By:	: <u>CP</u>			
Description of the soil a	s seen at the site:					
Choose from the following descriptions that best describe the earth conditions:						
Good clay earth	Solid Rock					
Sandy Soil	High Rise Site					
Provide the following in	formation:					
Date of resistivity test:	10/21/2009	_				
Weather for the seven d (The last three days must have be	•	Clear and Su	nny			
Model number of test instrument:		Nilsson Mode	el 400			
Serial number of test ins	strument:	4-7530	-			
RESITIVITY TESTING DATA AND RESULTS:						

A (ft) =	2	4	8	16	20
FORMULA D= (OHM-CM)	383*R	766*R	1532*R	3064*R	3830*R
AREA 1 MEASURED R	140000	130000	160000	71000	16000
AREA 1 CALC D	53620000	99580000	245120000	217544000	61280000

Site Name:	Solar One	Boring No.: <u>B-025</u>		
Site Address:	Hwy 40 and Hector Road,	Pisgah, CA		
Report Prepared By:	CP	Field Test By: CP		
Description of the soil a	s seen at the site:			
Choose from the following descriptions that best describe the earth conditions:				
Good clay earth	Solid Rock			
Sandy Soil	High Rise	e Site		
Provide the following in	formation:			
Date of resistivity test:	10/21/2009	<u> </u>		
Weather for the seven d (The last three days must have be	•	Clear and Sunny		
Model number of test in	strument:	Nilsson Model 400		
Serial number of test ins	strument:	4-7530		
RESITIVITY TESTING DATA AND RESULTS:				

A (ft) =	2	4	8	16	20
FORMULA D= (OHM-CM)	383*R	766*R	1532*R	3064*R	3830*R
AREA 1 MEASURED R	310	300	4700	120	0
AREA 1 CALC D	118730	229800	7200400	367680	0

Site Name:	Solar One	Boring No.:	B-043			
Site Address:	Hwy 40 and Hector Road, F	Hwy 40 and Hector Road, Pisgah, CA				
Report Prepared By:	CP	Field Test By:	CP			
Description of the soil a	Description of the soil as seen at the site:					
Choose from the following descriptions that best describe the earth conditions:						
Good clay earth	Solid Rock					
Sandy Soil	High Rise Site					
Provide the following in	formation:					
Date of resistivity test:	10/21/2009	_				
Weather for the seven d (The last three days must have be	• •	Clear and Su	nny			
Model number of test in	strument:	Nilsson Mode	el 400			
Serial number of test ins	strument:	4-7530	-			
RESITIVITY TESTING DATA AND RESULTS:						

A (ft) =	2	4	8	16	20
FORMULA D= (OHM-CM)	383*R	766*R	1532*R	3064*R	3830*R
AREA 1 MEASURED R	1000	10900	12000	12000	0
AREA 1 CALC D	383000	8349400	18384000	36768000	0

Site Name:	Solar One	_Boring No.:	B-032	
Site Address:	Hwy 40 and Hector Road, I	Pisgah, CA		
Report Prepared By:	MLS	Field Test By	: MLS	
Description of the soil a	s seen at the site:			
Choose from the following descriptions that best describe the earth conditions:				
Good clay earth	Solid Rock			
Sandy Soil	High Rise Site			
Provide the following in	formation:			
Date of resistivity test:	10/23/2009	_		
Weather for the seven do	• •	Clear and Su	nny	
Model number of test in	strument:	Nilsson Mode	el 400	
Serial number of test ins	strument:	4-7530	_	
PESITIVITY TESTING DATA AND PESITI TS:				

A (ft) =	2	4	8	16	20
FORMULA D= (OHM-CM)	383*R	766*R	1532*R	3064*R	3830*R
AREA 1 MEASURED R	120	20	400	20	11
AREA 1 CALC D	45960	15320	612800	61280	42130

Site Name:	Solar One	Boring No.: TP-044		
Site Address:	Hwy 40 and Hector Road, F	Pisgah, CA		
Report Prepared By:	MLS	Field Test By: MLS		
Description of the soil a	s seen at the site:			
Choose from the followic conditions:	ng descriptions that best d	lescribe the earth		
Good clay earth	Solid Rock			
Sandy Soil	High Rise Site			
Provide the following in	formation:			
Date of resistivity test:	10/30/2009	_		
Weather for the seven d (The last three days must have be	• •	Clear and Sunny		
Model number of test instrument:		Nilsson Model 400		
Serial number of test instrument:		4-7530		
RESITIVITY TESTING DATA AND RESULTS:				

A (ft) =	2	4	8	16	20
FORMULA D= (OHM-CM)	383*R	766*R	1532*R	3064*R	3830*R
AREA 1 MEASURED R	56000	1800	2000	4600	6500
AREA 1 CALC D	21448000	1378800	3064000	14094400	24895000

APPENDIX C
ASFE INSERT

Important Information about Your

Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one — not even you —* should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report Is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

the function of the proposed structure, as when it's changed from a
parking garage to an office building, or from a light industrial plant
to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure.
- · composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final,* because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. The geotechnical engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk*.

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, but preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. Be sure contractors have sufficient time to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures*. If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else*.

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction. operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant; none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechnical Engineer for Additional Assistance

Membership in ASFE/The Best People on Earth exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with you ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.

BEFORE THE ENERGY RESOURCES CONSERVATION AND DEVELOPMENT COMMISSION OF THE STATE OF CALIFORNIA

1516 NINTH STREET, SACRAMENTO, CA 95814 1-800-822-6228 – www.energy.ca.gov

APPLICATION FOR CERTIFICATION For the SES SOLAR ONE PROJECT

Docket No. 08-AFC-13

PROOF OF SERVICE

(Revised 12/2/09)

APPLICANT

Felicia Bellows, Vice President of Development Tessera Solar 4800 North Scottsdale Road, Ste. 5500 Scottsdale, AZ 85251 felicia.bellows@tesserasolar.com

Camille Champion
Project Manager
Tessera Solar
4800 North Scottsdale Road,
Suite 5500
Scottsdale, AZ 85251
camille.champion@tesserasolar.com

CONSULTANT

*Angela Leiba
AFC Project Manager
URS Corporation
1615 Murray Canyon Rd.,
Ste. 1000
San Diego, CA 92108
Angela Leiba@URSCorp.com

APPLICANT'S COUNSEL

Allan J. Thompson Attorney at Law 21 C Orinda Way #314 Orinda, CA 94563 allanori@comcast.net

INTERESTED AGENCIES

California ISO e-recipient@caiso.com

Jim Stobaugh
BLM – Nevada State Office
P.O. Box 12000
Reno, NV 89520
jim_stobaugh@blm.gov

Rich Rotte, Project Manager Bureau of Land Management Barstow Field Office 2601 Barstow Road Barstow, CA 92311 Richard_Rotte@blm.gov

Becky Jones California Department of Fish & Game 36431 41st Street East Palmdale, CA 93552 dfgpalm@adelphia.net

INTERVENORS

California Unions for Reliable
Energy (CURE)
Loulena A. Miles,
Marc D. Joseph
Adams Broadwell Joseph &
Cardozo
601 Gateway Boulevard,
Ste. 1000
South San Francisco, CA 94080
Imiles@adamsbroadwell.com

Defenders of Wildlife
Joshua Basofin
1303 J Street, Suite 270
Sacramento, California 95814
e-mail service preferred
ibasofin@defenders.org

Basin and Range Watch Laura Cunningham Kevin Emmerich P.O. Box 70 Beatty, NV 89003 atomictoadranch@netzero.net

Patrick C. Jackson 600 N. Darwood Avenue San Dimas, CA 91773 e-mail service preferred ochsjack@earthlink.net

ENERGY COMMISSION

JAMES D. BOYD
Vice Chair and Presiding Member
jboyd@energy.state.ca.us

JEFFREY D. BYRON Commissioner and Associate Member jbyron@energy.state.ca.us

Paul Kramer Hearing Officer pkramer@energy.state.ca.us

Caryn Holmes, Staff Counsel 1516 9th Street, MS-14 Sacramento, California 95814 cholmes@energy.state.ca.us

Christopher Meyer
Project Manager
cmeyer@energy.state.ca.us

Public Adviser publicadviser@energy.state.ca.us

DECLARATION OF SERVICE

I, <u>Corinne Lytle</u> , declare that on <u>January 6</u> , 2010, I served and filed copies of the attached <u>Applicant's Submittal of Geote</u> chnical Report. The original document, filed with the Docket Unit, is accompanied by a copy of the most recent Proof of Service list, located on the web page for this project at: [www.energy.ca.gov/sitingcases/solarone] .
The documents have been sent to both the other parties in this proceeding (as shown on the Proof of Service list) and to the Commission's Docket Unit, in the following manner:
(Check all that Apply)
FOR SERVICE TO ALL OTHER PARTIES:
X sent electronically to all email addresses on the Proof of Service list;
<u>X</u> by personal delivery or by depositing in the United States mail at with first-class postage thereon fully prepaid and addressed as provided on the Proof of Service list above to those addresses NOT marked "email preferred."
AND
FOR FILING WITH THE ENERGY COMMISSION:
X sending an original paper copy and one electronic copy, mailed and emailed respectively, to the address below (preferred method);
OR
depositing in the mail an original and 12 paper copies, as follows:
CALIFORNIA ENERGY COMMISSION Attn: Docket No. <u>08-AFC-13</u> 1516 Ninth Street, MS-4 Sacramento, CA 95814-5512 docket@energy.state.ca.us
I declare under penalty of perjury that the foregoing is true and correct.
Original Signed By
Corinne Lytle