

DOCKET

08-AFC-8

DATE OCT 07 2009

RECD. OCT 28 2009

October 7, 2009

Gerardo Rios Chief Permits Office US Environmental Protection Agency Air Division (AIR-3) 75 Hawthorne St. San Francisco, CA 94105

Subject: Submittal of Amendment to the Prevention of Significant Deterioration Application – Hydrogen Energy California

Dear Mr. Rios:

Hydrogen Energy International LLC (HEI) proposes to modify the nominally rated 250 (approximate) net megawatt (MW) integrated gasification combined cycle power generation unit proposed at a greenfield site in Kern County, California. The attached document is an Amendment to the Prevention of Significant Deterioration (PSD) of air quality permit for the "HECA" project.

The Applicant is modifying the Project to eliminate the auxiliary combustion turbine generator (CTG) and demonstrate its emissions of particulates less than 2.5 microns in diameter (PM_{2.5}) will be below the 100 tons per year (tpy) PM_{2.5} Air Quality Standard threshold.

An Amendment to the Revised Application for Certification for this unit was filed with the California Energy Commission dated September 2009 (Docket # 08-AFC-8). An Amendment to the Authority to Construct / Permit to Operate Application will be filed with the San Joaquin Valley Air Pollution Control District (SJVAPCD).

The enclosed application amendment includes supporting information, as well as a DVD containing electronic copies of revised air quality and public health modeling input and output files. Please contact Gregory Skannal, HEI at (562) 276-1511 or Mark Strehlow at (510) 874-3055 if you have any questions or require additional information.

Page 2 of 2

Sincerely,

Gregory D. Skannal

Manager, HSSE

Hydrogen Energy International LLC

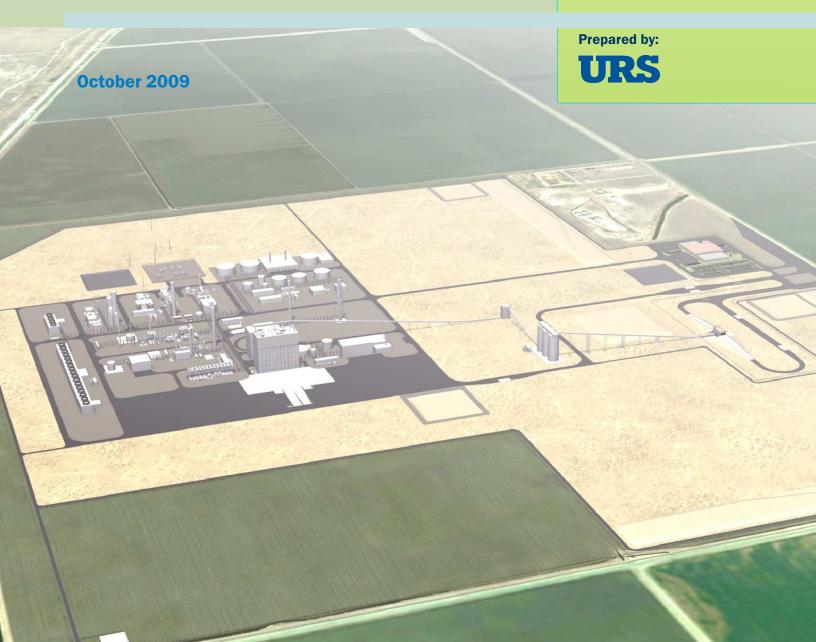
Attachment: Application

Copy: California Energy Commission

Mark Strehlow, URS

Amendment to Prevention of Significant Deterioration (PSD) Permit Application

Revised
Application for Certification
(08-AFC-8)
for
HYDROGEN ENERGY CALIFORNIA
Kern County, California


Prepared for:

Hydrogen Energy International

Submitted to:

U.S. Environmental Protection Agency Region 9

TABLE OF CONTENTS

Section 1	Introdu	troduction1-							
	1.1 1.2	Overview Emissions Control and Monitoring							
Section 2	Laws,	Regulations, Ordinances, and Standards	2-1						
Section 3	Affecte	ed Environment	3-1						
Section 4	Emissi	ion Controls	4-1						
Section 5	Emissi	ion Characterization	5-1						
Section 6	Modeli	ng Impact Analysis	6-1						
	Comp	spersion Modeling liance With Ambient Air Quality Standards and PSD Requirements liance With PSD Increments	. 6-4						
Section 7	Other I	Environmental Impacts	7-1						
	7.1	Air Quality Related Values	. 7-1						
Tables									
Revised Table	5-2	1-Hour Operating Emission Rates for CTG/HSRG Operating Load Scenarios							
Revised Table	5-3	CTG/HSRG Criteria Pollutant Emission Rates during Startup and Shutdown							
Revised Table	5-4	Criteria Pollutant Sources and Emission Totals for the Worst Case CTC Emissions Scenario for All Averaging Time	G						
Revised Table	5-5	Average Annual Emissions per Turbine Operating Scenario							
Revised Table	5-9	Total Combined Annual Criteria Pollutant Emissions							
Revised Table	6-1	Turbine Screening Results Normal Operations – Emissions and Stack Parameters per Turbine							
Revised Table	6-3	AERMOD Modeling Results for Project Operations (All Project Source Combined)	es						
Revised Table	7-1	PSD Class I Increment Significance Analysis – CALPUFF Results							
Revised Table	7-2	Visibility Analysis – CALPUFF Results							

TABLE OF CONTENTS

Revised Table 7-3 Total Nitrogen and Sulfur Deposit Analysis – CALPUFF Results

Revised Table 7-4 Class II Surrounding Area Level I VISCREEN Results

Figures

Revised Figure 1-3 Preliminary Plot Plan

Revised Figure 6-3 Locations of Maximum Predicted Ground Level Pollutant Concentrations

for the Operational Project Area

Appendices

Revised Appendix B Emissions

Revised Appendix D Downwash Parameters

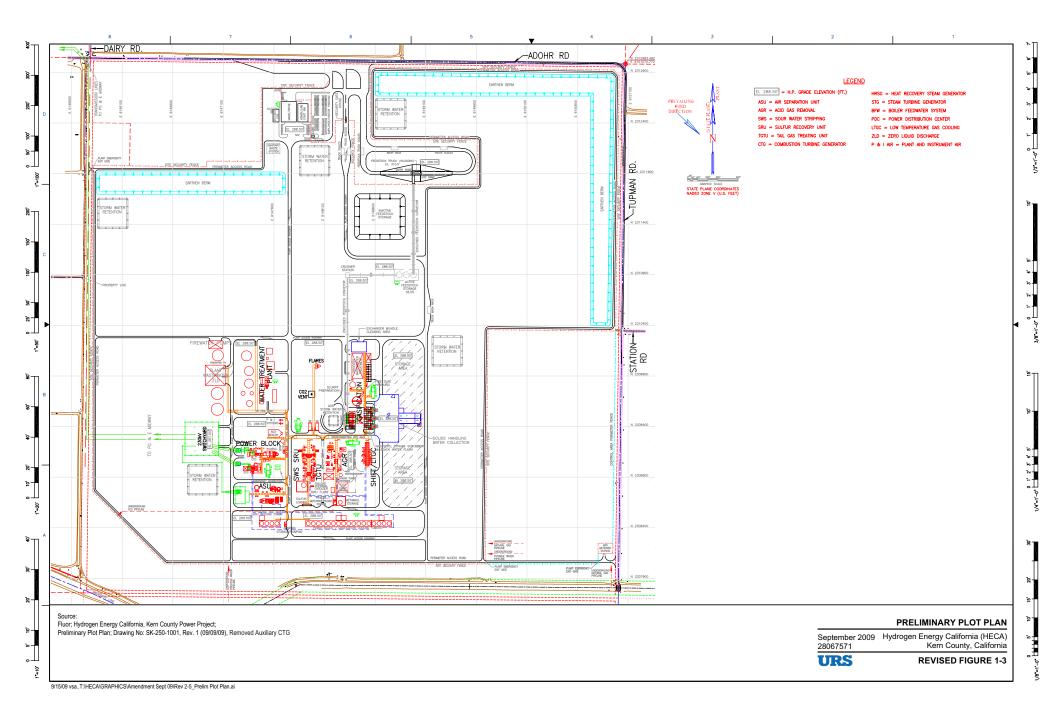
Revised Appendix E Class I Visibility/CALPUFF Analysis

SECTIONONE Introduction

On June 26, 2009, Hydrogen Energy International LLC (HEI) filed a Prevention of Significant Deterioration (PSD) application with the U.S. Environmental Protection Agency seeking approval to construct and operate the Hydrogen Energy California Project (HECA or Project). The Applicant is modifying the Project to eliminate the auxiliary combustion turbine generator (CTG) and demonstrate its emissions of particulates less than 2.5 microns in diameter (PM_{2.5}) will be below the 100 tons per year (tpy) PM_{2.5} Air Quality Standard threshold.

This Amendment provides a detailed discussion of the design modification and revisions to the filed PSD needed to address this change. The elimination of the auxiliary CTG and reduction in emissions rates do not fundamentally alter the nature of the project, nor do they affect the proposed capture and sequestration of Project carbon emissions.

1.1 **OVERVIEW**


This submittal describes the Amendment and analyzes whether or not the modification results in any environmental consequences not previously analyzed. As demonstrated, the elimination of the auxiliary CTG will not increase the magnitude of any previously identified environmental impacts, or result in any new significant impacts associated with the Project. The emissions of all criteria pollutants and greenhouse gases (GHG) are reduced as a result of this Project modification. Further, the AERMOD and CALPUFF air modeling results demonstrate that the Project modification reduces criteria pollutant and visibility impacts. Therefore, all impacts are expected to remain less than significant with the Project modification.

This modification is within the 473-acre Project Site and does not result in any additional disturbed areas beyond the Site not previously evaluated. In addition, the modification is not expected to result in any significant changes to the schedule, costs, workforce, or traffic during construction or operations.

This Amendment presents information that has changed as a result of the Project modification. Tables and figures that have been changed as a result of this modification are included in this Amendment with the original table number, but prefaced with "Revised." The Project modification is reflected in Revised Figure 1-3, Preliminary Plot Plan.

1.2 **EMISSIONS CONTROL AND MONITORING**

The Project is designed with state-of-the-art emission control technology and monitoring, as described in the filed PSD permit application. None of the design changes described in this amendment will affect the emission control systems.

There are no changes to the Laws, Ordinances, Regulations and Standards (LORS) that are applicable to the Project as a result of this amendment.

The removal of the Auxiliary CTG and the revision of the PM_{10} emission rates from the CTG/HRSG reduce the Project emissions. However, the annual Project emissions of CO, NO_X , and PM_{10} are still above the PSD triggers as shown in the filed PSD.

The proposed BACT for the Auxiliary CTG will no longer apply, since the unit has been removed.

Nothing in the Affected Environment would change as a result of changes to the Project.

The proposed BACT for the Auxiliary CTG will no longer apply, since the unit has been removed.

The Project modification consists of eliminating the auxiliary CTG General Electric (GE) LMS100® and reducing the emission rates for particulate matter less than 10 microns in diameter (PM₁₀) and particulate matter less than 2.5 microns in diameter (PM_{2.5}) from the GE Frame 7B CTG)/Heat Recovery Steam Generator (HRSG) when firing hydrogen-rich fuel. Therefore, all references in the filed PSD to the following are no longer applicable: "auxiliary CTG," "peaking power," "auxiliary combustion turbine generator," "GE LMS100[®]," "CTG-2," "auxiliary Simple Cycle Gas Turbine," "auxiliary Simple Cycle CTG," and "turbines."

The Project would still produce about 250 megawatts (MW) of baseload power and 390 gross MW from the combined cycle plant that is fed by the Gasification Block and would still require two conventional mechanical-draft cooling towers.

The Project is a nominal 250 net MW IGCC power generating facility consisting of a Gasification Block and hydrogen-rich fuel production unit with carbon capture capability and a combined-cycle power block. The operational emissions from the Project are mainly generated from the combustion of the hydrogen-rich fuel. Other emission sources include cooling towers, solids handling, and an auxiliary boiler.

This Amendment addresses changes to the emission rates from the GE Frame 7B CTG/HRSG as a result of a refinement of the PM₁₀ and PM₂₅ emission factors. The updated emission rates are presented in Revised Table 5-9, Total Combined Annual Criteria Pollutant Emissions. There will be no changes to emission rates from other equipment, and therefore they are not discussed in this section.

Power Block CTG/HRSG Operating Emissions

The most significant emission source of the Project will be the CTG/HRSG train. The power block design will be optimized for performance on 100 percent hydrogen-rich fuel, 100 percent natural gas, or co-firing hydrogen-rich fuel and natural gas. Most of the hydrogen-rich fuel from the gasification plant will be used to fully load the CTG, with any excess (up to about 10 to 14 percent) duct fired in the HRSG. The CTG will operate on hydrogen-rich fuel, natural gas, or a mixture of the two (45 to 90 percent hydrogen-rich fuel) over the compliance load range of 60 to 100 percent. The CTG may be co-fired with natural gas as required to maintain emissioncompliant operation if the quantity of hydrogen-rich fuel is insufficient or hydrogen-rich fuel is completely unavailable.

Maximum short-term operational emissions from the CTG/HRSG were determined from a comparative evaluation of potential emissions corresponding to normal operating conditions (including HRSG duct-firing), and CTG startup/shutdown conditions. The long-term operational emissions from the CTG/HRSG were estimated by summing the emissions contributions from normal operating conditions (including hours with and without duct-firing) and CTG/HRSG startup/shutdown conditions.

Operational emissions from the CTG/HRSG were estimated for all the applicable scenarios using base emission rates and startup/shutdown emissions. The base criteria pollutant emission rates provided by the turbine vendor and the engineer for three load conditions (60, 80, and 100 percent) and three ambient temperatures (20, 65, and 97 degrees Fahrenheit [°F]) when firing natural gas, hydrogen-rich fuel, or co-firing are presented in Revised Table 5-2, 1-Hour Operating Emission Rates for CTG/HRSG Operating Load Scenarios. The revision to the PM₁₀

and PM_{2.5} emissions rates from the CTG/HRSG when firing hydrogen-rich fuel due to a refinement of the PM₁₀ and PM_{2.5} emission factor are presented in Revised Table 5-2.

CTG/HRSG Startup and Shutdown Emissions

The expected emissions and durations associated with CTG/HRSG startup and shutdown events are summarized in Revised Table 5-3, CTG/HRSG Criteria Pollutant Emission Rates during Startup and Shutdown. No changes to the startup and shutdown times result from this Amendment. However, there will be a revision to the PM₁₀ and PM_{2.5} emission rates during cold startup and hot startup scenarios due to a refinement of the PM₁₀ and PM_{2.5} emission factor.

CTG/HRSG Emissions Scenarios for Modeling

Reasonable worst-case short-term emissions from the turbines were calculated for use in the air quality modeling. These scenarios form the basis for the air dispersion modeling analyses presented in Section 6.

Revised Table 5-4, Criteria Pollutant Sources and Emission Totals for the Worst-Case CTG Emissions Scenario for All Averaging Times, summarizes the worst-case emissions scenarios adopted to assess maximum impacts to air quality and air quality-related values in the modeling analyses presented in Section 6.

Estimated annual emission totals for all pollutants incorporate the maximum anticipated emissions related to startups and shutdowns, as well as the maximum steady-state operating emissions with and without duct firing. Estimated maximum annual emissions for the GE 7FB turbine are presented in Revised Table 5-5, Average Annual Emissions per Turbine Operating Scenario. Detailed emissions calculations for all scenarios, including revisions, are included in Revised Appendix B.

SECTIONFIVE

Revised Table 5-2 1-Hour Operating Emission Rates for CTG/HSRG Operating Load Scenarios

Ambient Temperature	UNITS	Wi	nter Mini	mum, 20°]	F	Y	early Ave	rage, 65	°F	Summer Maximum, 97°F			
CTG Load Level	% Load	100%	100%	80%	60%	100%	100%	80%	60%	100%	100%	80%	60%
Evap Cooling Status	off/on	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Duct Burner Status	off/on	On	Off	Off	Off	On	Off	Off	Off	On	Off	Off	Off
Average Emission Rates from	Average Emission Rates from CTG (lbs/hr/turbine) - Normal Operation Natural Gas												
NO _x (@ 4.0 ppm)	lb/hr	36.3	29.0	24.8	20.8	35.1	27.0	23.1	19.4	33.3	26.1	22.4	18.7
CO (@ 5.0 ppm)	lb/hr	27.6	22.1	18.8	15.8	26.7	20.5	17.6	14.8	25.3	19.8	17.0	14.2
VOC (@ 2.0 ppm)	lb/hr	6.3	5.0	4.3	3.6	6.1	4.7	4.0	3.4	5.8	4.5	3.9	3.2
SO ₂ (@ 12.65 ppmv in fuel)	lb/hr	5.1	4.1	3.5	3.0	4.8	3.8	3.3	2.8	4.7	3.7	3.2	2.7
$PM_{10} = PM_{2.5}$	lb/hr	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0
NH ₃ (@ 5.0 ppm slip)	lb/hr	16.7	13.4	11.4	9.6	16.2	12.5	10.7	9.0	15.4	12.1	10.3	8.6
Average Emission Rates from	1 CTG(lbs/	hr/turbine) - Normal	Operatio	n Hydro	gen-Rich	Fuel						
NO _x (@ 4.0 ppm)	lb/hr		37.2	31.5	26.1	39.7	36.9	31.0	25.6	39.7	38.0	30.9	25.6
CO (@ 3.0 ppm)	lb/hr		17.0	14.4	11.9	18.1	16.8	14.1	11.7	18.1	17.4	14.1	11.7
VOC (@ 1.0 ppm)	lb/hr		3.2	2.7	2.3	3.5	3.2	2.7	2.2	3.5	3.3	2.7	2.2
SO ₂ (@ 5.0 ppmv in fuel)	lb/hr		6.1	5.2	4.4	6.8	6.1	5.1	4.3	6.8	6.0	5.1	4.3
$PM_{10} = PM_{2.5}$	lb/hr		19.8	19.8	19.8	19.8	19.8	19.8	19.8	19.8	19.8	19.8	19.8
NH ₃ (@ 5.0 ppm slip)	lb/hr		17.2	14.6	12.0	18.4	17.0	14.3	11.8	18.4	17.6	14.3	11.8
Average Emission Rates from	n CTG (lbs/	/hr/turbine	e) - Norma	l Operatio	on Co-fir	ing							
NO _x (@ 4.0 ppm)	lb/hr	41.3	34.0			38.7	31.7						
CO (@ 5.0 ppm)	lb/hr	31.4	25.9			29.4	24.1						
VOC (@ 2.0 ppm)	lb/hr	7.2	5.9			6.7	5.5						
SO ₂ (@ 6.7 ppmv in fuel)	lb/hr	7.4	5.2			7.0	4.8						
$PM_{10} = PM_{2.5}$	lb/hr	19.8	19.8			19.8	19.8						
NH ₃ (@ 5.0 ppm slip)	lb/hr	19.1	15.7			17.9	14.6						

Source: HECA Project

Notes: Co-firing emissions are controlled at the same amount as natural gas.

Emission rates not provided were not necessary to determine the maximum hourly, 3-hour, 8-hour, 24-hour emission rates or the annual average emission rates.

CO = carbon monoxide ppm = parts per million

CTG = combustion turbine generator PM_{10} = particulate matter less than 10 microns in diameter. HRSG = heat recovery steam generator $PM_{2.5}$ = particulate matter less than 2.5 microns in diameter.

 NH_3 = ammonia SO_2 = sulfur dioxide

 NO_X = nitrogen oxides VOC = volatile organic compound

Revised Table 5-3 CTG/HSRG Criteria Pollutant Emission Rates during Startup and Shutdown

	Cold Startup			Hot Startup		Shutdown			
180 (min. in cold startup)	Max 1-hr. (lb/hr)	Total (lb/180 min.)	60 (min. in hot startup)	Max 1-hr. (lb/hr)	Total lb/60 min.)	30 (min. in shutdown)	Max 1-hr. (lb/hr)	Total (lb/30 min.)	
NO_X	90.7	272.0	NO_X	167.0	167.0	NO_X	62.0	62.0	
СО	1,679.7	5,039.0	CO	394.0	394.0	CO	126.0	126.0	
VOC	266.7	800.0	VOC	98.0	98.0	VOC	21.0	21.0	
SO_2	5.1	15.3	SO_2	5.1	5.1	SO_2	2.6	2.6	
$\begin{array}{c} PM_{10} = \\ PM_{2.5} \end{array}$	19	57.0	$PM_{10} = PM_{2.5}$	19.8	19.8	$PM_{10} = PM_{2.5}$	5.0	5.0	

Source: HECA Project

Notes:

CTGs will always be started burning natural gas. Startup and shutdown emission rates above reflect natural gas.

Startup and shutdown SO₂ emissions will always be lower than normal operation SO₂ emissions. Startup and shutdown emissions are assumed equal to normal operations (burning natural gas) at the max emission rate.

Startup/shutdown duration defined as operation of CTG below 60 percent load when gaseous emission rates (lb/hr basis) exceed the controlled rates defined as normal operation

CO = carbon monoxide NO_{x} nitrogen oxides

particulate matter less than 10 microns in diameter and is assumed to equal PM_{2.5} = particulate matter less than 2.5 microns in diameter PM_{10}

 SO_2 sulfur dioxide

VOC volatile organic compounds

Revised Table 5-4 Criteria Pollutant Sources and Emission Totals for the Worst Case CTG Emissions Scenario for All Averaging Time

			Emissions in Pounds – Entire Period			
Averaging Time	Worst-Case Emission Scenarios by Operating Equipment	Pollutant	CTG/HRSG (Natural Gas)	CTG/HRSG (Hydrogen- Rich Fuel)	CTG/HRSG (Co-firing)	
	NO _X : Cold startup hour	NO_X	167.0	167.0	167.0	
1 hour	CO: Cold startup hour	CO	1,679.7	1,679.7	1,679.7	
1 110 01	SO _X : Full-load turbine operation with duct firing at peak fuel usage	SO_X	5.1	6.8	7.4	
3 hour	SO_X: Continuous full-load turbine operation with duct firing (both turbines) at peak fuel usage	SO_X	15.3	20.5	22.1	
8 hour	CO: Two cold starts, three shutdowns, and remainder of period at full load operation with full duct firing (both turbines) at peak fuel usage	СО	10,469.8	10,465.1	10,471.7	
	NO _x : 20 hours of natural gas firing at the winter minimum (20°F) without duct firing and 4 hours of co-firing at the winter minimum (20°F) without duct firing	NO_X	20 hrs = 580.5 Total = 716.5	n/a	4 hrs = 136.0 Total = 716.5	
24 hour	SO _X , PM ₁₀ : Continuous full-load turbine operation with duct firing	$PM_{10} = PM_{2.5}$	432	475.2	475.2	
	(both turbines) at peak fuel use; except PM ₁₀ for natural gas: four cold starts, four shutdowns, and remainder of period at full load operation with full duct firing (both turbines) at peak fuel usage	SO_X	122.4	163.8	177.2	
		NO_X	296,044.0	334,353.0	325,712.3	
	NO_X , CO, VOC, PM_{10} , and SO_X :	CO	277,817.2	206,919.2	300,390.9	
Annual	10 hot starts, 10 cold starts and 20 shutdowns, and remainder of	VOC	59,906.8	37,984.6	65,066.5	
7 Illiuui	shutdowns, and remainder of turbine operates at full load with duct firing	$PM_{10} = PM_{2.5}$	149,866.0	164,755.6	164,755.6	
		SO_X	40,045.4	56,713.0	58,357.9	

Source: HECA Project

Notes:

 NO_X = nitrogen oxides

CO = carbon monoxide PM_{10} = particulate matter less than 10 microns in diameter, and is assumed to equal $PM_{2.5}$ = particulate matter less than 2.5 microns in

diameter CTG = combustion turbine generator = degrees Fahrenheit

 SO_X = sulfur oxides

HRSG = heat recovery steam generator VOC = volatile organic compounds

SECTIONFIVE

Revised Table 5-5 Average Annual Emissions per Turbine Operating Scenario

Pollutant	HRSG Stack - Nat Gas (tons/yr/CT)	HRSG Stack - Hydrogen- Rich Fuel (tons/yr/CT)	HRSG Stack - Co Firing (tons/yr/CT)	Maximum (tons/yr/CT)
NO_X	148.0	167.2	162.9	167.2
СО	138.9	103.5	150.2	150.2
VOC	30.0	19.0	32.5	32.5
SO_2	20.0	28.4	29.2	29.2
$PM_{10} = PM_{2.5}$	74.9	82.4	82.4	82.4
NH ₃	67.1	75.9	73.9	75.9

Source: HECA Project

Notes:

CT = combustion turbine CO = carbon monoxide

HRSG = heat recovery steam generator

 NH_3 = ammonia NO_X = nitrogen oxides

 PM_{10} = particulate matter 10 microns in diameter

 $PM_{2.5}$ = particulate matter 2.5 microns in diameter ($PM_{2.5}$ is assumed to equal PM_{10})

 SO_2 = sulfur dioxide

VOC = volatile organic compounds

Revised Table 5-9 **Total Combined Annual Criteria Pollutant Emissions**

Pollutant	Total Annual (ton/yr)	HRSG Stack Maximum (1) (ton/yr)	Cooling Towers (2) (ton/yr)	Auxiliary Boiler (ton/yr)	Emergency Generators (3) (ton/yr)		Gasification Flare (ton/yr)	SRU Flare (ton/yr)	Rectisol Flare (ton.yr)	Tail Gas Thermal Oxidizer (ton/yr)	CO ₂ Vent (ton/yr)	Gasifier (ton/yr)	Feedstock ⁽⁴⁾ (ton/yr)
NO_X	186.4	167.2		1.7	0.2	0.1	4.3	0.2	0.2	10.9		1.8	
CO	322.7	150.2		5.8	0.1	0.2	48.8	0.1	0.1	9.1	106.9	1.5	
VOC	36.1	32.5		0.6	0.03	0.01	0.003	0.002	0.002	0.3	2.4	0.1	
SO_2	38.4	29.2		0.3	0.001	0.0003	0.004	0.055	0.003	8.8		0.03	
PM_{10}	111.4	82.4	24.1	0.8	0.01	0.001	0.007	0.004	0.004	0.4		0.1	3.6
$PM_{2.5}^{(5)}$	99.2	82.4	14.5 ⁽⁶⁾	0.8	0.01	0.001	0.007	0.004	0.004	0.4		0.1	1.0
NH ₃	75.9	75.9											
H_2S	1.3										1.3	-	

Source: HECA Project

Notes:

1 Total annual HRSG emissions represents the maximum emissions rate from a composite firing scenario (all three fuels)

2 Includes contributions from all three cooling towers

3 Includes contributions from both emergency generators

4 Feedstock emissions are shown as the contribution of all dust collection points.

5 Where $PM_{10} = PM_{2.5}$, it is assumed that PM_{10} is 100 percent $PM_{2.5}$

6 Where PM_{2.5} is 60 percent of the PM₁₀ emissions for cooling towers

CO = carbon monoxide

 CO_2 = carbon dioxide

CTG = combustion turbine generator

 H_2S = hydrogen sulfide

 NH_3 = ammonia

 NO_X = nitrogen oxides

 PM_{10} = particulate matter less than 10 microns in diameter $PM_{2.5}$ = particulate matter less than 2.5 microns in diameter

= sulfur dioxide

VOC = volatile organic compounds

Commissioning

In this Amendment, there will be no emission rates associated with the commissioning of the Auxiliary CTG, because this unit will no longer be part of the Project design.

PM₁₀ emission rates are expected to be lower when commissioning the CTG/HRSG on hydrogenrich fuel. However, no changes will be made to the emission rates represented in Table 5-11 of the filed PSD, Duration and Criteria Pollutant Emissions for Commissioning of the CTG/HRSG on Hydrogen-Rich Syngas at 59°F. Therefore, PM₁₀ emission rates during the commissioning of the CTG/HRSG on hydrogen-rich fuel will be a conservative over-estimate.

AIR DISPERSION MODELING

The purpose of the air quality impact analyses is to evaluate whether criteria pollutant emissions resulting from the Project will cause or contribute significantly to a violation of a California or national ambient air quality standards (AAQS) or contribute significantly to degradation of air quality-related values in Class I areas. The air quality impact analyses were performed using the same model and model option selections, original meteorological data set issued by SJVAPCD, and receptor locations as in the filed PSD. Copies of the revised modeling files are included on the Revised Air Quality Modeling DVD included with this Amendment.

Building Wake Effects

The BPIP-Prime analysis was rerun to take into account the removal of the Auxiliary CTG structure. An updated table listing all the structures, minus the Auxiliary CTG building, evaluated in the downwash analysis is included in Revised Appendix D. Input and output electronic files for the BPIP-Prime analysis are included with those from all other dispersion modeling analyses on the Revised Air Quality Modeling DVD included with this Amendment.

Construction Impacts Modeling

There will be no change to the construction impacts modeling results in this Amendment.

Turbine Impact Screening Modeling

The previously filed PSD application described a turbine impact screening modeling analysis that was performed to determine which CTG/HRSG operating mode and stack parameters produced worst-case off-site impacts. Only the emissions from the CTGs with and without duct firing and evaporative cooling were considered in this preliminary modeling step. The AERMOD model simulated transport and dispersion of natural gas combustion emissions released from the 20-foot-diameter (6.10-meter), 213-foot-tall (65-meter) stack for the CTG/HRSG unit. Unlike in the filed PSD application, the AERMOD model was not used to simulate emissions for the Auxiliary CTG, since it has been removed from the Project design. Revised Table 6-1, Turbine Screening Results Normal Operations – Emissions and Stack Parameters per Turbine, summarizes the combustion CTG screening results for the different CTG operating load conditions.

The maximum ground level concentrations predicted to occur off site with unit turbine emission rates for each of the seven operating conditions shown in Revised Table 6-1 were then multiplied by the corresponding turbine emission rates for specific pollutants. The highest resulting concentration values for each pollutant and averaging time were then identified (see bolded values in the table).

The stack parameters associated with these maximum predicted impacts were used in all subsequent simulations of the refined AERMOD analyses described in the next subsection. (Note that the lower exhaust temperatures and flow rates at reduced turbine loads correspond to reduced plume rise, in some cases resulting in higher off-site pollutant concentrations than the higher baseload emissions.) Model input and output files for the screening modeling analysis are included with those from all other modeling tasks on the Revised Air Quality modeling DVD that is provided with this Amendment.

Revised Table 6-1 Turbine Screening Results Normal Operations – Emissions and Stack Parameters per Turbine

Case	Case 1A	Case 1B	Case 1C	Case 2A	Case 2B	Case 2C	Case 3
Scenario Description	HRSG St	ack, Hydrogen	-rich Fuel	HRSG S	tack, Natural G	as Fuel	HRSG Stack Co-Firing
	100%						
HRSG/CTG Load Level	Load	80% Load	60% Load	100% Load	80% Load	60% Load	100% Load
Stack Outlet Temperature (°F)	200.0	190.0	180.0	180.0	170.0	160.0	190.0
Stack Outlet Temperature (K)	366.48	360.93	355.37	355.37	349.82	344.26	360.93
Stack Exit Velocity (ft/s)	63.3	51.8	42.7	53.1	45.6	37.7	58.4
Stack Exit Velocity (m/s)	19.3	15.8	13	16.2	13.9	11.5	17.8
NO _X as NO ₂ (lb/hr)	166.7	166.7	166.7	166.7	166.7	166.7	166.7
CO (lb/hr)	1,679.4	1,679.4	1,679.4	1,679.4	1,679.4	1,679.4	1,679.4
SO ₂ (lb/hr)	8.7	8.7	8.7	8.7	8.7	8.7	8.7
PM ₁₀ (lb/hr)	19.8	19.8	19.8	19.8	19.8	19.8	19.8
$NO_{X}(g/s)$	21	21	21	21	21	21	21
CO (g/s)	211.6	211.6	211.6	211.6	211.6	211.6	211.6
SO ₂ (g/s) (based on 0.4 grain total S/100 scf) (grains of total sulfur per 100 standard cubic feet of gas)	1.1	1.1	1.1	1.1	1.1	1.1	1.1
$PM_{10}(g/s)$	2.5	2.5	2.5	2.5	2.5	2.5	2.5
Model Results – Maximum X/Q co						2.3	2.3
1-hour	3.682	4.114	4.483	4.191	4.668	6.536	3.966
3-hour ¹	3.313	3.703	4.035	3.771	4.201	5.882	3.569
8-hour ¹	2.577	2.880	3.138	2.933	3.268	4.575	2.776
24–hour ¹	1.473	1.646	1.793	1.676	1.867	2.614	1.586
annual ¹	0.295	0.329	0.359	0.335	0.373	0.523	0.317

Revised Table 6-1 Turbine Screening Results Normal Operations – Emissions and Stack Parameters per Turbine

Case	Case 1A	Case 1B	Case 1C	Case 2A	Case 2B	Case 2C	Case 3
Scenario Description	HRSG St	ack, Hydrogei	n-rich Fuel	HRSG S	tack, Natural G	as Fuel	HRSG Stack Co-Firing
Maximum Concentration (μg/m³)	Predicted per	Pollutant Nor	mal Operation	s (all receptors)			
NO _X 1 hour	77.313	86.394	94.140	88.001	98.030	137.252	83.280
NO _x annual	6.185	6.911	7.531	7.040	7.842	10.980	6.662
CO 1 hour	779.024	870.518	948.575	886.714	987.766	1,382.977	839.142
CO 8 hour	545.317	609.363	664.003	620.700	691.436	968.084	587.399
SO ₂ 1 hour	4.050	4.525	4.931	4.610	5.135	7.189	4.362
SO ₂ 3 hour	3.645	4.073	4.438	4.149	4.621	6.470	3.926
SO ₂ 24 hour	1.620	1.810	1.972	1.844	2.054	2.876	1.745
SO ₂ annual	0.324	0.362	0.394	0.369	0.411	0.575	0.349
PM ₁₀ 24 hour	3.683	4.115	4.483	4.190	4.668	6.535	3.965
PM ₁₀ annual	0.738	0.823	0.898	0.838	0.933	1.308	0.793
Case	Case 1A	Case 1B	Case 1C	Case 2A	Case 2B	Case 2C	Case 3

Source: HECA Project

Notes:

¹ Only 1-hour impacts were modeled. Impact concentrations for other averaging times were estimated with USEPA Screening Factors: 0.9 for a 3-hour average time, 0.7 for an 8-hour average time, 0.4 for a 24-hour average time, and 0.08 for an annual average.

Notes:

CO = carbon monoxide

CTG = combustion turbine generator $\mu g/m^3$ = micrograms per cubic meter

°F = degrees Fahrenheit g/s = grams per second

HRSG = heat-recovery steam generator

K = Kelvin

 NO_2 = nitrogen dioxide NO_X = nitrogen oxides

 PM_{10} = particulate matter less than 10 microns in diameter

SCR = selective catalytic reduction

 SO_2 = sulfur dioxide

Refined Modeling

A refined modeling analysis was performed to estimate off-site criteria pollutant impacts from operational emissions of the Project. The CTG/HRSG was modeled assuming the worst-case emissions corresponding to each averaging time and the turbine stack parameters that were determined in the turbine screening analysis (see previous subsection). The maximum mass emission rates that will occur over any averaging time, whether during turbine startups, normal operations, turbine shutdowns, or a combination of these activities, were used in all refined modeling analyses (see Revised Table 6-1).

The DEGADIS model that was used to calculate CO and H₂S impacts from the carbon dioxide vent in the filed PSD application was not re-run, because there were no changes made to the emission rates from the carbon dioxide vent in this Amendment.

Fumigation Analysis

Fumigation modeling was conducted in the same manner as described in the filed PSD application. However, because the Auxiliary CTG stack is no longer a part of the Project, SCREEN3 was run for the CTG/HRSG unit, tail gas thermal oxidizer, and gasifier refractory heater stack parameters. In addition, new PM_{10} and $PM_{2.5}$ pollutant emissions were used in the fumigation analysis for the CTG/HRSG unit.

A unit emission rate was used (1 gram per second) in the fumigation modeling to obtain a maximum unit concentration (x/Q), and the model results were scaled to reflect expected Project emissions for each pollutant. Inversion breakup fumigation concentrations were calculated for 1 and 3 hour averaging times using U.S. Environmental Protection Agency (USEPA)—approved conversion factors. These multiple-hour model predictions are conservative, since inversion breakup fumigation is a transitory condition that would most likely affect a given receptor location for only a few minutes at a time. To calculate the inversion breakup fumigation, the default thermal internal boundary layer (TIBL) factor of 6 in the SCREEN3 model was used.

Fumigation impacts can affect concentrations longer than 1 hour; the procedures described in Section 4.5.3 of "Screening Procedures for Estimating the Air Quality Impact of Stationary Sources" were used to determine the 3- and 8-hour average concentrations.

Modeling input and output files are included on the Revised Air Quality Modeling DVD included with this Amendment.

COMPLIANCE WITH AMBIENT AIR QUALITY STANDARDS AND PSD REQUIREMENTS

Air dispersion modeling was done to evaluate the maximum increase in ground level pollutant concentrations resulting from Project emissions based on the modifications, and to compare the maximum predicted impacts, including background pollutant levels, with applicable short-term and long-term California Ambient Air Quality Standards (CAAQS) and National Ambient Air Quality Standards (NAAQS).

Construction Impacts

There will be no change to the construction impacts as a result of this Amendment.

Operational Impacts

The emissions used for each pollutant and averaging time are explained and quantified in Section 5. Commissioning impacts, which will occur on a temporary, one-time basis and will not be representative of normal operations, were addressed separately, as described in the next section.

Revised Table 6-3, AERMOD Modeling Results for Project Operations (All Project Sources Combined), summarizes the maximum predicted criteria pollutant concentrations due to Project emissions. The incremental impacts of Project emissions will be below the federal Prevention of Significant Deterioration (PSD) Significant Impact Levels (SILs) for all attainment pollutants, despite the use of worst-case emissions scenarios for all pollutants and averaging times. Although maximum predicted values for PM₁₀ are below the SILs, these thresholds do not apply to this pollutant because the San Joaquin Valley Air Basin is designated as being in non-attainment with respect to the federal ambient standards. No SILs have been established yet for PM_{2.5}.

Revised Table 6-3 also shows that the modeled impacts due to the Project emissions, in combination with conservative background concentrations, will not cause a violation of any NAAQS and will not significantly contribute to the existing violations of the federal and state PM₁₀ and PM_{2.5} standards. In addition, as described later, all of the Project's operational emissions of non-attainment pollutants and their precursors will be offset to ensure a net air quality benefit.

The locations of predicted maximum impacts will vary by pollutant and averaging time. Revised Figure 6-3, Locations of Maximum Predicted Ground Level Pollutant Concentrations for the Operational Project Area, shows the locations of the maximum predicted operational impacts for all pollutants and averaging times.

The peak 24 hour PM_{10} , $PM_{2.5}$, and SO_2 concentrations and peak SO_2 annual concentration are predicted to occur on the western boundary of the Project Site, while the peak annual PM_{10} and $PM_{2.5}$ concentrations are predicted to occur on the eastern boundary of the Project Site. The peak 1 hour NO_X , SO_2 , and CO concentrations, peak 3 hour SO_2 concentration, and peak 8 hour CO concentration are predicted to occur within approximately 2 miles south of the Project Site. The peak annual NO_X concentration occurred at the northern property boundary.

CO impacts from the carbon dioxide vent were predicted to be 2,934 micrograms per cubic meter (μ g/m3) at a point off of the Project Site and Controlled Areas at 778 meters from the source. This value is below the CAAQS for CO and below the 8 hour CO SIL, but above the 1 hour CO SIL. A stability class of D combined with a wind speed of 1 meter per second was found to calculate the worst-case results.

Hydrogen sulfide impacts from the carbon dioxide vent were predicted to be $35.84 \,\mu\text{g/m3}$ at the maximum impact point off of the Project Site and Controlled Areas at 778 meters from the source. This value is below the 1 hour CAAQS of $42 \,\mu\text{g/m3}$.

Revised Table 6-3 AERMOD Modeling Results for Project Operations (All Project Sources Combined)

	Averaging	2000	2001	2002	2003	2004	Max	Level	% of SIL		Monitoring Station Description ⁽⁴⁾		NAAQS	Total Conc.
Pollutant	Period	$(\mu g/m^3)$		$(\mu g/m^3)$		$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$						
NO ₂ (1)	1-hour (OLM) (1,3)	89.70	89.77	93.90	88.69	90.48	93.90	NA	NA	190.1	1	339	NA	284
	Annual (OLM) (1)	0.82	0.86	0.81	0.87	0.79	0.87	1	87%	39.6	1	57	100	40.5
СО	1-hour (3)	1,191.74	1,109.96	1,400.54	1,025.55	1,067.22	1,400.54	2,000	71%	4,025	2	23,000	40,000	5,425
	8-hour (3)	210.59	167.24	185.80	178.94	150.96	210.59	500	43%	2,444	2	10,000	10,000	2,655
	1-hour (3)	21.03	16.30	20.86	16.05	19.44	21.03	NA	NA	340.6	3	655	NA	362
	3-hour (3)	7.38	6.10	6.95	7.07	6.79	7.38	25	31%	195	3	NA	1300	202
SO_2	24-hour	0.55	0.53	0.46	0.55	0.78	0.78	5	18%	81.38	3	105	365	82
	Annual	0.13	0.12	0.13	0.13	0.13	0.13	1	14%	26.7	3	NA	80	26.8
PM ₁₀	24-hour	2.56	2.39	2.90	2.63	2.58	2.90	5	58%	267.4	4	50	150	-
10	Annual	0.47	0.47	0.50	0.52	0.53	0.53	1	59%	56.5	4	20	Revoked	-
PM _{2.5} ⁽⁴⁾	24-hour	1.50	1.42	1.74	1.54	1.54	1.74	-	44%	154	5	NA	35	-
	Annual	0.35	0.35	0.37	0.38	0.39	0.39	-	45%	25.2	5	12	15	-

Revised Table 6-3 AERMOD Modeling Results for Project Operations (All Project Sources Combined)

		Averaging	2000	2001	2002	2003	2004	Max	Class II Significance Level	% of SIL	Background Conc. ⁽⁴⁾	Monitoring Station Description (4)	CAAQS	NAAQS	Total Conc.
Pollu	ıtant	Period	$(\mu g/m^3)$		$(\mu g/m^3)$		$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$						
H_2S	(5)	1-hour	35.84	35.84	35.84	35.84	35.84	35.84	NA	NA	NA	NA	42	NA	35.84

Source: HECA Project

Notes:

CARB, Maximum of last three years (2006-2008), Bakersfield Golden State Highway, 2006

CARB, Maximum of last three years (2006-2008), Bakersfield Golden State Highway, 2007

CARB, Maximum of last three years (2006-2008), Bakersfield Golden State Highway, 2008

CARB, Maximum of last three years (2006-2008), Shafter-Walker Street, 2007

CARB, Maximum of last three years (2006-2008), Fresno – 1st Street, 2007

 $CAAQS = California \ Ambient \ Air \ Quality \ Standards \ NO_2 = nitrogen \ dioxide \ CO = carbon \ monoxide \ OLM = ozone \ limiting \ method$

 H_2S = hydrogen sulfide PM_{10} = particulate matter less than 10 microns in diameter $\mu g/m^3$ = micrograms per cubic meter $PM_{2.5}$ = particulate matter less than 2.5 microns in diameter

NAAQS = National Ambient Air Quality Standards SO₂ = sulfur dioxide

¹ Ozone Limiting Method (OLM) was applied using hourly O₃ data.

² CO₂ Vent was not included in the AERMOD analysis; it was modeled using DEGADIS/SCREEN3, which predicted maximum impacts of 2,934 μg/m³ for the 1-hour average. The current assumption is that only one gasifier heater is expected to be operational at any time. Auxiliary Boiler does not operate with HRSG at the same time for short-term average period. Therefore, the Auxiliary Boiler was not included in the modeling analysis while HRSG was included because HRSG gives more impact on off-Project Site and Controlled Area concentration.

³ For short-term (1-, 3-, 8-, and 24-hour) modeling, only one emergency generator will be operational at any one time, and the current assumption is that only one gasifier heater is expected to be operational at any one time.

⁴ Monitoring station for the maximum background concentration is described below:

⁵ H₂S was modeled using DEGADIS (its only source is the CO₂ vent). DEGADIS is a screening model that uses worst-case meteorology rather than actual monitored hourly meteorological data.

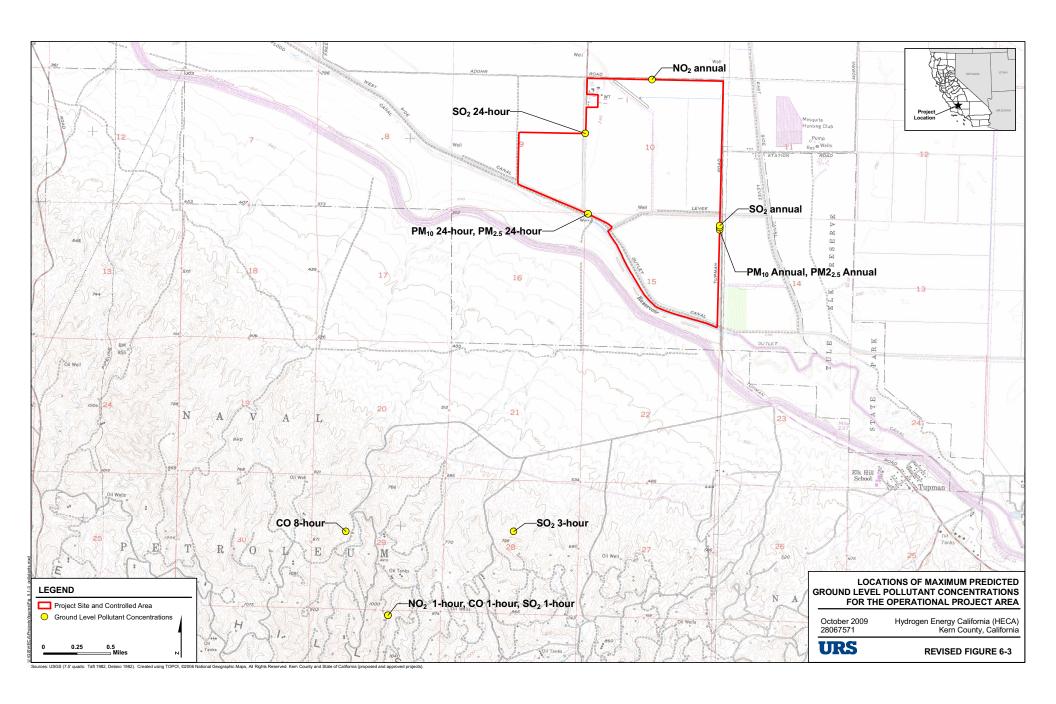
Fumigation

The predicted peak concentrations from inversion fumigation from Project emissions, including background, are predicted to be below the CAAQS and are as follows:

 NO_X 1 hour = $269.25 \,\mu g/m^3$ $SO_2 1 \text{ hour} = 32.68 \,\mu\text{g/m}^3$ $SO_2 3 \text{ hour} = 21.60 \,\mu\text{g/m}^3$ $5,228.26 \,\mu \text{g/m}^3$ CO 1 hour =

Turbine Commissioning

In this Amendment, there will be no emission rates associated with the commissioning of the Auxiliary CTG, because this unit will no longer be part of the Project design.


PM₁₀ emission rates are expected to be lower when commissioning the CTG/HRSG on hydrogenrich fuel. However, no changes will be made to the emission rates represented in Table 5-11 of the filed PSD application, Duration and Criteria Pollutant Emissions for Commissioning of the CTG/HRSG on Hydrogen-Rich Fuel at 59°F. Therefore, PM₁₀ emission rates during the commissioning of the CTG/HRSG on hydrogen-rich fuel will be a conservative over-estimate.

Effects on Visibility from Plumes

There will be no changes to the effects on visibility from plumes, since there are no changes to the cooling tower emissions as a result of this Amendment.

COMPLIANCE WITH PSD INCREMENTS

The Project changes will reduce the NO_x and PM₁₀ impacts, and because the impacts are still below the SILs, increment consumption will remain insignificant.

7.1 AIR QUALITY RELATED VALUES

7.1.1 Impacts on Air Quality Related Values in Class I Area

The CALPUFF modeling analysis for impacts to Air Quality Related Values (AQRV) was updated to reflect the project design changes. The objectives of the modeling were to demonstrate whether air emissions from the Project will cause or contribute to a PSD increment exceedance or cause a significant impact on visibility, regional haze, or sulfur or nitrogen deposition in any Class I area.

Since the Project location has not changed as a result of this Amendment, the same Class I area (San Rafael Wilderness Area) was included in the revised AQRV analysis. PSD increment analysis for the San Rafael Wilderness Class I area is shown in Revised Table 7-1, PSD Class I Increment Significance Analysis – CALPUFF Results. No Class I PSD increments will be exceeded.

PSD Class I Increment Significance Analysis – CALPUFF Results **Revised Table 7-1**

	Pollutant Unit	Annual NO _x μg/m ³	3-hour SO ₂ µg/m ³	24-hour SO ₂ μg/m ³	Annual SO ₂ μg/m ³	24-hour Particulate Matter µg/m³	Annual Particulate Matter Annual
Class I Area	Threshold	0.1	1	0.2	0.08	0.32	0.16
San Rafael	2001	3.77E-03	2.18E-01	2.53E-02	7.47E-04	8.65E-02	3.33E-03
Wilderness	2002	4.08E-03	2.33E-01	2.56E-02	8.79E-04	7.67E-02	3.80E-03
Area	2003	4.23E-03	2.73E-01	2.75E-02	8.85E-04	9.29E-02	3.77E-03
Exceed?		No	No	No	No	No	No

Source: HECA Project

 $\mu g/m^3$ micrograms per cubic meter

 NO_x nitrogen oxides SO₂ sulfur dioxide

Effects on Visibility

This revised analysis was conducted using the same model (CALPUFF). The same 3-year meteorological data set for 2001-2003 was used in the revised analysis.

Visibility impact results for the San Rafael Wilderness Class I area are shown in Revised Table 7-2, Visibility Analysis – CALPUFF Results. No maximum extinction change exceeds 10 percent with only 1 to 3 days of exceedance of 5 percent despite the conservative operating scenario. Therefore, the Project screening successfully passed all screening criteria.

No. of Maximum No. of Days **Days Extinction** > 5% **Pollutant** >10% Change Day of Maximum **Extinction Change** Unit **Days Days** % Class I Area Threshold 0 Day 2001 1 0 8.09 308 San Rafael Wilderness 2002 3 0 6.56 287 Area 2003 1 0 5.41 247 Exceed? No

Visibility Analysis – CALPUFF Results **Revised Table 7-2**

Source: HECA Project

Terrestrial Resources.

This revised analysis was conducted using the same model (CALPUFF). Revised Table 7-3, Total Nitrogen and Sulfur Deposition Analysis – CALPUFF Results, summarizes the maximum modeled impacts versus the National Park Service and the U.S. Forest Service significance criteria. All impacts are below the significance criteria.

Revised Table 7-3 **Total Nitrogen and Sulfur Deposit Analysis – CALPUFF Results**

	Pollutant	Deposition Nitrogen	Deposition Sulfur
	Unit	$g/m^2/s$	$g/m^2/s$
Class I Area	Threshold	1.59E-11	1.59E-11
	2001	9.53E-13	3.91E-13
San Rafael Wilderness Area	2002	1.19E-12	5.12E-13
	2003	1.21E-12	4.61E-13
Exceed?		No	No

Source: HECA Project

Notes:

 $g/m^2/s$ grams per square meter per second.

Aquatic Resources.

A significant effect of NO_x and SO₂ emissions on aquatic resources is nitrogen and sulfur deposition and subsequent acidification. However, because any increased nitrogen and sulfur deposition due to the Project will be minimal, impacts to water acid neutralizing capacity and pH, and, therefore, acidification or eutrophication, are not likely to occur.

The revised CALPUFF/CALMET air impact modeling analysis for Class I areas is presented in selected revised tables, provided in portions of Revised Appendix E.

7.1.2 **Surrounding Area Visibility Analysis**

A visibility analysis was performed for the area that surrounds the HECA facility to address changes to the Project. The same methods used in the previous analysis were used for this update. The updated VISCREEN analysis incorporated a Nitrogen Oxides (NO_x) emission rate of 15.49 g/s and a Particulate Matter (PM₁₀) emission rate of 3.47 g/s.

Reasonable worst case conditions are based upon meteorological data and observer distance. The Tier I screening approach uses worst-case meteorological conditions (i.e., extremely stable (stability category F) atmospheric conditions, low wind speed (1 m/sec) persisting for 12 hours, and wind direction that would transport the plume directly adjacent to the observer.

Revised Table 7-4 presents the updated results of the Tier I screening analysis for the Project changes. The Delta E values were below the default screening threshold values. Therefore, visibility impacts caused by emissions from the HECA Project will not be perceptible to most individuals in the area surrounding the proposed project.

Revised Table 7-4 Class II Surrounding Area Level I VISCREEN Results

			npacts INSIDE Are ARE NOT Exceede											
Delta E Contrast														
Background	Theta	Plume	Critical Value	Plume	Critical Value									
SKY	10	1.760	2.00	0.002	0.05									
SKY	140	0.581	2.00	-0.010	0.05									
TERRAIN	10	0.585	2.00	0.008	0.05									
TERRAIN	140	0.140	2.00	0.005	0.05									

Maximum Visual Impacts OUTSIDE Area Screening Criteria ARE NOT Exceeded

		Del	ta E	Con	trast
Background	Theta	Plume	Critical Value	Plume	Critical Value
SKY	10	1.816	2.00	0.002	0.05
SKY	140	0.588	2.00	-0.010	0.05
TERRAIN	10	0.920	2.00	0.009	0.05
TERRAIN	140	0.259	2.00	0.009	0.05

Appendix B Emissions

Hydrogen Energy, Inc HECA Amendment 10/7/2009

		CTG/I	HRSG , H2-rich	Fuel	CTG/HRS	G , Natural G	Sas Fuel	CTG/HRSG Co-Firing **
Parameter		100% Load (2)	80% Load	60% Load	100% Load ⁽³⁾	80% Load	60% Load	100% Load
English Units								
Stack height above grade ⁽¹⁾	ft	213	213	213	213	213	213	213
Stack diameter	ft	20	20	20	20	20	20	20
Stack outlet temperature	٥F	200	190	180	180	170	160	190
Stack exit flow, act	ft ³ /s	19,900	16,300	13,400	16,700	14,300	11,900	18,300
Metric Units								
Stack height above grade ⁽¹⁾	m	65.0	65.0	65.0	65.0	65.0	65.0	65.0
Stack diameter	m	6.1	6.1	6.1	6.1	6.1	6.1	6.1
Stack outlet temperature	K	366.5	360.9	355.4	355.4	349.8	344.3	360.9
Stack exit flow, act	m ³ /s	563.5	461.6	379.4	472.9	404.9	337.0	518.2
Stack Area	m^2	29.2	29.2	29.2	29.2	29.2	29.2	29.2
Stack exit velocity, act	m/s	19.3	15.8	13.0	16.2	13.9	11.5	17.8

Parameter		Aux Boiler	Gasification Flare(4)	SRU Flare(6)	Rectisol Flare (6)	Tail Gas Oxidizer ⁽⁷⁾	Gasifier Warming Vent (ea.)	Cooling Towers (per cell) ⁽⁵⁾	Diesel Generator (ea.)	Fire Pump Engine	CO ₂ Vent	
English Units												
Stack height above grade ⁽¹⁾ ft 80 250 250 250 165 210 55 20 20 2 Stack diameter ft 4.5 9.8 2 1.3 2.5 1.0 30 1.2 0.7												
Stack diameter	ft	4.5	9.8	2	1.3	2.5	1.0	30	1.2	0.7	3.5	
Stack outlet temperature	°F	300	(NA)	(NA)	(NA)	1200	150	75	760	850	65	
Stack exit flow, act	ft ³ /s	480	0.5/900	0.3/36	0.3	120	68	18,500	250	60	1,765	
Metric Units												
Stack height above grade ⁽¹⁾	m	24.4	76.2	76.2	76.2	50.3	64.0	16.8	6.1	6.1	79.2	
	m	1.4	3.0	0.6	0.4	0.8	0.3	9.1	0.4	0.2	1.1	
Stack outlet temperature	K	422.0	n/a	n/a	n/a	922.0	338.7	297.0	677.6	727.6	291.5	
Stack exit flow, act	m ³ /s	13.6	0.01/25.49	0.01/1.02	0.01	3.4	1.9	523.9	7.1	1.7	50.0	
Stack Area	m^2	1.5	7.0	0.3	0.1	0.5	0.1	65.7	0.1	0.0	0.9	
Stack exit velocity, act	m/s	9.2	0.001/3.64	0.03/3.4	0.1	7.5	26.4	8.0	67.4	47.5	55.9	

Notes:

Revised Appendix B_100709.xls

⁽¹⁾ Minimum stack height assumed for worst-case dispersion.

⁽²⁾ Volume Flow Value shown in table for H2-rich fuel is based on full load syn gas combustion (relatively constant for varying ambient temperatures). Duct firing of the HSRG changes the stack volumetric flow by about 1% or less.

⁽³⁾ Full load stack flow for natural gas combustion will vary from the value shown in the table during warm summer ambient temperatures to about 18,000 act ft3/sec for winter ambient temperatures. Stack flow rates for co-firing of H2-rich gas and natural gas will range between the values shown for the two fuels separately.

⁽⁴⁾ Based on gasifier startup; stack parameters estimated from a previous project, to be confirmed by current flare suppliers.

⁽⁵⁾ Thirteen cells estimated for power block cooling tower; four cells estimated for process cooling tower, and four cells estimated for the ASU cooling tower.

⁽⁶⁾ Waste gas heat release, 10^6 Btu/hr, HHV. First exit flow value is normal pilot gas, the second value is the maximum startup heat release (Rectisol Flare has no planned operation than standby with pilot on)

⁽⁷⁾ Estimated oxidizer stack outlet flow for normal operating case of miscellaneous vent gas disposal; SRU startup case will be about 50% greater.

^{**} HRSG Stack Cofiring is estimated assuming 47% Syngas and the balance natural gas

Hydrogen Energy, Inc HECA Amendment

10/7/2009

			Fee	d Stock - Dust	Collection Unit	ts	
Parameter	ĺ	DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
English Units							
Ground elevation	ft	289	289	289	289	289	289
Stack elevation	ft	334	459	465	459	368	465
Stack height above grade	ft	46	171	177	171	80	177
Stack diameter	ft	1.7	2.7	1.8	1.4	1.4	0.8
Stack outlet temperature (1)	°F	Ambient	Ambient	Ambient	Ambient	Ambient	Ambient
Stack exit flow, act	ft ³ /s	108	273	127	81	78	21
Metric Units							
Stack height above grade	m	13.9	52.0	53.8	52.0	24.2	53.8
Stack diameter	m	0.5	0.8	0.6	0.4	0.4	0.2
Stack outlet temperature (1)	K	Ambient	Ambient	Ambient	Ambient	Ambient	Ambient
Stack exit flow, act	m ³ /s	3.1	7.7	3.6	2.3	2.2	0.6
Stack Area	m ²	0.2	0.5	0.2	0.1	0.1	0.0
Stack exit velocity, act	m/s	15.1	14.9	14.7	15.7	15.1	14.2

⁽¹⁾ Assume ambient temperature

Revised Appendix B_100709.xls 2 of 49

Summary 10/7/2009

Hydrogen Energy, Inc

HECA Amendment

Modeling Wor	st-Case 1 hr Em	issions																	
	CTG/HRSG Maximum (1)	Co	ooling Towers ⁽²⁾)	Auxiliary Boiler	Emergency Generators ⁽³⁾	Fire Water Pump	Gasification Flare	SRU Flare	Rectisol Flare	Tg Thermal Oxidizer		Gasifier ⁽⁴⁾	DC-1 DC-2 DC-3 DC-4 DC-5					
	(g/sec)	Power Block (g/sec/cell)	Process Area (g/sec/cell)	ASU (g/sec/cell)	(g/sec)	(g/sec/gen)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	DC-1 (g/sec)	-		-	DC-5 (g/sec)	DC-6 (g/sec)
NOx	21.0				0.2	0.4	0.2	7.9	0.544	0.005	0.6		0.2						
СО	211.6				0.7	0.2	0.4	113.4	0.363	0.003	0.5	53.4	0.2						
SO ₂	0.9				0.04	0.004	0.0007	0.0001	2.19	0.0001	0.3		0.00						
H ₂ S												0.6							

(1) HRSG modeling emission rates represents the maximum emissions rate from a composite firing scenario (all three fuels)

(2) There are three separate cooling towers. The modeling rates are per cell.

(3) There are two separate generators. Modeling rates are shown per individual generator.

(4) There are three gasifiers. The modeling rate shown is per individual gasifier. However, only one gasifier warming will be operational at any one time.

Modeling Worst		issions																	
	CTG/HRSG				Auxiliary	Emergency	Fire Water	Gasification	SRU	Rectisol	Tg Thermal								
	Maximum ⁽¹⁾	Co	oling Towers (2)	Boiler	Generators (3)	Pump	Flare	Flare	Flare	Oxidizer	CO ₂ Vent	Gasifier (4)	Feedstock					
		Power Block	Process Area	ASU										DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
	(g/sec)	(g/sec/cell)	(g/sec/cell)	(g/sec/cell)	(g/sec)	(g/sec/gen)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)
SO ₂	0.9	-	-		0.04	0.002	0.0005	0.0001	2.19	0.00	0.3	-	0.00			1		-	

(1) HRSG modeling emission rates represents the maximum emissions rate from a composite firing scenario (all three fuels)

(2) There are three separate cooling towers. The modeling rates are per cell.

 $(3) \ There \ are \ two \ separate \ generators. \ \ Modeling \ rates \ are \ shown \ per \ individual \ generator.$

(4) There are three gasifiers. The modeling rate shown is per individual gasifier. However, only one gasifier warming will be operational at any one time.

Modeling Wors		issions																	
	CTG/HRSG				Auxiliary	Emergency	Fire Water	Gasification	SRU	Rectisol	Tg Thermal								
	Maximum (1)	Co	oling Towers (2)	Boiler	Generators (3)	Pump	Flare	Flare	Flare	Oxidizer	CO ₂ Vent	Gasifier (4)						
		Power Block	Process Area	ASU										DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
	(g/sec)	(g/sec/cell)	(g/sec/cell)	(g/sec/cell)	(g/sec)	(g/sec/gen)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)
CO	164.9				0.7	0.06	0.1	113.4	0.138	0.003	0.5	53.4	0.2						

(1) HRSG modeling emission rates represents the maximum emissions rate from a composite firing scenario (all three fuels)

(2) There are three separate cooling towers. The modeling rates are per cell.

 $(3) \ There \ are \ two \ separate \ generators. \ \ Modeling \ rates \ are \ shown \ per \ individual \ generator.$

(4) There are three gasifiers. The modeling rate shown is per individual gasifier. However, only one gasifier warming will be operational at any one time.

Modeling Wors		Emission Ra	ate																
	CTG/HRSG				Auxiliary	Emergency	Fire Water	Gasification	SRU	Rectisol	Tg Thermal								
	Maximum (1)	Co	oling Towers (2))	Boiler	Generators (3)	Pump	Flare	Flare	Flare	Oxidizer	CO ₂ Vent	Gasifier (4)	Feedstock					
		Power Block	Process Area	ASU											DC-2		-	DC-5	DC-6
	(g/sec)	(g/sec/cell)	(g/sec/cell)	(g/sec/cell)	(g/sec)	(g/sec/gen)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)
SO ₂	0.9	-			0.04	0.0003	0.0001	0.0001	0.2742	0.0001	0.3		0.00						
PM ₁₀	2.5	0.038	0.030	0.028	0.09	0.002	0.0002	0.0002	0.0018	0.0001	0.02		0.02	0.030	0.076	0.041	0.026	0.025	0.003
PM _{2.5} ⁽⁵⁾	2.5	0.023	0.018	0.017	0.09	0.002	0.0002	0.0002	0.0018	0.0001	0.02		0.02	0.009	0.022	0.012	0.008	0.007	0.001

(1) HRSG modeling emission rates represents the maximum emissions rate from a composite firing scenario (all three fuels)

(2) There are three separate cooling towers. The modeling rates are per cell.

(3) There are two separate generators. Modeling rates are shown per individual generator.

(4) There are three gasifiers. The modeling rate shown is per individual gasifier. However, only one gasifier warming will be operational at any one time.

(5) Where $PM_{10} = PM_{2.5}$, it is assumed that PM_{10} is 100% $PM_{2.5}$

Modeling Annu		ission Rate																	
	CTG/HRSG				Auxiliary	Emergency	Fire Water	Gasification	SRU	Rectisol	Tg Thermal								
	Maximum (1)	Co	oling Towers ⁽²)	Boiler	Generators (3)	Pump	Flare	Flare	Flare	Oxidizer	CO ₂ Vent	Gasifier (4)			Feed	stock		
	(g/sec)	Power Block (g/sec/cell)	Process Area (g/sec/cell)	ASU (g/sec/cell)	(g/sec)	(g/sec/gen)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	DC-1 (g/sec)	DC-2 (g/sec)	DC-3 (g/sec)	DC-4 (g/sec)	DC-5 (g/sec)	DC-6 (g/sec)
NO_X	4.8		ł		0.05	0.002	0.003	0.1	0.005	0.005	0.3		0.05	-		-			
СО	4.3		-		0.2	0.001	0.005	1.4	0.003	0.003	0.26	3.1	0.04194	-					
VOC	0.9		-		0.02	0.0005	0.0002	0.0001	0.00005	0.00005	0.01	0.1	0.00326						
SO ₂	0.8		-		0.01	0.00002	0.00001	0.0001	0.0016	0.0001	0.3		0.00095	-					
PM ₁₀	2.4	0.036	0.028	0.027	0.02	0.0001	0.00003	0.0002	0.0001	0.0001	0.01		0.004	0.006	0.015	0.036	0.023	0.022	0.0004
PM _{2.5} ⁽⁵⁾	2.4	0.022	0.017	0.016	0.02	0.0001	0.00003	0.0002	0.0001	0.0001	0.01		0.004	0.002	0.004	0.011	0.0068	0.007	0.0001
H ₂ S			-					1		1		0.0	-			-			

(1) HRSG modeling emission rates represents the maximum emissions rate from a composite firing scenario (all three fuels)

(2) There are three separate cooling towers. The modeling rates are per cell.

(3) There are two separate generators. Modeling rates are shown per individual generator.

(4) There are three gasifiers. The modeling rate shown is per individual gasifier. However, only one gasifier warming will be operational at any one time.

(5) Where $PM_{10} = PM_{2.5}$, it is assumed that PM_{10} is 100% $PM_{2.5}$

Revised Appendix B_100709.xls 3 of 49 Total Annual Project Emissions Emissions Summary

Hydrogen Energy, Inc HECA Amendment 10/7/2009

Pollutant	Total Annual (ton/yr)	CTG/HRSG Maximum (1) (ton/yr)	Cooling Towers ⁽²⁾ (ton/yr)	Auxiliary Boiler (ton/yr)	Emergency Generators ⁽³⁾ (ton/yr)	Fire Water Pump (ton/yr)	Gasification Flare (ton/yr)	SRU Flare (ton/yr)	Rectisol Flare (ton/yr)	Tg Thermal Oxidizer (ton/yr)	CO ₂ Vent	Gasifier Warming (ton/yr)	Feedstock (4) (ton/yr)
NO_X	186.4	167.2		1.7	0.2	0.1	4.3	0.2	0.2	10.9		1.8	
СО	322.7	150.2		5.8	0.1	0.2	48.8	0.1	0.1	9.1	106.9	1.5	
VOC	36.1	32.5		0.6	0.03	0.01	0.003	0.002	0.002	0.3	2.4	0.1	
SO ₂	38.4	29.2		0.3	0.001	0.0003	0.004	0.055	0.003	8.8		0.03	
PM ₁₀	111.4	82.4	24.1	0.8	0.01	0.001	0.007	0.004	0.004	0.4		0.1	3.6
PM _{2.5} (5)	99.2	82.4	14.5	0.8	0.01	0.001	0.007	0.004	0.004	0.4		0.1	1.0
NH ₃	75.9	75.9											
H ₂ S	1.3										1.3		
CO ₂ e (6)	503,237	323,410		16,466	146	29	6,348	176	139	4,797	150,011	1,716	

⁽¹⁾ Total annual HRSG emissions represents the maximum emissions rate from a composite firing scenario (all three fuels)

Revised Appendix B_100709.xls 4 of 49

⁽²⁾ Includes contributions from all three cooling towers

⁽³⁾ Includes contributions from both emergency generators

⁽⁴⁾ Feedstock emissions are shown as the contribution of all dust collection points.

⁽⁵⁾ Where PM10 = PM2.5, it is assumed that PM10 is 100% PM2.5

⁽⁶⁾ CO2e emission rates are shown as metric tons (tonnes)

Hydrogen Energy, Inc HECA Amendment 10/7/2009

Summary of CTG/HRSG Emission Rates Under the Three Different Firing Scenarios

Average Annual	Emissions per Turbine			
	CTG/HRSG - Nat Gas (ton/yr/CT)	CTG/HRSG - Syn Gas (ton/yr/CT)	CTG/HRSG - Co Firing (ton/yr/CT)	Maximum (ton/yr/CT)
NO _X	148.0	167.2	162.9	167.2
СО	138.9	103.5	150.2	150.2
VOC	30.0	19.0	32.5	32.5
SO ₂	20.0	28.4	29.2	29.2
$PM_{10} = PM_{2.5}$	74.9	82.4	82.4	82.4
NH ₃	67.1	75.9	73.9	75.9

Modeling Worst-Case 1 hr Emissions per Turbine											
	CTG/HRSG - Nat Gas	CTG/HRSG - Syn Gas	CTG/HRSG - Co Firing	Maximum							
	(g/sec/CT)	(g/sec/CT)	(g/sec/CT)	(g/sec/CT)							
NOx	21.0	21.0	21.0	21.0							
co	211.6	211.6	211.6	211.6							
SO ₂	0.6	0.86	0.93	0.9							

Modeling Worst-Case 3 hr Emissions per Turbine											
	CTG/HRSG - Nat Gas	CTG/HRSG - Syn Gas	CTG/HRSG - Co Firing	Maximum							
	(g/sec/CT)	(g/sec/CT)	(g/sec/CT)	(g/sec/CT)							
SO ₂	0.6	0.86	0.93	0.9							

Modeling Worst-Case 8 hr Emissions per Turbine										
	CTG/HRSG - Nat Gas	CTG/HRSG - Syn Gas	CTG/HRSG - Co Firing	Maximum						
	(g/sec/CT)	(g/sec/CT)	(g/sec/CT)	(g/sec/CT)						
CO	164.9	164.8	164.9	164.9						

Modeling Worst-C	Modeling Worst-Case 24 Hour Emission Rate											
	CTG/HRSG - Nat Gas	CTG/HRSG - Syn Gas	CTG/HRSG - Co Firing	Maximum								
	(g/sec/CT)	(g/sec/CT)	(g/sec/CT)	(g/sec/CT)								
SO ₂	0.6	0.86	0.93	0.9								
$PM_{10} = PM_{2.5}$	2.4	2.5	2.5	2.5								

Modeling Annual	Modeling Annual Average Emission Rate per Turbine											
	CTG/HRSG - Nat Gas	CTG/HRSG - Syn Gas	CTG/HRSG - Co Firing	Maximum								
	(g/sec/CT)	(g/sec/CT)	(g/sec/CT)	(g/sec/CT)								
NO_X	4.3	4.8	4.7	4.8								
co	4.0	3.0	4.3	4.3								
VOC	0.9	0.5	0.9	0.9								
SO ₂	0.6	0.82	0.84	0.8								
$PM_{10} = PM_{2.5}$	2.2	2.4	2.4	2.4								

CTG/HRSG Stack - Natural Gas **Emissions Summary**

Hydrogen Energy, Inc HECA Amendment

CTG Operating Parameters

C10 Operating Farameters	o operating t transcere												
Ambient Temperature	UNITS Winter Minimum - 20°F			Yearly Average- 65°F			Summer Maximum - 97°F						
CTG Load Level	Percent Load (%)	100%	100%	80%	60%	100%	100%	80%	60%	100%	100%	80%	60%
Evap Cooling Status	off / on	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Duct Burner Status	off / on	On	Off	Off	Off	On	Off	Off	Off	On	Off	Off	Off

Average Emission Rates from CTG (lbs/hr/turbine) - Normal Operation

	UNITS		Winter Minimum - 20°F			Yearly Average- 65°F				Summer Maximum - 97°F			
NO _x (@ 4.0 ppm)	lbm/hr	36.3	29.0	24.8	20.8	35.1	27.0	23.1	19.4	33.3	26.1	22.4	18.7
CO (@ 5.0 ppm)	lbm/hr	27.6	22.1	18.8	15.8	26.7	20.5	17.6	14.8	25.3	19.8	17.0	14.2
VOC (@ 2.0 ppm)	lbm/hr	6.3	5.0	4.3	3.6	6.1	4.7	4.0	3.4	5.8	4.5	3.9	3.2
SO ₂ (@ 12.65 ppmv)	lbm/hr	5.1	4.1	3.5	3.0	4.8	3.8	3.3	2.8	4.7	3.7	3.2	2.7
$PM_{10} = PM_{2.5}$	lbm/hr	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0
NH ₃ (@ 5.0 ppm slip)	lbm/hr	16.7	13.4	11.4	9.6	16.2	12.5	10.7	9.0	15.4	12.1	10.3	8.6
All turbine operating parameters and emissions data provided b	ov FLUOR based on expected ope	erating parameters.											

Startup / Shutdown Emissions from Turbine (1CT)

Co	old Startup			Hot Startup			Shutdown			
180 Max 1-hr. Total		60	Max 1-hr.	Total	30	Max 1-hr.	Total			
(min. in cold startup)	(lb/hr)	(lb/180min)	(min. in hot startup)	(lb/hr)	(lb/60min)	(min. in shutdown)	(lb/hr)	(lb/30min)		
NO_X	90.7	272.0	NOx	167.0	167.0	NOx	62.0	62.0		
со	1,679.7	5,039.0	СО	394.0	394.0	СО	126.0	126.0		
voc	266.7	800.0	voc	98.0	98.0	voc	21.0	21.0		
SO ₂ (@ 12.65 ppmv)	5.1	15.3	SO ₂	5.1	5.1	SO ₂	2.6	2.6		
$PM_{10} = PM_{2.5}$	21.3	64.0	$PM_{10} = PM_{2.5}$	23.0	23.0	$PM_{10} = PM_{2.5}$	5.0	5.0		
All turbine operating parameters and emissions data provided b	Il turbine operating parameters and emissions data provided by FLUOR based on expected operating parameters.									

Startup and shutdown SO2 emissions will always be lower than normal operation SQ emissions. Startup and shutdown emissions are assumed equal to the normal operations max emission rate.

Average Annual Emissions

				Turbine		
Total Hours of Operation	8,322.0		Pollutant	Emissions	Emissions	Emissions
Total Number of Cold Starts	10.0			lb/yr/CT	ton/yr/CT	g/sec/CT
Cold Start Duration (hr)	3.0		IO _X	296,044.0	148.0	4.3
Total Number of Hot Starts	10.0		O	277,817.2	138.9	4.0
Hot Start Duration (hr)	1.0	V	/OC	59,906.8	30.0	0.9
Total Number of Shutdowns	20.0	S	SO ₂	40,045.4	20.0	0.6
Shutdown Duration (hr)	0.5	F	$PM_{10} = PM_{2.5}$	149,866.0	74.9	2.2
Duct Burner Operation (hr)	8,272.0		NH ₃	134,158.6	67.1	1.9
Average Normal Operation (hr)	0.0					

Average annual normal operational emissions are calculated using yearly average- 65°F, at 100 % load.

Duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Parameters	
Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

10/7/2009

Revised Appendix B_100709.xls 6 of 49 Hydrogen Energy, Inc HECA Amendment

First Quarter Emissions (Jan, Feb, Mar)

				Turbine	
Total Hours of Operation	2,080.5		Pollutant	Emissions	Emissions
Total Number of Cold Starts	2.5			lb/yr/CT	ton/yr/CT
Cold Start Duration (hr)	3.0	NO _x	х	74,011.0	37.0
Total Number of Hot Starts	2.5	СО		69,454.3	34.7
Hot Start Duration (hr)	1.0	VOC	С	14,976.7	7.5
Total Number of Shutdowns	5.0	SO ₂	2	10,011.4	5.0
Shutdown Duration (hr)	0.5	PM ₁	$_{10} = PM_{2.5}$	37,466.5	18.7
Duct Burner Operation (hr)	2,068.0	NH ₃	3	33,539.7	16.8
Average Normal Operation (hr)	0.0				

Assumptions

Quarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load.

Duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Second Quarter Emissions (Apr, May, Jun)

			Turbine	
Total Hours of Operation	2,080.5	Pollutant	Emissions	Emissions
Total Number of Cold Starts	2.5		lb/yr/CT	ton/yr/CT
Cold Start Duration (hr)	3.0	NO _X	74,011.0	37.0
Total Number of Hot Starts	2.5	СО	69,454.3	34.7
Hot Start Duration (hr)	1.0	VOC	14,976.7	7.5
Total Number of Shutdowns	5.0	SO ₂	10,011.4	5.0
Shutdown Duration (hr)	0.5	$PM_{10} = PM_{2.5}$	37,466.5	18.7
Duct Burner Operation (hr)	2,068.0	NH ₃	33,539.7	16.8
Average Normal Operation (hr)	0.0		•	•

Assumptions:

Quarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load.

Duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Modeling Worst-Case 1 hr Emissions per Turbine

Pollutant	lb/hr/CT	g/sec/CT
NOx	167.0	21.0
CO SO ₂	1,679.7	211.6
SO_2	5.1	0.6

Assumptions:

Startup emissions represent worst case hr for NOx and CO.

NOx emissions are from hot start

CO emissions are from cold start

Calculation assumes that startup and shutdown SO₂ emissions will always be lower than normal operational SO₂ emissions.

Modeling Worst-Case 3 hr Emissions per Turbine

	hr	emission rate lb/hr	Emissions lb/CT	
Total Hours of Operation	3.0			
Startup Duration	0.0		0.0	contribution over 3 hr from start up
Shutdown Duration	0.0		0.0	contribution over 3 hr from shut down
Hours of Normal Operation (burning natural gas)	3.0	5.1	15.3	contribution over 3 hr from normal operation
SO ₂ worst-case 3 hr emissions per turbine	15.3	lb/3 hr		
SO ₂ worst-case 1 hr emissions per turbine	5.1	lb/hr		
SO ₂ modeling worst-case emissions per turbine	0.6	g/sec		
Assumptions:			1	
Only SO ₂ is considered for an average 3-hour Ambient Air Quality Standar	d.			
Normal operation assumes max emission rate				
Worst-case 3 hr emissions assumes a total start up of :	0			
Worst-case 3 hr emissions assumes a total shut down of :	0			
Calculation assumes that startup and shutdown SO ₂ emissions will always	be lower than norr	mal operational SO ₂ emissions		

Third Quarter Emissions (Jul, Aug, Sep)

Total Hours of Operation	2,080.5	Pollutant	Turbine Emissions	Emissions
Total Number of Cold Starts	2.5		lb/yr/CT	ton/yr/CT
Cold Start Duration (hr)	3.0	NO _X	74,011.0	37.0
Total Number of Hot Starts	2.5	со	69,454.3	34.7
Hot Start Duration (hr)	1.0	voc	14,976.7	7.5
Total Number of Shutdowns	5.0	SO_2	10,011.4	5.0
Shutdown Duration (hr)	0.5	$PM_{10} = PM_{2.5}$	37,466.5	18.7
Duct Burner Operation (hr)	2,068.0	NH ₃	33,539.7	16.8
Average Normal Operation (hr)	0.0			

10/7/2009

Assumptions:

Quarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load.

Duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Fourth Quarter Emissions (Oct, Nov, Dec)

			Turbine	
Total Hours of Operation	2,080.5	Pollutant	Emissions	Emissions
Total Number of Cold Starts	2.5		lb/yr/CT	ton/yr/CT
Cold Start Duration (hr)	3.0	NO _X	74,011.0	37.0
Total Number of Hot Starts	2.5	CO	69,454.3	34.7
Hot Start Duration (hr)	1.0	VOC	14,976.7	7.5
Total Number of Shutdowns	5.0	SO ₂	10,011.4	5.0
Shutdown Duration (hr)	0.5	$PM_{10} = PM_{2.5}$	37,466.5	18.7
Duct Burner Operation (hr)	2,068.0	NH ₃	33,539.7	16.8
Average Normal Operation (hr)	0.0			
	•			

ssumptions

Quarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load.

Duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Revised Appendix B_100709.xls

10/7/2009

Hydrogen Energy, Inc HECA Amendment

Modeling Worst-Case 8 hr Emissions per Turbine

	hr	emission rate lb/hr	Emissions lb/CT	
Total Hours of Operation	8.0			
Startup Duration (cold start)	6.0		10,078.0	contribution over 8 hr from start up
Shutdown Duration	1.5		378.0	contribution over 8 hr from shut down
Hours of Normal Operation (burning natural gas)	0.5	27.6	13.8	contribution over 8 hr from normal operation
	T	T	4	
CO worst-case 8 hr emissions per turbine	10,469.8	lb/8 hr		
CO worst-case 1 hr emissions per turbine	1,308.7	lb/hr		
CO modeling worst-case emissions per turbine	164.9	g/sec		
Assumptions:				
Only CO is considered for an average 8-hour Ambient Air Quality Stand	ard.			
Normal operation assumes max emission rate				
Worst-case 8 hr emissions assumes a total COLD start up of :	2			
Worst-case 8 hr emissions assumes a total shut down of :	3			

Worst-Case Daily Emissions per Turbine and Modeling Worst-Case 24 Hour Emission Rate

SO ₂ (lb/day/CT)	122.4
SO ₂ (g/s/CT) (burning natural gas)	0.6
$PM_{10} = PM_{2.5} (lb/day/CT)$	
$PM_{10} = PM_{2.5}$ (g/s/CT) (burning natural gas)	
Assumptions:	
Only SO ₂ and PM are considered for an average 24-hour Ambient Air C	uality Standard.
For SO ₂ 24 hrs of normal operation at max emission rate For PM emissions are calculated below assuming startup and shutdow	n contributions.

Worst-Case Daily Emissions per Turbine and Modeling Worst-Case 24 Hour Emission Rate

Pollutant	Time in Startup	Startup Emission Rate lb/start	Time in Shut Down	Shutdown Emission Rate lb/shutdown	Time in Normal Operation hr	Normal Operation Emission Rate Ib/start	Worst-Case Daily Emissions lb/day/CT	Modeling Worst- Case 24 Hr Emission g/s/CT
Nox (1 COLD start up and I shut down)	3.0	272.0	0.5	62.0	17.5	36.3	1,426.4	7.5
Nox (2 HOT start ups and 2 shut downs)	2.0	167.0	1.0	62.0				
co	12.0	5,039.0	2.0	126.0	10.0	27.6	20,935.8	
VOC	12.0	800.0	2.0	21.0	10.0	6.3	3,347.0	
SO ₂								
$PM_{10} = PM_{2.5}$	12.0	64.0	2.0	5.0	10.0	18.0	456.0	2.4

For CO, VOC, and PM -- emissions are calculated assuming: Worst-case daily emissions assumes a total COLD start up of :

Worst-case daily emissions assumes a total shut down of : Remainder of time is spent in normal operation at winter minimum - 20°F; 100% load

For CALPUFF modeling purposes, NOx emissions are calculated assuming:

Worst-case daily emissions assumes a total COLD start up of : and a total HOT start up of:

Worst-case daily emissions assumes a total shut down of : Remainder of time is spent in normal operation at winter minimum - 20°F; 100% load

See above calculation for worst-case daily SO₂:calculated as 24 hrs of normal operation at max emissions rate

Revised Appendix B_100709.xls 8 of 49 CTG/HRSG Stack - SynGas Emissions Summary

Hydrogen Energy, Inc HECA Amendment

CTG Operating Parameters

Ambient Temperature	UNITS		Winter Minimum - 20°F				Yearly Average- 65°F			Summer Maximum - 97°F			
CTG Load Level	Percent Load (%)	100%	100%	80%	60%	100%	100%	80%	60%	100%	100%	80%	60%
Evap Cooling Status	off / on	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Duct Burner Status	off / on	On	Off	Off	Off	On	Off	Off	Off	On	Off	Off	Off

Average Emission Rates from CTG (lbs/hr/turbine) - Normal Operation

	UNITS		Winter Minimum - 20°F			Yearly Average- 65°F				Summer Maximum - 97°F			
NO _x (@ 4.0 ppm)	lbm/hr		37.2	31.5	26.1	39.7	36.9	31.0	25.6	39.7	38.0	30.9	25.6
CO (@ 3.0 ppm)	lbm/hr		17.0	14.4	11.9	18.1	16.8	14.1	11.7	18.1	17.4	14.1	11.7
VOC (@ 1.0 ppm)	lbm/hr		3.2	2.7	2.3	3.5	3.2	2.7	2.2	3.5	3.3	2.7	2.2
SO ₂ (@ 5.0 ppmv)	lbm/hr		6.1	5.2	4.4	6.8	6.1	5.1	4.3	6.8	6.0	5.1	4.3
$PM_{10} = PM_{2.5}$	lbm/hr		19.8	19.8	19.8	19.8	19.8	19.8	19.8	19.8	19.8	19.8	19.8
NH ₃ (@ 5.0 ppm slip)	lbm/hr		17.2	14.6	12.0	18.4	17.0	14.3	11.8	18.4	17.6	14.3	11.8
All turbine operating parameters and emissions data p	rovided by FLLIOR based on expected opera	ating parameters						•			•		•

Startup / Shutdown Emissions from Turbine (1CT)

Cold Startup				Hot Startup			Shutdown	
180	Max 1-hr.	Total	60	Max 1-hr.	Total	30	Max 1-hr.	Total
(min. in cold startup)	(lb/hr)	(lb/180min)	(min. in hot startup)	(lb/hr)	(lb/60min)	(min. in shutdown)	(lb/hr)	(lb/30min)
NO _X	90.7	272.0	NOx	167.0	167.0	NOx	62.0	62.0
со	1,679.7	5,039.0	СО	394.0	394.0	СО	126.0	126.0
voc	266.7	800.0	voc	98.0	98.0	VOC	21.0	21.0
SO ₂ (@ 12.65 ppmv)	5.1	15.3	SO2	5.1	5.1	SO2	2.6	2.6
$PM_{10} = PM_{2.5}$	21.3	64.0	$PM_{10} = PM_{2.5}$	23.0	23.0	$PM_{10} = PM_{2.5}$	5.0	5.0

All turbine operating parameters and emissions data provided by FLUOR based on expected operating parameters.

CTGs will always be started burning natural gas. Startup and shutdown emission rates above reflect natural gas.

Startup and shutdown SO2 emissions will always be lower than normal operation SO2 emissions. Startup and shutdown emissions are assumed equal to normal operations (burning natural gas) at the max emission rate.

Average Annual Emissions

Fotal Hours of Operation	8,322.0	Pollutant	Turbine Emissions	Emissions	Emissions
otal Number of Cold Starts	10.0		lb/yr/CT	ton/yr/CT	g/sec/CT
Cold Start Duration (hr)	3.0	NO _X	334,353.0	167.2	4.8
otal Number of Hot Starts	10.0	СО	206,919.2	103.5	3.0
lot Start Duration (hr)	1.0	voc	37,984.6	19.0	0.5
otal Number of Shutdowns	20.0	SO ₂	56,713.0	28.4	0.8
Shutdown Duration (hr)	0.5	$PM_{10} = PM_{2.5}$	164,755.6	82.4	2.4
Ouct Burner Operation (hr)	8,272.0	NH ₃	151,855.7	75.9	2.2
Average Normal Operation (hr)	0.0		•		

Assumptions:

Average annual normal operational emissions are calculated using yearly average- 65°F, at 100 % load.

Duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Parameters

i arameters	
Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

10/7/2009

Revised Appendix B_100709.xls

Hydrogen Energy, Inc HECA Amendment

First Quarter Emissions (Jan, Feb, Mar)

				Turbine	
Total Hours of Operation	2,080.5		Pollutant	Emissions	Emissions
Total Number of Cold Starts	2.5			lb/yr/CT	ton/yr/CT
Cold Start Duration (hr)	3.0	NO_X		83,588.3	41.8
Total Number of Hot Starts	2.5	СО		51,729.8	25.9
Hot Start Duration (hr)	1.0	VOC	;	9,496.2	4.7
Total Number of Shutdowns	5.0	SO ₂		14,178.3	7.1
Shutdown Duration (hr)	0.5	PM ₁₀	₀ = PM _{2.5}	41,188.9	20.6
Duct Burner Operation (hr)	2,068.0	NH ₃		37,963.9	19.0
Average Normal Operation (hr)	0.0				

Quarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load.

Duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Second Quarter Emissions (Apr, May, Jun)

			Turbine	
Total Hours of Operation	2,080.5	Pollutant	Emissions	Emissions
Total Number of Cold Starts	2.5		lb/yr/CT	ton/yr/CT
Cold Start Duration (hr)	3.0	NO _X	83,588.3	41.8
Total Number of Hot Starts	2.5	CO	51,729.8	25.9
Hot Start Duration (hr)	1.0	VOC	9,496.2	4.7
Total Number of Shutdowns	5.0	SO ₂	14,178.3	7.1
Shutdown Duration (hr)	0.5	$PM_{10} = PM_{2.5}$	41,188.9	20.6
Duct Burner Operation (hr)	2,068.0	NH ₃	37,963.9	19.0
Average Normal Operation (hr)	0.0			

uarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load.

Duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Modeling Worst-Case 1 hr Emissions per Turbine

Pollutant	lb/hr/CT	g/sec/CT
NOx	167.0	21.0
со	1,679.7	211.6
SO ₂	6.8	0.9

artup emissions represent worst case hr for NOx and CO. Startup and shutdown only burn natural gas.

NOx emissions are from hot start

CO emissions are from cold start

Normal operation burning syngas represents worst case SO₂.

Calculation assumes that startup and shutdown SO 2 emissions will always be lower than normal operational (burning

natural gas) SO₂ emissions.

Modeling Worst-Case 3 hr Emissions per Turbine

		Emission Rate	Emissions	
	hr	lb/hr	lb/CT	
Total Hours of Operation	3.0			
Startup Duration	0.0		0.0	contribution over 3 hr from start up
Shutdown Duration	0.0		0.0	contribution over 3 hr from shut down
Hours of Normal Operation (burning syngas)	3.0	6.8	20.5	contribution over 3 hr from normal operation

SO₂ worst-case 3 hr emissions per turbine lb/3 hr 20.5 SO₂ worst-case 1 hr emissions per turbine 6.8 lb/hr SO₂ modeling worst-case emissions per turbine 0.9 g/sec

Only SO₂ is considered for an average 3-hour Ambient Air Quality Standard.

Normal operation burning syngas represents worst case SO 2.

Worst-case 3 hr emissions assumes a total start up of :

Worst-case 3 hr emissions assumes a total shut down of : Calculation assumes that startup and shutdown SO $_{\mathrm{2}}$ emissions will always be lower than normal operational (burning

natural gas) SO₂ emissions.

Third Quarter Emissions (Jul, Aug, Sep)

Total Hours of Operation	2,080.5	Pollutant	Turbine Emissions	Emissions
Total Number of Cold Starts	2.5		lb/yr/CT	ton/yr/CT
Cold Start Duration (hr)	3.0	NO _X	83,588.3	41.8
Total Number of Hot Starts	2.5	со	51,729.8	25.9
Hot Start Duration (hr)	1.0	voc	9,496.2	4.7
Total Number of Shutdowns	5.0	SO ₂	14,178.3	7.1
Shutdown Duration (hr)	0.5	$PM_{10} = PM_{2.5}$	41,188.9	20.6
Duct Burner Operation (hr)	2,068.0	NH ₃	37,963.9	19.0
Average Normal Operation (hr)	0.0			

10/7/2009

Quarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load.

Duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Fourth Quarter Emissions (Oct, Nov, Dec)

Total Haura of Operation	2.000.5	Pollutant	Turbine	Emissions
Total Hours of Operation	2,080.5	Pollutant	Emissions	Emissions
Total Number of Cold Starts	2.5		lb/yr/CT	ton/yr/CT
Cold Start Duration (hr)	3.0	NO_X	83,588.3	41.8
Total Number of Hot Starts	2.5	СО	51,729.8	25.9
Hot Start Duration (hr)	1.0	VOC	9,496.2	4.7
Total Number of Shutdowns	5.0	SO ₂	14,178.3	7.1
Shutdown Duration (hr)	0.5	$PM_{10} = PM_{2.5}$	41,188.9	20.6
Duct Burner Operation (hr)	2,068.0	NH ₃	37,963.9	19.0
Average Normal Operation (hr)	0.0			

uarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load.

Duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Revised Appendix B_100709.xls 10 of 49

10/7/2009

Hydrogen Energy, Inc HECA Amendment

		Emission Rate	Emissions	
	hr	lb/hr	lb/CT	
Total Hours of Operation	8.0			
Startup Duration	6.0		10,078.0	contribution over 8 hr from start up
Shutdown Duration	1.5		378.0	contribution over 8 hr from shut down
Hours of Normal Operation (burning syngas)	0.5	18.1	9.1	contribution over 8 hr from normal operation
CO worst-case 8 hr emissions per turbine	10,465.1	lb/8 hr		
CO worst-case 1 hr emissions per turbine	1,308.1	lb/hr		
CO modeling worst-case emissions per turbine	164.8	g/sec		
Assumptions:				

Only CO is considered for an average 8-hour Ambient Air Quality Standard.

Normal operation assumes max rate.

orst-case 8 hr emissions assumes a total COLD start up of : orst-case 8 hr emissions assumes a total shut down of :

Worst-Case Daily Emissions per Turbine and Modeling Worst-Case 24 Hour Emission Rate

SO ₂ (lb/day/CT)	163.8
SO ₂ (g/s/CT) (burning syngas)	0.9
$PM_{10} = PM_{2.5}$ (lb/day/CT)	475.2
PM ₁₀ = PM _{2.5} (g/s/CT) (burning syngas)	2.5
Assumptions:	
Only SO ₂ and PM are considered for an average 24-hour Ambient	Air Quality Standard.

For SO₂ 24 hrs of normal operation max emission rate

For PM 24 hrs of normal operation max emission rate

Worst-Case Daily Emissions per Turbine and Modeling Worst-Case 24 Hour Emission Rate

Pollutant	Time in Startup	Startup Emission Rate Ib/start	Time in Shut Down	Shutdown Emission Rate Ib/shutdown	Time in Normal Operation hr	Normal Operation Emission Rate Ib/start	Worst-Case Daily Emissions lb/day/CT	Modeling Worst- Case 24 Hr Emission g/s/CT
NOx	12.0	272.0	2.0	62.0	10.0	39.7	1,733.4	
со	12.0	5,039.0	2.0	126.0	10.0	18.1	20,841.4	
voc	12.0	800.0	2.0	21.0	10.0	3.5	3,318.6	
SO ₂								
$PM_{10} = PM_{2.5}$								

For NOx, CO, and VOC -- emissions are calculated assuming:

Worst-case daily emissions assumes a total start up of : Worst-case daily emissions assumes a total shut down of :

Remainder of time is spent in normal operation at max emission rate See above calculation for worst-case daily SO $_2$ and PM: calculated as 24 hrs of normal operationat max emissions rate

Revised Appendix B_100709.xls 11 of 49 CTG/HRSG Stack - Co Firing **Emissions Summary**

Hydrogen Energy, Inc HECA Amendment

CTG Operating Parameters

Ambient Temperature	UNITS	Winter Minimum - 20°F			Yearly Average- 65°F				Summer Maximum - 97°F				
CTG Load Level	Percent Load (%)	100%	100%	80%	60%	100%	100%	80%	60%	100%	100%	80%	60%
Evap Cooling Status	off / on	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Duct Burner Status	off / on	On	Off	Off	Off	On	Off	Off	Off	On	Off	Off	Off

Average Emission Rates from CTG (lbs/hr/turbine) - Normal Operation

	UNITS	Winter Minimum - 20°F				Yearly Average- 65°F				Summer Maximum - 97°F			
NO _x (@ 4.0 ppm)	lbm/hr	41.3	34.0			38.7	31.7						
CO (@ 5.0 ppm)	lbm/hr	31.4	25.9			29.4	24.1						
VOC (@ 2.0 ppm)	lbm/hr	7.2	5.9			6.7	5.5						
SO ₂ (@ 6.7 ppmv, average) (12.65 ppm duct firing)	lbm/hr	7.4	5.2			7.0	4.8						
$PM_{10} = PM_{2.5}$	lbm/hr	19.8	19.8			19.8	19.8						
NH ₃ (@ 5.0 ppm slip)	lbm/hr	19.1	15.7			17.9	14.6						
All turbine operating parameters and emissions data provided by FLUOR based on expected operating parameters. 5.0659													
Co-firing emissions are controlled at the same amount as natural gas.													

Startup / Shutdown Emissions from Turbine (1CT)

Max 1-hr.	Total	Hot Startup			Shutdown		
Max 1-hr.	Total						
	iotai	60	Max 1-hr.	Total	30	Max 1-hr.	Total
(lb/hr)	(lb/180min)	(min. in hot startup)	(lb/hr)	(lb/60min)	(min. in shutdown)	(lb/hr)	(lb/30min)
90.7	272.0	NOx	167.0	167.0	NOx	62.0	62.0
1,679.7	5,039.0	co	394.0	394.0	co	126.0	126.0
266.7	800.0	VOC	98.0	98.0	VOC	21.0	21.0
5.1	15.3	SO2	5.1	5.1	SO2	2.6	2.6
21.3	64.0	$PM_{10} = PM_{2.5}$	23.0	23.0	$PM_{10} = PM_{2.5}$	5.0	5.0
	90.7 1,679.7 266.7 5.1	90.7 272.0 1,679.7 5,039.0 266.7 800.0 5.1 15.3	90.7 272.0 NOx 1,679.7 5,039.0 CO 266.7 800.0 VOC 5.1 15.3 SO2	90.7 272.0 NOx 167.0 1,679.7 5,039.0 CO 394.0 266.7 800.0 VOC 98.0 5.1 15.3 SO2 5.1	90.7 272.0 NOx 167.0 167.0 1,679.7 5,039.0 CO 394.0 394.0 266.7 800.0 VOC 98.0 98.0 5.1 15.3 SO2 5.1 5.1	90.7 272.0 NOx 167.0 167.0 NOx 1,679.7 5,039.0 CO 394.0 394.0 CO 266.7 800.0 VOC 98.0 98.0 VOC 5.1 15.3 SO2 5.1 5.1 SO2	90.7 272.0 NOx 167.0 167.0 NOx 62.0 1,679.7 5,039.0 CO 394.0 CO 126.0 266.7 800.0 VOC 98.0 98.0 VOC 21.0 5.1 15.3 SO2 5.1 5.1 SO2 2.6

All turbine operating parameters and emissions data provided by FLUOR based on expected operating parameters.

CTGs will always be started burning natural gas. Startup and shutdown emission rates above reflect natural gas.

Startup and shutdown SQ emissions will always be lower than normal operation SQ emissions. Startup and shutdown emissions are assumed equal to normal operations (burning natural gas) at the max emission rate.

Average Annual Emissions

Total Hours of Operation	8,322.0	Pollutant	Turbine Emissions	Emissions	Emissions
Total Number of Cold Starts	10.0		lb/yr/CT	ton/yr/CT	g/sec/CT
Cold Start Duration (hr)	3.0	NO _X	325,712.3	162.9	4.7
Total Number of Hot Starts	10.0	со	300,390.9	150.2	4.3
Hot Start Duration (hr)	1.0	voc	65,066.5	32.5	0.9
Total Number of Shutdowns	20.0	SO ₂	58,357.9	29.2	0.8
Shutdown Duration (hr)	0.5	$PM_{10} = PM_{2.5}$	164,755.6	82.4	2.4
Duct Burner Operation (hr)	8,272.0	NH ₃	147,864.1	73.9	2.1
Average Normal Operation (hr)	0.0				
Assumptions:		•	_	_	
Average annual normal operational emissions are calculate	d using yearly average- 65°F, at 1	00 % load.			
Duct burner emissions are calculated using yearly average-	65°F, at 100 % load with duct bu	ners.			

Parameters

ays per year:	365
ours per day:	24
inutes per hour:	60
econds per minute:	60

Revised Appendix B_100709.xls 12 of 49 CTG/HRSG Stack - Co Firing **Emissions Summary**

Hydrogen Energy, Inc HECA Amendment

First Quarter Emissions (Jan, Feb, Mar)

			Turbine	
Total Hours of Operation	2,080.5	Pollutant	Emissions	Emissions
Total Number of Cold Starts	2.5		lb/yr/CT	ton/yr/CT
Cold Start Duration (hr)	3.0	NO _X	81,428.1	40.7
Total Number of Hot Starts	2.5	СО	75,097.7	37.5
Hot Start Duration (hr)	1.0	VOC	16,266.6	8.1
Total Number of Shutdowns	5.0	SO ₂	14,589.5	7.3
Shutdown Duration (hr)	0.5	$PM_{10} = PM_{2.5}$	41,188.9	20.6
Duct Burner Operation (hr)	2,068.0	NH ₃	36,966.0	18.5
Average Normal Operation (hr)	0.0			

Assumptions:

Quarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load.

Duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Second Quarter Emissions (Apr, May, Jun)

Total Hours of Operation	2.080.5	Pollutant	Turbine Emissions	Emissions
Total Number of Cold Starts	2,080.5	Foliutalit	Ib/yr/CT	ton/yr/CT
Cold Start Duration (hr)	3.0	NO _X	81,428.1	40.7
Total Number of Hot Starts	2.5	co	75,097.7	37.5
Hot Start Duration (hr)	1.0	VOC	16,266.6	8.1
Total Number of Shutdowns	5.0	SO ₂	14,589.5	7.3
Shutdown Duration (hr)	0.5	$PM_{10} = PM_{2.5}$	41,188.9	20.6
Duct Burner Operation (hr)	2,068.0	NH ₃	36,966.0	18.5
Average Normal Operation (hr)	0.0			

Quarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load. Duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Modeling Worst-Case 1 hr Emissions per Turbine

Pollutant	lb/hr/CT	g/sec/CT
NOx	167.0	21.0
co	1,679.7	211.6
SO ₂	7.4	0.93

artup emissions represent worst case hr for NOx and CO. Startup and shutdown only burn natural gas.

NOx emissions are from hot start O emissions are from cold start

Normal operation co firing represents worst case SQ always be lower than normal operational (burning natural gas) S₂

Third Quarter Emissions (Jul, Aug, Sep)

2.5 3.0			i	
3.0			lb/yr/CT	ton/yr/CT
		NO_X	81,428.1	40.7
2.5		СО	75,097.7	37.5
1.0		VOC	16,266.6	8.1
5.0		SO ₂	14,589.5	7.3
0.5		$PM_{10} = PM_{2.5}$	41,188.9	20.6
2,068.0		NH ₃	36,966.0	18.5
0.0				
	1.0 5.0 0.5 2,068.0	1.0 5.0 0.5 2,068.0	1.0 VOC 5.0 SO ₂ 0.5 PM ₁₀ = PM _{2.5} NH ₃	1.0 VOC 16,266.6 5.0 SO ₂ 14,589.5 0.5 PM ₁₀ = PM _{2.5} 41,188.9 NH ₃ 36,966.0

Quarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load.

Duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Fourth Quarter Emissions (Oct, Nov, Dec)

			Turbine	
Total Hours of Operation	2,080.5	Pollutant	Emissions	Emissions
Total Number of Cold Starts	2.5		lb/yr/CT	ton/yr/CT
Cold Start Duration (hr)	3.0	NO _X	81,428.1	40.7
Total Number of Hot Starts	2.5	СО	75,097.7	37.5
Hot Start Duration (hr)	1.0	VOC	16,266.6	8.1
Total Number of Shutdowns	5.0	SO ₂	14,589.5	7.3
Shutdown Duration (hr)	0.5	$PM_{10} = PM_{2.5}$	41,188.9	20.6
Duct Burner Operation (hr)	2,068.0	NH ₃	36,966.0	18.5
Average Normal Operation (hr)	0.0			

Assumptions:
Quarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load.
Duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Revised Appendix B_100709.xls 13 of 49 CTG/HRSG Stack - Co Firing

Hydrogen Energy, Inc HECA Amendment

Modeling Worst-Case 3 hr Emissions per Turbine

у				
		emission rate	Emissions	
	hr	lb/hr	lb/CT	
Total Hours of Operation	3.0			
Startup Duration	0.0		0.0	contr
Shutdown Duration	0.0		0.0	contr
lours of Normal Operation (co firing)	3.0	7.4	22.1	contr
SO ₂ worst-case 3 hr emissions per turbine	22.1	lb/3 hr		

ntribution over 3 hr from start up ntribution over 3 hr from shut down ntribution over 3 hr from normal operation **Emissions Summary**

SO₂ worst-case 1 hr emissions per turbine SO₂ modeling worst-case emissions per turbine 7.4 lb/hr 0.9 g/sec

Only SO₂ is considered for an average 3-hour Ambient Air Quality Standard. ormal operation co firing represents worst case SQ

Norst-case 3 hr emissions assumes a total start up of :

Worst-case 3 hr emissions assumes a total shut down of : always be lower than normal operational (burning natural gas) S₂ emissions.

Modeling Worst-Case 8 hr Emissions per Turbine

	hr	emission rate lb/hr	Emissions lb/CT	
Total Hours of Operation	8.0			
Startup Duration	6.0		10,078.0	со
Shutdown Duration	1.5		378.0	со
Hours of Normal Operation (co firing)	0.5	31.4	15.7	со
CO worst-case 8 hr emissions per turbine	10,471.7	lb/8 hr		
CO worst-case 1 hr emissions per turbine	1,309.0	lb/hr		

contribution over 8 hr from start up contribution over 8 hr from shut down contribution over 8 hr from normal operation

CO modeling worst-case emissions per turbine 164.9 g/sec

Only CO is considered for an average 8-hour Ambient Air Quality Standard.

ormal operation assumes max rate.

/orst-case 8 hr emissions assumes a total COLD start up of :

Worst-case 8 hr emissions assumes a total shut down of :

Worst-Case Daily Emissions per Turbine and Modeling Worst-Case 24 Hour Emission Rate

SO ₂ (lb/day/CT)	177.2
SO2 (g/s/CT) (co firing)	0.9
$PM_{10} = PM_{2.5}$ (lb/day/CT)	475.2
$PM_{10} = PM_{2.5} (g/s/CT) (cofiring)$	2.5
Assumptions:	
Only SO ₂ and PM are considered for an average 24-hour Ambient	Air Quality Standard.
For SO ₂ 24 hrs of normal operation max emission rate	
For PM 24 hrs of normal operation max emission rate	

Worst-Case Daily Emissions per Turbine and Modeling Worst-Case 24 Hour Emission Rate

			Time in Shut Down		Operation	Normal Operation Emission Rate	Worst-Case Daily Emissions	Modeling Worst- Case 24 Hr
Pollutant	hr	lb/start	hr	lb/shutdown	hr	lb/start	lb/day/CT	Emission g/s/CT
NOx	12.0	272.0	2.0	62.0	10.0	41.3	1,748.8	
co	12.0	5,039.0	2.0	126.0	10.0	31.4	20,974.1	
VOC	12.0	800.0	2.0	21.0	10.0	7.2	3,355.8	
SO ₂								
$PM_{10} = PM_{2.5}$								

Worst-case daily emissions assumes a total start up of :

Worst-case daily emissions assumes a total shut down of :

Remainder of time is spent in normal operation at max emission rate
See above calculation for worst-case daily SQ and PM: calculated as 24 hrs of normal operationat max emissions rate

Revised Appendix B_100709.xls 14 of 49 Auxiliary Boiler Emissions Summary

Hydrogen Energy, Inc
HECA Amendment

Auxiliary Boiler - Annual Operating Emissions

Total Hours of Operation	2,190	hr/yr
Firing Rate	142	MMBtu/hr

Hours per Qtr			
Q1	Q2	Q3	Q4
547.5	547.5	547.5	547.5

Assuming equal operation in each quarter

Auxiliary Boiler Emission Factors

NOx (low NOx burner and flue gas recirculation, 9 ppmvd (3% O2))	0.011	lb/MMBtu
CO (50 ppmvd (3% O2))	0.037	lb/MMBtu
VOC	0.004	lb/MMBtu
SO ₂ (12.65 ppmv total sulfur in pipeline natural gas)	0.00204	lb/MMBtu
$PM_{10} = PM_{2.5}$	0.005	lb/MMBtu

Auxiliary Boiler Pollutant Emission Rates

		Auxiliary Boiler Emissions			
Pollutant	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr
NOx	1.56	37.49	3,420.78	0.43	1.7
CO	5.25	126.10	11,506.26	1.44	5.8
VOC	0.57	13.63	1,243.92	0.16	0.6
SO_2	0.29	6.96	635.09	0.08	0.3
$PM_{10} = PM_{2.5}$	0.71	17.04	1,554.90	0.19	0.8

Revised Appendix B_100709.xls 15 of 49

Auxiliary Boiler Emissions Summary

Hydrogen Energy, Inc HECA Amendment 10/7/2009

Modeling Worst-Case 1 hr Emissions

NOx (g/sec)	0.2
CO (g/sec)	0.7
SO ₂ (g/sec)	0.04

Only NOx, CO, and SO₂ are considered for an average 1-hour Ambient Air Quality Standard.

Modeling Worst-Case 3 hr Emissions

SO ₂ (lb/3-hr)	0.87
SO ₂ (g/sec)	0.04

Only SO₂ is considered for an average 3-hour Ambient Air Quality Standard.

Modeling Worst-Case 8 hr Emissions

CO (lb/8-hr)	42.03
CO (g/sec)	0.7

Only CO is considered for an average 8-hour Ambient Air Quality Standard.

Modeling Worst-Case 24 Hour Emissions

SO ₂ (lb/24-hr)	6.96
SO ₂ (g/sec)	0.04
$PM_{10} = PM_{2.5} (lb/24-hr)$	17.04
$PM_{10} = PM_{2.5}$ (g/sec)	0.09

Only SO₂ and PM are considered for an average 24-hour Ambient Air Quality Standard.

Modeling Annual Average Emissions

NOx (g/sec)	0.05
CO (g/sec)	0.2
VOC (g/sec)	0.02
SO ₂ (g/sec)	0.01
$PM_{10} = PM_{2.5} (g/sec)$	0.02

Parameters

Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

Revised Appendix B_100709.xls 16 of 49

Hydrogen Energy, Inc
HECA Amendment

Gasification Flare - Normal Operating Emissions From Pilot

Total Hours of Operation	8,760	hr/yr
Gasification Flare Pilot Fuel Use =	0.5	MMBtu/hr

Hours per Qtr				
	Q1	Q2	Q3	Q4
	2190	2190	2190	2190

Pilot Pollutant Emission Factors

NOx (lb/MMBtu, HHV)	0.12
CO (lb/MMBtu, HHV)	0.08
VOC (lb/MMBtu, HHV)	0.0013
SO ₂ (lb/MMBtu, HHV) (12.65 ppm)	0.002
VOC (lb/MMBtu, HHV)	0.0013
$PM_{10} = PM_{2.5}$ (lb/MMBtu, HHV)	0.003

Assuming equal operation in each quarter

Pilot Pollutant Emission Rates

		Pilot Emissions					
Pollutant	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr		
NOx	0.060	1.44	525.60	0.07	0.26		
CO	0.040	0.96	350.40	0.04	0.18		
VOC	0.001	0.02	5.69	0.0007	0.003		
SO ₂	0.001	0.02	8.94	0.0011	0.004		
$PM_{10} = PM_{2.5}$	0.002	0.04	13.14	0.00	0.007		

Revised Appendix B_100709.xls 17 of 49

Hydrogen Energy, Inc
HECA Amendment

10/7/2009

Gasification Flare - Operating Emissions During Gasifier Startup and Shutdown

Total Flare SU/SD Operation	115,500	MMBtu/yr
Wet Unshifted Gas Heat Rate	900	MMBtu/hr
Dry Shifted Gas Heat Rate	768	MMBtu/hr
Approximate Operating Hours (wet)	96	hr/yr
Approximate Operating Hours (dry)	38	hr/yr

Startup and shutdown flared gas scenario

 Cold plant startup =
 30,000 MMBtu/yr (1 event)
 (assume 20% unshifted)

 Plant shutdown =
 500 MMBtu/yr (1 event)
 (assume 100% unshifted)

 Gasifier outages =
 60,000 MMBtu/yr (24 events)
 (assume 100% unshifted)

 Gasifier hot restarts =
 25,000 MMBtu/yr (12 events)
 (assume 100% unshifted)

 Total
 115,500 MMBtu/yr
 (approx 75% unshifted)

SU/SD Flare Pollutant Emission Factors

NOx (lb/MMBtu, HHV)	0.07
CO (lb/MMBtu, HHV) (wet)	1.00
CO (lb/MMBtu, HHV) (dry)	0.37
VOC (lb/MMBtu, HHV)	0
SO ₂ (lb/MMBtu, HHV)	0
$PM_{10} = PM_{2.5}$ (lb/MMBtu, HHV)	0

SU/SD Flare Pollutant Emission Rates

	SU/SD Flare Emissions						
Pollutant	lb/hr (wet)	lb/hr (dry)	% Wet	% Dry	lb/hr (wet/dry)	ton/qtr (wet/dry)	ton/yr (wet/dry)
NOx	63.0	53.8	75.0%	25.0%	60.70	1.01	4.04
СО	900.0	284.3	75.0%	25.0%	746.08	12.16	48.65
VOC	0	0	0	0	0	0	0
SO ₂	0	0	0	0	0	0	0
$PM_{10} = PM_{2.5}$	0	0	0	0	0	0	0

Total emissions are determined based on the fractional amount of wet and dry gas burned.

Revised Appendix B_100709.xls 18 of 49

Hydrogen Energy, Inc 10/7/2009

Total Gasification Flare Emissions

HECA Amendment

		Emissions			
Pollutant	Pilot (ton/yr)	SU/SD (ton/yr)	Total (ton/qtr)	Total (ton/yr)	
NOx	0.26	4.04	1.08	4.3	
СО	0.18	48.65	12.21	48.8	
VOC	0.003	0.00	0.001	0.003	
SO ₂	0.004	0.00	0.001	0.004	
$PM_{10} = PM_{2.5}$	0.01	0.00	0.002	0.01	

Modeling Worst-Case 1 hr Emissions

NOx (g/sec)	7.9
CO (g/sec)	113.4
SO ₂ (g/sec)	0.0001

Only NOx, CO, and SO₂ are considered for an average 1-hour Ambient Air Quality Standard.

NOx and CO rates are taken from the SU/SD flaring events

SO₂ rate is from pilot operation

Modeling Worst-Case 3 hr Emissions

SO ₂ (lb/3-hr)	0.003
SO ₂ (g/sec)	0.0001

Only SO₂ is considered for an average 3-hour Ambient Air Quality Standard.

SO₂ pounds per 3-hr assumes three (3) hours of pilot operation.

Modeling Worst-Case 8 hr Emissions

CO (lb/8-hr)	7,200.00
CO (g/sec)	113.4

Only CO is considered for an average 8-hour Ambient Air Quality Standard.

Pounds per 8-hr assumes eight (8) hours of SU/SD flaring events.

Parameters

=	
Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

Revised Appendix B_100709.xls 19 of 49

Hydrogen Energy, Inc HECA Amendment 10/7/2009

Modeling Worst-Case 24 Hour Emissions

SO ₂ (lb/24-hr)	0.02
SO ₂ (g/sec)	0.0001
$PM_{10} = PM_{2.5} (lb/24-hr)$	0.04
$PM_{10} = PM_{2.5} (g/sec)$	0.0002

Only SO₂ and PM are considered for an average 24-hour Ambient Air Quality Standard.

Pounds per 24-hr assumes 24 hours of pilot operation.

Modeling Annual Average Emissions

NOx (g/sec)	0.1
CO (g/sec)	1.4
VOC (g/sec)	0.0001
SO ₂ (g/sec)	0.0001
$PM_{10} = PM_{2.5} (g/sec)$	0.0002

Pounds per year assumes contributions from both pilot operation and SU/SD flaring

Revised Appendix B_100709.xls 20 of 49

Hydrogen Energy, Inc
HECA Amendment

10/7/2009

SRU Flare - Normal Operating Emissions from Pilot

Total Hours of Operation	8,760	hr/yr
SRU Flare Pilot Firing Rate	0.3	MMBtu/hr

Hours per Qtr					
Q1	Q2	Q3	Q4		
2190	2190	2190	2190		

Pilot Pollutant Emission Factors

NOx (lb/MMBtu, HHV)	0.12
CO (lb/MMBtu, HHV)	0.08
VOC (lb/MMBtu, HHV)	0.0013
SO ₂ (lb/MMBtu, HHV) (12.65 ppm)	0.002
$PM_{10} = PM_{2.5}$ (lb/MMBtu, HHV)	0.003

Assuming equal operation in each quarter

Pilot Pollutant Emission Rates

	Pilot Emissions				
Pollutant	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr
NOx	0.036	0.86	315.36	0.04	0.2
со	0.024	0.58	210.24	0.03	0.1
VOC	0.0004	0.01	3.42	0.0004	0.002
SO_2	0.0006	0.01	5.37	0.0007	0.003
$PM_{10} = PM_{2.5}$	0.0009	0.02	7.88	0.00	0.004

Revised Appendix B_100709.xls 21 of 49

Hydrogen Energy, Inc HECA Amendment 10/7/2009

SRU - Operating Emissions During Gasifier Startup and Shutdown

			<u></u>		
Natural Gas Heat Rate (assist gas)	36.0	MMBtu/hr			
Approximate Operating Hours	6.0	hr/yr	approximately	2	events
Control efficiency of scrubber =	99.62%				
Acid gas lb/hr SO2 =	4.600	lb/hr scrubbed SO2=	17.3		

SU/SD Flare Pollutant Emission Factors

NOx (lb/hr)	4.32
CO (lb/hr)	2.88
VOC (lb/hr)	0.05
SO ₂ (lb/hr) from natural gas	0.07
SO ₂ (lb/hr) from sour flaring	17.33
$PM_{10} = PM_{2.5}(lb/hr)$	0.11

Natural gas emissions are the same as those listed for the pilot multiplied by the heat rate of the assist gas

SU/SD Flare Pollutant Emission Rates

		SU/SD Flare Emissions			
Pollutant	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr
NOx	4.32	13.0	25.9	0.00324	0.0130
со	2.88	8.6	17.3	0.00216	0.0086
VOC	0.05	0.1	0.3	0	0.0001
SO ₂	17.41	52.2	104.4	0.01	0.0522
$PM_{10} = PM_{2.5}$	0.11	0.3	0.6	0	0.0003

SRU Flare - Total Annual Emissions

		Emissions			
Pollutant	Pilot (ton/yr)	SU/SD (ton/yr)	Total (ton/qtr)	Total (ton/yr)	
NOx	0.16	0.0130	0.04	0.2	
со	0.11	0.0086	0.03	0.1	
voc	0.002	0.0001	0.000	0.002	
SO ₂	0.003	0.05	0.014	0.1	
$PM_{10} = PM_{2.5}$	0.004	0.0003	0.001	0.004	

Revised Appendix B_100709.xls 22 of 49

SRU Flare Emissions Summary

Hydrogen Energy, Inc HECA Amendment 10/7/2009

Modeling Worst-Case 1 hr Emissions

NOx (g/sec)	0.544
CO (g/sec)	0.363
SO ₂ (g/sec)	2.19

Only NOx, CO, and SO2 are considered for an average 1-hour Ambient Air Quality Standard.

NOx, CO, and SO2 one (1) hr rates are from taken from the SU/SD flaring events

Modeling Worst-Case 3 hr Emissions

SO ₂ (lb/3-hr)	52.22
SO ₂ (g/sec)	2.19

Only SO₂ is considered for an average 3-hour Ambient Air Quality Standard.

Pounds per 3-hr assumes aproximately 3 hours (1 event) from SU/SD flaring.

Modeling Worst-Case 8 hr Emissions

CO (lb/8-hr)	8.76
CO (g/sec)	0.138

Only CO is considered for an average 8-hour Ambient Air Quality Standard.

Pounds per 8-hr assumes aproximately 3 hours (1 event) from SU/SD flaring and the remainder in pilot operation.

Modeling Worst-Case 24 Hour Emissions

SO ₂ (lb/24-hr)	52.23
SO ₂ (g/sec)	0.27
$PM_{10} = PM_{2.5} (lb/24-hr)$	0.34
$PM_{10} = PM_{2.5} (g/sec)$	0.0018

Only SO₂ and PM are considered for an average 24-hour Ambient Air Quality Standard.

SO₂ and PM pounds per 24-hr assume aproximately 3 hours (1 event) from SU/SD flaring and the remainder in pilot operation.

Modeling Annual Average Emissions

NOx (g/sec)	0.005
CO (g/sec)	0.003
VOC (g/sec)	0.00005
SO ₂ (g/sec)	0.002
$PM_{10} = PM_{2.5} (g/sec)$	0.0001

Pounds per year assumes contributions from both pilot operation and SU/SD flaring

Parameters

Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

Revised Appendix B_100709.xls 23 of 49

Hydrogen Energy, Inc
HECA Amendment

10/7/2009

Rectisol - Normal Operating Emissions from Pilot

Total Hours of Operation	8,760	hr/yr	
Rectisol Flare Pilot Firing Rate	0.3	MMBtu/hr	
			_

Hours per Qtr			
Q1	Q2	Q3	Q4
2190	2190	2190	2190

Pilot Pollutant Emission Factors

NOx (lb/MMBtu, HHV)	0.12
CO (lb/MMBtu, HHV)	0.08
VOC (lb/MMBtu, HHV)	0.0013
SO ₂ (lb/MMBtu, HHV) (12.65 ppm)	0.002
$PM_{10} = PM_{2.5}$ (lb/MMBtu, HHV)	0.003

Assuming equal operation in each quarter

Pilot Pollutant Emission Rates

	Pilot Emissions				
Pollutant	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr
NOx	0.036	0.86	315.36	0.04	0.2
со	0.024	0.58	210.24	0.03	0.1
voc	0.0004	0.01	3.42	0.0004	0.002
SO ₂	0.0006	0.01	5.37	0.0007	0.003
$PM_{10} = PM_{2.5}$	0.0009	0.02	7.88	0.00	0.004

Rectisol Flare Emissions Summary

Hydrogen Energy, Inc HECA Amendment 10/7/2009

Rectisol Flare - Total Annual Emissions

Pollutant	Emissions		
	Pilot (ton/yr)	Total (ton/qtr)	Total (ton/yr)
NOx	0.16	0.04	0.2
со	0.11	0.03	0.1
VOC	0.002	0.000	0.002
SO ₂	0.003	0.001	0.003
$PM_{10} = PM_{2.5}$	0.004	0.001	0.004

Modeling Worst-Case 1 hr Emissions

NOx (g/sec)	0.005
CO (g/sec)	0.003
SO ₂ (g/sec)	0.0001

Only NOx, CO, and SO2 are considered for an average 1-hour Ambient Air Quality Standard.

NOx, CO, and SO2 one (1) hr rates are from taken from the natural gas pilot emissions

Modeling Worst-Case 3 hr Emissions

SO ₂ (lb/3-hr)	0.0018
SO ₂ (g/sec)	0.0001

Only SO₂ is considered for an average 3-hour Ambient Air Quality Standard.

Pounds per 3-hr assumes aproximately 3 hours the natural gas pilot emissions.

Parameters

Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

Rectisol Flare Emissions Summary

Hydrogen Energy, Inc
HECA Amendment

Modeling Worst-Case 8 hr Emissions

CO (lb/8-hr)	0.19
CO (g/sec)	0.003

Only CO is considered for an average 8-hour Ambient Air Quality Standard.

Pounds per 8-hr assumes aproximately 8 hours of pilot operation.

Modeling Worst-Case 24 Hour Emissions

SO ₂ (lb/24-hr)	0.01
SO ₂ (g/sec)	0.0001
$PM_{10} = PM_{2.5} (lb/24-hr)$	0.02
$PM_{10} = PM_{2.5} (g/sec)$	0.0001

Only SO₂ and PM are considered for an average 24-hour Ambient Air Quality Standard.

SO₂ and PM pounds per 24-hr assume aproximately 32 hoursof pilot operation.

Modeling Annual Average Emissions

NOx (g/sec)	0.005
CO (g/sec)	0.003
VOC (g/sec)	0.00005
SO ₂ (g/sec)	0.0001
$PM_{10} = PM_{2.5} (g/sec)$	0.0001

Pounds per year assumes contributions from both pilot operation and SU/SD flaring

Hydrogen Energy, Inc
HECA Amendment

10/7/2009

Thermal Oxidizer - Process Vent Disposal Emissions

Total Hours of Operation	8,760	hr/yr
Thermal Oxidizer Firing Rate	10	MMBtu/hr

Hours per Qtr				
Q1	Q2	Q3	Q4	
2190	2190	2190	2190	

Assuming equal operation in each quarter

Process Vent Gas Pollutant Emission Factors

NOx (lb/MMBtu, HHV)	0.24
CO (lb/MMBtu, HHV)	0.20
VOC (lb/MMBtu, HHV)	0.0070
SO ₂ (lb/MMBtu, HHV)	See Below
$PM_{10} = PM_{2.5}$ (lb/MMBtu, HHV)	0.008

Assume an allowance of 2 lb/hr SO₂ emission to account for sulfur in the various vent streams plus fuel.

Process Vent Gas Pollutant Emission Rates

	Process Vent Gas Emissions				
Pollutant	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr
NOx	2.40	57.60	21,024.00	2.63	10.5
СО	2.00	48.00	17,520.00	2.19	8.8
VOC	0.07	1.68	613.20	0.0767	0.3
SO_2	2.00	48.00	17,520.00	2.1900	8.8
$PM_{10} = PM_{2.5}$	0.08	1.92	700.80	0.09	0.4

Assume an allowance of 2 lb/hr SO₂ emission to account for sulfur in the various vent streams plus fuel.

Revised Appendix B_100709.xls 27 of 49

Hydrogen Energy, Inc HECA Amendment 10/7/2009

Thermal Oxidizer - SRU Startup Waste Gas Disposal

Total Hours of Operation	300	hr/yr
Thermal Oxidizer Firing Rate	10	MMBtu/hr

Hours per Qtr				
Q1	Q2	Q3	Q4	
75	75	75	75	

SRU Startup Waste Gas Disposal Emission Factors

NOx (lb/MMBtu, HHV)	0.24
CO (lb/MMBtu, HHV)	0.20
VOC (lb/MMBtu, HHV)	0.007
SO ₂ (lb/MMBtu, HHV) (12.65 ppm)	0.002
$PM_{10} = PM_{2.5}$ (lb/MMBtu, HHV)	0.008

Assuming equal operation in each quarter

SRU Startup Waste Gas Disposal Pollutant Emission Rates

		SRU Startup Waste Gas Disposal Emissions			
Pollutant	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr
NOx	2.40	57.60	720.00	0.09	0.36
co	2.00	48.00	600.00	0.08	0.30
VOC	0.07	1.68	21.00	0.003	0.011
SO ₂	0.02	0.49	6.17	0.001	0.003
$PM_{10} = PM_{2.5}$	0.08	1.92	24.00	0.003	0.012

Thermal Oxidizer - Total Annual Emissions

		Emissions			
Pollutant	Vent (ton/yr)	SU/SD (ton/yr)	Total (ton/qtr)	Total (ton/yr)	
NOx	10.51	0.36	2.72	10.9	
СО	8.76	0.30	2.27	9.1	
VOC	0.31	0.011	0.08	0.3	
SO ₂	8.76	0.003	2.19	8.8	
$PM_{10} = PM_{2.5}$	0.35	0.012	0.09	0.4	

Revised Appendix B_100709.xls 28 of 49

Tail Gas Thermal Oxidizer Emissions Summary

Hydrogen Energy, Inc
HECA Amendment

10/7/2009

Modeling Worst-Case 1 hr Emissions

NOx (g/sec)	0.6
CO (g/sec)	0.50
SO ₂ (g/sec)	0.25

Only NOx, CO, and SO₂ are considered for an average 1-hour Ambient Air Quality Standard.

NOx, CO, and SO₂ one (1) hr rates include contributions from both process venting and SRU startup.

Modeling Worst-Case 3 hr Emissions

SO ₂ (lb/3-hr)	6.06
SO ₂ (g/sec)	0.3

Only SO₂ is considered for an average 3-hour Ambient Air Quality Standard.

SO₂ pounds per 3-hr assumes three (3) hours of oxidation from both process venting and SRU startup.

Modeling Worst-Case 8 hr Emissions

CO (lb/8-hr)	32.00
CO (g/sec)	0.5

Only CO is considered for an average 8-hour Ambient Air Quality Standard.

Pounds per 8-hr assumes eight (8) hours of oxidation from both process venting and SRU startup.

Modeling Worst-Case 24 Hour Emissions

SO ₂ (lb/24-hr)	48.49
SO ₂ (g/sec)	0.3
$PM_{10} = PM_{2.5} (lb/24-hr)$	3.84
$PM_{10} = PM_{2.5} (g/sec)$	0.02

Only SO₂ and PM are considered for an average 24-hour Ambient Air Quality Standard.

Pounds per 24-hr assumes 24 hours of oxidation from both process venting and SRU startup.

Modeling Annual Average Emissions

medeling / timadi / tvorage Emicerene	
NOx (g/sec)	0.3
CO (g/sec)	0.26
VOC (g/sec)	0.01
SO ₂ (g/sec)	0.3
$PM_{10} = PM_{2.5} (g/sec)$	0.01

Pounds per year assumes all contributions from annual waste gas oxidation and periodic SRU startup.

Parameters

Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

Revised Appendix B_100709.xls 29 of 49

Gasifier Warming Emissions Summary

Hydrogen Energy, Inc HECA Amendment 10/7/2009

Gasifier Warming Emissions - Normal Operation

Total Hours of Operation	1,800	hr/yr		Hours per Qtr			
Gasifier Firing Rate	18	MMBtu/hr		Q1	Q2	Q3	C
	.	· ·	•	450	450	450	4
Gasifier Pollutant Emission Factors		_		Assuming equ	al operation in e	each quarter	
NOx (lb/MMBtu, HHV)	0.11						
CO (lb/MMBtu, HHV)	0.09						
VOC (lb/MMBtu, HHV)	0.007						
SO ₂ (lb/MMBtu, HHV) (12.65 ppm)	0.002						
$PM_{10} = PM_{2.5}$ (lb/MMBtu, HHV)	0.008	1					
PM ₁₀ = PM _{2.5} (lb/MMBtu, HHV) Gasifier Pollutant Emission Rates	0.008]					
Gasiller Foliutant Emission Rates		Gas	ifier Fmiss	ions			
Pollutant	lb/hr	Gas Ib/day	ifier Emiss lb/yr	ions ton/qtr	ton/yr		
	Ib/hr 1.98		_		ton/yr 1.8		
Pollutant		lb/day	lb/yr	ton/qtr	·		

0.88

3.46

66.10

259.20

0.01

0.03

0.0

0.1

Please Note That There Are Three Gassifiers; However, Under Normal Operations, Only One Operates At A Time.

0.04

0.14

 SO_2

 $PM_{10} = PM_{2.5}$

Gasifier Warming Emissions Summary

Hydrogen Energy, Inc 10/7/2009
HECA Amendment

Modeling Worst-Case 1 hr Emissions

NOx (g/sec)	0.2
CO (g/sec)	0.2
SO ₂ (g/sec)	0.0046

Only NOx, CO, and SO₂ are considered for an average 1-hour Ambient Air Quality Standard.

NOx, CO, and SO₂ one (1) hr rates assume normal operation.

Modeling Worst-Case 3 hr Emissions

SO ₂ (lb/3-hr)	0.11
SO ₂ (g/sec)	0.0046

Only SO₂ is considered for an average 3-hour Ambient Air Quality Standard.

SO₂ pounds per 3-hr assumes three (3) hours of normal operation.

Modeling Worst-Case 8 hr Emissions

CO (lb/8-hr)	12.96
CO (g/sec)	0.2

Only CO is considered for an average 8-hour Ambient Air Quality Standard.

Pounds per 8-hr assumes eight (8) hours of normal operation.

Modeling Worst-Case 24 Hour Emissions

SO ₂ (lb/24-hr)	0.88
SO ₂ (g/sec)	0.0046
$PM_{10} = PM_{2.5} (lb/24-hr)$	3.46
$PM_{10} = PM_{2.5} (g/sec)$	0.02

Only SO₂ and PM are considered for an average 24-hour Ambient Air Quality Standard.

Pounds per 24-hr assumes 24 hours of normal operation.

Parameters

Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

Gasifier Warming Emissions Summary

Hydrogen Energy, Inc 10/7/2009
HECA Amendment

Modeling Annual Average Emissions

NOx (g/sec)	0.1
CO (g/sec)	0.0419
VOC (g/sec)	0.0033
SO ₂ (g/sec)	0.0010
$PM_{10} = PM_{2.5} (g/sec)$	0.0037

Pounds per year assumes 1,800 hours of annual normal operation.

Cooling Towers Emissions Summary

Hydrogen Energy, Inc
HECA Amendment

Cooling Towers - Annual Operating Emissions

Total Hours of Operation	8,322 hr/yr	Hours per Qtr			
	_	Q1	Q2	Q3	Q4
		2080.5	2080.5	2080.5	2080.5

Assuming equal operation in each quarter

Cooling Tower Operating Parameters

	Power Block	Process Area	ASU	Basis
Cooling water (CW) circulation rate, gpm	175,000	42,300	40,200	Typical plant performance
CW circulation rate (million lb/hr)	88	21	20	
CW dissolved solids (ppmw)	9,000	9,000	9,000	(See note)
Drift, fraction of circulating CW	0.0005%	0.0005%	0.0005%	Expected BACT

Note: Assumed 9,000 ppm TDS in circulating cooling water. Circulating water could range from 1200 to 90,000 ppm TDS depending on makeup water quality and tower operation. PM10 emissions would vary proportionately.

Cooling Tower PM₁₀ Emissions

	Cooling Tower PM ₁₀ Emissions				
	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr
Power Block Cooling Tower PM ₁₀ Emissions	3.94	94.50	32,767.88	4.10	16.38
Process Area Cooling Tower PM ₁₀ Emissions	0.95	22.84	7,920.46	0.99	3.96
ASU Cooling Tower PM ₁₀ Emissions	0.90	21.71	7,527.25	0.94	3.76

Revised Appendix B_100709.xls 33 of 49

Cooling Towers Emissions Summary

Hydrogen Energy, Inc
HECA Amendment

Total Cooling Tower PM₁₀ Emissions

	(ton/yr)
PM ₁₀	24.11
PM _{2.5}	14.46

PM_{2.5} emission factors were determined by multiplying PM₁₀ numbers by a "PM_{2.5} fraction of PM₁₀" value. Fractional values for PM_{2.5} were taken from the SCAQMD guidance: Final - Methodology to Calculate PM_{2.5} and PM_{2.5} Significance Thresholds, October 2006: Appendix A - Updated CEIDARS Table with PM_{2.5} Fractions.

Modeling Worst-Case 24 Hour Emissions	Power Block	Process Area	ASU
Cells per Cooling Tower	13	4	4
PM ₁₀ (lb/24-hr)	94.50	22.84	21.71
PM ₁₀ (g/sec/cell)	0.038	0.030	0.028
PM _{2.5} (lb/24-hr)	56.70	13.71	13.02
PM _{2.5} (g/sec/cell)	0.023	0.018	0.017

PM is considered for an average 24-hour Ambient Air Quality Standard.

Pounds per 24-hr assumes 24 hours of continual operation.

Modeling Worst-Case Annual Emissions	Power Block	Process Area	ASU
Cells per Cooling Tower	13	4	4
PM ₁₀ (ton/yr)	16.38	3.96	3.76
PM ₁₀ (g/sec/cell)	0.036	0.028	0.027
PM _{2.5} (lb/24-hr)	9.830	2.376	2.258
PM _{2.5} (g/sec/cell)	0.022	0.017	0.016

PM is considered for an annual average Ambient Air Quality Standard.

Assumes continual annual operation.

Parameters

Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

Revised Appendix B_100709.xls 34 of 49

Emergency Diesel Generators

Emissions Summary

Hydrogen Energy, Inc HECA Amendment 10/7/2009

Emergency Generator - Expected Emergency Operation and Maintenance

Total Hours of Operation	50	hr/yr
Generator Specification	2,800	Bhp

	Hours	per Qtr	
Q1	Q2	Q3	Q4
12.5	12.5	12.5	12.5

Generator Pollutant Emission Factors (per generator)

NOx (g/Bhp/hr)	0.50
CO (g/Bhp/hr)	0.29
VOC (g/Bhp/hr)	0.11
SO ₂ (g/Bhp/hr)	N/A
$PM_{10} = PM_{2.5} (g/Bhp/hr)$	0.03

Assuming equal operation in each quarter

Generator Pollutant Emission Rates (per generator)

		Generator Emissions			
Pollutant	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr
NOx	3.09	6.17	154.32	0.02	0.1
СО	1.79	3.58	89.51	0.01	0.04
VOC	0.68	1.36	33.95	0.00	0.02
SO ₂	0.03	0.06	1.40	0.00	0.001
$PM_{10} = PM_{2.5}$	0.16	0.32	8.02	0.00	0.00

Fuel sulfur content = 15 ppmw Pounds per day assumes two (2) hours of operation for maintenance and testing.

 SO_2 emissions = 0.20 lb $SO_2/1000$ gal

Fuel flow 140.00 gal/hr

Please note that there are two generators; all emissions are shown for individual generators

Modeling Worst-Case 1 hr Emissions (per generator)

NOx (g/sec)	0.4
CO (g/sec)	0.2
SO ₂ (g/sec)	0.004

Only NOx, CO, and SO₂ are considered for an average 1-hour Ambient Air Quality Standard.

Parameters

Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

Emergency Diesel Generators

Emissions Summary

Hydrogen Energy, Inc HECA Amendment 10/7/2009

Modeling Worst-Case 3 hr Emissions (per generator)

SO ₂ (lb/3-hr)	0.06
SO ₂ (g/sec)	0.002

Only SO₂ is considered for an average 3-hour Ambient Air Quality Standard. Pounds per 3-hr assumes two (2) hours of operation.

Modeling Worst-Case 8 hr Emissions (per generator)

CO (lb/8-hr)	3.58
CO (g/sec)	0.06

Only CO is considered for an average 8-hour Ambient Air Quality Standard. Pounds per 8-hr assumes two (2) hours of operation.

Modeling Worst-Case 24 Hour Emissions (per generator)

SO ₂ (lb/24-hr)	0.06
SO ₂ (g/sec)	0.0003
$PM_{10} = PM_{2.5} (lb/24-hr)$	0.32
$PM_{10} = PM_{2.5} (g/sec)$	0.002

Only SO_2 and PM are considered for an average 24-hour Ambient Air Quality Standard. Pounds per 24-hr assumes two (2) hours of operation.

Modeling Annual Average Emissions (per generator)

NOx (g/sec)	0.002
CO (g/sec)	0.001
VOC (g/sec)	0.000
SO ₂ (g/sec)	0.00002
$PM_{10} = PM_{2.5} (g/sec)$	0.0001

Pounds per year assumes 50 hours of operation.

Emergency Diesel Firewater Pump

Emissions Summary

Hydrogen Energy, Inc HECA Amendment 10/7/2009

Fire Water Pump - Expected Emergency Operation and Maintenance

Total Hours of Operation	100	hr/yr
Fire Water Pump Specification	556	Bhp

Hours per Qtr				
Q1	Q2	Q3	Q4	
25	25	25	25	

Fire Water Pump Pollutant Emission Factors

NOx (g/Bhp/hr)	1.50
CO (g/Bhp/hr)	2.60
VOC (g/Bhp/hr)	0.14
SO ₂ (g/Bhp/hr)	N/A
$PM_{10} = PM_{2.5} (g/Bhp/hr)$	0.015

Assuming equal operation in each quarter

Fire Water Pump Pollutant Emission Rates

		Fire Water Pump Emissions				
Pollutant	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr	
NOx	1.84	3.68	183.86	0.02	0.1	
СО	3.19	6.37	318.69	0.04	0.2	
VOC	0.17	0.34	17.16	0.00	0.01	
SO ₂	0.01	0.01	0.56	0.0001	0.0003	
$PM_{10} = PM_{2.5}$	0.02	0.04	1.84	0.00	0.00	

Fuel sulfur content = 15 ppmw Pounds per day assumes two (2) hours of operation for maintenance and testing.

 SO_2 emissions = 0.20 lb $SO_2/1000$ gal

Fuel flow 28.00 gal/hr

Emergency Diesel Firewater Pump

Emissions Summary

10/7/2009

Hydrogen Energy, Inc HECA Amendment

Modeling	Worst-Case 1	hr	Emissions
Modelling	Worst-Case i		

NOx (g/sec)	0.2
CO (g/sec)	0.4
SO ₂ (g/sec)	0.0007

Only	/ NOx, CO, and SO ₂	are considered for an average	1-hour	Ambient Air	Quality	Standard

Modeling Worst-Case 3 hr Emissions

SO ₂ (lb/3-hr)	0.01
SO ₂ (g/sec)	0.0005

Only SO₂ is considered for an average 3-hour Ambient Air Quality Standard. Pounds per 3-hr assumes two (2) hours of operation.

Modeling Worst-Case 8 hr Emissions

CO (lb/8-hr)	6.37
CO (g/sec)	0.1

Only CO is considered for an average 8-hour Ambient Air Quality Standard.

Pounds per 8-hr assumes two (2) hours of operation.

Farameters			
Days per year:	365		
Hours per day:	24		
Minutes per hour:	60		
Seconds per minute:	60		

Emergency Diesel Firewater Pump

Emissions Summary

Hydrogen Energy, Inc HECA Amendment 10/7/2009

Modeling Worst-Case 24 Hour Emissions

SO ₂ (lb/24-hr)	0.01
SO ₂ (g/sec)	0.0001
$PM_{10} = PM_{2.5} (lb/24-hr)$	0.04
$PM_{10} = PM_{2.5} (g/sec)$	0.0002

Only SO₂ and PM are considered for an average 24-hour Ambient Air Quality Standard.

Pounds per 24-hr assumes two (2) hours of operation.

Modeling Annual Average Emissions

NOx (g/sec)	0.003
CO (g/sec)	0.005
VOC (g/sec)	0.0002
SO ₂ (g/sec)	0.00001
$PM_{10} = PM_{2.5} (g/sec)$	0.00003

Pounds per year assumes 100 hours of operation.

Hydrogen Energy, Inc HECA Amendment 10/7/2009

Intermittent CO₂ Vent - Venting Operation

Total Days of Operation	21	day/yr
Total Hours of Operation	504	hr/yr
Total Flow	656,000) lb/hr
Total Flow	15,150	lbmol/hr

Hours per Qtr			
Q1	Q1 Q2 Q3		Q4
5.25	5.25	5.25	5.25

Assuming equal operation in each quarter

Vent Gas Pollutant Emission Factors

CO (ppmv)	1000
VOC (ppmv)	40
H ₂ S (ppmv)	10

Molecular weight

H_2S	34	lb/lbmol
CO	28	lb/lbmol
VOC	16	lb/lbmol

Vent Gas Pollutant Emission Rates

	Vent Gas Emissions				
Pollutant	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr
со	424.20	10,180.88	213,798.43	26.72	106.9
VOC	9.70	232.71	4,886.82	0.61	2.4
H ₂ S	5.15	123.62	2,596.12	0.32	1.3

Intermittent CO₂ Vent Emissions Summary

Hydrogen Energy, Inc HECA Amendment 10/7/2009

Modeling Worst-Case 1 hr Emissions

CO (g/sec)	53.4
H ₂ S (g/sec)	0.6

Only H₂S and CO are considered for an average 1-hour Ambient Air Quality Standard. H₂S and CO one (1) hr rates assume normal venting operation.

Modeling Worst-Case 8 hr Emissions

CO (lb/8-hr)	3,393.63
CO (g/sec)	53.4

Only CO is considered for an average 8-hour Ambient Air Quality Standard.

Pounds per 8-hr assumes eight (8) continuous hours of venting.

Modeling Annual Average Emissions

со	3.1
VOC	0.1
H2S	0.0

Pounds per year assumes normal venting averaged over the entire year.

Parameters

Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

Feedstock - Dust Collection Emissions Summary

Hydrogen Energy, Inc HECA Amendment 10/7/2009

Operation

Total Hours of Operation		
Total Hours of Operation	8,760	hr/yr

Hours per Qtr							
Q1	Q2	Q3	Q4				
2190	2190	2190	2190				

Assuming equal operation in each quarter

	Dust	Max Feed	Air Flow to	Max Collector	Emission	Max 24-hr Average		Annual Average	
	Collector	Handling	Collector	PM Emission	Factor	Feed Rate	PM Emission	Feed Rate	PM Emission
Description	No.	Rate (ton/hr)	(acfm)	Rate (lb/hr)	(lb/ton)	(ton/hr)	(lb/hr)	(ton/hr)	(lb/hr)
Truck Unloading	DC-1	900	6,467	0.277	0.00031	775	0.239	150	0.046
Coke/coal Silos (filling)	DC-2	900	16,376	0.702	0.00078	775	0.604	150	0.117
Mass Flow Bins (in/out)	DC-3	170	7,620	0.327	0.00192	170	0.327	150	0.288
Coke/coal Silos (loadout)	DC-4	170	4,872	0.209	0.00123	170	0.209	150	0.184
Crusher Inlet/Outlet	DC-5	170	4,673	0.200	0.00118	170	0.200	150	0.177
Fluxant Bins (filling)	DC-6	100	1,234	0.053	0.00053	40	0.021	6	0.003

Maximum dust collector PM emission rate based on expected supplier guarantee of 0.005 grain/scf outlet dust loading.

Duct Collector Emission Rates

	Collector Emissions							
Pollutant	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr			
Dust Collecter 1 (DC-1)	0.24	5.73	404.65	0.05	0.2			
Dust Collecter 2 (DC-2)	0.60	14.50	1,024.67	0.13	0.5			
Dust Collecter 3 (DC-3)	0.33	7.84	2,524.21	0.32	1.3			
Dust Collecter 4 (DC-4)	0.21	5.01	1,613.90	0.20	0.8			
Dust Collecter 5 (DC-5)	0.20	4.81	1,547.98	0.19	0.8			
Dust Collecter 6 (DC-6)	0.02	0.51	27.80	0.00	0.0			

Pounds per hour and pounds per day calculated based on the maximum 24-hr average emission rate.

Pounds per year calculated based on the annual average emission rate.

	lb/yr	ton/qtr	ton/yr
PM ₁₀	7,143.2	0.9	3.6
PM _{2.5}	2085.8	0.3	1.0

PM_{2.5} emission factors were determined by multiplying PM₁₀ numbers by a "PM_{2.5} fraction of PM₁₀" value. Fractional values for PM_{2.5} were taken from the SCAQMD guidance: Final - Methodology to Calculate PM_{2.5} and PM_{2.5} Significance Thresholds, October 2006: Appendix A - Updated CEIDARS Table with PM_{2.5} Fractions.

Revised Appendix B_100709.xls 42 of 49

The maximum 24-hr feed rate to the gasifiers is limited by the grinding mill capacity.

Feedstock - Dust Collection Emissions Summary

Hydrogen Energy, Inc HECA Amendment 10/7/2009

Parameters

Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

Modeling Worst-Case 24 Hour Emissions	DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
PM ₁₀ (lb/day)	5.73	14.50	7.84	5.01	4.81	0.51
PM ₁₀ (g/sec)	0.030	0.076	0.041	0.026	0.025	0.003
PM _{2.5} (lb/24-hr)	1.673	4.235	2.289	1.463	1.404	0.148
PM _{2.5} (g/sec)	0.009	0.022	0.012	0.008	0.007	0.001

PM is considered for an average 24-hour Ambient Air Quality Standard.

Pounds per hour calculated based on the maximum 24-hr average emission rate.

Modeling Annual Average Emissions	DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
PM ₁₀ (lb/yr)	404.65	1,024.67	2,524.21	1,613.90	1,547.98	27.80
PM ₁₀ (g/sec)	0.006	0.015	0.036	0.023	0.022	0.000
PM _{2.5} (lb/24-hr)	118.158	299.204	737.068	471.259	452.010	8.117
PM _{2.5} (g/sec)	0.002	0.004	0.011	0.007	0.007	0.000

Pounds per year calculated based on the annual average emission rate.

Revised Appendix B_100709.xls 43 of 49

Emissions Summary

Hydrogen Energy, Inc HECA Amendment 10/7/2009

GHG emissions are numerically depicted as metric tons (tonne) of carbon dioxide equivalents (CO_2e). CO_2e represents CO_2 plus the additional warming potential from CH_4 and N_2O . CH_4 and N_2O have 21 and 310 times the warming potential of CO_2 , respectively.

Natural Gas GHG Emission Factors

Diesel GHG Emission Factors

CO ₂ =	52.78	kg/MMBtu =	116.36	lb/MMBtu	CO ₂ =	10.15	kg/gal =	22.38	lb/gal
CH ₄ =	0.0059	kg/MMBtu =	0.013	lb/MMBtu	CH ₄ =	0.0003	kg/gal =	0.001	lb/gal
$N_2O =$	0.0001	kg/MMBtu =	0.00022	lb/MMBtu	$N_2O =$	0.0001	kg/gal =	0.0002	lb/gal

CO₂, CH₄, and N₂O emission factors are taken from Appendix C of the California Climate Action Registry (CCAR) General Reporting Protocol Version 2.2 (March 2007)

HRSG Stack - Burning Natural Gas

TINGG Glack	Tilloo otack - Burning Natural oas									
Operating Ho	ating Hours 876 hr/yr									
HRSG Heat I										
				_						
CO ₂ =	92,403	tonne/yr								
CH ₄ =	10	tonne/yr =	217	tonne CO ₂ e/yr						
$N_2O =$	0.18	tonne/yr =	54	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr =	92,674				

Startup and shutdown of the HRSG will be accomplished using natural gas. The total operating hours, including startup and shutdown, are estimated at 876 hr/yr for the worst-case greenhouse gas emissions from natural gas combustion. The total startup and shutdown duration are estimated at 50 hr/yr for the worst-case criteria pollutant emissions.

HRSG heat input rate is assumed to be the maximum heat input rate firing natural gas, which corresponds to winter minimum (20 F).

HRSG Stack - Burning Hydrogen-Rich Fuel

Operating Ho	urs	7,446	hr/yr	Syngas GHG Emission Factor			Factors
HRSG Heat Input		2,432	MMBtu/hr		CO ₂ =	28.1	lb/MMBtu
				•			
CO ₂ =	230,735	tonne/yr			Total to	nne CO ₂ e/yr =	230,735

Startup and shutdown of the HRSG will be accomplished using natural gas. The total operating hours, including startup and shutdown, are estimated at 876 hr/yr for the worst-case greenhouse gas emissions from natural gas combustion. The total startup and shutdown duration are estimated at 50 hr/yr for the worst-case criteria pollutant emissions.

HRSG heat input rate is assumed to be the maximum heat input rate firing Hydrogen-rich Fuel, which corresponds to winter minimum (20 F).

Emissions Summary

Hydrogen Energy, Inc HECA Amendment 10/7/2009

GHG emissions are numerically depicted as metric tons (tonne) of carbon dioxide equivalents (CO₂e). CO₂e represents CO₂ plus the additional warming potential from CH₄ and N₂O. CH₄ and N₂O have 21 and 310 times the warming potential of CO₂, respectively.

Auxiliary Boiler

Operating Hours		2,190	hr/yr			
HRSG Heat I	RSG Heat Input 142		MMBtu/hr			
				_		
CO ₂ =	16,418	tonne/yr				
CH ₄ =	2	tonne/yr =	39	tonne CO ₂ e/yr		
$N_2O =$	0.03	tonne/yr =	10	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr =	16,466

Emergency Generators

Operating Ho	urs	50	hr/yr			
HRSG Heat Input 2,800 Bhp						
$CO_2 =$	3,201	lb/hr =	73	tonne CO ₂ /yr		
CH ₄ =	0.09	lb/hr =	0.045	tonne CO ₂ e/yr		
$N_2O =$	0.03	lb/hr =	0.2218	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr* =	146

The following conversions were used to convert from lb/gallon to lb/hp-hour; and then multiplying by the rated horsepower rating: 1 gallon/137,000 Btu; and 7,000 Btu/hp-hour.

Fire Water Pump

Operating Hours		100	hr/yr			
HRSG Heat	IRSG Heat Input 556 Bhp					
				_		
CO ₂ =	636	lb/hr =	29	tonne CO ₂ /yr		
CH ₄ =	0.02	lb/hr =	0.018	tonne CO ₂ e/yr		
$N_2O =$	0.01	lb/hr =	0.0881	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr =	29

The following conversions were used to convert from lb/gallon to lb/hp-hour; and then multiplying by the rated horsepower rating: 1 gallon/137,000 Btu; and 7,000 Btu/hp-hour.

Revised Appendix B_100709.xls

^{*} Total tonnes CO₂e per year represent the contributions from both generators.

Emissions Summary

Hydrogen Energy, Inc HECA Amendment 10/7/2009

46 of 49

GHG emissions are numerically depicted as metric tons (tonne) of carbon dioxide equivalents (CO_2e). CO_2e represents CO_2 plus the additional warming potential from CH_4 and N_2O . CH_4 and N_2O have 21 and 310 times the warming potential of CO_2 , respectively.

Gasification Flare

Pilot Opera	tion					
Operating Hours		8,760	hr/yr]		
HRSG Heat Input		0.5	MMBtu/hr]		
CO ₂ =	231	tonne/yr]			
CH ₄ =	0.03	tonne/yr =	0.5	tonne CO ₂ e/yr		
$N_2O =$	0.0004	tonne/yr =	0.1	tonne CO2e/yr	Total tonne CO ₂ e/yr =	232
Flaring Eve	ents			_		
Total Opera	tion	115,500	MMBtu/yr]		
CO ₂ =	6,098	tonne/yr]			
CH ₄ =	0.7	tonne/yr =	14	tonne CO2e/yr		
$N_2O =$	0.01	tonne/yr =	4	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr =	6,116

GHG emissions from flaring events are conservatively estimated using GHG emission factors for natural gas combustion.

Revised Appendix B_100709.xls

Hydrogen Energy, Inc HECA Amendment 10/7/2009

GHG emissions are numerically depicted as metric tons (tonne) of carbon dioxide equivalents (CO_2e). CO_2e represents CO_2 plus the additional warming potential from CH_4 and N_2O . CH_4 and N_2O have 21 and 310 times the warming potential of CO_2 , respectively.

SRU Flare

Onto i iaio						
Pilot Operati	ion			_		
Operating Ho		8,760	hr/yr			
HRSG Heat I	nput	0.3	MMBtu/hr			
		•	1			
$CO_2 =$	139	tonne/yr				
$CH_4 =$	0.02	tonne/yr =	0.3	tonne CO ₂ e/yr		
$N_2O =$	0.0003	tonne/yr =	0.08	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr =	139
		,				
	its (assist gas	i	la n /	7		
Operating Hours		6	hr/yr	4		
HRSG Heat I	nput	36	MMBtu/hr			
0.0	T		1			
CO ₂ =	11	tonne/yr				
$CH_4 =$	0.001	tonne/yr =	0.03	tonne CO ₂ e/yr		
$N_2O =$	0.00002	tonne/yr =	0.007	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr =	11
Throughput	(inarts)					
$H_2S =$	(iiieits)	25	%	7		
CO ₂ (inerts) =	=	75	%	_		
H ₂ S =		72	lbmol/hr			
CO ₂ (inerts) =	=	216	lbmol/hr			
CO ₂ (inerts) =	=	9,488	lb/hr			
Operating Ho	ours	6	hr/yr			
				ſ	Total tonne CO ₂ e/vr =	26
					Total tonne CO ₂ e/yr =	26

GHG emissions from flaring events are conservatively estimated using GHG emission factors for natural gas combustion.

Throughtput (inerts) amount calculated from the relationship of CO2 to H2S in the SRU Flare.

Emissions Summary

Hydrogen Energy, Inc HECA Amendment 10/7/2009

GHG emissions are numerically depicted as metric tons (tonne) of carbon dioxide equivalents (CO_2e). CO_2e represents CO_2 plus the additional warming potential from CH_4 and N_2O . CH_4 and N_2O have 21 and 310 times the warming potential of CO_2 , respectively.

Rectisol Flare

Pilot Opera	tion					
		8,760	hr/yr			
		0.3	MMBtu/hr			
				_		
$CO_2 =$	139	tonne/yr				
CH ₄ =	0.02	tonne/yr =	0.3	tonne CO ₂ e/yr		
$N_2O =$	0.0003	tonne/yr =	0.08	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr =	139
			1	<u> </u>		

GHG emissions from flaring events are conservatively estimated using GHG emission factors for natural gas combustion.

Tail Gas Thermal Oxidizer

Process Ven	t Disposal En	nissions				
Operating Ho	urs	8,760	hr/yr			
HRSG Heat Input		10	MMBtu/hr			
$CO_2 =$	4,625	tonne/yr				
CH ₄ =	0.52	tonne/yr =	10.9	tonne CO ₂ e/yr		
$N_2O =$	0.0088	tonne/yr =	2.7	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr =	4,638
SRU Startup	Waste Gas D	isposal		_		
Operating Ho	urs	300	hr/yr			
HRSG Heat Ir	nput	10	MMBtu/hr			
				_		
CO ₂ =	158	tonne/yr				
CH ₄ =	0.018	tonne/yr =	0.37	tonne CO ₂ e/yr		
$N_2O =$	0.00030	tonne/yr =	0.093	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr =	159

GHG emissions from flaring events are conservatively estimated using GHG emission factors for natural gas combustion.

Revised Appendix B_100709.xls

Emissions Summary

Hydrogen Energy, Inc HECA Amendment 10/7/2009

GHG emissions are numerically depicted as metric tons (tonne) of carbon dioxide equivalents (CO_2e). CO_2e represents CO_2 plus the additional warming potential from CH_4 and N_2O . CH_4 and N_2O have 21 and 310 times the warming potential of CO_2 , respectively.

Intermittent CO₂ Vent

sion Rate 656,000 lb/hr

Assumes 21 days per year venting at full rate.

Gasifier Warming

Operating Ho	rating Hours 1,800		hr/yr			
HRSG Heat I	nput	18	MMBtu/hr			
				_		
CO ₂ =	1,711	tonne/yr				
CH ₄ =	0	tonne/yr =	4	tonne CO ₂ e/yr		
$N_2O =$	0.00	tonne/yr =	1	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr =	1,716

Total tonne CO₂e/yr =	503,237

Appendix D

Downwash Parameters

			Number of	Tier	Base	Tier	Number of	Corner 1	Corner 1	Corner 2	Corner 2	Corner 3	Corner 3
	Building Name	Comment	Tiers	Number	Elevation	Height	Corners	East (X)	North (Y)	East (X)	North (Y)	East (X)	North (Y)
					(ft)	(ft)		(m)	(m)	(m)	(m)	(m)	(m)
1	FINESLAG	Fine Slag Handling Enclosure	1	1	288.5	70	4	283221.4	3912479.6	283205.3	3912480	283205.2	3912428
2	SLRYPREP	Slurry Preparation Building	1	1	288.5	165	4	283149.2	3912325.7	283175.6	3912324.7	283175.5	3912280
3	GASIFIER	Gassifier Structure	1	1	288.5	200	4	283204	3912352.1	283233	3912348.9	283233.2	3912283
4	AGR	AGR Refrigeration Compressor Enclosure	1	1	288.5	40	4	283132.3	3912194.1	283132	3912169.3	283122.3	3912170
5	CO2	CO2 Compressor Enclosure	1	1	288.5	50	4	283148.9	3912117	283148.7	3912086.7	283118.1	3912087
6	ASU_COOL	ASU Cooling Tower	1	1	288.5	50	4	282884	3912012	282944.5	3912011.3	282944.5	3911993
7	STG	Steam Turbine Generator Structure	1	1	288.5	50	12	282851	3912173.3	282861.6	3912173.1	282861.5	3912177
8	CTG	Combustion Turbine Generator	1	1	288.5	50	10	282851.4	3912218.2	282855.5	3912218.1	282858	3912216
9	HRSG	Heat Recovery Steam Generator	1	1	288.5	90	4	282934.2	3912219.4	282934.6	3912199.7	282909.9	3912201
10	KO_DRUM	Flare KO Drum	1	1	288.5	35	8	283056.8	3912303.9	283066.5	3912303.3	283065.9	3912281
11	PWR_COOL	Power Block and Gassification Cooling To	1	1	288.5	50	4	283024.1	3912009.6	283282.8	3912006.9	283282	3911989
12	ASU_COMP	ASU Main Air Compressor Enclosure	1	1	288.5	40	4	282893.5	3912076.4	282928.5	3912076.4	282928.6	3912063
13	AUX_BOIL	Auxiliary Boiler	1	1	288.5	50	4	282913.4	3912285.6	282913.8	3912261.7	282954.5	3912261
14	EMER_GN1	Emergency Generator - 1	1	1	288.5	20	4	282933.4	3912178.4	282948.7	3912178.3	282948.5	3912174
15	EMER_GN2	Emergency Generator - 2	1	1	288.5	20	4	282933.3	3912169.2	282948.4	3912169	282948.5	3912165
16	AIR_SEP	Air Separation Column Can	1	1	288.5	85	22	282918.2	3912110.2	282921.3	3912110	282922.8	3912114
17	AGR_METH	AGR Methanol Wash Column	1	1	288.5	235	4	283091.7	3912224	283109.7	3912223.8	283109.7	3912209
18	LOX_TANK	LOx Tank	1	1	288.5	90	8	282870.4	3912113.7	282874.5	3912117.8	282880.2	3912118
19	DEMIN1	Demineraized Storage Tank 1	1	1	288.5	45	4	282965.9	3912233.9	282970.3	3912234	282970.5	3912222
20	DEMIN2	Demineraized Storage Tank 2	1	1	288.5	45	4	282965.9	3912215	282970.4	3912214.6	282970.4	3912202

	Building Name	Corner 4 East (X) (m)	Corner 4 North (Y) (m)	Corner 5 East (X) (m)	Corner 5 North (Y) (m)	Corner 6 East (X) (m)	Corner 6 North (Y) (m)	Corner 7 East (X) (m)	Corner 7 North (Y) (m)	Corner 8 East (X) (m)	Corner 8 North (Y) (m)	Corner 9 East (X) (m)	Corner 9 North (Y) (m)	Corner 10 East (X) (m)	Corner 10 North (Y) (m)	Corner 11 East (X) (m)	Corner 11 North (Y) (m)
1	FINESLAG	283221.5	3912428	()	()	()	()	()	()	()	()	()	()	()	()	()	()
2	SLRYPREP	283147.7	3912280														
3	GASIFIER	283202.9	3912282														
4	AGR	283122.7	3912194														
5	CO2	283118.6	3912117														
6	ASU_COOL	282883.8	3911993														
7	STG	282869.2	3912177	282869.3	3912173	282889	3912173	282889	3912164	282869.1	3912164	282869.2	3912160	282861.4	3912160	282861.2	3912164
8	CTG	282873.1	3912216	282889.6	3912215	282889.5	3912208	282872.9	3912207	282857.7	3912207	282855.4	3912204	282851.2	3912205		
9	HRSG	282906.3	3912221														
10	KO_DRUM	283056.5	3912281	283044.7	3912282	283034.7	3912283	283035.4	3912303	283044.4	3912303						
11	PWR_COOL	283023.6	3911991														
12	ASU_COMP	282892.7	3912063														
13	AUX_BOIL	282954.5	3912285														
14	EMER_GN1	282933.3	3912174														
15	EMER_GN2	282933.4	3912165														
16	AIR_SEP	282931.3	3912115	282931.5	3912113	282934.7	3912113	282934.9	3912109	282937.8	3912108	282943.7	3912111	282955.1	3912109	282954.9	3912104
17	AGR_METH	283091.3	3912209														
18	LOX_TANK	282884.3	3912114	282884.3	3912108	282880	3912104	282874.3	3912104	282870.2	3912108						
19	DEMIN1	282966	3912221														
20	DEMIN2	282965.8	3912202														

		Corner 12	Corner 12	Corner 13	Corner 13	Corner 14	Corner 14	Corner 15	Corner 15	Corner 16	Corner 16	Corner 17	Corner 17	Corner 18	Corner 18	Corner 19	Corner 19
	Building Name	East (X)	North (Y)														
		(m)															
1	FINESLAG																
2	SLRYPREP																
3	GASIFIER																
4	AGR																
5	CO2																
6	ASU_COOL																
7	STG	282850.9	3912164														
8	CTG																
9	HRSG																
10	KO_DRUM																
11	PWR_COOL																
12	ASU_COMP																
13	AUX_BOIL																
14	EMER_GN1																
15	EMER_GN2																
16	AIR_SEP	282949.9	3912104	282943.7	3912102	282939.4	3912103	282934.8	3912101	282934.8	3912099	282934.7	3912096	282932.7	3912096	282931.1	3912099
17	AGR_METH																
18	LOX_TANK																
19	DEMIN1																
20	DEMIN2																

	Building Name	Corner 20 East (X) (m)	Corner 20 North (Y) (m)		Corner 21 North (Y) (m)	Corner 22 East (X) (m)	Corner 22 North (Y) (m)
1	FINESLAG	` '	` ,	` '	` '	` ,	, ,
2	SLRYPREP						
3	GASIFIER						
4	AGR						
5	CO2						
6	ASU_COOL						
7	STG						
8	CTG						
9	HRSG						
10	KO_DRUM						
11	PWR_COOL						
12	ASU_COMP						
13	AUX_BOIL						
14	EMER_GN1						
15	EMER_GN2						
16	AIR_SEP	282922	3912099	282921.1	3912102	282918.1	3912102
17	AGR_METH						
18	LOX_TANK						
19	DEMIN1						
20	DEMIN2						

an	

	<u>I diiks</u>		Daga	Contor	Contor	Tonk	Tank
	Tauli Nama	Description	Base	Center	Center	Tank	
	Tank Name	Description	Elevation	East (X)	North (Y)	Height	Diameter
_			(ft)	(m)	(m)	(ft)	(ft)
1	PROC_WTR	Process Water Treatment Feed Tank	288.5	283173.3		32	35
2	GREY_WTR	Grey Water Tank	288.5	283158.5	3912414.5	40	30
3	SETTLER	Settler	288.5	283184.2	3912394.2	35	85
4	SLURTK_N	Slurry Run Tank - N	288.5	283184	3912318	75	38
5	SLURTK_S	Slurry Run Tank - S	288.5	283183.4	3912301.5	75	38
6	SOUR_WTR	Sour Water Stripper Feed Tank	288.5	283022.5	3912123.8	32	48
7	CONDENSA	Condensate Storage Tank	288.5	282957	3912249.6	24	34
8	FIREWATR	Firewater Storage Tank	288.5	282758.5	3912509.6	48	110
9	RAWWATER	Raw Water Tank	288.5	282850.6	3912507.3	48	100
10	TREATD_W	Treated Water Tank	288.5	282857.4	3912461.7	40	90
11	SILO_W	Feedstock Storage Silos - West	288.5	283261.6	3912671.8	150	80
12	SILO_C	Feedstock Storage Silos - Central	288.5	283290.1	3912671.4	150	80
13	SILO_E	Feedstock Storage Silos - East	288.5	283316.9	3912670.5	150	80
14	METHNL	Methanol Storage Tank	288.5	283115.2	3912061.2	40	40
15	AIR_CAN	Air Separation Can	288.5	282943.5	3912106.5	205	33
16	DEMINERA	Demineraized Storage Tank	288.5	282857.3	3912364.3	40	60
17	PURH2O_1	Purified Water Tank	288.5	282857.4	3912424.4	48	90
18	PURH2O_2	Purified Water Tank	288.5	282839.4	3912395.2	48	42.5
19	PURH2O_3	Purified Water Tank	288.5	282865.6	3912395.5	32	35
20	WATERT_N	Water Treatment Tank North	288.5	282761	3912394.8	48	120
21	WATERT_S	Water Treatment Tank South	288.5	282760.9	3912346.9	48	120

Appendix E Class I Visibility/CALPUFF Analysis

Revised CALMET/CALPUFF Air Quality Modeling Impact Analysis for Far-Field Class I Areas

FOR THE

HYDROGEN ENERGY CALIFORNIA (HECA) PROJECT

Kern County, CA

Prepared for:

U.S. Environmental Protection Agency Region IX U.S. Forest Service

Prepared by:
URS
1333 Broadway, Suite 800
Oakland, CA 94612

September 2009

Revised Appendix E Calmet/Calpuff

Air Quality Modeling Impact Analysis For Far-Field Class I Areas

Revised List of Tables

Revised Table 2	Maximum Emission Rates of Each Averaging Time Period
Revised Table 3	Source Location and Parameters
Revised Table 3	Source Location and Parameters (Continued)
Revised Table 4	3-hour Averaged Emission Inventory for CALPUFF (3-hour SO ₂
	Increment Analysis)
Revised Table 5	24-hour Averaged Emission Inventory for CALPUFF (24-hour NO _x ,
	SO ₂ , and PM ₁₀ Increment and Visibility Analyses)
Revised Table 6	Annual Averaged Emission Inventory for CALPUFF (Annual NOx,
	SO2, and PM10 Increment and Deposition Analyses)
Revised Table 8	PSD Class I Increment Significance Analysis – CALPUFF Results
Revised Table 9	Visibility Analysis – CALPUFF Results
Revised Table 10	Total Nitrogen and Sulfur Deposition Analysis – CALPUFF Results

Maximum Emission Rates of Each Averaging Time Period Revised Table 2

	3-hr (g/s)		24-hr (g/s)			Annual (g/s)
Source	SO ₂	NO _x	SO ₂	PM_{10}	NO _x	SO ₂	PM ₁₀
ASUCOOL1	-	-	-	0.0285	-	-	0.0271
ASUCOOL2	-	ı	-	0.0285	-	-	0.0271
ASUCOOL3	-	ı	-	0.0285	-	-	0.0271
ASUCOOL4	=	-	-	0.0285	-	-	0.0271
PWCOOL1	-	ı	-	0.0382	-	-	0.0363
PWCOOL2	-	-	-	0.0382	-	-	0.0363
PWCOOL3	=	ı	-	0.0382	-	-	0.0363
PWCOOL4	-	-	-	0.0382	-	-	0.0363
PWCOOL5	-	-	-	0.0382	-	-	0.0363
PWCOOL6	-	-	-	0.0382	-	-	0.0363
PWCOOL7	-	-	-	0.0382	-	-	0.0363
PWCOOL8	-	-	-	0.0382	-	-	0.0363
PWCOOL9	-	-	-	0.0382	-	-	0.0363
PWCOOL10	-	-	-	0.0382	-	-	0.0363
PWCOOL11	-	-	-	0.0382	-	-	0.0363
PWCOOL12	_	_	_	0.0382	_	_	0.0363
PWCOOL13	_	_	_	0.0382	_	_	0.0363
GASCOOL1	_	-	_	0.0300	_	_	0.0285
GASCOOL2	-	-	-	0.0300	-	-	0.0285
GASCOOL3	_	_	_	0.0300	_	_	0.0285
GASCOOL4	-	-	-	0.0300	-	-	0.0285
EMERGEN1 ^a	0.0024	0.0324	0.0003	0.0017	0.0022	0.00002	0.0001
EMERGEN2 a	-	-	-	-	-	-	-
HRSGSTK	0.9302	6.5718	0.9302	2.4947	4.8092	0.8394	2.3698
FIREPUMP	0.0005	0.0193	0.0001	0.0002	0.0026	0.000008	0.000026
AUX BOIL b	-	-	-	-	0.0492	0.0091	0.0224
TAIL TO	0.2546	0.6048	0.2546	0.0202	0.3128	0.2521	0.0104
CO ₂ VENT	-	-	-	-	-	-	-
SRUFLARE	2.1933	0.0720	0.2742	0.0018	0.0049	0.0016	0.0001
GF_FLARE	0.0001	7.9380	0.0001	0.0002	0.1239	0.0001	0.0002
GASVENTA ^c	-	-	-	-	-	-	-
GASVENTB ^c	0.0046	0.2495	0.0046	0.0181	0.0513	0.0010	0.0037
GASVENTC ^c	-	-	-	-	-	-	-
DC1	-	-	-	0.0301	-	-	0.0058
DC2	-	-	-	0.0761	-	-	0.0147
DC3	-	-	-	0.0411	-	-	0.0363
DC4	-	-	-	0.0263	-	-	0.0232
DC5	-	-	-	0.0252	-	-	0.0223
DC6	-	-	-	0.0027	-	-	0.0004
RC_FLARE	0.0001	0.0045	0.0001	0.0001	0.0045	0.0001	0.0001

Notes:

^c There are three gasifiers. Only one gasifier warming will be operated at any one time. The emission is from GASVENTB, which results worst impact among three gasifiers.

^a The analysis also assumed that all emissions from two emergency generators are released to the emergency generator 1, which has worst dispersion characteristics.

^b Auxiliary boiler is not fired at the same time that the HRSG is operating.

Revised Appendix E Calmet/Calpuff Air Quality Modeling Impact Analysis For Far-Field Class I Areas

Revised Table 3 Source Location and Parameters

		UTM Easting	UTM Northing	LCC X	LCC Y	Base Elevation	Stack Height	Stack Temperature	Stack Velocity	Stack Diameter
Source ID	Source Description	(m)	(m)	(km)	(km)	(m)	(m)	(K)	(m/s)	(m)
ASUCOOL1	ASU Cooling Tower	282891.3	3912002.1	23.21883	30.06171	87.93	16.76	299.9	7.98	9.14
ASUCOOL2	ASU Cooling Tower	282906.2	3912002.4	23.23371	30.06243	87.93	16.76	299.9	7.98	9.14
ASUCOOL3	ASU Cooling Tower	282922.2	3912002.1	23.24975	30.06254	87.93	16.76	299.9	7.98	9.14
ASUCOOL4	ASU Cooling Tower	282937.3	3912001.4	23.26486	30.06224	87.93	16.76	299.9	7.98	9.14
PWCOOL1	Power Block Cooling Tower	283031.9	3912001.1	23.35941	30.06445	87.93	16.76	299.9	7.98	9.14
PWCOOL2	Power Block Cooling Tower	283046.3	3912000.9	23.37385	30.06469	87.93	16.76	299.9	7.98	9.14
PWCOOL3	Power Block Cooling Tower	283061.6	3912001.0	23.38915	30.06519	87.93	16.76	299.9	7.98	9.14
PWCOOL4	Power Block Cooling Tower	283076.9	3912000.0	23.40443	30.06463	87.93	16.76	299.9	7.98	9.14
PWCOOL5	Power Block Cooling Tower	283092.1	3912000.0	23.4196	30.06494	87.93	16.76	299.9	7.98	9.14
PWCOOL6	Power Block Cooling Tower	283107.9	3912000.0	23.4354	30.06545	87.93	16.76	299.9	7.98	9.14
PWCOOL7	Power Block Cooling Tower	283122.7	3911999.4	23.45019	30.06518	87.93	16.76	299.9	7.98	9.14
PWCOOL8	Power Block Cooling Tower	283137.8	3911999.3	23.46529	30.06555	87.93	16.76	299.9	7.98	9.14
PWCOOL9	Power Block Cooling Tower	283153.5	3911999.5	23.481	30.06609	87.93	16.76	299.9	7.98	9.14
PWCOOL10	Power Block Cooling Tower	283168.8	3911999.2	23.49627	30.06622	87.93	16.76	299.9	7.98	9.14
PWCOOL11	Power Block Cooling Tower	283183.7	3911999.6	23.51118	30.06702	87.93	16.76	299.9	7.98	9.14
PWCOOL12	Power Block Cooling Tower	283199.5	3911999.0	23.52698	30.0669	87.93	16.76	299.9	7.98	9.14
PWCOOL13	Power Block Cooling Tower	283275.2	3911998.1	23.60261	30.068	87.93	16.76	299.9	7.98	9.14
GASCOOL1	Gasification Cooling Tower	283214.6	3911999.4	23.54206	30.06768	87.93	16.76	299.9	7.98	9.14
GASCOOL2	Gasification Cooling Tower	283228.6	3911998.4	23.5561	30.06699	87.93	16.76	299.9	7.98	9.14
GASCOOL3	Gasification Cooling Tower	283244.7	3911998.9	23.57215	30.06791	87.93	16.76	299.9	7.98	9.14
GASCOOL4	Gasification Cooling Tower	283259.1	3911998.1	23.5866	30.06755	87.93	16.76	299.9	7.98	9.14
EMERGEN1	Emergency Generator1	282948.3	3912172.0	23.2713	30.23302	87.93	6.10	677.6	67.38	0.37
EMERGEN2	Emergency Generator2	282948.3	3912172.0	23.2713	30.23302	87.93	6.10	677.6	67.38	0.37
HRSGSTK	HRSG Stack	282940	3912211.5	23.262	30.27232	87.93	65.00	344.3	11.55	6.10
	Fire Water Pump Diesel									
FIREPUMP	Engine	282770.9	3912535.5	23.08432	30.59164	87.93	6.10	727.6	47.52	0.21
AUX_BOIL	Auxiliary Boiler	282955.1	3912273.0	23.27539	30.33414	87.93	24.38	422.0	9.20	1.37
TAIL_TO	Tail Gas Thermal Oxidizer	283049.1	3912112.7	23.37362	30.1765	87.93	50.29	922.0	7.45	0.76
CO ₂ _VENT	CO ₂ Vent	283045.7	3912389.7	23.36286	30.45327	87.93	79.25	291.5	55.92	1.07

Air Quality Modeling Impact Analysis For Far-Field Class I Areas

Revised Table 3 Source Location and Parameters (Continued)

Source ID	Source Description	UTM Easting	UTM Northing	LCC X	LCC Y	Base Elevation	Stack Height	Stack Temperature	Stack Velocity	Stack Diameter
		(m)	(m)	(km)	(km)	(m)	(m)	(K)	(m/s)	(m)
SRUFLARE	SRU Flare	283042.4	3912097.7	23.36739	30.16128	87.93	76.20	1273.0	20.00	1.09
GF_FLARE	Gasification Flare	283064.5	3912472.6	23.37946	30.53658	87.93	76.20	1273.0	20.00	5.47
GASVENTA	Gasifier Warming Vent A	283212.7	3912342.0	23.531	30.41005	87.93	64.01	338.7	26.39	0.30
GASVENTB	Gasifier Warming Vent B	283211.7	3912316.6	23.53075	30.38457	87.93	64.01	338.7	26.39	0.30
GASVENTC	Gasifier Warming Vent C	283211.2	3912291.0	23.53085	30.35898	87.93	64.01	338.7	26.39	0.30
DC1	FeedStock-DustCollection	283365.3	3913058.7	23.6644	31.13031	87.93	13.87	291.9	15.06	0.51
DC2	FeedStock-DustCollection	283356.0	3912740.9	23.66358	30.81248	87.93	51.97	291.9	14.90	0.81
DC3	FeedStock-DustCollection	283150.4	3912310.2	23.46956	30.37655	87.93	53.79	291.9	14.66	0.56
DC4	FeedStock-DustCollection	283298.0	3912740.9	23.60564	30.81094	87.93	51.97	291.9	15.70	0.43
DC5	FeedStock-DustCollection	283150.4	3912749.0	23.45789	30.81511	87.93	24.23	291.9	15.06	0.43
DC6	FeedStock-DustCollection	283149.9	3912324.5	23.46876	30.39085	87.93	53.79	291.9	14.19	0.23
RC_FLARE	Rectisol Flare	283064.7	3912479.1	23.3795	30.54304	87.93	76.20	1273.0	20.00	0.10

Notes:

Assumed that the temperature of cooling tower is 8K degree higher than the annual averaged temperature value from the AERMET meteorological data at Bakersfield monitoring station. Assumed that the temperature of dust collection is the annual averaged value from the AERMET meteorological data at Bakersfield monitoring station.

K = Kelvin km = kilometer

LCC = Lambert Conformal Conic

m = meter

m/s = meters per second

UTM = Universal Transverse Mercator

Revised Table 4 3-hour Averaged Emission Inventory for CALPUFF (3-hour SO₂ Increment Analysis)

Sources								SOA						
(g/s)	SO_2	SO_4	NO _x	HNO ₃	NO ₃	INCPM	PM_{10}	PM0005	PM0010	PM0015	PM0020	PM0025	PM0100	EC
EMERGEN1	2.35E-03	-	3.89E-01	-	-	1.69E-03	1.69E-03	-	-	-	-	-	-	-
HRSGSTK	6.20E-01	4.65E-01	2.10E+01	-	-	2.49E+00	-	2.11E-01	3.51E-01	3.23E-01	2.11E-01	1.55E-01	1.55E-01	6.24E-01
FIREPUMP	4.70E-04	-	2.32E-01	-	-	1.93E-04	1.93E-04	-	-	-	-	-	-	-
TAIL_TO	2.55E-01	-	6.05E-01	-	-	2.02E-02	2.02E-02	-	-	-	-	-	-	-
SRUFLARE	2.19E+00	-	5.44E-01	-	-	1.80E-03	1.80E-03	-	-	-	-	-	-	-
GF_FLARE	1.29E-04	-	7.94E+00	-	-	1.89E-04	1.89E-04	-	-	-	-	-	-	-
GASVENTB	4.63E-03	-	2.49E-01	-	-	1.81E-02	1.81E-02	-	-	-	-	-	-	-
RC_FLARE	7.72E-05	-	4.54E-03	-	-	1.13E-04	1.13E-04	_	-	-	-	-	-	-

Notes:

(g/s) = grams per second EC = Elemental Carbon HNO₃ = nitric acid

INCPM = total particulate matter emission

 NO_x = oxides of nitrogen

 NO_3 = nitrate

 $\begin{array}{ll} PM0005 = particulate\ matter\ 0.05\ microns\ or\ less\ in\ diameter \\ PM0010 = particulate\ matter\ 0.1\ microns\ or\ less\ in\ diameter \\ PM0015 = particulate\ matter\ 0.15\ microns\ or\ less\ in\ diameter \\ PM0020 = particulate\ matter\ 0.2\ microns\ or\ less\ in\ diameter \\ PM0025 = particulate\ matter\ 0.25\ microns\ or\ less\ in\ diameter \\ PM0100 = particulate\ matter\ 1\ microns\ or\ less\ in\ diameter \\ PM1_{10} = particulate\ matter\ 10\ microns\ or\ less\ in\ diameter \\ \end{array}$

 SO_2 = sulfur dioxide SO_4 = sulfate compound SOA = Secondary Organic Aerosol

Revised Table 5 24-hour Averaged Emission Inventory for CALPUFF (24-hour NO_x, SO₂, and PM₁₀ Increment and Visibility Analyses)

Sources										SC	OA			
(g/s)	SO_2	SO_4	NO _x	HNO_3	NO_3	INCPM	PM_{10}	PM0005	PM0010	PM0015	PM0020	PM0025	PM0100	EC
ASUCOOL1	-	-	-	-	=	2.85E-02	2.85E-02	-	-	-	-	=	=	-
ASUCOOL2	_	-	-	-	-	2.85E-02	2.85E-02	-	-	-	-	-	-	-
ASUCOOL3	-	-	-	-	-	2.85E-02	2.85E-02	-	-	-	-	-	-	-
ASUCOOL4	-	-	-	-	-	2.85E-02	2.85E-02	-	-	-	-	-	-	-
PWCOOL1	-	-	-	-	-	3.82E-02	3.82E-02	-	-	-	-	-	-	-
PWCOOL2	-	-	-	-	-	3.82E-02	3.82E-02	-	-	-	-	-	-	-
PWCOOL3	-	-	-	-	-	3.82E-02	3.82E-02	-	-	-	-	-	-	-
PWCOOL4	-	-	-	-	-	3.82E-02	3.82E-02	-	-	-	-	-	-	-
PWCOOL5	-	-	-	-	-	3.82E-02	3.82E-02	-	-	-	-	-	-	-
PWCOOL6	-	-	-	-	-	3.82E-02	3.82E-02	-	-	-	-	-	-	-
PWCOOL7	-	-	-	-	-	3.82E-02	3.82E-02	-	-	-	-	-	-	-
PWCOOL8	-	-	-	-	-	3.82E-02	3.82E-02	-	-	-	-	-	-	-
PWCOOL9	-	-	-	-	-	3.82E-02	3.82E-02	-	-	-	-	-	-	-
PWCOOL10	-	-	-	-	-	3.82E-02	3.82E-02	-	-	-	-	-	-	-
PWCOOL11	-	-	-	-	-	3.82E-02	3.82E-02	-	-	-	-	-	-	-
PWCOOL12	-	-	-	-	-	3.82E-02	3.82E-02	-	-	-	-	-	-	-
PWCOOL13	-	-	-	-	-	3.82E-02	3.82E-02	-	-	-	-	-	-	-
GASCOOL1	-	-	-	-	-	3.00E-02	3.00E-02	-	-	-	-	-	-	-
GASCOOL2	-	-	-	-	-	3.00E-02	3.00E-02	-	-	-	-	-	-	-
GASCOOL3	-	-	-	-	-	3.00E-02	3.00E-02	-	-	-	-	-	-	-
GASCOOL4	-	-	-	-	-	3.00E-02	3.00E-02	-	-	-	-	-	-	-
EMERGEN1	2.94E-04	-	3.24E-02	-	-	1.69E-03	1.69E-03	-	-	-	-	-	-	-
HRSGSTK	6.20E-01	4.65E-01	6.57E+00	-	-	2.49E+00	-	2.11E-01	3.51E-01	3.23E-01	2.11E-01	1.55E-01	1.55E-01	6.24E-01
FIREPUMP	5.88E-05	-	1.93E-02			1.93E-04	1.93E-04							
TAIL_TO	2.55E-01	-	6.05E-01	-	-	2.02E-02	2.02E-02	-	-	-	-	-	-	-
SRUFLARE	2.74E-01	-	7.20E-02	-	-	1.80E-03	1.80E-03	-	-	-	-	-	-	-
GF_FLARE	1.29E-04	-	7.94E+00	-	-	1.89E-04	1.89E-04	-	-	-	-	-	-	-
GASVENTB	4.63E-03	-	2.49E-01	-	-	1.81E-02	1.81E-02	-	-	-	-	-	-	-
DC1	-	=	-	-	ı	3.01E-02	3.01E-02	-	=	-	=	-	=	-
DC2	-	-	-	-	-	7.61E-02	7.61E-02	-	-	-	=	-	=	-
DC3	-	=	-	-	-	4.11E-02	4.11E-02	-	-	-	=	-	=	-
DC4	-	=	-	-	-	2.63E-02	2.63E-02	-	-	-	=	-	=	-
DC5	-	=	-	-	-	2.52E-02	2.52E-02	-	-	-	=	-	=	-
DC6	-	=	-	-	-	2.67E-03	2.67E-03	-	-	-	=	-	=	-
RC_FLARE	7.72E-05	-	4.54E-03		-	1.13E-04	1.13E-04	-	-	-	-	_	-	-

Notes:

(g/s) = grams per second EC = Elemental Carbon $HNO_3 = nitric acid$

INCPM = total particulate matter emission

 NO_x = oxides of nitrogen

 NO_3 = nitrate

PM0005 = particulate matter 0.05 microns or less in diameter<math>PM0010 = particulate matter 0.1 microns or less in diameter PM0015 = particulate matter 0.15 microns or less in diameter

PM0020 = particulate matter 0.2 microns or less in diameter

PM0025 = particulate matter 0.25 microns or less in diameter

PM0100 = particulate matter 1 microns or less in diameter

 PM_{10} = particulate matter 10 microns or less in diameter

 SO_2 = sulfur dioxide

 SO_4 = sulfate compound

SOA = Secondary Organic Aerosol

Revised Table 6 Annual Averaged Emission Inventory for CALPUFF (Annual NOx, SO2, and PM10 Increment and Deposition Analyses)

Sources										S	OA			
(g/s)	SO_2	SO_4	NO_x	HNO_3	NO_3	INCPM	PM_{10}	PM0005	PM0010	PM0015	PM0020	PM0025	PM0100	EC
ASUCOOL1	-	-	-	-	-	2.71E-02	2.71E-02	-	-	-	-	-	-	-
ASUCOOL2	-	=	-	=	=	2.71E-02	2.71E-02	-	-	-	=	=	=	-
ASUCOOL3	-	-	-	-	-	2.71E-02	2.71E-02	-	-	-	-	-	-	-
ASUCOOL4	-	-	-	-	-	2.71E-02	2.71E-02	-	-	-	-	-	-	-
PWCOOL1	-	-	_	-	-	3.63E-02	3.63E-02	-	-	-	-	-	-	-
PWCOOL2	-	-	-	-	-	3.63E-02	3.63E-02	-	-	-	-	-	-	-
PWCOOL3	-	-	-	-	-	3.63E-02	3.63E-02	-	-	-	-	-	-	-
PWCOOL4	-	-	-	-	-	3.63E-02	3.63E-02	-	-	-	-	-	-	-
PWCOOL5	-	-	-	-	-	3.63E-02	3.63E-02	-	-	-	-	-	-	-
PWCOOL6	-	-	-	-	-	3.63E-02	3.63E-02	-	-	-	-	-	-	-
PWCOOL7	-	-	-	-	-	3.63E-02	3.63E-02	-	-	-	-	-	-	ı
PWCOOL8	-	=	-	-	-	3.63E-02	3.63E-02	-	-	-	=	•	-	1
PWCOOL9	-	=	-	-	-	3.63E-02	3.63E-02	-	-	-	=	•	-	ı
PWCOOL10	-	=	-	-	-	3.63E-02	3.63E-02	-	-	-	=	•	-	1
PWCOOL11	-	=	-	-	-	3.63E-02	3.63E-02	-	-	-	=	•	-	1
PWCOOL12	-	=	-	-	ı	3.63E-02	3.63E-02	-	-	-	-	-	-	-
PWCOOL13	-	-	-	-	-	3.63E-02	3.63E-02	-	-	-	-	-	-	-
GASCOOL1	-	-	-	-	-	2.85E-02	2.85E-02	-	-	-	-	-	-	-
GASCOOL2	-	-	_	-	-	2.85E-02	2.85E-02	-	-	-	-	-	-	-
GASCOOL3	-	-	-	-	-	2.85E-02	2.85E-02	-	-	-	-	-	-	-
GASCOOL4	-	-	-	-	-	2.85E-02	2.85E-02	-	-	-	-	-	-	-
EMERGEN1	2.01E-05	-	2.22E-03	-	-	1.15E-04	1.15E-04	-	_	-	-	-	-	-
HRSGSTK	5.60E-01	4.20E-01	4.81E+00	-	-	2.37E+00	_	2.04E-01	3.39E-01	3.12E-01	2.04E-01	1.49E-01	1.49E-01	5.92E
FIREPUMP	8.05E-06	-	2.64E-03	-	-	2.64E-05	2.64E-05	-	-	-	-	-	-	-
AUX_BOIL	9.13E-03	-	4.92E-02	-	-	2.24E-02	2.24E-02	-	-	-	-	-	-	-
TAIL_TO	2.52E-01	-	3.13E-01	-	-	1.04E-02	1.04E-02	-	-	-	-	-	-	-
SRUFLARE	1.58E-03	-	4.91E-03	-	-	1.23E-04	1.23E-04	-	-	-	-	-	-	-
GF_FLARE	1.29E-04	=	1.24E-01	=	-	1.89E-04	1.89E-04	-	-	-	-	=	=	-
GASVENTB	9.51E-04	=	5.13E-02	=	-	3.73E-03	3.73E-03	-	-	-	-	=	=	-
DC1	-	-	-	-	-	5.82E-03	5.82E-03	-	-	-	-	-	-	-
DC2	-	=	-	=	-	1.47E-02	1.47E-02	-	-	-	-	=	=	-
DC3	-	-	-	-	-	3.63E-02	3.63E-02	-	-	-	-	-	-	-
DC4	-	-	-	-	-	2.32E-02	2.32E-02	-	-	-	-	-	-	-
DC5	-	-	-	-	-	2.23E-02	2.23E-02	-	-	-	-	-	-	-
DC6	-	-	-	-	-	4.00E-04	4.00E-04	-	-	-	-	-	-	-
RC FLARE	7.72E-05	-	4.54E-03	-	-	1.13E-04	1.13E-04	-	_	-	-	-	-	-

Notes:

(g/s) = grams per second EC = Elemental Carbon HNO₃ = nitric acid

INCPM = total particulate matter emission

 NO_x = oxides of nitrogen

 NO_3 = nitrate

PM0005 = particulate matter 0.05 microns or less in diameter PM0010 = particulate matter 0.1 microns or less in diameter

PM0015 = particulate matter 0.15 microns or less in diameter

PM0020 = particulate matter 0.2 microns or less in diameter

PM0025 = particulate matter 0.25 microns or less in diameter

PM0100 = particulate matter 1 microns or less in diameter $<math>PM_{10} = particulate matter 10 microns or less in diameter$

 SO_2 = sulfur dioxide

SO₄ = sulfate compound

SOA = Secondary Organic Aerosol

Revised Appendix E Calmet/Calpuff Air Quality Modeling Impact Analysis For Far-Field Class I Areas

This Page Intentionally Left Blank

Air Quality Modeling Impact Analysis For Far-Field Class I Areas

Revised Table 8 PSD Class I Increment Significance Analysis – CALPUFF Results

	Pollutant	Annual NO _x	3-hr SO ₂	24-hr SO ₂	Annual SO ₂	24-hr PM ₁₀	Annual PM ₁₀
	Unit	μg/m ³	μg/m ³	μg/m ³	μg/m ³	μg/m ³	Annual
Class I Area	Threshold	0.1	1	0.2	0.08	0.32	0.16
San Rafael	2001	3.77E-03	2.18E-01	2.53E-02	7.47E-04	8.65E-02	3.33E-03
Wilderness	2002	4.08E-03	2.33E-01	2.56E-02	8.79E-04	7.67E-02	3.80E-03
Area	2003	4.23E-03	2.73E-01	2.75E-02	8.85E-04	9.29E-02	3.77E-03
Exceed?		No	No	No	No	No	No

Notes:

 $\mu g/m^3 = \text{micrograms per cubic meter}$

 NO_x = oxides of nitrogen

 PM_{10} = particulate matter 10 microns or less in diameter

PSD = Prevention of Significant Deterioration

 SO_2 = sulfur dioxide

Revised Table 9 Visibility Analysis – CALPUFF Results

	Pollutant	No.of Days > 5%	No.of Days >10%	Max Extinction Change	Day of Maximum Extinction Change
	Unit	Days	Days	%	Julian Day
Class I Area	Threshold	0	0	10	
San Rafael	2001	1	0	8.09	308
Wilderness Area	2002	3	0	6.56	287
w nuciness Alea	2003	1	0	5.41	247
Exceed?				No	

Revised Table 10 Total Nitrogen and Sulfur Deposition Analysis – CALPUFF Results

	Pollutant	Deposition N	Deposition S
	Unit	g/m ² /s	g/m²/s
Class I Area	Threshold	1.59E-11	1.59E-11
	2001	9.52E-13	3.91E-13
San Rafael Wilderness Area	2002	1.19E-12	5.12E-13
	2003	1.21E-12	4.61E-13
Exceed?		No	No

October 7, 2009

Gerardo Rios Chief Permits Office US Environmental Protection Agency Air Division (AIR-3) 75 Hawthorne St. San Francisco, CA 94105

Subject: Submittal of Amendment to the Prevention of Significant Deterioration Application – Hydrogen Energy California

Dear Mr. Rios:

Hydrogen Energy International LLC (HEI) proposes to modify the nominally rated 250 (approximate) net megawatt (MW) integrated gasification combined cycle power generation unit proposed at a greenfield site in Kern County, California. The attached document is an Amendment to the Prevention of Significant Deterioration (PSD) of air quality permit for the "HECA" project.

The Applicant is modifying the Project to eliminate the auxiliary combustion turbine generator (CTG) and demonstrate its emissions of particulates less than 2.5 microns in diameter (PM_{2.5}) will be below the 100 tons per year (tpy) PM_{2.5} Air Quality Standard threshold.

An Amendment to the Revised Application for Certification for this unit was filed with the California Energy Commission dated September 2009 (Docket # 08-AFC-8). An Amendment to the Authority to Construct / Permit to Operate Application will be filed with the San Joaquin Valley Air Pollution Control District (SJVAPCD).

The enclosed application amendment includes supporting information, as well as a DVD containing electronic copies of revised air quality and public health modeling input and output files. Please contact Gregory Skannal, HEI at (562) 276-1511 or Mark Strehlow at (510) 874-3055 if you have any questions or require additional information.

Page 2 of 2

Sincerely,

Gregory D. Skannal

Manager, HSSE

Hydrogen Energy International LLC

Attachment: Application

Copy: California Energy Commission

Mark Strehlow, URS