DOCKET 08-AFC-8					
DATE	OCT 19 2009				
RECD.	OCT 28 2009				

October 19, 2009

Rod Jones Project Manager California Energy Commission 1516 Ninth Street Sacramento, CA 95814

> RE: Hydrogen Energy California Revised AFC CEC Docket No. 08-AFC-8

On behalf of Hydrogen Energy International LLC, the applicant for the Hydrogen Energy California Revised AFC, we are pleased to submit the enclosed documents:

- One print copy of the October 2009 Amendment to Prevention of Significant Deterioration Permit Application, and a DVD containing revised air quality modeling files, which were submitted to the US Environmental Protection Agency on October 7, 2009;
- One print copy of the October 2009 Amendment to the Authority to Construct Permit Application, and a DVD containing revised air quality and public health modeling files, which were submitted to the San Joaquin Valley Air Pollution Control District on October 7, 2009.

URS Corporation

Dale Shileikis Vice President, Project Manager

Enclosures

cc: Greg Skannal, HEI, w/out enclosure

URS Corporation 221 Main Street, Suite 600 San Francisco, CA 94105 Tel: 415.869.5858 Fax: 415.882.9261 www.urscorp.com

J:\HECA-2\ATC_PSD\Transmittal_RJones_19 Oct 2009.doc

October 7, 2009

Leonard Scandura Permit Services Manager San Joaquin Valley Air Pollution Control District Southern Regional Office 34946 Flyover Court Bakersfield, CA 93308

Subject: Submittal of Amendment to the Application for Authority to Construct – Hydrogen Energy California SJVAPCD Project S-1093741

Dear Mr. Scandura:

Hydrogen Energy International LLC (HEI) proposes to modify the nominally rated 250 (approximate) net megawatt (MW) integrated gasification combined cycle power generation unit proposed at a greenfield site in Kern County, California. The attached document is an Amendment to the Authority to Construct / Permit to Operate Application to the San Joaquin Valley Air Pollution Control District (SJVAPCD) for the "HECA" project.

The Applicant is modifying the Project to eliminate the auxiliary combustion turbine generator (CTG) and demonstrate its emissions of particulates less than 2.5 microns in diameter ($PM_{2.5}$) will be below the 100 tons per year (tpy) $PM_{2.5}$ Air Quality Standard threshold.

An Amendment to the Revised Application for Certification for this unit was filed with the California Energy Commission dated September 2009 (Docket # 08-AFC-8). An Amendment to the Prevention of Significant Deterioration (PSD) application will be filed with the Environmental Protection Agency, Region IX.

The enclosed application amendment includes supporting information, as well as a DVD containing electronic copies of revised air quality and public health modeling input and output files. Please contact Gregory Skannal, HEI at (562) 276-1511 or Mark Strehlow at (510) 874-3055 if you have any questions or require additional information.

Page 2 of 2

Sincerely, keyon 67

Gregory D. Skannal Manager, HSSE Hydrogen Energy International LLC

Attachment: Application

Copy: Mark Strehlow, URS California Energy Commission Amendment to the Authority to Construct (ATC) Permit Application (08-AFC-8) for HYDROGEN ENERGY CALIFORNIA Kern County, California

Prepared for: Hydrogen Energy International LLC

Submitted to: California Energy Commission

October 2009

TABLE OF CONTENTS

Section 1	Introdu	ıction1-1
	1.1	Overview1-1
Section 2	Project	t Description2-1
	2.1	Equipment
Section 3	Equipn	nent Specifications3-1
	3.1	Equipment List
Section 4	Expect	ed Emissions4-1
Section 5	Laws,	Ordinances, and Regulations5-1
Section 6	Emissi	on Offsets6-1
Section 7	Ambie	nt Air Quality and PSD Analysis7-1
	7.1 7.2	Air Dispersion Modeling
Section 8	Health	Risk Assessment8-1
Tables		
Revised Table	2-1	Representative Heat and Material Balances
Revised Table	4-1	Total Combined Annual Criteria Pollutant Emissions
Revised Table	4-4	CTG/HSRG Criteria Pollutant Emission Rates during Startup and Shutdown
Revised Table	4-5	Criteria Pollutant Sources and Emission Totals for the Worst Case CTG Emissions Scenario for All Averaging Times
Revised Table	4-6	Average Annual Emissions per Turbine Operating Scenario
Revised Table	6-1	HECA Annual Operating Emissions
Revised Table	6-2	Estimated ERCS Required
Revised Table	7-4	AERMOD Modeling Results for Project Operations (All Project Sources Combined)
Revised Table	7-6	PSD Class I Increment Significance Analysis – CALPUFF Results
Revised Table	7-7	Visibility Analysis – CALPUFF Results

TABLE OF CONTENTS

Revised Table 7-8 Total Nitrogen and Sulfur Deposit Analysis – CALPUFF Results

Figures

Revised Figure 1-3	Preliminary Plot Plan
Revised Figure 2-1	Overall Block Flow Diagram
Revised Figure 2-8	Flow Diagram Power Block Systems
Revised Figure 2-9	Flow Diagram Natural Gas System
Revised Figure 7-3	Locations of Maximum Predicted Ground Level Pollutant Concentrations for the Operational Project Area

Appendices

Revised Appendix C3	Revised HECA Downwash Structures
Revised Appendix C4	Revised CALMET/CALPUFF Air Quality Modeling Results
Revised Appendix D1.2	Revised Operating Emissions Stationary Sources

On June 26, 2009, Hydrogen Energy International LLC (HEI) filed an Authority to Construct (ATC) application with the San Joaquin Valley Air Pollution Control District (SJVAPCD) seeking approval to construct and operate the Hydrogen Energy California Project (HECA or Project). The Applicant is modifying the Project to eliminate the auxiliary combustion turbine generator (CTG) and demonstrate its emissions of particulates less than 2.5 microns in diameter (PM_{2.5}) will be below the 100 tons per year (tpy) PM_{2.5} Air Quality Standard threshold.

This Amendment provides a detailed discussion of the design modification and revisions to the filed ATC application needed to address this change. The elimination of the auxiliary CTG and reduction in emissions rates do not fundamentally alter the nature of the project, nor do they affect the proposed capture and sequestration of Project carbon emissions.

1.1 OVERVIEW

This submittal describes the Amendment and analyzes whether or not the modification results in any environmental consequences not previously analyzed. As demonstrated, the elimination of the auxiliary CTG will not increase the magnitude of any previously identified environmental impacts, or result in any new significant impacts associated with the Project. The emissions of all criteria pollutants and greenhouse gases (GHG) are reduced as a result of this Project modification. Further, the AERMOD and CALPUFF air modeling results demonstrate that the Project modification reduces criteria pollutant and visibility impacts. Therefore, all impacts are expected to remain less than significant with the Project modification.

This modification is within the 473-acre Project Site and does not result in any additional disturbed areas beyond the Site not previously evaluated. In addition, the modification is not expected to result in any significant changes to the schedule, costs, workforce, or traffic during construction or operations.

This Amendment presents information that has changed as a result of the Project modification. Tables and figures that have been changed as a result of this modification are included in this Amendment with the original table number, but prefaced with "Revised."

2.1 EQUIPMENT

The Project modification consists of eliminating the auxiliary CTG General Electric (GE) $LMS100^{\$}$ and reducing the emission rates for particulate matter less than 10 microns in diameter (PM₁₀) and particulate matter less than 2.5 microns in diameter (PM_{2.5}) from the GE Frame 7B CTG)/Heat Recovery Steam Generator (HRSG) when firing hydrogen–rich fuel. Therefore, all references in the filed ATC application to the following are no longer applicable: "auxiliary CTG," "peaking power," auxiliary combustion turbine generator," "GE LMS100[®]," "CTG-2," "auxiliary Simple Cycle Gas Turbine," "auxiliary Simple Cycle CTG," and "turbines."

The Project would still produce about 250 megawatts (MW) of baseload power and 390 gross MW from the combined cycle plant that is fed by the Gasification Block and would still require two conventional mechanical-draft cooling towers.

The Project modification is reflected in the following revised Project Description figures, which are included in this Amendment:

- Revised Figure 1-3: Preliminary Plot Plan
- Revised Figure 2-1: Overall Block Flow Diagram
- Revised Figure 2-8: Flow Diagram Power Block Systems
- Revised Figure 2-9: Flow Diagram Natural Gas System

The following Project Description tables have been revised to reflect the Project modification, and are included in this Amendment:

Revised Table 2-1: Representative Heat and Material Balances

	IGCC <u>P</u> Hydrogen-I	<u>G7321 (FB)</u> Rich Gas from:			
Operating Case:	100% Petcoke	75 % Coal/ 25 % Petcoke Blend ³	Combined Cycle <u>PG7321 (FB)</u> Natural Gas		
Ambient Temperature, °F	65 ¹	65 ¹	20	65	115
	Feeds:			•	
Feedstock, stpd (AR)	2,820	3,197	0	0	0
Feedstock, MMBtu/hr [HHV]	3,240	3,255	0	0	0
Fluxant, stpd	60	32	0	0	0
Natural Gas, MMBtu/hr [HHV]	0	0	2,560	2,410	2,310
Water, gpm	2,900	2,810	1,080	1,450	2,130
Pro	ducts and By-P	roducts:			
Hydrogen, mmscfd ²	177	177	0	0	0
Carbon Dioxide, stpd	7,400	7,300	0	0	0
Sulfur, stpd	130	40	0	0	0
Gasification Solids, stpd (wet)	140	470	0	0	0
	Power Balance	e:			
Combustion Turbine, MW	232	232	201	183	169
Steam Turbine, MW	160	156	148	146	142
H ₂ -Rich Fuel Expander, MW	2	2	0	0	0
Gross Power, MW	394	390	349	329	311
Total Auxiliary Load, MW	143	142	16	18	18
Air Separation Unit, MW	74	75	0	0	0
CO ₂ Compression, MW	27	27	0	0	0
Other Internal Users, MW	42	40	16	18	18
Net Power, MW	251	248	333	311	293

Revised Table 2-1 Representative Heat and Material Balances

Source: HECA Project

Notes:

¹ Ambient temperature variations have minimal effect on hydrogen-rich gas fueled combustion turbine generator output and gasification operation. Results are nearly constant for plant output across the ambient temperature range.

² Hydrogen contained in the hydrogen-rich gas used to fuel power generation equipment.

³ Percentage is by thermal input (HHV basis)

= as received AR °F degrees Fahrenheit = = gallons per minute gpm HHV higher heating value = IGCC integrated gasification combined cycle = million British thermal units per hour MMBtu/hr = mmscfd = million standard cubic feet per day MW megawatt = short tons per day stpd =

3.1 EQUIPMENT LIST

This section summarizes specifications regarding the following criteria pollutant emitting equipment comprising the Project.

Source #	Source Description
1	Air Separation Unit Cooling Tower: 40,000 gallons per minute Multi-cell Mechanical-draft Cooling Towers with high efficiency drift eliminators; serving the Air Separation Unit.
2	Power Block Cooling Tower: 175,000 gallons per minute Multi-cell Mechanical-draft Cooling Towers with high efficiency drift eliminators; serving the power block
3	Gasification Cooling Tower: 42,000 gallons per minute Multi-cell Mechanical-draft Cooling Towers with high efficiency drift eliminators; serving the Air Separation Unit.
4	Standby Diesel Generator 1: 60 Hz, 3-Phase, 2,000 kW, 0.8 PF standby diesel fueled emergency generator
5	Standby Diesel Generator 2: 60 Hz, 3-Phase, 2,000 kW, 0.8 PF standby diesel fueled emergency generator
6	Combined-cycle Combustion Turbine (CTG/HRSG): The main power block unit consists of a Hydrogen-rich fuel and/or Natural Gas-fired General Electric (GE) 7FB Combustion Turbine Generator (CTG) with a Heat Recovery Steam Generators (HRSG) and one condensing Steam Turbine-Generator (STG) operating in combined cycle mode. The HRSG includes a duct burner, a selective catalytic reduction (SCR) system, and a carbon monoxide catalyst system.
7	Firewater Pump: a 600 hp, 415 kW diesel fueled standby firewater pump.
8	Auxiliary Boiler: a 142 MMBTU/hour natural gas fired boiler equipped with low nitrogen oxide burners and flue gas recirculation; with maximum steam production of 100,000 pounds per hour.
9	Sulfur Recovery System: A sulfur recovery system consists of a Sulfur Recovery Unit (SRU), a Tail Gas Treatment Unit (TGTU), and a tail gas thermal oxidizer (10 MMBtu/hr).
10	CO2 Vent: Alternative (intermittent, infrequent) venting system serving the release stream of CO_2 from the Acid Gas Removal Unit and the Tail gas Treatment Unit.
11	Gasification Flare: Elevated flare with 0.5 MMBtu/hr natural gas pilot.
12	SRU Flare: Elevated flare with 0.3 MMBtu/hr natural gas pilot and 36 MMBtu/hr natural gas assist.
13	Rectisol Flare: Elevated flare with 0.3 MMBtu/hr natural gas pilot.
14	Gasifier Refractory Heater 1: 18 MMBtu/hr refractory heater serving the gasification block.
15	Gasifier Refractory Heater 2: 18 MMBtu/hr refractory heater serving the gasification block.
16	Gasifier Refractory Heater 3: 18 MMBtu/hr refractory heater serving the gasification block.
17	Feedstock Handling System: Series of enclosed conveyors, feedstock storage silos, and feedstock preparation buildings equipped with six dust collection system consisting of hoods and baghouses.

SECTIONFOUR

The Project is a nominal 250 net MW IGCC power generating facility consisting of a Gasification Block and hydrogen-rich fuel production unit with carbon capture capability and a combined-cycle power block. The operational emissions from the Project are mainly generated from the combustion of the hydrogen-rich fuel. Other emission sources include cooling towers, solids handling, and an auxiliary boiler.

This Amendment addresses changes to the emission rates from the GE Frame 7B CTG/HRSG as a result of a refinement of the PM_{10} and $PM_{2.5}$ emission factors. The updated emission rates are presented in Revised Table 4-1, Total Combined Annual Criteria Pollutant Emissions. There will be no changes to emission rates from other equipment, and therefore they are not discussed in this section.

Power Block CTG/HRSG Operating Emissions

The most significant emission source of the Project will be the CTG/HRSG train. The power block design will be optimized for performance on 100 percent hydrogen-rich fuel, 100 percent natural gas, or co-firing hydrogen-rich fuel and natural gas. Most of the hydrogen-rich fuel from the gasification plant will be used to fully load the CTG, with any excess (up to about 10 to 14 percent) duct fired in the HRSG. The CTG will operate on hydrogen-rich fuel, natural gas, or a mixture of the two (45 to 90 percent hydrogen-rich fuel) over the compliance load range of 60 to 100 percent. The CTG may be co-fired with natural gas as required to maintain emission-compliant operation if the quantity of hydrogen-rich fuel is insufficient or hydrogen-rich fuel is completely unavailable.

Maximum short-term operational emissions from the CTG/HRSG were determined from a comparative evaluation of potential emissions corresponding to normal operating conditions (including HRSG duct-firing), and CTG startup/shutdown conditions. The long-term operational emissions from the CTG/HRSG were estimated by summing the emissions contributions from normal operating conditions (including hours with and without duct-firing) and CTG/HRSG startup/shutdown conditions.

Operational emissions from the CTG/HRSG were estimated for all the applicable scenarios using base emission rates and startup/shutdown emissions. The base criteria pollutant emission rates provided by the turbine vendor and the engineer for three load conditions (60, 80, and 100 percent) and three ambient temperatures (20, 65, and 97 degrees Fahrenheit [°F]) when firing natural gas, hydrogen-rich fuel, or co-firing are presented in Revised Table 4-3, 1-Hour Operating Emission Rates for CTG/HRSG Operating Load Scenarios. The revision to the PM₁₀ and PM_{2.5} emissions rates from the CTG/HRSG when firing hydrogen-rich fuel due to a refinement of the PM₁₀ and PM_{2.5} emission factor are presented in Revised Table 4-3.

CTG/HRSG Startup and Shutdown Emissions

The expected emissions and durations associated with CTG/HRSG startup and shutdown events are summarized in Revised Table 4-4, CTG/HRSG Criteria Pollutant Emission Rates during Startup and Shutdown. No changes to the startup and shutdown times result from this Amendment. However, there will be a revision to the PM₁₀ and PM_{2.5} emission rates during cold startup and hot startup scenarios due to a refinement of the PM₁₀ and PM_{2.5} emission factor.

CTG/HRSG Emissions Scenarios for Modeling

Reasonable worst-case short-term emissions from the turbines were calculated for use in the air quality modeling. These scenarios form the basis for the air dispersion modeling analyses presented in Section 7.

Revised Table 4-5, Criteria Pollutant Sources and Emission Totals for the Worst-Case CTG Emissions Scenario for All Averaging Times, summarizes the worst-case emissions scenarios adopted to assess maximum impacts to air quality and air quality-related values in the modeling analyses presented in Section 7.

Estimated annual emission totals for all pollutants incorporate the maximum anticipated emissions related to startups and shutdowns, as well as the maximum steady-state operating emissions with and without duct firing. Estimated maximum annual emissions for the GE 7FB turbine are presented in Revised Table 4-6, Average Annual Emissions per Turbine Operating Scenario. Detailed emissions calculations for all scenarios, including revisions, are included in Revised Appendix D1.2.

Expected Emissions

Pollutant	Total Annual (ton/yr)	HRSG Stack Maximum ⁽¹⁾ (ton/yr)	Cooling Towers ⁽²⁾ (ton/yr)	Auxiliary Boiler (ton/yr)	Emergency Generators ⁽³⁾ (ton/yr)	Fire Water Pump (ton/yr)	Gasification Flare (ton/yr)	SRU Flare (ton/yr)	Rectisol Flare (ton.yr)	Tail Gas Thermal Oxidizer (ton/yr)	CO₂ Vent (ton/yr)	Gasifier (ton/yr)	Feedstock ⁽⁴⁾ (ton/yr)
NO _X	186.4	167.2		1.7	0.2	0.1	4.3	0.2	0.2	10.9		1.8	
СО	322.7	150.2		5.8	0.1	0.2	48.8	0.1	0.1	9.1	106.9	1.5	
VOC	36.1	32.5		0.6	0.03	0.01	0.003	0.002	0.002	0.3	2.4	0.1	
SO ₂	38.4	29.2		0.3	0.001	0.0003	0.004	0.055	0.003	8.8		0.03	
PM ₁₀	111.4	82.4	24.1	0.8	0.01	0.001	0.007	0.004	0.004	0.4		0.1	3.6
PM _{2.5} ⁽⁵⁾	99.2	82.4	14.5 (6)	0.8	0.01	0.001	0.007	0.004	0.004	0.4		0.1	1.0
NH ₃	75.9	75.9											
H ₂ S	1.3										1.3		

Revised Table 4-1 Total Combined Annual Criteria Pollutant Emissions

Source: HECA Project

Notes:

1 Total annual HRSG emissions represents the maximum emissions rate from a composite firing scenario (all three fuels)

2 Includes contributions from all three cooling towers

3 Includes contributions from both emergency generators

4 Feedstock emissions are shown as the contribution of all dust collection points.

5 Where $PM_{10} = PM_{2.5}$, it is assumed that PM_{10} is 100 percent $PM_{2.5}$

6 Where $PM_{2.5}$ is 60 percent of the PM_{10} emissions for cooling towers

CO = carbon monoxide

 CO_2 = carbon dioxide

- CTG = combustion turbine generator
- $H_2S =$ hydrogen sulfide
- NH₃ = ammonia

 NO_X = nitrogen oxides

- PM_{10} = particulate matter less than 10 microns in diameter
- $PM_{2.5}$ = particulate matter less than 2.5 microns in diameter
- SO_2 = sulfur dioxide
- VOC = volatile organic compounds

Ambient Temperature	UNITS	Winter Minimum, 20F			Yearly Average, 65₽			Summer Maximum, 97F					
CTG Load Level	% Load	100%	100%	80%	60%	100%	100%	80%	60%	100%	100%	80%	60%
Evap Cooling Status	Off/on	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Duct Burner Status	Off/on	On	Off	Off	Off	On	Off	Off	Off	On	Off	Off	Off
Average Emission Rates from CTG (Ibs/hr/turbine) - Normal Operation Natural Gas													
NO _x (@ 4.0 ppm)	Lb/hr	36.3	29.0	24.8	20.8	35.1	27.0	23.1	19.4	33.3	26.1	22.4	18.7
CO (@ 5.0 ppm)	Lb/hr	27.6	22.1	18.8	15.8	26.7	20.5	17.6	14.8	25.3	19.8	17.0	14.2
VOC (@ 2.0 ppm)	Lb/hr	6.3	5.0	4.3	3.6	6.1	4.7	4.0	3.4	5.8	4.5	3.9	3.2
SO_2 (@ 12.65 ppmv in fuel)	Lb/hr	5.1	4.1	3.5	3.0	4.8	3.8	3.3	2.8	4.7	3.7	3.2	2.7
$PM_{10} = PM_{2.5}$	Lb/hr	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0
NH ₃ (@ 5.0 ppm slip)	Lb/hr	16.7	13.4	11.4	9.6	16.2	12.5	10.7	9.0	15.4	12.1	10.3	8.6
Average Emission Rates	from CTG	(lbs/hr/tu	rbine) - N	lormal O	peratior	Hydro	gen-Ric	h Fuel					
NO _x (@ 4.0 ppm)	Lb/hr		37.2	31.5	26.1	39.7	36.9	31.0	25.6	39.7	38.0	30.9	25.6
CO (@ 3.0 ppm)	Lb/hr		17.0	14.4	11.9	18.1	16.8	14.1	11.7	18.1	17.4	14.1	11.7
VOC (@ 1.0 ppm)	Lb/hr		3.2	2.7	2.3	3.5	3.2	2.7	2.2	3.5	3.3	2.7	2.2
SO_2 (@ 5.0 ppmv in fuel)	Lb/hr		6.1	5.2	4.4	6.8	6.1	5.1	4.3	6.8	6.0	5.1	4.3
$PM_{10} = PM_{2.5}$	Lb/hr		19.8	19.8	19.8	19.8	19.8	19.8	19.8	19.8	19.8	19.8	19.8
NH ₃ (@ 5.0 ppm slip)	Lb/hr		17.2	14.6	12.0	18.4	17.0	14.3	11.8	18.4	17.6	14.3	11.8
Average Emission Rates	from CTG	lbs/hr/tu	urbine) - N	Normal O	peratio	n Co-firi	ing						
NO _x (@ 4.0 ppm)	Lb/hr	41.3	34.0			38.7	31.7						
CO (@ 5.0 ppm)	Lb/hr	31.4	25.9			29.4	24.1						
VOC (@ 2.0 ppm)	Lb/hr	7.2	5.9			6.7	5.5						
$SO_2(@ 6.7 \text{ ppmv in fuel})$	Lb/hr	7.4	5.2			7.0	4.8						
$PM_{10} = PM_{2.5}$	Lb/hr	19.8	19.8			19.8	19.8						
NH ₃ (@ 5.0 ppm slip)	Lb/hr	19.1	15.7			17.9	14.6						

Revised Table 4-3 1-Hour Operating Emission Rates for CTG/HSRG Operating Load Scenarios

Source: HECA Project

Notes: Co-firing emissions are controlled at the same amount as natural gas.

Emission rates not provided were not necessary to determine the maximum hourly, 3-hour, 8-hour, 24-hour emission rates or the annual average emission rates.

CO = carbon monoxide

ppm = parts per million PM_{10} = particulate matter less than 10 microns in diameter.

CTG = combustion turbine generator HRSG = heat recovery steam generator

 $NH_3 = ammonia$

 $PM_{2.5}$ = particulate matter less than 2.5 microns in diameter. SO₂ = sulfur dioxide

 NO_X = nitrogen oxides

VOC = volatile organic compound

Cold Startup				Hot Startup	Shutdown			
180 (min. in cold startup)	Max 1-hr. (lb/hr)	Total (lb/180 min.)	60 (min. in hot startup)	Max 1-hr. (lb/hr)	Total lb/60 min.)	30 (min. in shutdown)	Max 1-hr. (lb/hr)	Total (lb/30 min.)
NO _X	90.7	272.0	NO _X	167.0	167.0	NO _X	62.0	62.0
СО	1,679.7	5,039.0	СО	394.0	394.0	СО	126.0	126.0
VOC	266.7	800.0	VOC	98.0	98.0	VOC	21.0	21.0
SO ₂	5.1	15.3	SO ₂	5.1	5.1	SO ₂	2.6	2.6
$PM_{10} = PM_{2.5}$	19	57.0	$PM_{10} = PM_{2.5}$	19.8	19.8	$PM_{10} = PM_{2.5}$	5.0	5.0

Revised Table 4-4 CTG/HSRG Criteria Pollutant Emission Rates during Startup and Shutdown

Source: HECA Project

Notes:

CTGs will always be started burning natural gas. Startup and shutdown emission rates above reflect natural gas.

Startup and shutdown SO_2 emissions will always be lower than normal operation SO_2 emissions. Startup and shutdown emissions are assumed equal to normal operations (burning natural gas) at the max emission rate.

Startup/shutdown duration defined as operation of CTG below 60 percent load when gaseous emission rates (lb/hr basis) exceed the controlled rates defined as normal operation

CO = carbon monoxide

 NO_X = nitrogen oxides

 PM_{10} = particulate matter less than 10 microns in diameter and is assumed to equal $PM_{2.5}$ = particulate matter less than 2.5 microns in diameter

 SO_2 = sulfur dioxide

VOC = volatile organic compounds

Revised Table 4-5	Criteria Pollutant Sources and Emission Totals for the Worst Case
	CTG Emissions Scenario for All Averaging Times

			Emissions in Pounds – Entire Peric				
Averaging Time	Worst-Case Emission Scenarios by Operating Equipment	Pollutant	CTG/HRSG (Natural Gas)	CTG/HRSG (Hydrogen- Rich Fuel)	CTG/HRSG (Co-firing)		
	NO_X: Cold startup hour	NO _X	167.0	167.0	167.0		
1 hour	CO: Cold startup hour	СО	1,679.7	1,679.7	1,679.7		
1 11000	SO_x : Full-load turbine operation with duct firing at peak fuel usage	SO _X	5.1	6.8	7.4		
3 hour	SO_X: Continuous full-load turbine operation with duct firing (both turbines) at peak fuel usage	SO _X	15.3	20.5	22.1		
8 hour	CO: Two cold starts, three shutdowns, and remainder of period at full load operation with full duct firing (both turbines) at peak fuel usage	CO	10,469.8	10,465.1	10,471.7		
	NO_x: 20 hours of natural gas firing at the winter minimum $(20^{\circ}F)$		20 hrs = 580.5		4 hrs = 136.0		
	without duct firing and 4 hours of co-firing at the winter minimum (20°F) without duct firing	NO _X	Total = 716.5	n/a	Total = 716.5		
24 hour	SO_X , PM ₁₀ : Continuous full-load turbine operation with duct firing	$PM_{10} = PM_{2.5}$	432	475.2	475.2		
	(both turbines) at peak fuel use; except PM_{10} for natural gas: four cold starts, four shutdowns, and remainder of period at full load operation with full duct firing (both turbines) at peak fuel usage	SO _x	122.4	163.8	177.2		
		NO _X	296,044.0	334,353.0	325,712.3		
	NO _x , CO, VOC, PM ₁₀ , and SO _x :	CO	277,817.2	206,919.2	300,390.9		
Annual	10 hot starts, 10 cold starts and 20	VOC	59,906.8	37,984.6	65,066.5		
Annuar	shutdowns, and remainder of turbine operates at full load with duct firing	$PM_{10} = PM_{2.5}$	149,866.0	164,755.6	164,755.6		
		SO _X	40,045.4	56,713.0	58,357.9		
Source: HECA Project $NO_X = nitrogen oxides$ Notes: PM_{10} : = particulate matter less than 10 microns in diameter, and is assumedCO = carbon monoxide PM_{10} : = particulate matter less than 10 microns in diameter, and is assumedCTG = combustion turbine generator $O_X = sulfur oxides$ $^{o}F = degrees FahrenheitSO_X = sulfur oxidesHRSG = heat recovery steam generatorVOC = volatile organic compounds$							

Pollutant	HRSG Stack - Nat Gas (tons/yr/CT)	HRSG Stack - Hydrogen- Rich Fuel (tons/yr/CT)	HRSG Stack - Co Firing (tons/yr/CT)	Maximum (tons/yr/CT)
NO _X	148.0	167.2	162.9	167.2
СО	138.9	103.5	150.2	150.2
VOC	30.0	19.0	32.5	32.5
SO ₂	20.0	28.4	29.2	29.2
$PM_{10} = PM_{2.5}$	74.9	82.4	82.4	82.4
NH ₃	67.1	75.9	73.9	75.9

Revised Table 4-6 Average Annual Emissions per Turbine Operating Scenario

Source: HECA Project

Notes:		
CT	=	combustion turbine
CO	=	carbon monoxide
HRSG	=	heat recovery steam generator
NH ₃	=	ammonia
NO _X	=	nitrogen oxides
PM_{10}	=	particulate matter 10 microns in diameter
PM _{2.5}	=	particulate matter 2.5 microns in diameter ($PM_{2.5}$ is assumed to equal PM_{10})
SO_2	=	sulfur dioxide
VOC	=	volatile organic compounds

Commissioning

In this Amendment, there will be no emission rates associated with the commissioning of the Auxiliary CTG, because this unit will no longer be part of the Project design.

 PM_{10} emission rates are expected to be lower when commissioning the CTG/HRSG on hydrogen-rich fuel. However, no changes will be made to the emission rates represented in Table 4-12 of the filed ATC application, Duration and Criteria Pollutant Emissions for Commissioning of the CTG/HRSG on Hydrogen-Rich Fuel at 59°F. Therefore, PM_{10} emission rates during the commissioning of the CTG/HRSG on hydrogen-rich fuel will be a conservative over-estimate. There are no changes to the Laws, Ordinances, Regulations and Standards (LORS) that the Project is applicable to as a result of this amendment.

The removal of the Auxiliary CTG and the revision of the PM_{10} emission rates from the CTG/HRSG reduce the Project emissions. However, the annual Project emissions of CO, NO_X , and PM_{10} are still above the PSD triggers as shown in filed ATC application.

The proposed BACT for the Auxiliary CTG will no longer apply, since the unit has been removed.

The change in offset requirements for this Project as a result of this amendment is shown in Section 6.

Revised estimated required emission reduction credits due to the Project modification are presented in selection revised tables provided below.

Pollutant	Annual Operational Emissions (tons/year)	Annual Operational Emission (pounds/year)	Offset Requirement Threshold (Lbs/yr)
VOC	36.1	72,156.09	20,000
NO _x	186.4	372,841.56	20,000
SO_x	38.4	76,712.73	54,750
PM_{10}	111.4	222,700.73	29,200

Revised Table 6-1 HECA Annual Operating Emissions

Source: HECA Project

Notes:

 $NO_x = nitrogen oxide(s)$

 PM_{10} = particulate matter less than 10 microns in diameter

 $SO_x = sulfur oxides$

 \dot{VOC} = volatile organic compounds

			1	
Pollutant	Total Annual Offset Requirement (pounds/year)	Total Quarterly Offset Requirement (pounds/quarter)	Annual ERC* (pounds/year)	Quarterly ERC* (pound/quarter)
VOC	52,156	13,039	78,234	19,559
NO _X	352,842	88,210	529,262	132,316
SO ₂	21,963	5,491	32,944	8,236
PM ₁₀	193,501	48,375	290,251	72,563

Revised Table 6-2 Estimated ERCS Required

*assumed 1.5 distance ratio **Notes:**

ERC = emission reduction credits

 $NO_X = nitrogen oxide(s)$

VOC = volatile organic compounds

 $SO_2 = sulfur oxides$

7.1 AIR DISPERSION MODELING

The purpose of the air quality impact analyses is to evaluate whether criteria pollutant emissions resulting from the Project will cause or contribute significantly to a violation of a California or national AAQS or contribute significantly to degradation of air quality-related values in Class I areas. The air quality impact analyses were performed using the same model and model option selections, original meteorological data set issued by SJVAPCD, and receptor locations as in the filed ATC application. Copies of the revised modeling files are included on the Revised Air Quality Modeling DVD included with this Amendment.

Building Wake Effects

The BPIP-Prime analysis was rerun to take into account the removal of the Auxiliary CTG structure. An updated table listing all the structures, minus the Auxiliary CTG building, evaluated in the downwash analysis is included in Revised Appendix C3. Input and output electronic files for the BPIP-Prime analysis are included with those from all other dispersion modeling analyses on the Revised Air Quality Modeling DVD included with this Amendment.

Construction Impacts Modeling

There will be no change to the construction impacts modeling results as a result of this Amendment.

Turbine Impact Screening Modeling

The previously filed ATC application described a turbine impact screening modeling analysis that was performed to determine which CTG/HRSG operating mode and stack parameters produced worst-case off-site impacts. Only the emissions from the CTGs with and without duct firing and evaporative cooling were considered in this preliminary modeling step. The AERMOD model simulated transport and dispersion of natural gas combustion emissions released from the 20-foot-diameter (6.10-meter), 213-foot-tall (65-meter) stack for the CTG/HRSG unit. Unlike in the filed ATC application, the AERMOD model was not used to simulate emissions for the Auxiliary CTG, since it has been removed from the Project design. Revised Table 7-1, Turbine Screening Results Normal Operations – Emissions and Stack Parameters per Turbine, summarizes the combustion CTG screening results for the different CTG operating load conditions.

The maximum ground level concentrations predicted to occur off site with unit turbine emission rates for each of the seven operating conditions shown in Revised Table 7-1 were then multiplied by the corresponding turbine emission rates for specific pollutants. The highest resulting concentration values for each pollutant and averaging time were then identified (see bolded values in the table).

The stack parameters associated with these maximum predicted impacts were used in all subsequent simulations of the refined AERMOD analyses described in the next subsection. (Note that the lower exhaust temperatures and flow rates at reduced turbine loads correspond to reduced plume rise, in some cases resulting in higher off-site pollutant concentrations than the higher baseload emissions.) Model input and output files for the screening modeling analysis are

included with those from all other modeling tasks on the Revised Air Quality modeling DVD that is provided with this Amendment.

Ambient Air Quality and PSD Analysis

Revised Table 7-1	Turbine Screening Results Normal Operations – Emissions and Stack								
		Parar	neters per	Turbine					
Case	Case 1A	Case 1B	Case 1C	Case 2A	Case 2B	Case 2C	Case 3		
Soononia Description		ck Hydrogor	rich Fuol		HRSG Stack				
HPSC/CTG Load Lovel	100% Load	80% Lord	60% Load	100% Load	80% Load		100% Load		
Stack Outlet Temperature	100% L0au	80% L0au	00% Load	100% L0au	80% L0au	00% Load	100% L0au		
(°F)	200.0	190.0	180.0	180.0	170.0	160.0	190.0		
Stack Outlet Temperature	244.40	2.00.02	055.05	055.05	240.02	244.24	2.60.02		
(K)	366.48	360.93	355.37	355.37	349.82	344.26	360.93		
Stack Exit Velocity (ft/s)	63.3	51.8	42.7	53.1	45.6	37.7	58.4		
Stack Exit Velocity (m/s)	19.3	15.8	13	16.2	13.9	11.5	17.8		
NO_X as NO_2 (lb/hr)	166.7	166.7	166.7	166.7	166.7	166.7	166.7		
CO (lb/hr)	1,679.4	1,679.4	1,679.4	1,679.4	1,679.4	1,679.4	1,679.4		
SO ₂ (lb/hr)	8.7	8.7	8.7	8.7	8.7	8.7	8.7		
PM ₁₀ (lb/hr)	19.8	19.8	19.8	19.8	19.8	19.8	19.8		
$NO_X (g/s)$	21	21	21	21	21	21	21		
CO (g/s)	211.6	211.6	211.6	211.6	211.6	211.6	211.6		
SO_2 (g/s) (based on 0.4 grain total S/100 scf)	1.1	1.1	1.1	1.1	1.1	1.1	1.1		
$PM_{10}(g/s)$	2.5	2.5	2.5	2.5	2.5	2.5	2.5		
Model Results – Maximun	n X/Q concent	ration (µg/m ³ /	(g/s)) predicte	d from AERM	OD (all recepto	rs)	•		
1–hour	3.682	4.114	4.483	4.191	4.668	6.536	3.966		
3–hour ¹	3.313	3.703	4.035	3.771	4.201	5.882	3.569		
8–hour ¹	2.577	2.880	3.138	2.933	3.268	4.575	2.776		
24–hour ¹	1.473	1.646	1.793	1.676	1.867	2.614	1.586		
annual ¹	0.295	0.329	0.359	0.335	0.373	0.523	0.317		
Maximum Concentration	(µg/m ³) Predic	ted per Pollut	ant Normal O	perations (all r	eceptors)	•	•		
NO _X 1 hour	77.313	86.394	94.140	88.001	98.030	137.252	83.280		
NO _x annual	6.185	6.911	7.531	7.040	7.842	10.980	6.662		
CO 1 hour	779.024	870.518	948.575	886.714	987.766	1,382.977	839.142		
CO 8 hour	545.317	609.363	664.003	620.700	691.436	968.084	587.399		
SO ₂ 1 hour	4.050	4.525	4.931	4.610	5.135	7.189	4.362		
SO ₂ 3 hour	3.645	4.073	4.438	4.149	4.621	6.470	3.926		
SO ₂ 24 hour	1.620	1.810	1.972	1.844	2.054	2.876	1.745		
SO_2 annual	0.324	0.362	0.394	0.369	0.411	0.575	0.349		
PM ₁₀ 24 hour	3.683	4.115	4.483	4.190	4.668	6.535	3.965		
PM ₁₀ annual	0.738	0.823	0.898	0.838	0.933	1.308	0.793		
Case	Case 1A	Case 1B	Case 1C	Case 2A	Case 2B	Case 2C	Case 3		

Source: HECA Project

Only 1-hour impacts were modeled. Impact concentrations for other averaging times were estimated with USEPA Screening Factors: 0.9 for a 3-hour average time, 0.7 for an 8-hour average time, 0.4 for a 24-hour average time, and 0.08 for an annual average.

Notes:

CO	=	carbon monoxide
CTG	=	combustion turbine generator
µg/m ³	=	micrograms per cubic meter
°F	=	degrees Fahrenheit
g/s	=	grams per second
HRSG	=	heat-recovery steam generator
Κ	=	Kelvin
NO_2	=	nitrogen dioxide
NO _X	=	nitrogen oxides
PM_{10}	=	particulate matter less than 10 microns in diameter
SCR	=	selective catalytic reduction
SO	=	sulfur dioxide

Refined Modeling

A refined modeling analysis was performed to estimate off-site criteria pollutant impacts from operational emissions of the Project. The CTG/HRSG was modeled assuming the worst-case emissions corresponding to each averaging time and the turbine stack parameters that were determined in the turbine screening analysis (see previous subsection). The maximum mass emission rates that will occur over any averaging time, whether during turbine startups, normal operations, turbine shutdowns, or a combination of these activities, were used in all refined modeling analyses (see Revised Table 7-1).

The DEGADIS model that was used to calculate CO and H_2S impacts from the carbon dioxide vent in the filed ATC application was not re-run, because there were no changes made to the emission rates from the carbon dioxide vent as a result of this Amendment.

Fumigation Analysis

Funigation modeling was conducted in the same manner as described in the filed ATC application. However, because the Auxiliary CTG stack is no longer a part of the Project, SCREEN3 was run for the CTG/HRSG unit, tail gas thermal oxidizer, and gasifier refractory heater stack parameters. In addition, new PM_{10} and $PM_{2.5}$ pollutant emissions were used in the fumigation analysis for the CTG/HRSG unit.

A unit emission rate was used (1 gram per second) in the fumigation modeling to obtain a maximum unit concentration (x/Q), and the model results were scaled to reflect expected Project emissions for each pollutant. Inversion breakup fumigation concentrations were calculated for 1 and 3 hour averaging times using U.S. Environmental Protection Agency (USEPA)–approved conversion factors. These multiple-hour model predictions are conservative, since inversion breakup fumigation is a transitory condition that would most likely affect a given receptor location for only a few minutes at a time. To calculate the inversion breakup fumigation, the default thermal internal boundary layer (TIBL) factor of 6 in the SCREEN3 model was used.

Funigation impacts can affect concentrations longer than 1 hour; the procedures described in Section 4.5.3 of "Screening Procedures for Estimating the Air Quality Impact of Stationary Sources" were used to determine the 3 and 8 hour average concentrations.

Modeling input and output files are included on the Revised Air Quality Modeling DVD included with this Amendment.

7.2 COMPLIANCE WITH AMBIENT AIR QUALITY STANDARDS AND PSD REQUIREMENTS

Air dispersion modeling was done to evaluate the maximum increase in ground level pollutant concentrations resulting from Project emissions based on the modifications, and to compare the maximum predicted impacts, including background pollutant levels, with applicable short-term and long-term California Ambient Air Quality Standards (CAAQS) and National Ambient Air Quality Standards (NAAQS).

Construction Impacts

There will be no change to the construction impacts as a result of this Amendment.

Operational Impacts

The emissions used for each pollutant and averaging time are explained and quantified in Section 4. Commissioning impacts, which will occur on a temporary, one-time basis and will not be representative of normal operations, were addressed separately, as described in the next section.

Revised Table 7-4, AERMOD Modeling Results for Project Operations (All Project Sources Combined), summarizes the maximum predicted criteria pollutant concentrations due to Project emissions. The incremental impacts of Project emissions will be below the federal Prevention of Significant Deterioration (PSD) Significant Impact Levels (SILs) for all attainment pollutants, despite the use of worst-case emissions scenarios for all pollutants and averaging times. Although maximum predicted values for PM_{10} are below the SILs, these thresholds do not apply to this pollutant because the San Joaquin Valley Air Basin is designated as being in non-attainment with respect to the federal ambient standards. No SILs have been established yet for $PM_{2.5}$.

Revised Table 7-4 also shows that the modeled impacts due to the Project emissions, in combination with conservative background concentrations, will not cause a violation of any NAAQS and will not significantly contribute to the existing violations of the federal and state PM_{10} and $PM_{2.5}$ standards. In addition, as described later, all of the Project's operational emissions of non-attainment pollutants and their precursors will be offset to ensure a net air quality benefit.

The locations of predicted maximum impacts will vary by pollutant and averaging time. Revised Figure 7-3, Locations of Maximum Predicted Ground Level Pollutant Concentrations for the Operational Project Area, shows the locations of the maximum predicted operational impacts for all pollutants and averaging times.

The peak 24 hour PM_{10} , $PM_{2.5}$, and SO_2 concentrations and peak SO_2 annual concentration are predicted to occur on the western boundary of the Project Site, while the peak annual PM_{10} and $PM_{2.5}$ concentrations are predicted to occur on the eastern boundary of the Project Site. The peak 1 hour NO_X , SO_2 , and CO concentrations, peak 3 hour SO_2 concentration, and peak 8 hour CO concentration are predicted to occur within approximately 2 miles south of the Project Site. The peak annual NO_X concentration occurred at the northern Project Site.

CO impacts from the carbon dioxide vent were predicted to be 2,934 micrograms per cubic meter $(\mu g/m3)$ at a point off of the Project Site and Controlled Areas at 778 meters from the source. This value is below the CAAQS for CO and below the 8 hour CO SIL, but above the 1 hour CO SIL. A stability class of D combined with a wind speed of 1 meter per second was found to calculate the worst-case results.

Hydrogen sulfide impacts from the carbon dioxide vent were predicted to be $35.84 \ \mu g/m3$ at the maximum impact point off of the Project Site and Controlled Areas at 778 meters from the source. This value is below the 1 hour CAAQS of $42 \ \mu g/m^3$.

Revised Table 7-4	AERMOD Modeling Results for Project Operations (All Project Sources Combined)
--------------------------	--

ollutant	aging Period	2000	2001	2002	2003	2004	Max	Class II Significance Level	% of SIL	Background Conc. ⁽⁴⁾	Description	CAAQS	NAAQS	Total Conc.
	Avera	(µg/m³)		(µg/m³)		(µg/m³)	(µg/m³)	(µg/m³)						
NO ₂ ⁽¹⁾	1-hour (OLM) ^(1,3)	89.70	89.77	93.90	88.69	90.48	93.90	NA	NA	190.1	1	339	NA	284
	Annual (OLM) ⁽¹⁾	0.82	0.86	0.81	0.87	0.79	0.87	1	87%	39.6	1	57	100	40.5
<u> </u>	1-hour ⁽³⁾	1,191.74	1,109.96	1,400.54	1,025.55	1,067.22	1,400.54	2,000	71%	4,025	2	23,000	40,000	5,425
0	8-hour ⁽³⁾	210.59	167.24	185.80	178.94	150.96	210.59	500	43%	2,444	2	10,000	10,000	2,655
	1-hour (3)	21.03	16.30	20.86	16.05	19.44	21.03	NA	NA	340.6	3	655	NA	362
50	3-hour ⁽³⁾	7.38	6.10	6.95	7.07	6.79	7.38	25	31%	195	3	NA	1300	202
302	24-hour ⁽³⁾	0.55	0.53	0.46	0.55	0.78	0.78	5	18%	81.38	3	105	365	82
	Annual	0.13	0.12	0.13	0.13	0.13	0.13	1	14%	26.7	3	NA	80	26.8
DM	24-hour ⁽³⁾	2.56	2.39	2.90	2.63	2.58	2.90	5	58%	267.4	4	50	150	-
P 1 V 1 ₁₀	Annual	0.47	0.47	0.50	0.52	0.53	0.53	1	59%	56.5	4	20	Revoked	-
PM ⁽⁴⁾	24-hour ⁽³⁾	1.50	1.42	1.74	1.54	1.54	1.74	-	44%	154	5	NA	35	-
PM _{2.5}	Annual	0.35	0.35	0.37	0.38	0.39	0.39	-	45%	25.2	5	12	15	-

Revised Table 7-4 AERMOD Modeling Results for Project Operations (All Project Sources Combined)

ollutant	aging Period	2000	2001	2002	2003	2004	Max	Class II Significance Level	% of SIL	Background Conc. ⁽⁴⁾	Station Description	CAAQS	SDAAQS	Total Conc.
e.	Avera	(µg/m³)		(µg/m³)		(µg/m³)	(µg/m³)	(µg/m³)						
$H_2S^{(5)}$	1-hour	35.84	35.84	35.84	35.84	35.84	35.84	NA	NA	NA	NA	42	NA	35.84

Source: HECA Project

Notes:

¹ Ozone Limiting Method (OLM) was applied using hourly O₃ data.

² CO₂ Vent was not included in the AERMOD analysis; it was modeled using DEGADIS/SCREEN3, which predicted maximum impacts of 2,934 μg/m³ for the 1-hour average. The current assumption is that only one gasifier heater is expected to be operational at any time. Auxiliary Boiler does not operate with HRSG at the same time for short-term average period. Therefore, the Auxiliary Boiler was not included in the modeling analysis while HRSG was included because HRSG gives more impact on off-Project Site and Controlled Area concentration.

³ For short-term (1-, 3-, 8-, and 24-hour) modeling, only one emergency generator will be operational at any one time, and the current assumption is that only one gasifier heater is expected to be operational at any one time.

⁴ Monitoring station for the maximum background concentration is described below:

CARB, Maximum of last three years (2006-2008), Bakersfield Golden State Highway, 2006

CARB, Maximum of last three years (2006-2008), Bakersfield Golden State Highway, 2007

CARB, Maximum of last three years (2006-2008), Bakersfield Golden State Highway, 2008

CARB, Maximum of last three years (2006-2008), Shafter-Walker Street, 2007

CARB, Maximum of last three years (2006-2008), Fresno - 1st Street, 2007

⁵ H₂S was modeled using DEGADIS (its only source is the CO₂ vent). DEGADIS is a screening model that uses worst-case meteorology rather than actual monitored hourly meteorological data.

CAAQS = California Ambient Air Quality Standards

- CO = carbon monoxide
- $H_2S = hydrogen sulfide$
- $\mu g/m^3$ = micrograms per cubic meter
- NAAQS = National Ambient Air Quality Standards
- NO_2 = nitrogen dioxide
- OLM = ozone limiting method
- PM_{10} = particulate matter less than 10 microns in diameter
- $PM_{2.5}$ = particulate matter less than 2.5 microns in diameter
- SO_2 = sulfur dioxide

SECTIONSEVEN

Fumigation

The predicted peak concentrations from inversion fumigation from Project emissions, including background, are predicted to be below the CAAQS and are as follows:

-	NO_X 1 hour	=	269.25 μg/m ³
-	SO ₂ 1 hour	=	$32.68 \ \mu g/m^3$
-	SO_2 3 hour	=	$21.60 \ \mu g/m^3$
-	CO 1 hour	=	$5,228.26 \mu g/m^3$

Turbine Commissioning

Changes will be made to the commissioning emission rates, even though the emission rates in the filed ATC application would overestimate emission rates due to the removal of the Auxiliary CTG. The AERMOD model will not be re-run, since there were no changes to turbine commissioning emission rates.

Impacts for Non-attainment Pollutants and their Precursors

The emission offset program described in the SJVAPCD Rules and Regulations was developed to facilitate net air quality improvement when new sources locate within the District. Project impacts of non-attainment pollutants (PM_{10} , $PM_{2.5}$, and O_3) and their precursors (NO_X , SO_2 , and VOC) will be fully mitigated by emission offsets. The emission reductions associated with these offsets have not been accounted for in the modeled impacts noted above. Thus, the impacts indicated in the foregoing presentation of model results for the Project may be significantly overestimated.

Effects on Visibility from Plumes

There will be no changes to the effects on visibility from plumes, since there are no changes to the cooling tower emissions as a result of this Amendment.

7.2.1 Impacts on Air Quality Related Values in Class I Area

The CALPUFF modeling analysis for impacts to Air Quality Related Values (AQRV) was updated to reflect the project design changes. The objectives of the modeling were to demonstrate whether air emissions from the Project will cause or contribute to a PSD increment exceedance or cause a significant impact on visibility, regional haze, or sulfur or nitrogen deposition in any Class I area.

Since the Project location has not changed as a result of this Amendment, the same Class I area (San Rafael Wilderness Area) was included in the revised AQRV analysis. PSD increment analysis for the San Rafael Wilderness Class I area is shown in Revised Table 7-6, PSD Class I Increment Significance Analysis – CALPUFF Results. No Class I PSD increments will be exceeded.

	Pollutant	Annual NO _x	3-hour SO ₂	24-hour SO ₂	Annual SO ₂	24-hour Particulate Matter	Annual Particulate Matter
	Unit	µg/m ³	μg/m ³	μg/m ³	µg/m ³	μg/m ³	Annual
Class I Area	Threshold	0.1	1	0.2	0.08	0.32	0.16
San Rafael Wilderness Area	2001	3.77E-03	2.18E-01	2.53E-02	7.47E-04	8.65E-02	3.33E-03
	2002	4.08E-03	2.33E-01	2.56E-02	8.79E-04	7.67E-02	3.80E-03
	2003	4.23E-03	2.73E-01	2.75E-02	8.85E-04	9.29E-02	3.77E-03
Exceed?		No	No	No	No	No	No

Revised Table 7-6 PSD Class I Increment Significance Analysis – CALPUFF Results

Source: HECA Project

-		
$\mu g/m^3$	=	micrograms per cubic meter
10		e i

NO_x = nitrogen oxides

 $SO_2 = sulfur dioxide$

Effects on Visibility.

This revised analysis was conducted using the same model (CALPUFF). The same 3-year meteorological data set for 2001-2003 was used in the revised analysis.

Visibility impact results for the San Rafael Wilderness Class I area are shown in Revised Table 7-7, Visibility Analysis – CALPUFF Results. No maximum extinction change exceeds 10 percent with only 1 to 3 days of exceedance of 5 percent despite the conservative operating scenario. Therefore, the Project screening successfully passed all screening criteria.

	Pollutant	No. of Days > 5%	No. of Days >10%	Maximum Extinction Change	Day of Maximum Extinction Change
	Unit	Days	Days	%	Day
Class I Area	Threshold	0	0	5	
San Rafael Wilderness Area	2001	1	0	8.09	308
	2002	3	0	6.56	287
	2003	1	0	5.41	247
Exceed?				No	

Source: HECA Project

Terrestrial Resources.

This revised analysis was conducted using the same model (CALPUFF). Revised Table 7-8, Total Nitrogen and Sulfur Deposition Analysis – CALPUFF Results, summarizes the maximum modeled impacts versus the National Park Service and the U.S. Forest Service significance criteria. All impacts are below the significance criteria.

Revised Table 7-8	Total Nitrogen and Sulfur Deposit Analysis – CALPUFF Results
--------------------------	--

	Pollutant	Deposition Nitrogen	Deposition Sulfur
	Unit	g/m ² /s	g/m ² /s
Class I Area	Threshold	1.59E-11	1.59E-11
	2001	9.53E-13	3.91E-13
San Rafael Wilderness Area	2002	1.19E-12	5.12E-13
	2003	1.21E-12	4.61E-13
Exceed?		No	No

Source: HECA Project

Notes:

 $g/m^2/s$ = grams per square meter per second.

Aquatic Resources.

A significant effect of NO_X and SO_2 emissions on aquatic resources is nitrogen and sulfur deposition and subsequent acidification. However, because any increased nitrogen and sulfur deposition due to the Project will be minimal, impacts to water acid neutralizing capacity and pH, and, therefore, acidification or eutrophication, are not likely to occur.

The revised CALPUFF/CALMET air impact modeling analysis for Class I areas is presented in selected revised tables, provided in Revised Portions of Appendix C4.

The Project modification would not increase emissions of toxic air contaminants during operation. Therefore, the modification would not change the analysis presented in Section 8 of the filed ATC application, which concluded that the impact of the Project's emissions of toxic air contaminants during operation would be less than significant. Therefore, public health impacts during operation are expected to remain less than significant.

References

- URS Corporation, 2009. Authority to Construct Permit Application for Hydrogen Energy California, Kern County, California. Prepared for Energy International LLC. June 2009.
- USEPA (U.S. Environmental Protection Agency), 1992. Screening Procedures for Estimating the Air Quality Impact of Stationary Sources, Revised. EPA-454/R-92-019. October 1992.

9/15/09 vsa..T:\HECA\GRAPHICS\Amendment Sept 09\Rev 2-5_Prelim Plot Plan.ai

9/15/09 vsa..T:\HECA\GRAPHICS\Amendment Sept 09\Rev 2-3_overall block.ai

9/15/09 vsa..T:\HECA\GRAPHICS\Amendment Sept 09\Rev 2-18_power block systems.ai

REVISED APPENDIX C3 HECA DOWNWASH STRUCTURES

			Number of	Tier	Base	Tier	Number of	Corner 1
	Building Name	Comment	Tiers	Number	Elevation	Height	Corners	East (X)
					(ft)	(ft)		(m)
1	FINESLAG	Fine Slag Handling Enclosure	1	1	288.5	70	4	283221.4
2	SLRYPREP	Slurry Preparation Building	1	1	288.5	165	4	283149.2
3	GASIFIER	Gassifier Structure	1	1	288.5	200	4	283204
4	AGR	AGR Refrigeration Compressor Enclosure	1	1	288.5	40	4	283132.3
5	CO2	CO2 Compressor Enclosure	1	1	288.5	50	4	283148.9
6	ASU_COOL	ASU Cooling Tower	1	1	288.5	50	4	282884
7	STG	Steam Turbine Generator Structure	1	1	288.5	50	12	282851
8	CTG	Combustion Turbine Generator	1	1	288.5	50	10	282851.4
9	HRSG	Heat Recovery Steam Generator	1	1	288.5	90	4	282934.2
10	KO_DRUM	Flare KO Drum	1	1	288.5	35	8	283056.8
11	PWR_COOL	Power Block and Gassification Cooling To	1	1	288.5	50	4	283024.1
12	ASU_COMP	ASU Main Air Compressor Enclosure	1	1	288.5	40	4	282893.5
13	AUX_BOIL	Auxiliary Boiler	1	1	288.5	50	4	282913.4
14	EMER_GN1	Emergency Generator - 1	1	1	288.5	20	4	282933.4
15	EMER_GN2	Emergency Generator - 2	1	1	288.5	20	4	282933.3
16	AIR_SEP	Air Separation Column Can	1	1	288.5	85	22	282918.2
17	AGR_METH	AGR Methanol Wash Column	1	1	288.5	235	4	283091.7
18	LOX_TANK	LOx Tank	1	1	288.5	90	8	282870.4
19	DEMIN1	Demineraized Storage Tank 1	1	1	288.5	45	4	282965.9
20	DEMIN2	Demineraized Storage Tank 2	1	1	288.5	45	4	282965.9

		Corner 1	Corner 2	Corner 2	Corner 3	Corner 3	Corner 4	Corner 4
	Building Name	North (Y)	East (X)	North (Y)	East (X)	North (Y)	East (X)	North (Y)
		(m)	(m)	(m)	(m)	(m)	(m)	(m)
1	FINESLAG	3912479.6	283205.3	3912480	283205.2	3912428	283221.5	3912428
2	SLRYPREP	3912325.7	283175.6	3912324.7	283175.5	3912280	283147.7	3912280
3	GASIFIER	3912352.1	283233	3912348.9	283233.2	3912283	283202.9	3912282
4	AGR	3912194.1	283132	3912169.3	283122.3	3912170	283122.7	3912194
5	CO2	3912117	283148.7	3912086.7	283118.1	3912087	283118.6	3912117
6	ASU_COOL	3912012	282944.5	3912011.3	282944.5	3911993	282883.8	3911993
7	STG	3912173.3	282861.6	3912173.1	282861.5	3912177	282869.2	3912177
8	CTG	3912218.2	282855.5	3912218.1	282858	3912216	282873.1	3912216
9	HRSG	3912219.4	282934.6	3912199.7	282909.9	3912201	282906.3	3912221
10	KO_DRUM	3912303.9	283066.5	3912303.3	283065.9	3912281	283056.5	3912281
11	PWR_COOL	3912009.6	283282.8	3912006.9	283282	3911989	283023.6	3911991
12	ASU_COMP	3912076.4	282928.5	3912076.4	282928.6	3912063	282892.7	3912063
13	AUX_BOIL	3912285.6	282913.8	3912261.7	282954.5	3912261	282954.5	3912285
14	EMER_GN1	3912178.4	282948.7	3912178.3	282948.5	3912174	282933.3	3912174
15	EMER_GN2	3912169.2	282948.4	3912169	282948.5	3912165	282933.4	3912165
16	AIR_SEP	3912110.2	282921.3	3912110	282922.8	3912114	282931.3	3912115
17	AGR_METH	3912224	283109.7	3912223.8	283109.7	3912209	283091.3	3912209
18	LOX_TANK	3912113.7	282874.5	3912117.8	282880.2	3912118	282884.3	3912114
19	DEMIN1	3912233.9	282970.3	3912234	282970.5	3912222	282966	3912221
20	DEMIN2	3912215	282970.4	3912214.6	282970.4	3912202	282965.8	3912202

		Corner 5	Corner 5	Corner 6	Corner 6	Corner 7	Corner 7	Corner 8	Corner 8	Corner 9	Corner 9
	Building Name	East (X)	North (Y)								
		(m)	(m)								
1	FINESLAG										
2	SLRYPREP										
3	GASIFIER										
4	AGR										
5	CO2										
6	ASU_COOL										
7	STG	282869.3	3912173	282889	3912173	282889	3912164	282869.1	3912164	282869.2	3912160
8	CTG	282889.6	3912215	282889.5	3912208	282872.9	3912207	282857.7	3912207	282855.4	3912204
9	HRSG										
10	KO_DRUM	283044.7	3912282	283034.7	3912283	283035.4	3912303	283044.4	3912303		
11	PWR_COOL										
12	ASU_COMP										
13	AUX_BOIL										
14	EMER_GN1										
15	EMER_GN2										
16	AIR_SEP	282931.5	3912113	282934.7	3912113	282934.9	3912109	282937.8	3912108	282943.7	3912111
17	AGR_METH										
18	LOX_TANK	282884.3	3912108	282880	3912104	282874.3	3912104	282870.2	3912108		
19	DEMIN1										
20	DEMIN2										

	Building Name	Corner 10 East (X) (m)	Corner 10 North (Y) (m)	Corner 11 East (X) (m)	Corner 11 North (Y) (m)	Corner 12 East (X) (m)	Corner 12 North (Y) (m)	Corner 13 East (X) (m)	Corner 13 North (Y) (m)	Corner 14 East (X) (m)	Corner 14 North (Y) (m)
1	FINESLAG										
2	SLRYPREP										
3	GASIFIER										
4	AGR										
5	CO2										
6	ASU_COOL										
7	STG	282861.4	3912160	282861.2	3912164	282850.9	3912164				
8	CTG	282851.2	3912205								
9	HRSG										
10	KO_DRUM										
11	PWR_COOL										
12	ASU_COMP										
13	AUX_BOIL										
14	EMER_GN1										
15	EMER_GN2										
16	AIR_SEP	282955.1	3912109	282954.9	3912104	282949.9	3912104	282943.7	3912102	282939.4	3912103
17	AGR_METH										
18	LOX_TANK										
19	DEMIN1										
20	DEMIN2										

<u>Buildings</u>

	Building Name	Corner 15 East (X) (m)	Corner 15 North (Y) (m)	Corner 16 East (X) (m)	Corner 16 North (Y) (m)	Corner 17 East (X) (m)	Corner 17 North (Y) (m)	Corner 18 East (X) (m)	Corner 18 North (Y) (m)	Corner 19 East (X) (m)	Corner 19 North (Y) (m)
1	FINESLAG										
2	SLRYPREP										
3	GASIFIER										
4	AGR										
5	CO2										
6	ASU_COOL										
7	STG										
8	CTG										
9	HRSG										
10	KO_DRUM										
11	PWR_COOL										
12	ASU_COMP										
13	AUX_BOIL										
14	EMER_GN1										
15	EMER_GN2										
16	AIR_SEP	282934.8	3912101	282934.8	3912099	282934.7	3912096	282932.7	3912096	282931.1	3912099
17	AGR_METH										
18	LOX_TANK										
19	DEMIN1										
~~	DEMINIO										

20 DEMIN2

	Building Name	Corner 20 East (X) (m)	Corner 20 North (Y) (m)	Corner 21 East (X) (m)	Corner 21 North (Y) (m)	Corner 22 East (X) (m)	Corner 22 North (Y) (m)	
1	FINESLAG	()	()	()	()	()	()	
2	SLRYPREP							
3	GASIFIER							
4	AGR							
5	CO2							
6	ASU COOL							
7	STG							
8	CTG							
9	HRSG							
10	KO_DRUM							
11	PWR_COOL							
12	ASU_COMP							
13	AUX_BOIL							
14	EMER_GN1							
15	EMER_GN2							
16	AIR_SEP	282922	3912099	282921.1	3912102	282918.1	3912102	
17	AGR_METH							
18	LOX_TANK							
10								

- 19 DEMIN1
- DEMIN2 20

т	ar	۱k	S
-	~		-
			_

			Base	Center	Center	Tank	Tank
	Tank Name	Description	Elevation	East (X)	North (Y)	Height	Diameter
			(ft)	(m)	(m)	(ft)	(ft)
1	PROC_WTR	Process Water Treatment Feed Tank	288.5	283173.3	3912429.9	32	35
2	GREY_WTR	Grey Water Tank	288.5	283158.5	3912414.5	40	30
3	SETTLER	Settler	288.5	283184.2	3912394.2	35	85
4	SLURTK_N	Slurry Run Tank - N	288.5	283184	3912318	75	38
5	SLURTK_S	Slurry Run Tank - S	288.5	283183.4	3912301.5	75	38
6	SOUR_WTR	Sour Water Stripper Feed Tank	288.5	283022.5	3912123.8	32	48
7	CONDENSA	Condensate Storage Tank	288.5	282957	3912249.6	24	34
8	FIREWATR	Firewater Storage Tank	288.5	282758.5	3912509.6	48	110
9	RAWWATER	Raw Water Tank	288.5	282850.6	3912507.3	48	100
10	TREATD_W	Treated Water Tank	288.5	282857.4	3912461.7	40	90
11	SILO_W	Feedstock Storage Silos - West	288.5	283261.6	3912671.8	150	80
12	SILO_C	Feedstock Storage Silos - Central	288.5	283290.1	3912671.4	150	80
13	SILO_E	Feedstock Storage Silos - East	288.5	283316.9	3912670.5	150	80
14	METHNL	Methanol Storage Tank	288.5	283115.2	3912061.2	40	40
15	AIR_CAN	Air Separation Can	288.5	282943.5	3912106.5	205	33
16	DEMINERA	Demineraized Storage Tank	288.5	282857.3	3912364.3	40	60
17	PURH2O_1	Purified Water Tank	288.5	282857.4	3912424.4	48	90
18	PURH2O_2	Purified Water Tank	288.5	282839.4	3912395.2	48	42.5
19	PURH2O_3	Purified Water Tank	288.5	282865.6	3912395.5	32	35
20	WATERT_N	Water Treatment Tank North	288.5	282761	3912394.8	48	120
21	WATERT_S	Water Treatment Tank South	288.5	282760.9	3912346.9	48	120

REVISED PORTIONS OF APPENDIX C4 CALMET/CALPUFF AIR QUALITY MODELING RESULTS

REVISED PORTIONS OF APPENDIX C4: CALMET/CALPUFF AIR QUALITY MODELING IMPACT ANALYSIS FOR FAR-FIELD CLASS I AREAS

The tables listed below have been revised to reflect the elimination of the GE LMS100[®] auxiliary combustion turbine generator (CTG) and the reduction of PM_{10} and $PM_{2.5}$ emission rates from the GE Frame 7B CTG/Heat Recovery System Generator (HRSG) when firing hydrogen-rich fuel. The remaining portions of Appendix C4 are unchanged.

Revised List of Tables

Revised Table 2	Maximum Emission Rates of Each Averaging Time Period
Revised Table 3	Source Location and Parameters
Revised Table 4	3-hour Averaged Emission Inventory for CALPUFF (3-hour SO ₂ Increment Analysis)
Revised Table 5	24-hour Averaged Emission Inventory for CALPUFF (24-hour NO _x , SO ₂ , and PM_{10} Increment and Visibility Analyses)
Revised Table 6	Annual Averaged Emission Inventory for CALPUFF (Annual NO _x , SO ₂ , and PM ₁₀ Increment and Deposition Analyses)
Revised Table 8	PSD Class I Increment Significance Analysis – CALPUFF Results
Revised Table 9	Visibility Analysis – CALPUFF Results
Revised Table 10	Total Nitrogen and Sulfur Deposition Analysis – CALPUFF Results

REVISED PORTIONS OF APPENDIX C4: CALMET/CALPUFF AIR QUALITY MODELING IMPACT ANALYSIS FOR FAR-FIELD CLASS I AREAS

G	3-hr (g/s)		24-hr (g/s)	0 0	-	Annual (g/s)	
Source	SO ₂	NO _X	SO ₂	PM ₁₀	NO _X	SO ₂	PM ₁₀
ASUCOOL1	-	-	-	0.0285	-	-	0.0271
ASUCOOL2	-	-	-	0.0285	-	-	0.0271
ASUCOOL3	-	-	-	0.0285	-	-	0.0271
ASUCOOL4	-	_	-	0.0285	_	-	0.0271
PWCOOL1	-	-	-	0.0382	-	-	0.0363
PWCOOL2	_	_	-	0.0382	_	_	0.0363
PWCOOL3	_	_	-	0.0382	_	_	0.0363
PWCOOL4	_	_	-	0.0382	_	_	0.0363
PWCOOL5	_	_	-	0.0382	_	_	0.0363
PWCOOL6	_	_	-	0.0382	_	_	0.0363
PWCOOL7	_	_	-	0.0382	_	_	0.0363
PWCOOL8	-	-	-	0.0382	-	-	0.0363
PWCOOL9	-	-	-	0.0382	-	-	0.0363
PWCOOL10	-	-	-	0.0382	-	-	0.0363
PWCOOL11	-	-	-	0.0382	-	-	0.0363
PWCOOL12	-	-	-	0.0382	-	-	0.0363
PWCOOL13	-	-	-	0.0382	-	-	0.0363
GASCOOL1	-	-	-	0.0300	-	-	0.0285
GASCOOL2	-	-	-	0.0300	-	-	0.0285
GASCOOL3	-	-	-	0.0300	-	-	0.0285
GASCOOL4	-	-	-	0.0300	-	-	0.0285
EMERGEN1 ^a	0.0024	0.0324	0.0003	0.0017	0.0022	0.00002	0.0001
EMERGEN2 ^a	-	-	-	-	_	-	-
HRSGSTK	0.9302	6.5718	0.9302	2.4947	4.8092	0.8394	2.3698
FIREPUMP	0.0005	0.0193	0.0001	0.0002	0.0026	0.000008	0.000026
AUX_BOIL ^b	-	-	-	-	0.0492	0.0091	0.0224
TAIL_TO	0.2546	0.6048	0.2546	0.0202	0.3128	0.2521	0.0104
CO ₂ _VENT	-	-	-	-	-	-	-
SRUFLARE	2.1933	0.0720	0.2742	0.0018	0.0049	0.0016	0.0001
GF_FLARE	0.0001	7.9380	0.0001	0.0002	0.1239	0.0001	0.0002
GASVENTA ^c	-	-	-	-	-	-	-
GASVENTB ^c	0.0046	0.2495	0.0046	0.0181	0.0513	0.0010	0.0037
GASVENTC ^c	-	-	-	-	-	-	-
DC1	-	-	-	0.0301	-	-	0.0058
DC2	-	-	-	0.0761	-	-	0.0147
DC3	-	-	-	0.0411	-	-	0.0363
DC4	-	-	-	0.0263	_	-	0.0232
DC5	-	-	-	0.0252	-	-	0.0223
DC6	-		-	0.0027	-	-	0.0004
RC_FLARE	0.0001	0.0045	0.0001	0.0001	0.0045	0.0001	0.0001

Revised Table 2 Maximum Emission Rates of Each Averaging Time Period

Notes:

a The analysis also assumed that all emissions from two emergency generators are released to the emergency generator 1, which has worst dispersion characteristics.

b. Auxiliary boiler is not fired at the same time that the HRSG is operating.

c. There are three gasifiers. Only one gasifier warming will be operated at any one time. The emission is from GASVENTB, which results worst impact among three gasifiers.

REVISED PORTIONS OF APPENDIX C4: CALMET/CALPUFF AIR QUALITY MODELING IMPACT ANALYSIS FOR FAR-FIELD CLASS I AREAS

Source ID	Source Description	UTM Easting	UTM Northing	LCC X	LCC Y	Base Elevation	Stack Height	Stack Temperature	Stack Velocity	Stack Diameter
		(m)	(m)	(km)	(km)	(m)	(m)	(k)	(m/s)	(m)
ASUCOOL1	ASU Cooling Tower	282891.3	3912002.1	23.21883	30.06171	87.93	16.76	299.9	7.98	9.14
ASUCOOL2	ASU Cooling Tower	282906.2	3912002.4	23.23371	30.06243	87.93	16.76	299.9	7.98	9.14
ASUCOOL3	ASU Cooling Tower	282922.2	3912002.1	23.24975	30.06254	87.93	16.76	299.9	7.98	9.14
ASUCOOL4	ASU Cooling Tower	282937.3	3912001.4	23.26486	30.06224	87.93	16.76	299.9	7.98	9.14
PWCOOL1	Power Block Cooling Tower	283031.9	3912001.1	23.35941	30.06445	87.93	16.76	299.9	7.98	9.14
PWCOOL2	Power Block Cooling Tower	283046.3	3912000.9	23.37385	30.06469	87.93	16.76	299.9	7.98	9.14
PWCOOL3	Power Block Cooling Tower	283061.6	3912001.0	23.38915	30.06519	87.93	16.76	299.9	7.98	9.14
PWCOOL4	Power Block Cooling Tower	283076.9	3912000.0	23.40443	30.06463	87.93	16.76	299.9	7.98	9.14
PWCOOL5	Power Block Cooling Tower	283092.1	3912000.0	23.4196	30.06494	87.93	16.76	299.9	7.98	9.14
PWCOOL6	Power Block Cooling Tower	283107.9	3912000.0	23.4354	30.06545	87.93	16.76	299.9	7.98	9.14
PWCOOL7	Power Block Cooling Tower	283122.7	3911999.4	23.45019	30.06518	87.93	16.76	299.9	7.98	9.14
PWCOOL8	Power Block Cooling Tower	283137.8	3911999.3	23.46529	30.06555	87.93	16.76	299.9	7.98	9.14
PWCOOL9	Power Block Cooling Tower	283153.5	3911999.5	23.481	30.06609	87.93	16.76	299.9	7.98	9.14
PWCOOL10	Power Block Cooling Tower	283168.8	3911999.2	23.49627	30.06622	87.93	16.76	299.9	7.98	9.14
PWCOOL11	Power Block Cooling Tower	283183.7	3911999.6	23.51118	30.06702	87.93	16.76	299.9	7.98	9.14
PWCOOL12	Power Block Cooling Tower	283199.5	3911999.0	23.52698	30.0669	87.93	16.76	299.9	7.98	9.14
PWCOOL13	Power Block Cooling Tower	283275.2	3911998.1	23.60261	30.068	87.93	16.76	299.9	7.98	9.14
GASCOOL1	Gasification Cooling Tower	283214.6	3911999.4	23.54206	30.06768	87.93	16.76	299.9	7.98	9.14
GASCOOL2	Gasification Cooling Tower	283228.6	3911998.4	23.5561	30.06699	87.93	16.76	299.9	7.98	9.14
GASCOOL3	Gasification Cooling Tower	283244.7	3911998.9	23.57215	30.06791	87.93	16.76	299.9	7.98	9.14
GASCOOL4	Gasification Cooling Tower	283259.1	3911998.1	23.5866	30.06755	87.93	16.76	299.9	7.98	9.14
EMERGEN1	Emergency Generator1	282948.3	3912172.0	23.2713	30.23302	87.93	6.10	677.6	67.38	0.37
EMERGEN2	Emergency Generator2	282948.3	3912172.0	23.2713	30.23302	87.93	6.10	677.6	67.38	0.37
HRSGSTK	HRSG Stack	282940	3912211.5	23.262	30.27232	87.93	65.00	344.3	11.55	6.10
FIREPUMP	Fire Water Pump Diesel Engine	282770.9	3912535.5	23.08432	30.59164	87.93	6.10	727.6	47.52	0.21
AUX_BOIL	Auxiliary Boiler	282955.1	3912273.0	23.27539	30.33414	87.93	24.38	422.0	9.20	1.37
TAIL_TO	Tail Gas Thermal Oxidizer	283049.1	3912112.7	23.37362	30.1765	87.93	50.29	922.0	7.45	0.76

Revised Table 3 Source Location and Parameters

Source ID	Source Description	UTM Easting	UTM Northing	LCC X	LCC Y	Base Elevation	Stack Height	Stack Temperature	Stack Velocity	Stack Diameter
	-	(m)	(m)	(km)	(km)	(m)	(m)	(k)	(m/s)	(m)
CO2_VENT	CO ₂ Vent	283045.7	3912389.7	23.36286	30.45327	87.93	79.25	291.5	55.92	1.07
SRUFLARE	SRU Flare	283042.4	3912097.7	23.36739	30.16128	87.93	76.20	1273.0	20.00	1.09
GF_FLARE	Gasification Flare	283064.5	3912472.6	23.37946	30.53658	87.93	76.20	1273.0	20.00	5.47
GASVENTA	Gasifier Warming Vent A	283212.7	3912342.0	23.531	30.41005	87.93	64.01	338.7	26.39	0.30
GASVENTB	Gasifier Warming Vent B	283211.7	3912316.6	23.53075	30.38457	87.93	64.01	338.7	26.39	0.30
GASVENTC	Gasifier Warming Vent C	283211.2	3912291.0	23.53085	30.35898	87.93	64.01	338.7	26.39	0.30
DC1	FeedStock-DustCollection	283365.3	3913058.7	23.6644	31.13031	87.93	13.87	291.9	15.06	0.51
DC2	FeedStock-DustCollection	283356.0	3912740.9	23.66358	30.81248	87.93	51.97	291.9	14.90	0.81
DC3	FeedStock-DustCollection	283150.4	3912310.2	23.46956	30.37655	87.93	53.79	291.9	14.66	0.56
DC4	FeedStock-DustCollection	283298.0	3912740.9	23.60564	30.81094	87.93	51.97	291.9	15.70	0.43
DC5	FeedStock-DustCollection	283150.4	3912749.0	23.45789	30.81511	87.93	24.23	291.9	15.06	0.43
DC6	FeedStock-DustCollection	283149.9	3912324.5	23.46876	30.39085	87.93	53.79	291.9	14.19	0.23
RC_FLARE	Rectisol Flare	283064.7	3912479.1	23.3795	30.54304	87.93	76.20	1273.0	20.00	0.10

Revised Table 3 Source Location and Parameters (Continued)

Notes:

Assumed that the temperature of cooling tower is 8 degrees Kelvin degree higher than the annual averaged temperature value from the AERMET meteorological data at Bakersfield monitoring station.

Assumed that the temperature of dust collection is the annual averaged value from the AERMET meteorological data at Bakersfield monitoring station.

K = Kelvin

km = kilometer

LCC = Lambert Conformal Conic

m = meter

m/s = meters per second

UTM = Universal Transverse Mercator

REVISED PORTIONS OF APPENDIX C4: CALMET/CALPUFF AIR QUALITY MODELING IMPACT ANALYSIS FOR FAR-FIELD CLASS I AREAS

Revised Table 4 3-Hour Averaged Emission Inventory for CALPUFF (3-Hour SO₂ Increment Analysis)

Sources								SOA							
(g/s)	SO_2	SO_4	NO _x	HNO ₃	NO ₃	INCPM	PM_{10}	PM0005	PM0010	PM0015	PM0020	PM0025	PM0100	EC	
EMERGEN1	2.35E-03	-	3.89E-01	-	-	1.69E-03	1.69E-03	-	-	-	-	-	-	-	
HRSGSTK	6.20E-01	4.65E-01	2.10E+01	-	-	2.49E+00	-	2.11E-01	3.51E-01	3.23E-01	2.11E-01	1.55E-01	1.55E-01	6.24E-01	
FIREPUMP	4.70E-04	-	2.32E-01	-	-	1.93E-04	1.93E-04	-	-	-	-	-	-	-	
TAIL_TO	2.55E-01	-	6.05E-01	-	-	2.02E-02	2.02E-02	-	-	-	-	-	-	-	
SRUFLARE	2.19E+00	-	5.44E-01	-	-	1.80E-03	1.80E-03	-	-	-	-	-	-	-	
GF_FLARE	1.29E-04	-	7.94E+00	-	-	1.89E-04	1.89E-04	-	-	-	-	-	-	-	
GASVENTB	4.63E-03	-	2.49E-01	-	-	1.81E-02	1.81E-02	-	-	-	-	-	-	-	
RC_FLARE	7.72E-05	-	4.54E-03	-	-	1.13E-04	1.13E-04	-	-	-	-	-	-	-	

Notes:

EC = Elemental Carbon

- HNO_3 = nitric acid
- INCPM = total particulate matter emission
- NOx = oxides of nitrogen
- NO_3 = nitrate
- PM0005 = particulate matter 0.05 microns or less in diameter

PM0010 = particulate matter 0.1 microns or less in diameter

PM0015 = particulate matter 0.15 microns or less in diameter

PM0020 = particulate matter 0.2 microns or less in diameter

PM0025 = particulate matter 0.25 microns or less in diameter

PM0100 = particulate matter 1 microns or less in diameter

 PM_{10} = particulate matter 10 microns or less in diameter

 SO_2 = sulfur dioxide

 SO_4 = sulfate compound

SOA = Secondary Organic Aerosol

⁽g/s) = grams per second

REVISED PORTIONS OF APPENDIX C4: CALMET/CALPUFF AIR QUALITY MODELING IMPACT ANALYSIS FOR FAR-FIELD CLASS I AREAS

		24-hour A	veraged Emis	sion Inventory	NO _x , SO ₂ , and	1 PM ₁₀ Increr	nent and Visi	bility Analyse	es)					
Sources										SC	DA			
(g/s)	SO_2	SO_4	NO _x	HNO ₃	NO ₃	INCPM	PM_{10}	PM0005	PM0010	PM0015	PM0020	PM0025	PM0100	EC
ASUCOOL1	-	-	-	-	-	2.85E-02	2.85E-02	-	-	-	-	-	-	-
ASUCOOL2	-	-	-	-	-	2.85E-02	2.85E-02	-	-	-	-	-	-	-
ASUCOOL3	-	-	-	-	-	2.85E-02	2.85E-02	-	-	-	-	-	-	-
ASUCOOL4	-	-	-	-	-	2.85E-02	2.85E-02	-	-	-	-	-	-	-
PWCOOL1	-	-	-	-	-	3.82E-02	3.82E-02	-	-	-	-	-	-	-
PWCOOL2	-	-	-	-	-	3.82E-02	3.82E-02	-	-	-	-	-	-	-
PWCOOL3	-	-	-	-	-	3.82E-02	3.82E-02	-	-	-	-	-	-	-
PWCOOL4	-	-	-	-	-	3.82E-02	3.82E-02	-	-	-	-	-		-
PWCOOL5	-	-	-	-	-	3.82E-02	3.82E-02	-	-	-	-	-	-	-
PWCOOL6	-	-	-	-	-	3.82E-02	3.82E-02	-	-	-	-	-	-	-
PWCOOL7	-	-	-	-	-	3.82E-02	3.82E-02	-	-	-	-	-	-	-
PWCOOL8	-	-	-	-	-	3.82E-02	3.82E-02	-	-	-	-	-	-	-
PWCOOL9	-	-	-	-	-	3.82E-02	3.82E-02	-	-	-	-	-	-	-
PWCOOL10	-	-	-	-	-	3.82E-02	3.82E-02	-	-	-	-	-	-	-
PWCOOL11	-	-	-	-	-	3.82E-02	3.82E-02	-	-	-	-	-	-	-
PWCOOL12	-	-	-	-	-	3.82E-02	3.82E-02	-	-	-	-	-	-	-
PWCOOL13	-	-	-	-	-	3.82E-02	3.82E-02	-	-	-	-	-	-	-
GASCOOL1	-	-	-	-	-	3.00E-02	3.00E-02	-	-	-	-	-	-	-
GASCOOL2	-	-	-	-	-	3.00E-02	3.00E-02	-	-	-	-	-	-	-
GASCOOL3	-	-	-	-	-	3.00E-02	3.00E-02	-	-	-	-	-	-	-
GASCOOL4	-	-	-	-	-	3.00E-02	3.00E-02	-	-	-	-	-		-
EMERGEN1	2.94E-04	-	3.24E-02	-	-	1.69E-03	1.69E-03	-	-	-	-	-		-
HRSGSTK	6.20E-01	4.65E-01	6.57E+00	-	-	2.49E+00	-	2.11E-01	3.51E-01	3.23E-01	2.11E-01	1.55E-01	1.55E-01	6.24E-01
FIREPUMP	5.88E-05	-	1.93E-02			1.93E-04	1.93E-04						l	
TAIL_TO	2.55E-01	-	6.05E-01	-	-	2.02E-02	2.02E-02	-	-	-	-	-	- '	-
SRUFLARE	2.74E-01	-	7.20E-02	-	-	1.80E-03	1.80E-03	-	-	-	-	-	- '	-
GF_FLARE	1.29E-04	-	7.94E+00	-	-	1.89E-04	1.89E-04	-	-	-	-	-		-
GASVENTB	4.63E-03	-	2.49E-01	-	-	1.81E-02	1.81E-02	-	-	-	-	-		-
DC1	-	-	-	-	-	3.01E-02	3.01E-02	-	-	-	-	-	- '	-
DC2	-	-	-	-	-	7.61E-02	7.61E-02	-	-	-	-	-		-
DC3	-	-	-	-	-	4.11E-02	4.11E-02	-	-	-	-	-	-	-
DC4	-	-	-	-	-	2.63E-02	2.63E-02	-	-	-	-	-	-	-
DC5	-	-	-	-	-	2.52E-02	2.52E-02	-	-	-	-	-	-	-
DC6	-	-	-	-	-	2.67E-03	2.67E-03	-	-	-	-	-	-	-
RC_FLARE	7.72E-05	-	4.54E-03	-	-	1.13E-04	1.13E-04	-	-	-	-	-	-	-

Revised Table 5 241..... • ~

Notes:

(g/s) = grams per second

EC = Elemental Carbon

HNO₃ = nitric acid

INCPM = total particulate matter emission

NO_x = oxides of nitrogen

 NO_3 = nitrate

PM0005 = particulate matter 0.05 microns or less in diameter

PM0010 = particulate matter 0.1 microns or less in diameter

PM0015 = particulate matter 0.15 microns or less in diameter PM0020 = particulate matter 0.2 microns or less in diameter

particulate matter 10 microns or less in diameter

particulate matter 0.25 microns or less in diameter PM0025 = particulate matter 1 microns or less in diameter

- PM0100 =
- $PM_{10} =$
- = sulfur dioxide SO_2 SO_4
 - = sulfate compound
- SOA = Secondary Organic Aerosol

REVISED PORTIONS OF APPENDIX C4: CALMET/CALPUFF AIR QUALITY MODELING IMPACT ANALYSIS FOR FAR-FIELD CLASS I AREAS

Revised Table 6 Annual Averaged Emission Inventory for CALPUFF (Annual NO_x, SO₂, and PM₁₀ Increment and Deposition Analyses)

Sources														
(g/s)	SO_2	SO_4	NO _x	HNO ₃	NO ₃	INCPM	PM_{10}	PM0005	PM0010	PM0015	SOA	PM0025	PM0100	EC
ASUCOOL1	-	-	-	-	-	2.71E-02	2.71E-02	-	-	-	-	-	-	-
ASUCOOL2	-	-	-	-	-	2.71E-02	2.71E-02	-	-	-	-	-	-	-
ASUCOOL3	-	-	-	-	-	2.71E-02	2.71E-02	-	-	-	-	-	-	-
ASUCOOL4	-	-	-	-	-	2.71E-02	2.71E-02	-	-	-	-	-	-	-
PWCOOL1	-	-	-	-	-	3.63E-02	3.63E-02	-	-	-	-	-	-	-
PWCOOL2	-	-	-	-	-	3.63E-02	3.63E-02	-	-	-	-	-	-	-
PWCOOL3	-	-	-	-	-	3.63E-02	3.63E-02	-	-	-	-	-	-	-
PWCOOL4	-	-	-	-	-	3.63E-02	3.63E-02	-	-	-	-	-	-	-
PWCOOL5	-	-	-	-	-	3.63E-02	3.63E-02	-	-	-	-	-	-	-
PWCOOL6	-	-	-	-	-	3.63E-02	3.63E-02	-	-	-	-	-	-	-
PWCOOL7	-	-	-	-	-	3.63E-02	3.63E-02	-	-	-	-	-	-	-
PWCOOL8	-	-	-	-	-	3.63E-02	3.63E-02	-	-	-	-	-	-	-
PWCOOL9	-	-	-	-	-	3.63E-02	3.63E-02	-	-	-	-	-	-	-
PWCOOL10	-	-	-	-	-	3.63E-02	3.63E-02	-	-	-	-	-	-	-
PWCOOL11	-	-	-	-	-	3.63E-02	3.63E-02	-	-	-	-	-	-	-
PWCOOL12	-	-	-	-	-	3.63E-02	3.63E-02	-	-	-	-	-	-	-
PWCOOL13	-	-	-	-	-	3.63E-02	3.63E-02	-	-	-	-	-	-	-
GASCOOL1	-	-	-	-	-	2.85E-02	2.85E-02	-	-	-	-	-	-	-
GASCOOL2	-	-	-	-	-	2.85E-02	2.85E-02	-	-	-	-	-	-	-
GASCOOL3	-	-	-	-	-	2.85E-02	2.85E-02	-	-	-	-	-	-	-
GASCOOL4	-	-	-	-	-	2.85E-02	2.85E-02	-	-	-	-	-	-	-
EMERGEN1	2.01E-05	-	2.22E-03	-	-	1.15E-04	1.15E-04	-	-	-	-	-	-	-
HRSGSTK	5.60E-01	4.20E-01	4.81E+00	-	-	2.37E+00	-	2.04E-01	3.39E-01	3.12E-01	2.04E-01	1.49E-01	1.49E-01	5.92E-01
FIREPUMP	8.05E-06	-	2.64E-03	-	-	2.64E-05	2.64E-05	-	-	-	-	-	-	-
AUX_BOIL	9.13E-03	-	4.92E-02	-	-	2.24E-02	2.24E-02	-	-	-	-	-	-	-
TAIL_TO	2.52E-01	-	3.13E-01	-	-	1.04E-02	1.04E-02	-	-	-	-	-	-	-
SRUFLARE	1.58E-03	-	4.91E-03	-	-	1.23E-04	1.23E-04	-	-	-	-	-	-	-
GF_FLARE	1.29E-04	-	1.24E-01	-	-	1.89E-04	1.89E-04	-	-	-	-	-	-	-
GASVENTB	9.51E-04	-	5.13E-02	-	-	3.73E-03	3.73E-03	-	-	-	-	-	-	-
DC1	-	-	-	-	-	5.82E-03	5.82E-03	-	-	-	-	-	-	-
DC2	-	-	-	-	-	1.47E-02	1.47E-02	-	-	-	-	-	-	-
DC3	-	-	-	-	-	3.63E-02	3.63E-02	-	-	-	-	-	-	-
DC4	-	-	-	-	-	2.32E-02	2.32E-02	-	-	-	-	-	-	-
DC5	-	-	-	-	-	2.23E-02	2.23E-02	-	-	-	-	-	-	-
DC6	-	-	-	-	-	4.00E-04	4.00E-04	-	-	-	-	-	-	-
RC_FLARE	7.72E-05	-	4.54E-03	-	-	1.13E-04	1.13E-04	-	-	-	-	-	-	-
Notes:						PM00	015 = partie	culate matter 0.15	microns or less in	diameter				

= grams per second

- (g/s) EC = Elemental Carbon
- HNO₃ = nitric acid
- INCPM = total particulate matter emission
- NO_x = oxides of nitrogen
- NO_3 = nitrate
- PM0005 = particulate matter 0.05 microns or less in diameter
- PM0010 = particulate matter 0.1 microns or less in diameter

- PM0020 = particulate matter 0.2 microns or less in diameter

PM0025 = particulate matter 0.25 microns or less in diameter

- PM0100 = particulate matter 1 microns or less in diameter
- PM_{10} = particulate matter 10 microns or less in diameter

= sulfur dioxide

- = sulfate compound
- = Secondary Organic Aerosol

 SO_2

 SO_4

SOA

REVISED PORTIONS OF APPENDIX C4: CALMET/CALPUFF AIR QUALITY MODELING IMPACT ANALYSIS FOR FAR-FIELD CLASS I AREAS

	Pollutant	Annual NO _x	3-hr SO ₂	24-hr SO ₂	Annual SO ₂	24-hr PM ₁₀	Annual PM ₁₀
	Unit	μg/m ³	μg/m ³	μg/m ³	μg/m ³	μg/m ³	Annual
Class I Area	Threshold	0.1	1	0.2	0.08	0.32	0.16
San Rafael	2001	3.77E-03	2.18E-01	2.53E-02	7.47E-04	8.65E-02	3.33E-03
Wilderness	2002	4.08E-03	2.33E-01	2.56E-02	8.79E-04	7.67E-02	3.80E-03
Area	2003	4.23E-03	2.73E-01	2.75E-02	8.85E-04	9.29E-02	3.77E-03
Exceed?		No	No	No	No	No	No

Revised Table 8 PSD Class I Increment Significance Analysis – CALPUFF Results

Notes:

 $\mu g/m^3 =$ micrograms per cubic meter

 $NO_x = oxides of nitrogen$

 PM_{10} = particulate matter 10 microns or less in diameter

PSD = Prevention of Significant Deterioration

 SO_2 = sulfur dioxide

Revised Table 9 Visibility Analysis – CALPUFF Results

	Pollutant	No. of Days > 5%	No. of Days >10%	Max Extinction Change	Day of Maximum Extinction Change
	Unit	Days	Days	%	Julian Day
Class I Area	Threshold	0	0	10	
San Rafael Wilderness Area	2001	1	0	8.09	308
	2002	3	0	6.56	287
	2003	1	0	5.41	247
Exceed?				No	

Revised Table 10 Total Nitrogen and Sulfur Deposition Analysis – CALPUFF Results

	Pollutant	Deposition N	Deposition S
	Unit	g/m²/s	g/m²/s
Class I Area	Threshold	1.59E-11	1.59E-11
	2001	9.52E-13	3.91E-13
San Rafael Wilderness Area	2002	1.19E-12	5.12E-13
	2003	1.21E-12	4.61E-13
Exceed?		No	No

REVISED APPENDIX D1.2 OPERATING EMISSIONS STATIONARY SOURCES

Modeling Parameters for Emission Sources

Hydrogen Energy, Inc HECA Amendment

								CTG/HRSG
		CTG/	HRSG , H2-rich	Fuel	CTG/HRS	G , Natural C	as Fuel	Co-Firing **
Parameter		100% Load ⁽²⁾	80% Load	60% Load	100% Load ⁽³⁾	80% Load	60% Load	100% Load
English Units								
Stack height above grade ⁽¹⁾	ft	213	213	213	213	213	213	213
Stack diameter	ft	20	20	20	20	20	20	20
Stack outlet temperature	°F	200	190	180	180	170	160	190
Stack exit flow, act ft ³		19,900	16,300	13,400	16,700	14,300	11,900	18,300
Metric Units								
Stack height above grade ⁽¹⁾	m	65.0	65.0	65.0	65.0	65.0	65.0	65.0
Stack diameter	m	6.1	6.1	6.1	6.1	6.1	6.1	6.1
Stack outlet temperature	К	366.5	360.9	355.4	355.4	349.8	344.3	360.9
Stack exit flow, act	m³/s	563.5	461.6	379.4	472.9	404.9	337.0	518.2
Stack Area	m ²	29.2	29.2	29.2	29.2	29.2	29.2	29.2
Stack exit velocity, act	m/s	19.3	15.8	13.0	16.2	13.9	11.5	17.8

							Gasifier	Cooling	Diesel		
			Gasification		Rectisol Flare	Tail Gas	Warming	Towers	Generator	Fire Pump	
Parameter		Aux Boiler	Flare(4)	SRU Flare(6)	(6)	Oxidizer	Vent (ea.)	(per cell) ⁽⁶⁾	(ea.)	Engine	CO ₂ Vent
English Units											
Stack height above grade ⁽¹⁾	ft	80	250	250	250	165	210	55	20	20	260
Stack diameter	ft	4.5	9.8	2	1.3	2.5	1.0	30	1.2	0.7	3.5
Stack outlet temperature	°F	300	(NA)	(NA)	(NA)	1200	150	75	760	850	65
Stack exit flow, act	ft ³ /s	480	0.5/900	0.3/36	0.3	120	68	18,500	250	60	1,765
Metric Units											
Stack height above grade ⁽¹⁾	m	24.4	76.2	76.2	76.2	50.3	64.0	16.8	6.1	6.1	79.2
Stack diameter	m	1.4	3.0	0.6	0.4	0.8	0.3	9.1	0.4	0.2	1.1
Stack outlet temperature	К	422.0	n/a	n/a	n/a	922.0	338.7	297.0	677.6	727.6	291.5
Stack exit flow, act	m ³ /s	13.6	0.01/25.49	0.01/1.02	0.01	3.4	1.9	523.9	7.1	1.7	50.0
Stack Area	m²	1.5	7.0	0.3	0.1	0.5	0.1	65.7	0.1	0.0	0.9
Stack exit velocity, act	m/s	9.2	0.001/3.64	0.03/3.4	0.1	7.5	26.4	8.0	67.4	47.5	55.9

Notes:

(1) Minimum stack height assumed for worst-case dispersion.

(2) Volume Flow Value shown in table for H2-rich fuel is based on full load syn gas combustion (relatively constant for varying ambient temperatures). Duct firing

of the HSRG changes the stack volumetric flow by about 1% or less.

(3) Full load stack flow for natural gas combustion will vary from the value shown in the table during warm summer ambient temperatures to about 18,000 act ft3/sec

for winter ambient temperatures. Stack flow rates for co-firing of H2-rich gas and natural gas will range between the values shown for the two fuels separately.

(4) Based on gasifier startup; stack parameters estimated from a previous project, to be confirmed by current flare suppliers.

(5) Thirteen cells estimated for power block cooling tower; four cells estimated for process cooling tower, and four cells estimated for the ASU cooling tower.

(6) Waste gas heat release, 10^6 Btu/hr, HHV. First exit flow value is normal pilot gas, the second value is the maximum startup heat release (Rectisol Flare has no planned operation than standby with pilot on)

(7) Estimated oxidizer stack outlet flow for normal operating case of miscellaneous vent gas disposal; SRU startup case will be about 50% greater.

** HRSG Stack Cofiring is estimated assuming 47% Syngas and the balance natural gas

HECA Amendment

Summary 10/7/2009

Modeling Parameters for Emission Sources

Hydrogen Energy, Inc HECA Amendment

			Fee	d Stock - Dust	Collection Unit	ts	
Parameter		DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
English Units							
Ground elevation	ft	289	289	289	289	289	289
Stack elevation	ft	334	459	465	459	368	465
Stack height above grade	ft	46	171	177	171	80	177
Stack diameter	ft	1.7	2.7	1.8	1.4	1.4	0.8
Stack outlet temperature (1)	°F	Ambient	Ambient	Ambient	Ambient	Ambient	Ambient
Stack exit flow, act	ft ³ /s	108	273	127	81	78	21
Metric Units							
Stack height above grade	m	13.9	52.0	53.8	52.0	24.2	53.8
Stack diameter	m	0.5	0.8	0.6	0.4	0.4	0.2
Stack outlet temperature (1)	K	Ambient	Ambient	Ambient	Ambient	Ambient	Ambient
Stack exit flow, act	m ³ /s	3.1	7.7	3.6	2.3	2.2	0.6
Stack Area	m ²	0.2	0.5	0.2	0.1	0.1	0.0
Stack exit velocity, act	m/s	15.1	14.9	14.7	15.7	15.1	14.2

(1) Assume ambient temperature

Summary 10/7/2009

Total Project Modeling Emission Rates

Hydrogen Energy, Inc HECA Amendment

Modeling Worst-Case 1 hr Emissions

measury mere																1
	CTG/HRSG Maximum ⁽¹⁾	Co	oling Towers ⁽²⁾		Auxiliary Boiler	Emergency Generators ⁽³⁾	Fire Water Pump	Gasification Flare	SRU Flare	Rectisol Flare	Tg Thermal Oxidizer	CO ₂ Vent	Gasifier ⁽⁴⁾			I
	(g/sec)	Power Block (g/sec/cell)	Process Area (g/sec/cell)	ASU (g/sec/cell)	(g/sec)	(g/sec/gen)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	DC-1 (g/sec)	DC-2 (g/sec)	D (g/
NOx	21.0				0.2	0.4	0.2	7.9	0.544	0.005	0.6		0.2			
СО	211.6				0.7	0.2	0.4	113.4	0.363	0.003	0.5	53.4	0.2			
SO ₂	0.9				0.04	0.004	0.0007	0.0001	2.19	0.0001	0.3		0.00			
H₂S												0.6				

(1) HRSG modeling emission rates represents the maximum emissions rate from a composite firing scenario (all three fuels)

(2) There are three separate cooling towers. The modeling rates are per cell.

(3) There are two separate generators. Modeling rates are shown per individual generator.

(4) There are three gasifiers. The modeling rate shown is per individual gasifier. However, only one gasifier warming will be operational at any one time.

Modeling Worst	t-Case 3 hr Em	issions																	
	CTG/HRSG				Auxiliary	Emergency	Fire Water	Gasification	SRU	Rectisol	Tg Thermal								
	Maximum ⁽¹⁾	Cooling Towers ⁽²⁾			Boiler	Generators ⁽³⁾	Pump	Flare	Flare	Flare	Oxidizer	CO ₂ Vent	Gasifier ⁽⁴⁾			Feeds	stock		
		Power Block Process Area ASU											DC-1	DC-2	DC-3	DC-4	DC-5	DC-6	
	(g/sec)	(g/sec/cell)	(g/sec/cell)	(g/sec/cell)	(g/sec)	(g/sec/gen)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)
SO ₂	0.9				0.04	0.002	0.0005	0.0001	2.19	0.00	0.3		0.00						

(1) HRSG modeling emission rates represents the maximum emissions rate from a composite firing scenario (all three fuels)

(2) There are three separate cooling towers. The modeling rates are per cell.

 $(3) \ There \ are \ two \ separate \ generators. \ Modeling \ rates \ are \ shown \ per \ individual \ generator.$

(4) There are three gasifiers. The modeling rate shown is per individual gasifier. However, only one gasifier warming will be operational at any one time.

Modeling Worst	t-Case 8 hr Em	issions				aling Worst-Case 8 hr Emissions														
	CTG/HRSG				Auxiliary	Emergency	Fire Water	Gasification	SRU	Rectisol	Tg Thermal									
	Maximum ⁽¹⁾	Cooling Towers ⁽²⁾			Boiler	Generators ⁽³⁾	Pump	Flare	Flare	Flare	Oxidizer	CO ₂ Vent	Gasifier ⁽⁴⁾			Feeds	stock			
		Power Block Process Area ASU											DC-1	DC-2	DC-3	DC-4	DC-5	DC-6		
	(g/sec)	(g/sec/cell)	(g/sec/cell)	(g/sec/cell)	(g/sec)	(g/sec/gen)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	
СО	164.9				0.7	0.06	0.1	113.4	0.138	0.003	0.5	53.4	0.2							

(1) HRSG modeling emission rates represents the maximum emissions rate from a composite firing scenario (all three fuels)

(2) There are three separate cooling towers. The modeling rates are per cell.

(3) There are two separate generators. Modeling rates are shown per individual generator.

(4) There are three gasifiers. The modeling rate shown is per individual gasifier. However, only one gasifier warming will be operational at any one time.

Modeling Worst-Case 24 Hour Emission Rate

would worst	I-Case 24 Hour	EIIIISSIOII Ka	ale																	
	CTG/HRSG				Auxiliary	Emergency	Fire Water	Gasification	SRU	Rectisol	Tg Thermal									
	Maximum ⁽¹⁾	Cooling Towers ⁽²⁾		Cooling Towers ⁽²⁾		Cooling Towers ⁽²⁾		Generators ⁽³⁾	Pump	Flare	Flare	Flare	Oxidizer	CO ₂ Vent	Gasifier ⁽⁴⁾	(4) Feedstock		stock	ck	
		Power Block	Process Area	ASU										DC-1	DC-2	DC-3	DC-4	DC-5	DC-6	
	(g/sec)	(g/sec/cell)	(g/sec/cell)	(g/sec/cell)	(g/sec)	(g/sec/gen)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	
SO ₂	0.9				0.04	0.0003	0.0001	0.0001	0.2742	0.0001	0.3		0.00							
PM ₁₀	2.5	0.038	0.030	0.028	0.09	0.002	0.0002	0.0002	0.0018	0.0001	0.02		0.02	0.030	0.076	0.041	0.026	0.025	0.003	
PM _{2.5} ⁽⁵⁾	2.5	0.023	0.018	0.017	0.09	0.002	0.0002	0.0002	0.0018	0.0001	0.02		0.02	0.009	0.022	0.012	0.008	0.007	0.001	

(1) HRSG modeling emission rates represents the maximum emissions rate from a composite firing scenario (all three fuels)

(2) There are three separate cooling towers. The modeling rates are per cell.

 $(3) \ There \ are \ two \ separate \ generators. \ Modeling \ rates \ are \ shown \ per \ individual \ generator.$

(4) There are three gasifiers. The modeling rate shown is per individual gasifier. However, only one gasifier warming will be operational at any one time.

(5) Where $PM_{10} = PM_{2.5}$, it is assumed that PM_{10} is 100% $PM_{2.5}$

Modeling Annu	al Average Em	ission Rate																		
	CTG/HRSG				Auxiliary	Emergency	Fire Water	Gasification	SRU	Rectisol	Tg Thermal									
	Maximum ⁽¹⁾	Co	oling Towers ⁽²⁾)	Boiler	Generators ⁽³⁾	Pump	Flare	Flare	Flare	Oxidizer	CO ₂ Vent	Gasifier (4)	Feedsto			stock	tock		
	(g/sec)	Power Block (g/sec/cell)	Process Area (g/sec/cell)	ASU (g/sec/cell)	(g/sec)	(g/sec/gen)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	DC-1 (g/sec)	DC-2 (g/sec)	DC-3 (g/sec)	DC-4 (g/sec)	DC-5 (g/sec)	DC-6 (g/sec)	
NO _X	4.8				0.05	0.002	0.003	0.1	0.005	0.005	0.3		0.05							
СО	4.3				0.2	0.001	0.005	1.4	0.003	0.003	0.26	3.1	0.04194							
VOC	0.9				0.02	0.0005	0.0002	0.0001	0.00005	0.00005	0.01	0.1	0.00326							
SO ₂	0.8				0.01	0.00002	0.00001	0.0001	0.0016	0.0001	0.3		0.00095							
PM ₁₀	2.4	0.036	0.028	0.027	0.02	0.0001	0.00003	0.0002	0.0001	0.0001	0.01		0.004	0.006	0.015	0.036	0.023	0.022	0.0004	
PM _{2.5} ⁽⁵⁾	2.4	0.022	0.017	0.016	0.02	0.0001	0.00003	0.0002	0.0001	0.0001	0.01		0.004	0.002	0.004	0.011	0.0068	0.007	0.0001	
H ₂ S												0.0								

(1) HRSG modeling emission rates represents the maximum emissions rate from a composite firing scenario (all three fuels)

(2) There are three separate cooling towers. The modeling rates are per cell.

(3) There are two separate generators. Modeling rates are shown per individual generator.

(4) There are three gasifiers. The modeling rate shown is per individual gasifier. However, only one gasifier warming will be operational at any one time.

(5) Where $PM_{10} = PM_{2.5}$, it is assumed that PM_{10} is 100% $PM_{2.5}$

Summary

10/7/2009

ed	stock		
-3	DC-4	DC-5	DC-6
ec)	(g/sec)	(g/sec)	(g/sec)

Total Annual Project Emissions

Hydrogen Energy, Inc HECA Amendment

CTG/HRSG Cooling Auxiliary Emergency Fire Water Gasification Rectisol Tg Thermal Gasifier Maximum ⁽¹⁾ Towers⁽²⁾ Generators (3) Feedstock (4) SRU Flare Pollutant Total Annual Boiler Pump Flare Flare Oxidizer CO₂ Vent Warming (ton/yr) NOX 186.4 167.2 ---1.7 0.2 0.1 4.3 0.2 0.2 10.9 ---1.8 -со 322.7 150.2 5.8 0.1 0.2 48.8 9.1 1.5 0.1 0.1 106.9 -----VOC 32.5 0.03 0.003 0.002 0.002 0.3 36.1 ---0.6 0.01 2.4 0.1 --- SO_2 0.001 8.8 0.03 38.4 29.2 ---0.3 0.0003 0.004 0.055 0.003 -----**PM**₁₀ 111.4 0.01 0.001 0.007 0.004 0.4 3.6 82.4 24.1 0.8 0.004 --0.1 PM_{2.5} (5) 99.2 0.01 0.001 0.004 0.4 82.4 14.5 0.8 0.007 0.004 --0.1 1.0 NH_3 75.9 75.9 ------------------------------- H_2S 1.3 1.3 --------------------------CO₂e 503,237 323,410 16,466 6,348 176 139 4,797 150,011 1,716 146 29 ----

(1) Total annual HRSG emissions represents the maximum emissions rate from a composite firing scenario (all three fuels)

(2) Includes contributions from all three cooling towers

(3) Includes contributions from both emergency generators

(4) Feedstock emissions are shown as the contribution of all dust collection points.

(5) Where PM10 = PM2.5, it is assumed that PM10 is 100% PM2.5

(6) CO2e emission rates are shown as metric tons (tonnes)

Emissions Summary

CTG/HRSG Stack - Comparison of all Firing Scenarios

Hydrogen Energy, Inc HECA Amendment

Summary of CTG/HRSG Emission Rates Under the Three Different Firing Scenarios

Average Annual	Emissions per Turbine			
	CTG/HRSG - Nat Gas	CTG/HRSG - Syn Gas	CTG/HRSG - Co Firing	Maximum
	(ton/yr/CT)	(ton/yr/CT)	(ton/yr/CT)	(ton/yr/CT)
NO _X	148.0	167.2	162.9	167.2
со	138.9	103.5	150.2	150.2
VOC	30.0	19.0	32.5	32.5
SO ₂	20.0	28.4	29.2	29.2
$PM_{10} = PM_{2.5}$	74.9	82.4	82.4	82.4
NH ₃	67.1	75.9	73.9	75.9

Modeling Worst-Case 1 hr Emissions per Turbine											
	CTG/HRSG - Nat Gas	CTG/HRSG - Syn Gas	CTG/HRSG - Co Firing	Maximum							
	(g/sec/CT)	(g/sec/CT)	(g/sec/CT)	(g/sec/CT)							
NOx	21.0	21.0	21.0	21.0							
со	211.6	211.6	211.6	211.6							
SO ₂	0.6	0.86	0.93	0.9							

Modeling Worst-Case 3 hr Emissions per Turbine										
	CTG/HRSG - Nat Gas	CTG/HRSG - Syn Gas	CTG/HRSG - Co Firing	Maximum						
	(g/sec/CT)	(g/sec/CT)	(g/sec/CT)	(g/sec/CT)						
SO ₂	0.6	0.86	0.93	0.9						

Modeling Worst-Case 8 hr Emissions per Turbine											
	CTG/HRSG - Nat Gas CTG/HRSG - Syn Gas CTG/HRSG - Co Firing Maximum										
	(g/sec/CT)	(g/sec/CT)	(g/sec/CT)	(g/sec/CT)							
СО	164.9	164.8	164.9	164.9							

Modeling Worst-Case 24 Hour Emission Rate											
	CTG/HRSG - Nat Gas	CTG/HRSG - Syn Gas	CTG/HRSG - Co Firing	Maximum							
	(g/sec/CT)	(g/sec/CT)	(g/sec/CT)	(g/sec/CT)							
SO ₂	0.6	0.86	0.93	0.9							
$PM_{10} = PM_{2.5}$	2.4	2.5	2.5	2.5							

Modeling Annual Average Emission Rate per Turbine											
	CTG/HRSG - Nat Gas	CTG/HRSG - Syn Gas	CTG/HRSG - Co Firing	Maximum							
	(g/sec/CT)	(g/sec/CT)	(g/sec/CT)	(g/sec/CT)							
NO _X	4.3	4.8	4.7	4.8							
со	4.0	3.0	4.3	4.3							
VOC	0.9	0.5	0.9	0.9							
SO ₂	0.6	0.82	0.84	0.8							
$PM_{10} = PM_{2.5}$	2.2	2.4	2.4	2.4							

10/7/2009

Emissions Summary

CTG/HRSG Stack - Natural Gas

Hydrogen Energy, Inc HECA Amendment

CTG Operating Parameters													
Ambient Temperature	UNITS		Winter Minimum - 2	20°F			Yearly Average- 65°F				Summer Maxin	num - 97°F	
CTG Load Level	Percent Load (%)	100%	100%	80%	60%	100%	100%	80%	60%	100%	100%	80%	60%
Evap Cooling Status	off / on	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Duct Burner Status	off / on	On	Off	Off	Off	On	Off	Off	Off	On	Off	Off	Off

Average Emission Rates from CTG (lbs/hr/turbine) - Normal Operation

	UNITS		Winter Minimum -	20°F			Yearly Average- 65°F	Summer Maximum - 97°F					
NO _x (@ 4.0 ppm)	lbm/hr	36.3	29.0	24.8	20.8	35.1	27.0	23.1	19.4	33.3	26.1	22.4	18.7
CO (@ 5.0 ppm)	lbm/hr	27.6	22.1	18.8	15.8	26.7	20.5	17.6	14.8	25.3	19.8	17.0	14.2
VOC (@ 2.0 ppm)	lbm/hr	6.3	5.0	4.3	3.6	6.1	4.7	4.0	3.4	5.8	4.5	3.9	3.2
SO ₂ (@ 12.65 ppmv)	lbm/hr	5.1	4.1	3.5	3.0	4.8	3.8	3.3	2.8	4.7	3.7	3.2	2.7
PM ₁₀ = PM _{2.5}	lbm/hr	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0
NH ₃ (@ 5.0 ppm slip)	lbm/hr	16.7	13.4	11.4	9.6	16.2	12.5	10.7	9.0	15.4	12.1	10.3	8.6
All turbine operating parameters and emissions data	provided by FLUOR based on expected oper	rating parameters											

Startup / Shutdown Emissions from Turbine (1CT)

••••••••••••••••••••••••••••••••••••••												
Cold Sta	rtup			Hot Startup		Shutdown						
180	Max 1-hr.	Total	60	Max 1-hr.	Total	30	Max 1-hr.	Total				
(min. in cold startup)	(lb/hr)	(lb/180min)	(min. in hot startup)	(lb/hr)	(lb/60min)	(min. in shutdown)	(lb/hr)	(lb/30min)				
NO _x	90.7	272.0	NOx	167.0	167.0	NOx	62.0	62.0				
со	1,679.7	5,039.0	со	394.0	394.0	СО	126.0	126.0				
VOC	266.7	800.0	VOC	98.0	98.0	VOC	21.0	21.0				
SO ₂ (@ 12.65 ppmv)	5.1	15.3	SO ₂	5.1	5.1	SO ₂	2.6	2.6				
$PM_{10} = PM_{2.5}$	21.3	64.0	$PM_{10} = PM_{2.5}$	23.0	23.0	$PM_{10} = PM_{2.5}$	5.0	5.0				

All turbine operating parameters and emissions data provided by FLUOR based on expected operating parameters. Startup and shutdown SO₂ emissions will always be lower than normal operation SQ emissions. Startup and shutdown emissions are assumed equal to the normal operations max emission rate.

Average Annual Emissions

			Turbine		
Total Hours of Operation	8,322.0	Pollutant	Emissions	Emissions	Emissions
Total Number of Cold Starts	10.0		lb/yr/CT	ton/yr/CT	g/sec/CT
Cold Start Duration (hr)	3.0	NO _X	296,044.0	148.0	4.3
Total Number of Hot Starts	10.0	СО	277,817.2	138.9	4.0
Hot Start Duration (hr)	1.0	VOC	59,906.8	30.0	0.9
Total Number of Shutdowns	20.0	SO ₂	40,045.4	20.0	0.6
Shutdown Duration (hr)	0.5	$PM_{10} = PM_{2.5}$	149,866.0	74.9	2.2
Duct Burner Operation (hr)	8,272.0	NH ₃	134,158.6	67.1	1.9
Average Normal Operation (hr)	0.0			•	
Assumptions:					
Average annual normal operational emissions are calculated	d using yearly average- 65°F, at 100	% load.			
Duct burner emissions are calculated using yearly average-	65°F, at 100 % load with duct burne	rs.			

ays per year:	365
lours per day:	24
linutes per hour:	60
econds per minute:	60

Emissions Summary

10/7/2009

ers

CTG/HRSG Stack - Natural Gas

Hydrogen Energy, Inc HECA Amendment

First Quarter Emissions (Jan, Feb, Mar)

	0.000.5		Turbine
Total Hours of Operation	2,080.5	Pollutant	Emissions
Total Number of Cold Starts	2.5		lb/yr/CT
Cold Start Duration (hr)	3.0	NO _X	74,011.0
Total Number of Hot Starts	2.5	СО	69,454.3
Hot Start Duration (hr)	1.0	VOC	14,976.7
Total Number of Shutdowns	5.0	SO ₂	10,011.4
Shutdown Duration (hr)	0.5	$PM_{10} = PM_{2.5}$	37,466.5
Duct Burner Operation (hr)	2,068.0	NH ₃	33,539.7
Average Normal Operation (hr)	0.0		
Assumptions:			

Quarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load. Duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Second Quarter Emissions (Apr, May, Jun)

			Turbine	
Total Hours of Operation	2,080.5	Po	ollutant Emissions	Emissions
Total Number of Cold Starts	2.5		lb/yr/CT	ton/yr/CT
Cold Start Duration (hr)	3.0	NO _X	74,011.0	37.0
Total Number of Hot Starts	2.5	СО	69,454.3	34.7
Hot Start Duration (hr)	1.0	VOC	14,976.7	7.5
Total Number of Shutdowns	5.0	SO ₂	10,011.4	5.0
Shutdown Duration (hr)	0.5	PM ₁₀ = F	PM _{2.5} 37,466.5	18.7
Duct Burner Operation (hr)	2,068.0	NH ₃	33,539.7	16.8
Average Normal Operation (hr)	0.0			
Assumptions:				
Quarterly normal operational emissions are calculated using	yearly average- 65°F, at 100 % loa	1.		

Duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Modeling Worst-Case 1 hr Emissions per Turbine

Pollutant	lb/hr/CT	g/sec/CT		
NOx	167.0	21.0		
со	1,679.7	211.6		
SO ₂	5.1	0.6		
Assumptions:				
Startup emissions represent worst case hr for NOx and CO.				
NOx emissions are from hot start				
CO emissions are from cold start				
Calculation assumes that startup and shutdown SO ₂ emissions will always be lower than normal operational SO ₂ emissions.				

Modeling Worst-Case 3 hr Emissions per Turbine

			Emissions	
	hr	emission rate lb/hr	lb/CT	
Total Hours of Operation	3.0			
Startup Duration	0.0		0.0	contribution over 3 hr from start up
Shutdown Duration	0.0		0.0	contribution over 3 hr from shut down
Hours of Normal Operation (burning natural gas)	3.0	5.1	15.3	contribution over 3 hr from normal operation
				_
SO ₂ worst-case 3 hr emissions per turbine	15.3	lb/3 hr		
SO ₂ worst-case 1 hr emissions per turbine	5.1	lb/hr		
SO ₂ modeling worst-case emissions per turbine	0.6	g/sec		
Assumptions:				
Only SO ₂ is considered for an average 3-hour Ambient Air Quality Stand	ard.			
Normal operation assumes max emission rate				
Worst-case 3 hr emissions assumes a total start up of :	0			
Worst-case 3 hr emissions assumes a total shut down of :	0			
Calculation assumes that startup and shutdown SO_2 emissions will always	s be lower than norma	l operational SO ₂ emissions		

Third Quarter Emissions (Jul, Aug, Sep)

Total Hours of Operation	2,080.5
Total Number of Cold Starts	2.5
Cold Start Duration (hr)	3.0
Total Number of Hot Starts	2.5
Hot Start Duration (hr)	1.0
Total Number of Shutdowns	5.0
Shutdown Duration (hr)	0.5
Duct Burner Operation (hr)	2,068.0
Average Normal Operation (hr)	0.0

Assumptions:

Emissions ton/yr/CT 37.0 34.7 7.5 5.0 18.7 16.8

> Quarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load. Duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Fourth Quarter Emissions (Oct, Nov, Dec)

2,080.5	
2.5	
3.0	
2.5	
1.0	
5.0	
0.5	
2,068.0	
0.0	
	2,080.5 2.5 3.0 2.5 1.0 5.0 0.5 2,068.0 0.0

Assumptions:

Quarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % I Duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct bur

Emissions Summary

Pollutant	Turbine Emissions	Emissions
	lb/yr/CT	ton/yr/CT
NO _X	74,011.0	37.0
СО	69,454.3	34.7
VOC	14,976.7	7.5
SO ₂	10,011.4	5.0
$PM_{10} = PM_{2.5}$	37,466.5	18.7
NH ₃	33,539.7	16.8

Pollutant	Turbine Emissions Ib/yr/CT	Emissions ton/yr/CT
NO _X	74,011.0	37.0
со	69,454.3	34.7
VOC	14,976.7	7.5
SO ₂	10,011.4	5.0
$PM_{10} = PM_{2.5}$	37,466.5	18.7
NH ₃	33,539.7	16.8
load. Irners.		

CTG/HRSG Stack - Natural Gas

Hydrogen Energy, Inc HECA Amendment

Modeling Worst-Case 8 hr Emissions per Turbine			-	
	hr	emission rate lb/hr	Emissions Ib/CT	
Total Hours of Operation	8.0			
Startup Duration (cold start)	6.0		10,078.0	contribution over 8 hr from start up
Shutdown Duration	1.5		378.0	contribution over 8 hr from shut down
Hours of Normal Operation (burning natural gas)	0.5	27.6	13.8	contribution over 8 hr from normal operation
CO worst-case 8 hr emissions per turbine	10,469.8	lb/8 hr		
CO worst-case 1 hr emissions per turbine	1,308.7	lb/hr		
CO modeling worst-case emissions per turbine	164.9	g/sec		
Assumptions:				
Only CO is considered for an average 8-hour Ambient Air Quality Stand	ard.			
Normal operation assumes max emission rate				
Worst-case 8 hr emissions assumes a total COLD start up of :	2			
Worst-case 8 hr emissions assumes a total shut down of :	3			

Worst-Case Daily Emissions per Turbine and Modeling Worst-Case 24 Hour Emission Rate

SO ₂ (lb/day/CT)	122.4
SO ₂ (g/s/CT) (burning natural gas)	0.6
PM ₁₀ = PM _{2.5} (lb/day/CT)	
PM ₁₀ = PM _{2.5} (g/s/CT) (burning natural gas)	
Assumptions:	
Only SO_2 and PM are considered for an average 24-hour Ambient Air Qu	ality Standard.
For SO ₂ 24 hrs of normal operation at max emission rate For PM emissions are calculated below assuming startup and shutdown σ	contributions.

Worst-Case Daily Emissions per Turbine and Modeling Worst-Case 24 Hour Emission Rate

Pollutant	Time in Startup hr	Startup Emission Rate Ib/start	Time in Shut Down hr	Shutdown Emission Rate Ib/shutdown	Time in Normal Operation hr	Normal Operation Emission Rate Ib/start	Worst-Case Daily Emissions Ib/day/CT	Modeling Worst- Case 24 Hr Emission g/s/CT
Nox (1 COLD start up and I shut down)	3.0	272.0	0.5	62.0	17.5	36.3	1,426.4	7.5
Nox (2 HOT start ups and 2 shut downs)	2.0	167.0	1.0	62.0				
со	12.0	5,039.0	2.0	126.0	10.0	27.6	20,935.8	
VOC	12.0	800.0	2.0	21.0	10.0	6.3	3,347.0	
SO ₂								_
$PM_{10} = PM_{2.5}$	12.0	64.0	2.0	5.0	10.0	18.0	456.0	2.4
Assumptions: For CO, VOC, and PM emissions are calculated assuming: Worst-case daily emissions assumes a total COLD start up of : Worst-case daily emissions assumes a total shut down of : Remainder of time is spent in normal operation at winter minimum - 20°	4 4 F; 100% load							
For CALPUFF modeling purposes, NOx emissions are calculated assumir Worst-case daily emissions assumes a total COLD start up of : Worst-case daily emissions assumes a total shut down of : Remainder of time is spent in normal operation at winter minimum - 20°	ng: 1 3 F; 100% load	and a total HOT start up of:		2				

Emissions Summary

CTG/HRSG Stack - SynGas

Hydrogen Energy, Inc HECA Amendment

CTG Operating Parameters

Ambient Temperature	ure UNITS Winter Minimum - 20°F Yearly Average- 65°F				Winter Minimum - 20°F				Summer Maxir	num - 97°F			
CTG Load Level	Percent Load (%)	100%	100%	80%	60%	100%	100%	80%	60%	100%	100%	80%	60%
Evap Cooling Status	off / on	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Duct Burner Status	off / on	On	Off	Off	Off	On	Off	Off	Off	On	Off	Off	Off

Average Emission Rates from CTG (lbs/hr/turbine) - Normal Operation

	UNITS		Winter Minin	num - 20°F			Yearly Average- 65°F				Summer Maxin	num - 97°F	
NO _x (@ 4.0 ppm)	lbm/hr		37.2	31.5	26.1	39.7	36.9	31.0	25.6	39.7	38.0	30.9	25.6
CO (@ 3.0 ppm)	lbm/hr		17.0	14.4	11.9	18.1	16.8	14.1	11.7	18.1	17.4	14.1	11.7
VOC (@ 1.0 ppm)	lbm/hr		3.2	2.7	2.3	3.5	3.2	2.7	2.2	3.5	3.3	2.7	2.2
SO ₂ (@ 5.0 ppmv)	lbm/hr		6.1	5.2	4.4	6.8	6.1	5.1	4.3	6.8	6.0	5.1	4.3
$PM_{10} = PM_{2.5}$	lbm/hr		19.8	19.8	19.8	19.8	19.8	19.8	19.8	19.8	19.8	19.8	19.8
NH ₃ (@ 5.0 ppm slip)	lbm/hr		17.2	14.6	12.0	18.4	17.0	14.3	11.8	18.4	17.6	14.3	11.8
All turbine operating parameters and emissions data provided by FLL	turbine operating parameters and emissions data provided by FLUOR based on expected operating parameters.												

Startup / Shutdown Emissions from Turbine (1CT)

Cold Startup		Hot Startup			Shutdown			
180	Max 1-hr.	Total	60	Max 1-hr.	Total	30	Max 1-hr.	Total
(min. in cold startup)	(lb/hr)	(lb/180min)	(min. in hot startup)	(lb/hr)	(lb/60min)	(min. in shutdown)	(lb/hr)	(lb/30min)
NO _X	90.7	272.0	NOx	167.0	167.0	NOx	62.0	62.0
со	1,679.7	5,039.0	со	394.0	394.0	со	126.0	126.0
VOC	266.7	800.0	VOC	98.0	98.0	VOC	21.0	21.0
SO ₂ (@ 12.65 ppmv)	5.1	15.3	SO2	5.1	5.1	SO2	2.6	2.6
$PM_{10} = PM_{2.5}$	21.3	64.0	$PM_{10} = PM_{2.5}$	23.0	23.0	$PM_{10} = PM_{2.5}$	5.0	5.0

All turbine operating parameters and emissions data provided by FLUOR based on expected operating parameters.

CTGs will always be started burning natural gas. Startup and shutdown emission rates above reflect natural gas.

Startup and shutdown SO2 emissions will always be lower than normal operation SO2 emissions. Startup and shutdown emissions are assumed equal to normal operations (burning natural gas) at the max emission rate.

Average Annual Emissions

			Turbine		
Total Hours of Operation	8,322.0	Pollutant	Emissions	Emissions	Emissions
Total Number of Cold Starts	10.0		lb/yr/CT	ton/yr/CT	g/sec/CT
Cold Start Duration (hr)	3.0	NO _X	334,353.0	167.2	4.8
Total Number of Hot Starts	10.0	со	206,919.2	103.5	3.0
Hot Start Duration (hr)	1.0	VOC	37,984.6	19.0	0.5
Total Number of Shutdowns	20.0	SO ₂	56,713.0	28.4	0.8
Shutdown Duration (hr)	0.5	$PM_{10} = PM_{2.5}$	164,755.6	82.4	2.4
Duct Burner Operation (hr)	8,272.0	NH ₃	151,855.7	75.9	2.2
Average Normal Operation (hr)	0.0				•
Assumptions:					
Average annual normal operational emissions are calculated	using yearly average- 65°F, at 100	% load.			
Duct burner emissions are calculated using yearly average- 6	5°F, at 100 % load with duct burner	S.			

Parameters	
Days per year:	
Hours per day:	

Minutes per hour: Seconds per minute:

Emissions Summary

365	
24	
60	
60	

CTG/HRSG Stack - SynGas

Hydrogen Energy, Inc HECA Amendment

First Quarter Emissions (Jan, Feb, Mar)

			Turbine	
Total Hours of Operation	2,080.5	Pollutant	Emissions	Emissions
Total Number of Cold Starts	2.5		lb/yr/CT	ton/yr/CT
Cold Start Duration (hr)	3.0	NO _X	83,588.3	41.8
Total Number of Hot Starts	2.5	CO	51,729.8	25.9
Hot Start Duration (hr)	1.0	VOC	9,496.2	4.7
Total Number of Shutdowns	5.0	SO ₂	14,178.3	7.1
Shutdown Duration (hr)	0.5	$PM_{10} = PM_{2.5}$	41,188.9	20.6
Duct Burner Operation (hr)	2,068.0	NH ₃	37,963.9	19.0
Average Normal Operation (hr)	0.0			
Assumptions:				
Quarterly normal operational emissions are calculated using	yearly average- 65°F, at 100 % load.			
Duct burner emissions are calculated using yearly average-	65°F, at 100 % load with duct burners.			

Second Quarter Emissions (Apr, May, Jun)

			Turbine	
Total Hours of Operation	2,080.5	Pollutant	Emissions	Emissions
Total Number of Cold Starts	2.5		lb/yr/CT	ton/yr/CT
Cold Start Duration (hr)	3.0	NO _X	83,588.3	41.8
Total Number of Hot Starts	2.5	СО	51,729.8	25.9
Hot Start Duration (hr)	1.0	VOC	9,496.2	4.7
Total Number of Shutdowns	5.0	SO ₂	14,178.3	7.1
Shutdown Duration (hr)	0.5	$PM_{10} = PM_{2.5}$	41,188.9	20.6
Duct Burner Operation (hr)	2,068.0	NH ₃	37,963.9	19.0
Average Normal Operation (hr)	0.0			
Assumptions:				
Quarterly normal operational emissions are calculated using	yearly average- 65°F, at 100 % load.			
Duct burner emissions are calculated using yearly average- 6	65°F, at 100 % load with duct burners			

Modeling Worst-Case 1 hr Emissions per Turbine

Pollutant	lb/hr/CT	g/sec/CT				
NOx	167.0	21.0				
со	1,679.7	211.6				
SO ₂	6.8	0.9				
Assumptions:						
Startup emissions represent worst case hr for NOx and CO. Startup and	shutdown only burn natur	al gas.				
NOx emissions are from hot start						
CO emissions are from cold start						
Normal operation burning syngas represents worst case SO ₂ . Calculation assumes that startup and shutdown SO ₂ emissions will always be lower than normal operational (burning						
natural gas) SO ₂ emissions.						

Modeling Worst-Case 3 hr Emissions per Turbine

		Emission Rate	Emissions	
	hr	lb/hr	lb/CT	
Total Hours of Operation	3.0			
Startup Duration	0.0		0.0	contribution over 3 hr from start up
Shutdown Duration	0.0		0.0	contribution over 3 hr from shut down
Hours of Normal Operation (burning syngas)	3.0	6.8	20.5	contribution over 3 hr from normal operation
				-
SO ₂ worst-case 3 hr emissions per turbine	20.5	lb/3 hr		
SO ₂ worst-case 1 hr emissions per turbine	6.8	lb/hr		
SO ₂ modeling worst-case emissions per turbine	0.9	g/sec		
Assumptions:				
Only SO ₂ is considered for an average 3-hour Ambient Air Quality Standa	rd.			
Normal operation burning syngas represents worst case SO 2.				
Worst-case 3 hr emissions assumes a total start up of :	0			
Worst-case 3 hr emissions assumes a total shut down of : Calculation assumes that startup and shutdown SO $_2$ emissions will alway natural gas) SO $_2$ emissions.	0 s be lower than normal	operational (burning		

Third Quarter Emissions (Jul, Aug, Sep)

				Turbine								
Total Hours of Operation	2,080.5		Pollutant	Emissions	Emissions							
Total Number of Cold Starts	2.5			lb/yr/CT	ton/yr/CT							
Cold Start Duration (hr)	3.0	NO _X		83,588.3	41.8							
Total Number of Hot Starts	2.5	CO		51,729.8	25.9							
Hot Start Duration (hr)	1.0	VOC	;	9,496.2	4.7							
Total Number of Shutdowns	5.0	SO ₂		14,178.3	7.1							
Shutdown Duration (hr)	0.5	PM ₁₀	$_{0} = PM_{2.5}$	41,188.9	20.6							
Duct Burner Operation (hr)	2,068.0	NH ₃		37,963.9	19.0							
Average Normal Operation (hr)	0.0			-								
Assumptions:												
Quarterly normal operational emissions are calcul	lated using yearly avera	je- 65°F, at 100 % load.			2uarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load.							

Duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Fourth Quarter Emissions (Oct, Nov, Dec)

Total Usura of Operation	2 090 5		Ballytant	Turbine	Emissiana				
Total Hours of Operation	2,080.5	_	Pollutant	Emissions	Emissions				
Total Number of Cold Starts	2.5			lb/yr/CT	ton/yr/CT				
Cold Start Duration (hr)	3.0		NO _X	83,588.3	41.8				
Total Number of Hot Starts	2.5		со	51,729.8	25.9				
Hot Start Duration (hr)	1.0		VOC	9,496.2	4.7				
Total Number of Shutdowns	5.0		SO ₂	14,178.3	7.1				
Shutdown Duration (hr)	0.5		$PM_{10} = PM_{2.5}$	41,188.9	20.6				
Duct Burner Operation (hr)	2,068.0	1	NH ₃	37,963.9	19.0				
Average Normal Operation (hr)	0.0				•				
Assumptions:									
Quarterly normal operational emissions are calcu	lated using yearly avera	ge- 65°F, at 100 % loa	d.						
Duct burner emissions are calculated using yearl	uct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.								

Emissions Summary

CTG/HRSG Stack - SynGas

Hydrogen Energy, Inc HECA Amendment

	hr	Emission Rate Ib/hr	Emissions Ib/CT	
Total Hours of Operation	8.0			
Startup Duration	6.0		10,078.0	contribution over 8 hr from start up
Shutdown Duration	1.5		378.0	contribution over 8 hr from shut down
Hours of Normal Operation (burning syngas)	0.5	18.1	9.1	contribution over 8 hr from normal operation
CO worst-case 8 hr emissions per turbine	10,465.1	lb/8 hr		
CO worst-case 1 hr emissions per turbine	1,308.1	lb/hr		
CO modeling worst-case emissions per turbine	164.8	g/sec		
Assumptions:				
Only CO is considered for an average 8-hour Ambient Air Quality Stand	ard.			
Normal operation assumes max rate.				
Worst-case 8 hr emissions assumes a total COLD start up of :	2			
Worst-case 8 hr emissions assumes a total shut down of :	3			

Worst-Case Daily Emissions per Turbine and Modeling Worst-Case 24 Hour Emission Rate

163.8
0.9
475.2
2.5
Quality Standard.

Worst-Case Daily Emissions per Turbine and Modeling Worst-Case 24 Hour Emission Rate

Pollutant	Time in Startup hr	Startup Emission Rate Ib/start	Time in Shut Down hr	Shutdown Emission Rate Ib/shutdown	Time in Normal Operation hr	Normal Operation Emission Rate Ib/start	Worst-Case Daily Emissions Ib/day/CT	Modeling Worst- Case 24 Hr Emission g/s/CT
NOx	12.0	272.0	2.0	62.0	10.0	39.7	1,733.4	
со	12.0	5,039.0	2.0	126.0	10.0	18.1	20,841.4	
VOC	12.0	800.0	2.0	21.0	10.0	3.5	3,318.6	
SO ₂ PM ₁₀ = PM _{2.5}								
Assumptions:								
For NOx, CO, and VOC emissions are calculated assuming:								
Worst-case daily emissions assumes a total start up of :	4							
Worst-case daily emissions assumes a total shut down of :	4							
Remainder of time is spent in normal operation at max emission rate See above calculation for worst-case daily SO $_2$ and PM: calculated as 24	hrs of normal operationa	t max emissions rate						

Emissions Summary

CTG/HRSG Stack - Co Firing

Hydrogen Energy, Inc HECA Amendment

CTG Operating Parame

Ambient Temperature	UNITS		Winter Minim	um - 20°F			Yearly Average- 65°F				Summer Maxin
CTG Load Level	Percent Load (%)	100%	100%	80%	60%	100%	100%	80%	60%	100%	100%
Evap Cooling Status	off / on	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Duct Burner Status	off / on	On	Off	Off	Off	On	Off	Off	Off	On	Off

Average Emission Rates from CTG (lbs/hr/turbine) - Normal Operation

	UNITS		Winter Minin	num - 20°F		Yearly Average- 65°F				Summer Maximum - 97°F		
IO _x (@ 4.0 ppm)	lbm/hr	41.3	34.0		38.7	31.7						
:O (@ 5.0 ppm)	lbm/hr	31.4	25.9		29.4	24.1						
OC (@ 2.0 ppm)	lbm/hr	7.2	5.9		6.7	5.5						
O2 (@ 6.7 ppmv, average) (12.65 ppm duct firing)	lbm/hr	7.4	5.2		7.0	4.8						
$M_{10} = PM_{2.5}$	lbm/hr	19.8	19.8		19.8	19.8						
IH ₃ (@ 5.0 ppm slip) Ibm/hr 19.1		15.7		17.9	14.6							
Il turbine operating parameters and emissions data provided by FLUOR based on expected operating parameters.		5.0659										

Co-firing emissions are controlled at the same amount as natural gas.

Startup / Shutdown Emissions from Turbine (1CT)

Cold Startup			Hot Startup			Shutdown		
180	Max 1-hr.	Total	60	Max 1-hr.	Total	30	Max 1-hr.	Total
(min. in cold startup)	(lb/hr)	(lb/180min)	(min. in hot startup)	(lb/hr)	(lb/60min)	(min. in shutdown)	(lb/hr)	(lb/30min)
NO _X	90.7	272.0	NOx	167.0	167.0	NOx	62.0	62.0
co	1,679.7	5,039.0	CO	394.0	394.0	со	126.0	126.0
VOC	266.7	800.0	VOC	98.0	98.0	VOC	21.0	21.0
SO ₂ (@ 12.65 ppmv)	5.1	15.3	SO2	5.1	5.1	SO2	2.6	2.6
PM ₁₀ = PM _{2.5}	21.3	64.0	$PM_{10} = PM_{2.5}$	23.0	23.0	$PM_{10} = PM_{2.5}$	5.0	5.0

All turbine operating parameters and emissions data provided by FLUOR based on expected operating parameters.

CTGs will always be started burning natural gas. Startup and shufdown emission rates above refer that and gas. CTGs will always be started burning natural gas. Startup and shufdown emission rates above refer that and gas. Startup and shufdown SQ emissions will always be lower than normal operation SQ emissions. Startup and shufdown emissions are assumed equal to normal operations (burning natural gas) at the max emission rate.

Average Annual Emissions

			Turbine		
otal Hours of Operation	8,322.0	Pollutant	Emissions	Emissions	Emissions
otal Number of Cold Starts	10.0		lb/yr/CT	ton/yr/CT	g/sec/CT
Cold Start Duration (hr)	3.0	NO _X	325,712.3	162.9	4.7
otal Number of Hot Starts	10.0	CO	300,390.9	150.2	4.3
lot Start Duration (hr)	1.0	VOC	65,066.5	32.5	0.9
otal Number of Shutdowns	20.0	SO ₂	58,357.9	29.2	0.8
Shutdown Duration (hr)	0.5	$PM_{10} = PM_{2.5}$	164,755.6	82.4	2.4
Ouct Burner Operation (hr)	8,272.0	NH ₃	147,864.1	73.9	2.1
verage Normal Operation (hr)	0.0				
ssumptions:					

Parameters								
Days per year:	365							
Hours per day:	24							
Minutes per hour:	60							
Seconds per minute:	60							

Average annual normal operational emissions are calculated using yearly average- 65°F, at 100 % load. Duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Emissions Summary

10/7/2009

in	imum - 97°F							
	80%	60%						
	N/A	N/A						
	Off	Off						
CTG/HRSG Stack - Co Firing

Hydrogen Energy, Inc HECA Amendment

First Quarter Emissions (Jan, Feb, Mar)

			Turbine	
Total Hours of Operation	2,080.5	Pollutant	Emissions	Emissions
Total Number of Cold Starts	2.5		lb/yr/CT	ton/yr/CT
Cold Start Duration (hr)	3.0	NO _X	81,428.1	40.7
Total Number of Hot Starts	2.5	со	75,097.7	37.5
Hot Start Duration (hr)	1.0	VOC	16,266.6	8.1
Total Number of Shutdowns	5.0	SO ₂	14,589.5	7.3
Shutdown Duration (hr)	0.5	$PM_{10} = PM_{2.5}$	41,188.9	20.6
Duct Burner Operation (hr)	2,068.0	NH ₃	36,966.0	18.5
Average Normal Operation (hr)	0.0			
Assumptions:				
• • • • • • • • • • • • • • • • • •				

Quarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load. Duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Second Quarter Emissions (Apr, May, Jun)

			Turbine	
Total Hours of Operation	2,080.5	Pollutant	Emissions	Emissions
Total Number of Cold Starts	2.5		lb/yr/CT	ton/yr/CT
Cold Start Duration (hr)	3.0	NO _x	81,428.1	40.7
Total Number of Hot Starts	2.5	со	75,097.7	37.5
Hot Start Duration (hr)	1.0	VOC	16,266.6	8.1
Total Number of Shutdowns	5.0	SO ₂	14,589.5	7.3
Shutdown Duration (hr)	0.5	$PM_{10} = PM_{2.5}$	41,188.9	20.6
Duct Burner Operation (hr)	2,068.0	NH ₃	36,966.0	18.5
Average Normal Operation (hr)	0.0			
Assumptions:				

Quarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load. Duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Modeling Worst-Case 1 hr Emissions per Turbine

Pollutant	lb/hr/CT	g/sec/CT
NOx	167.0	21.0
со	1,679.7	211.6
SO ₂	7.4	0.93
Assumptions:		

Startup emissions represent worst case hr for NOx and CO. Startup and shutdown only burn natural gas. NOx emissions are from hot start

D emissions are from cold start

Normal operation co firing represents worst case SQ always be lower than normal operational (burning natural gas) S_2

issions.

Third Quarter Emissions (Jul, Aug, Sep)

otal Hours of Operation	2,080.5		Pollutant	Turbine Emissions
otal Number of Cold Starts	2.5			lb/yr/CT
Cold Start Duration (hr)	3.0		NO _X	81,428.1
otal Number of Hot Starts	2.5]	со	75,097.7
lot Start Duration (hr)	1.0		VOC	16,266.6
otal Number of Shutdowns	5.0		SO ₂	14,589.5
Shutdown Duration (hr)	0.5		$PM_{10} = PM_{2.5}$	41,188.9
Ouct Burner Operation (hr)	2,068.0		NH ₃	36,966.0
verage Normal Operation (hr)	0.0			

Assumptions: Quarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load. Duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Fourth Quarter Emissions (Oct, Nov, Dec)

Total Hours of Operation	2,080.5		Pollutant	Emissions
Total Number of Cold Starts	2.5			lb/yr/CT
Cold Start Duration (hr)	3.0	NO _X		81,428.1
Total Number of Hot Starts	2.5	со		75,097.7
Hot Start Duration (hr)	1.0	VOC		16,266.6
Total Number of Shutdowns	5.0	SO ₂		14,589.5
Shutdown Duration (hr)	0.5	PM ₁₀	= PM _{2.5}	41,188.9
Duct Burner Operation (hr)	2,068.0	NH ₃		36,966.0
Average Normal Operation (hr)	0.0			

Quarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load. Duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Emissions Summary

10/7/2009

Emissions ton/yr/CT
40.7
37.5
8.1
7.3
20.6
18.5

Emissions
ton/yr/CT
40.7
37.5
8.1
7.3
20.6
18.5

CTG/HRSG Stack - Co Firing

Hydrogen Energy, Inc HECA Amendment

Modeling Worst-Case 3 hr Emissions per Turbine

	hr	emission rate lb/hr	Emissions Ib/CT]
Fotal Hours of Operation	3.0			
Startup Duration	0.0		0.0	contribution over 3 hr from start up
Shutdown Duration	0.0		0.0	contribution over 3 hr from shut down
Hours of Normal Operation (co firing)	3.0	7.4	22.1	contribution over 3 hr from normal operation
				_
SO ₂ worst-case 3 hr emissions per turbine	22.1	lb/3 hr		
SO ₂ worst-case 1 hr emissions per turbine	7.4	lb/hr		
SO ₂ modeling worst-case emissions per turbine	0.9	g/sec		
Assumptions:				
Only SO2 is considered for an average 3-hour Ambient Air Quality Stand	lard.			
Normal operation co firing represents worst case SQ				
Vorst-case 3 hr emissions assumes a total start up of :	0			
Vorst-case 3 hr emissions assumes a total shut down of : lways be lower than normal operational (burning natural gas) $S_{\rm z}$ missions.	0			

Modeling Worst-Case 8 hr Emissions per Turbine

		emission rate	Emissions	
	hr	lb/hr	lb/CT	
Total Hours of Operation	8.0		_	
Startup Duration	6.0		10,078.0	contribution over 8 hr from start up
Shutdown Duration	1.5		378.0	contribution over 8 hr from shut down
Hours of Normal Operation (co firing)	0.5	31.4	15.7	contribution over 8 hr from normal operation
				_
CO worst-case 8 hr emissions per turbine	10,471.7	lb/8 hr		
CO worst-case 1 hr emissions per turbine	1,309.0	lb/hr		
CO modeling worst-case emissions per turbine	164.9	g/sec		
Assumptions:				
Only CO is considered for an average 8-hour Ambient Air Quality Sta	ndard.			
Normal operation assumes max rate.				
Worst-case 8 hr emissions assumes a total COLD start up of :	2			
Worst-case 8 hr emissions assumes a total shut down of :	3			

worst-Case Daily Emissions per Turbine and Modeli	ng worst-Case 24	Hour Emission
SO ₂ (lb/day/CT)	177.2	

SO2 (g/s/CT) (co firing)	0.9			
PM ₁₀ = PM _{2.5} (Ib/day/CT)	475.2			
PM ₁₀ = PM _{2.5} (g/s/CT) (cofiring)	2.5			
Assumptions:				
Only SO ₂ and PM are considered for an average 24-hour Ambient Air Quality Standard.				
For SO ₂ 24 hrs of normal operation max emission rate				
For PM 24 hrs of normal operation max emission rate				

Worst-Case Daily Emissions per Turbine and Modeling Worst-Case 24 Hour Emission Rate

Pollutant	Time in Startup hr	Startup Emission Rate Ib/start	Time in Shut Down hr	Shutdown Emission Rate Ib/shutdown	Time in Normal Operation hr	Normal Operation Emission Rate Ib/start	Worst-Case Daily Emissions Ib/day/CT	Modeling Worst- Case 24 Hr Emission g/s/CT
NOx	12.0	272.0	2.0	62.0	10.0	41.3	1,748.8	
CO	12.0	5,039.0	2.0	126.0	10.0	31.4	20,974.1	
VOC	12.0	800.0	2.0	21.0	10.0	7.2	3,355.8	
SO ₂ PM ₁₀ = PM _{2.5}	_							
Assumptions:								
For NOx, CO, and VOC emissions are calculated assuming:								
Worst-case daily emissions assumes a total start up of :	4							
Worst-case daily emissions assumes a total shut down of :	4							

VYUD3Y-Gase dany emissions assumes a lotal SNUT GWM of : 4 Remainder of time is specific in normal operation at max emission rate See above calculation for worst-case daily SQ and PM: calculated as 24 hrs of normal operationat max emissions rate

Emissions Summary

Auxiliary Boiler

Hydrogen Energy, Inc HECA Amendment

Auxiliary Boiler - Annual Operating Emissions

Total Hours of Operation	2,190	hr/yr
Firing Rate	142	MMBtu/hr

Hours per Qtr			
Q2	Q3	Q4	
547.5	547.5	547.5	
	Hours Q2 547.5	Hours per Qtr Q2 Q3 547.5 547.5	

Assuming equal operation in each quarter

Auxiliary Boiler Emission Factors

NOx (low NOx burner and flue gas recirculation, 9 ppmvd (3% O2))	0.011	lb/MMBtu
CO (50 ppmvd (3% O2))	0.037	lb/MMBtu
VOC	0.004	lb/MMBtu
SO ₂ (12.65 ppmv total sulfur in pipeline natural gas)	0.00204	lb/MMBtu
$PM_{10} = PM_{2.5}$	0.005	lb/MMBtu

Auxiliary Boiler Pollutant Emission Rates

		Auxiliary Boiler Emissions			
Pollutant	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr
NOx	1.56	37.49	3,420.78	0.43	1.7
СО	5.25	126.10	11,506.26	1.44	5.8
VOC	0.57	13.63	1,243.92	0.16	0.6
SO ₂	0.29	6.96	635.09	0.08	0.3
$PM_{10} = PM_{2.5}$	0.71	17.04	1,554.90	0.19	0.8

Emissions Summary

Auxiliary Boiler

Hydrogen Energy, Inc HECA Amendment

Modeling Worst-Case 1 hr Emissions

NOx (g/sec)	0.2
CO (g/sec)	0.7
SO ₂ (g/sec)	0.04

Only NOx, CO, and SO₂ are considered for an average 1-hour Ambient Air Quality Standard.

Modeling Worst-Case 3 hr Emissions

SO ₂ (lb/3-hr)	0.87
SO ₂ (g/sec)	0.04

Only SO₂ is considered for an average 3-hour Ambient Air Quality Standard.

Modeling Worst-Case 8 hr Emissions

CO (lb/8-hr)	42.03
CO (g/sec)	0.7

Only CO is considered for an average 8-hour Ambient Air Quality Standard.

Modeling Worst-Case 24 Hour Emissions

SO ₂ (lb/24-hr)	6.96
SO ₂ (g/sec)	0.04
$PM_{10} = PM_{2.5} (Ib/24-hr)$	17.04
$PM_{10} = PM_{2.5} (g/sec)$	0.09

Only SO₂ and PM are considered for an average 24-hour Ambient Air Quality Standard.

Modeling Annual Average Emissions

NOx (g/sec)	0.05
CO (g/sec)	0.2
VOC (g/sec)	0.02
SO ₂ (g/sec)	0.01
$PM_{10} = PM_{2.5} (g/sec)$	0.02

Parameters

Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

Emissions Summary

Gasification Flare

Hydrogen Energy, Inc

HECA Amendment

Gasification Flare - Normal Operating Emissions From Pilot

Total Hours of Operation	8,760	hr/yr
Gasification Flare Pilot Fuel Use =	0.5	MMBtu/hr

Hours per Qtr				
Q1	Q2	Q3	Q4	
2190	2190	2190	2190	

Pilot Pollutant Emission Factors

NOx (lb/MMBtu, HHV)	0.12
CO (lb/MMBtu, HHV)	0.08
VOC (lb/MMBtu, HHV)	0.0013
SO ₂ (lb/MMBtu, HHV) (12.65 ppm)	0.002
VOC (lb/MMBtu, HHV)	0.0013
$PM_{10} = PM_{2.5}$ (lb/MMBtu, HHV)	0.003

Assuming equal operation in each quarter

Pilot Pollutant Emission Rates

		Pilot Emissions					
Pollutant	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr		
NOx	0.060	1.44	525.60	0.07	0.26		
СО	0.040	0.96	350.40	0.04	0.18		
VOC	0.001	0.02	5.69	0.0007	0.003		
SO ₂	0.001	0.02	8.94	0.0011	0.004		
$PM_{10} = PM_{2.5}$	0.002	0.04	13.14	0.00	0.007		

Emissions Summary

Revised Appendix D1-2_100709.xls

Gasification Flare

Hydrogen Energy, Inc HECA Amendment

Gasification Flare - Operating Emissions During Gasifier Startup and Shutdown

Total Flare SU/SD Operation	115,500	MMBtu/yr
Wet Unshifted Gas Heat Rate	900	MMBtu/hr
Dry Shifted Gas Heat Rate	768	MMBtu/hr
Approximate Operating Hours (wet)	96	hr/yr
Approximate Operating Hours (dry)	38	hr/yr
Startup and shutdown flared gas scenario		

	Startup and	shutdown	flared	gas	scenario	
--	-------------	----------	--------	-----	----------	--

Total	115,500	MMBtu/yr	(approx 75% unshifted)
Gasifier hot restarts =	25,000	MMBtu/yr (12 events)	(assume 100% unshifted)
Gasifier outages =	60,000	MMBtu/yr (24 events)	(assume 100% unshifted)
Plant shutdown =	500	MMBtu/yr (1 event)	(assume 100% unshifted)
Cold plant startup =	30,000	MMBtu/yr (1 event)	(assume 20% unshifted)

SU/SD Flare Pollutant Emission Factors

NOx (lb/MMBtu, HHV)	0.07
CO (lb/MMBtu, HHV) (wet)	1.00
CO (lb/MMBtu, HHV) (dry)	0.37
VOC (lb/MMBtu, HHV)	0
SO ₂ (lb/MMBtu, HHV)	0
$PM_{10} = PM_{2.5}$ (lb/MMBtu, HHV)	0

SU/SD Flare Pollutant Emission Rates

	SU/SD Flare Emissions						
Pollutant	lb/hr (wet)	lb/hr (dry)	% Wet	% Dry	lb/hr (wet/dry)	ton/qtr (wet/dry)	ton/yr (wet/dry)
NOx	63.0	53.8	75.0%	25.0%	60.70	1.01	4.04
со	900.0	284.3	75.0%	25.0%	746.08	12.16	48.65
VOC	0	0	0	0	0	0	0
SO ₂	0	0	0	0	0	0	0
$PM_{10} = PM_{2.5}$	0	0	0	0	0	0	0

Total emissions are determined based on the fractional amount of wet and dry gas burned.

Emissions Summary

Gasification Flare

Hydrogen Energy, Inc HECA Amendment

Total Gasification Flare Emissions

	Emissions			
Pollutant	Pilot (ton/yr)	SU/SD (ton/yr)	Total (ton/qtr)	Total (ton/yr)
NOx	0.26	4.04	1.08	4.3
СО	0.18	48.65	12.21	48.8
VOC	0.003	0.00	0.001	0.003
SO ₂	0.004	0.00	0.001	0.004
$PM_{10} = PM_{2.5}$	0.01	0.00	0.002	0.01

Modeling Worst-Case 1 hr Emissions

NOx (g/sec)	7.9
CO (g/sec)	113.4
SO ₂ (g/sec)	0.0001

Only NOx, CO, and SO₂ are considered for an average 1-hour Ambient Air Quality Standard.

NOx and CO rates are taken from the SU/SD flaring events

SO₂ rate is from pilot operation

Modeling Worst-Case 3 hr Emissions

SO ₂ (lb/3-hr)	0.003
SO ₂ (g/sec)	0.0001

Only SO_2 is considered for an average 3-hour Ambient Air Quality Standard. SO_2 pounds per 3-hr assumes three (3) hours of pilot operation.

Modeling Worst-Case 8 hr Emissions

CO (lb/8-hr)	7,200.00
CO (g/sec)	113.4

Only CO is considered for an average 8-hour Ambient Air Quality Standard. Pounds per 8-hr assumes eight (8) hours of SU/SD flaring events.

Parameters

Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

Emissions Summary

Gasification Flare

Hydrogen Energy, Inc HECA Amendment

Modeling Worst-Case 24 Hour Emissions

SO ₂ (lb/24-hr)	0.02
SO ₂ (g/sec)	0.0001
$PM_{10} = PM_{2.5} (Ib/24-hr)$	0.04
$PM_{10} = PM_{2.5} (g/sec)$	0.0002

Only SO₂ and PM are considered for an average 24-hour Ambient Air Quality Standard. Pounds per 24-hr assumes 24 hours of pilot operation.

Modeling Annual Average Emissions

NOx (g/sec)	0.1
CO (g/sec)	1.4
VOC (g/sec)	0.0001
SO ₂ (g/sec)	0.0001
$PM_{10} = PM_{2.5} (g/sec)$	0.0002

Pounds per year assumes contributions from both pilot operation and SU/SD flaring

Emissions Summary

SRU Flare

Emissions Summary

10/7/2009

Hydrogen Energy, Inc

HECA Amendment

SRU Flare - Normal Operating Emissions from Pilot

Total Hours of Operation	8,760	hr/yr
SRU Flare Pilot Firing Rate	0.3	MMBtu/hr

·			
	Hours	s per Qtr	
Q1	Q2	Q3	Q4
2190	2190	2190	2190

Pilot Pollutant Emission Factors

NOx (lb/MMBtu, HHV)	0.12
CO (lb/MMBtu, HHV)	0.08
VOC (lb/MMBtu, HHV)	0.0013
SO ₂ (lb/MMBtu, HHV) (12.65 ppm)	0.002
$PM_{10} = PM_{2.5}$ (lb/MMBtu, HHV)	0.003

Assuming equal operation in each quarter

		Pilot Emissions			
Pollutant	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr
NOx	0.036	0.86	315.36	0.04	0.2
СО	0.024	0.58	210.24	0.03	0.1
VOC	0.0004	0.01	3.42	0.0004	0.002
SO ₂	0.0006	0.01	5.37	0.0007	0.003
$PM_{10} = PM_{2.5}$	0.0009	0.02	7.88	0.00	0.004

SRU Flare

Hydrogen Energy, Inc

HECA Amendment

Emissions Summary

10/7/2009

SRU - Operating Emissions During Gasifier Startup a	and Shutdown	l			
Natural Gas Heat Rate (assist gas)	36.0	MMBtu/hr			
Approximate Operating Hours	6.0	hr/yr	approximately	2	events
Control efficiency of scrubber =	99.62%				
Acid gas lb/hr SO2 =	4,600	lb/hr scrubbed SO2=	17.3		
SU/SD Flare Pollutant Emission Factors					
NOx (lb/hr)	4.32				
CO (lb/hr)	2.88				
VOC (lb/hr)	0.05				
SO ₂ (lb/hr) from natural gas	0.07				
SO ₂ (lb/hr) from sour flaring	17.33				
$PM_{10} = PM_{2.5}(lb/hr)$	0.11				
Natural gas emissions are the same as those listed for the pilot multipl	lied by the heat rat	e of the assist gas			
SU/SD Flare Pollutant Emission Rates		SU/9	D Flare Emissio	ne	
Pollutant	lb/hr	lb/dav	lb/vr	ton/atr	ton/vr
NOx	4.32	13.0	25.9	0.00324	0.0130
со	2.88	8.6	17.3	0.00216	0.0086
VOC	0.05	0.1	0.3	0	0.0001
SO ₂	17.41	52.2	104.4	0.01	0.0522
$PM_{10} = PM_{2.5}$	0.11	0.3	0.6	0	0.0003

SRU Flare - Total Annual Emissions

	Emissions			
Pollutant	Pilot (ton/yr)	SU/SD (ton/yr)	Total (ton/qtr)	Total (ton/yr)
NOx	0.16	0.0130	0.04	0.2
со	0.11	0.0086	0.03	0.1
VOC	0.002	0.0001	0.000	0.002
SO ₂	0.003	0.05	0.014	0.1
$PM_{10} = PM_{2.5}$	0.004	0.0003	0.001	0.004

SRU Flare

Hydrogen Energy, Inc HECA Amendment

Modeling Worst-Case 1 hr Emissions

NOx (g/sec)	0.544
CO (g/sec)	0.363
SO ₂ (g/sec)	2.19

Only NOx, CO, and SO2 are considered for an average 1-hour Ambient Air Quality Standard. NOx, CO, and SO2 one (1) hr rates are from taken from the SU/SD flaring events

Modeling Worst-Case 3 hr Emissions

SO ₂ (lb/3-hr)	52.22
SO ₂ (g/sec)	2.19

Only SO_2 is considered for an average 3-hour Ambient Air Quality Standard. Pounds per 3-hr assumes aproximately 3 hours (1 event) from SU/SD flaring.

Modeling Worst-Case 8 hr Emissions

CO (lb/8-hr)	8.76
CO (g/sec)	0.138

Only CO is considered for an average 8-hour Ambient Air Quality Standard.

Pounds per 8-hr assumes aproximately 3 hours (1 event) from SU/SD flaring and the remainder in pilot operation.

Modeling Worst-Case 24 Hour Emissions

SO ₂ (lb/24-hr)	52.23
SO ₂ (g/sec)	0.27
$PM_{10} = PM_{2.5} (Ib/24-hr)$	0.34
$PM_{10} = PM_{2.5} (g/sec)$	0.0018

Only SO₂ and PM are considered for an average 24-hour Ambient Air Quality Standard.

SO2 and PM pounds per 24-hr assume aproximately 3 hours (1 event) from SU/SD flaring and the remainder in pilot operation.

Modeling Annual Average Emissions

NOx (g/sec)	0.005
CO (g/sec)	0.003
VOC (g/sec)	0.00005
SO ₂ (g/sec)	0.002
$PM_{10} = PM_{2.5} (g/sec)$	0.0001

Pounds per year assumes contributions from both pilot operation and SU/SD flaring

Parameters

Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

Emissions Summary

Rectisol Flare

Г

Hydrogen Energy, Inc HECA Amendment

Rectisol - Normal Operating Emissions from Pilot

Total Hours of Operation	8,760	hr/yr
Rectisol Flare Pilot Firing Rate	0.3	MMBtu/hr

Pilot Pollutant Emission Factors

NOx (lb/MMBtu, HHV)	0.12
CO (lb/MMBtu, HHV)	0.08
VOC (Ib/MMBtu, HHV)	0.0013
SO ₂ (lb/MMBtu, HHV) (12.65 ppm)	0.002
$PM_{10} = PM_{2.5}$ (lb/MMBtu, HHV)	0.003

Hours per Qtr Q1 Q2 Q3 Q4 2190 2190 2190 2190

Assuming equal operation in each quarter

Pilot Pollutant Emission Rates

	Pilot Emissions				
Pollutant	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr
NOx	0.036	0.86	315.36	0.04	0.2
со	0.024	0.58	210.24	0.03	0.1
VOC	0.0004	0.01	3.42	0.0004	0.002
SO ₂	0.0006	0.01	5.37	0.0007	0.003
$PM_{10} = PM_{2.5}$	0.0009	0.02	7.88	0.00	0.004

Emissions Summary

Rectisol Flare

Hydrogen Energy, Inc HECA Amendment

Rectisol Flare - Total Annual Emissions

Pollutant	Emissions		
	Pilot (ton/yr)	Total (ton/qtr)	Total (ton/yr)
NOx	0.16	0.04	0.2
со	0.11	0.03	0.1
VOC	0.002	0.000	0.002
SO ₂	0.003	0.001	0.003
$PM_{10} = PM_{2.5}$	0.004	0.001	0.004

Modeling Worst-Case 1 hr Emissions

NOx (g/sec)	0.005
CO (g/sec)	0.003
SO ₂ (g/sec)	0.0001

Only NOx, CO, and SO2 are considered for an average 1-hour Ambient Air Quality Standard.

NOx, CO, and SO2 one (1) hr rates are from taken from the natural gas pilot emissions

Modeling Worst-Case 3 hr Emissions

SO ₂ (lb/3-hr)	0.0018
SO ₂ (g/sec)	0.0001

Only SO₂ is considered for an average 3-hour Ambient Air Quality Standard.

Pounds per 3-hr assumes aproximately 3 hours the natural gas pilot emissions.

Parameters

Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

10/7/2009

Emissions Summary

Rectisol Flare

Hydrogen Energy, Inc HECA Amendment

Modeling Worst-Case 8 hr Emissions

CO (lb/8-hr)	0.19
CO (g/sec)	0.003

Only CO is considered for an average 8-hour Ambient Air Quality Standard. Pounds per 8-hr assumes aproximately 8 hours of pilot operation.

Modeling Worst-Case 24 Hour Emissions

SO ₂ (lb/24-hr)	0.01
SO ₂ (g/sec)	0.0001
$PM_{10} = PM_{2.5} (Ib/24-hr)$	0.02
$PM_{10} = PM_{2.5} (g/sec)$	0.0001

Only SO₂ and PM are considered for an average 24-hour Ambient Air Quality Standard.

SO₂ and PM pounds per 24-hr assume aproximately 32 hoursof pilot operation.

Modeling Annual Average Emissions

NOx (g/sec)	0.005
CO (g/sec)	0.003
VOC (g/sec)	0.00005
SO ₂ (g/sec)	0.0001
$PM_{10} = PM_{2.5} (g/sec)$	0.0001

Pounds per year assumes contributions from both pilot operation and SU/SD flaring

Emissions Summary

Tail Gas Thermal Oxidizer

Hydrogen Energy, Inc HECA Amendment

Thermal Oxidizer - Process Vent Disposal Emissions

Total Hours of Operation	8,760	hr/yr
Thermal Oxidizer Firing Rate	10	MMBtu/hr

Hours per Qtr				
Q1	Q2	Q3	Q4	
2190	2190	2190	2190	

Assuming equal operation in each quarter

Process Vent Gas Pollutant Emission Factors			
NOx (lb/MMBtu, HHV)	0.24		
CO (Ib/MMBtu, HHV)	0.20		
VOC (lb/MMBtu, HHV)	0.0070		
SO ₂ (lb/MMBtu, HHV)	See Below		
$PM_{10} = PM_{2.5}$ (lb/MMBtu, HHV)	0.008		

Assume an allowance of 2 lb/hr SO₂ emission to account for sulfur in the various vent streams plus fuel.

Process Vent Gas Pollutant Emission Rates

	Process Vent Gas Emissions				
Pollutant	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr
NOx	2.40	57.60	21,024.00	2.63	10.5
со	2.00	48.00	17,520.00	2.19	8.8
VOC	0.07	1.68	613.20	0.0767	0.3
SO ₂	2.00	48.00	17,520.00	2.1900	8.8
$PM_{10} = PM_{2.5}$	0.08	1.92	700.80	0.09	0.4

Assume an allowance of 2 lb/hr SO₂ emission to account for sulfur in the various vent streams plus fuel.

Emissions Summary

Tail Gas Thermal Oxidizer

Hydrogen Energy, Inc HECA Amendment

Г

Thermal Oxidizer - SRU Startup Waste Gas Disposal

Total Hours of Operation	300	hr/yr
Thermal Oxidizer Firing Rate	10	MMBtu/hr

SRU Startup Waste Gas Disposal Emission Factors

NOx (lb/MMBtu, HHV)	0.24
CO (lb/MMBtu, HHV)	0.20
VOC (Ib/MMBtu, HHV)	0.007
SO ₂ (lb/MMBtu, HHV) (12.65 ppm)	0.002
$PM_{10} = PM_{2.5}$ (lb/MMBtu, HHV)	0.008

75 75 Assuming equal operation in each quarter

Q1

Hours per Qtr

Q3

75

Q2

SRU Startup Waste Gas Disposal Pollutant Emission Rates						
Pollutant		SRU Startup Waste Gas Disposal Emissions				
	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr	
NOx	2.40	57.60	720.00	0.09	0.36	
со	2.00	48.00	600.00	0.08	0.30	
VOC	0.07	1.68	21.00	0.003	0.011	
SO ₂	0.02	0.49	6.17	0.001	0.003	
$PM_{10} = PM_{2.5}$	0.08	1.92	24.00	0.003	0.012	

Thermal Oxidizer - Total Annual Emissions

	Emissions				
Pollutant	Vent (ton/yr)	SU/SD (ton/yr)	Total (ton/qtr)	Total (ton/yr)	
NOx	10.51	0.36	2.72	10.9	
со	8.76	0.30	2.27	9.1	
VOC	0.31	0.011	0.08	0.3	
SO ₂	8.76	0.003	2.19	8.8	
$PM_{10} = PM_{2.5}$	0.35	0.012	0.09	0.4	

10/7/2009

Q4

75

Emissions Summary

Tail Gas Thermal Oxidizer

Hydrogen Energy, Inc HECA Amendment

Modeling Worst-Case 1 hr Emissions

NOx (g/sec)	0.6
CO (g/sec)	0.50
SO ₂ (g/sec)	0.25

Only NOx, CO, and SO_2 are considered for an average 1-hour Ambient Air Quality Standard.

NOx, CO, and SO₂ one (1) hr rates include contributions from both process venting and SRU startup.

Modeling Worst-Case 3 hr Emissions

SO ₂ (lb/3-hr)	6.06
SO ₂ (g/sec)	0.3

Only SO2 is considered for an average 3-hour Ambient Air Quality Standard.

SO₂ pounds per 3-hr assumes three (3) hours of oxidation from both process venting and SRU startup.

Modeling Worst-Case 8 hr Emissions

CO (lb/8-hr)	32.00
CO (g/sec)	0.5

Only CO is considered for an average 8-hour Ambient Air Quality Standard.

Pounds per 8-hr assumes eight (8) hours of oxidation from both process venting and SRU startup.

Modeling Worst-Case 24 Hour Emissions

SO ₂ (lb/24-hr)	48.49
SO ₂ (g/sec)	0.3
$PM_{10} = PM_{2.5} (lb/24-hr)$	3.84
$PM_{10} = PM_{2.5} (g/sec)$	0.02

Only SO_2 and PM are considered for an average 24-hour Ambient Air Quality Standard. Pounds per 24-hr assumes 24 hours of oxidation from both process venting and SRU startup.

Modeling Annual Average Emissions

NOx (g/sec)	0.3
CO (g/sec)	0.26
VOC (g/sec)	0.01
SO ₂ (g/sec)	0.3
$PM_{10} = PM_{2.5} (g/\text{sec})$	0.01

Pounds per year assumes all contributions from annual waste gas oxidation and periodic SRU startup.

Parameters

Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

Emissions Summary

Revised Appendix D1-2_100709.xls

Gasifier Warming

Hydrogen Energy, Inc HECA Amendment

Gasifier Warming Emissions - Normal Operation

Total Hours of Operation	1,800	hr/yr
Gasifier Firing Rate	18	MMBtu/hr
Gasifier Pollutant Emission Factors		
NOx (lb/MMBtu, HHV)	0.11	
CO (lb/MMBtu, HHV)	0.09	
VOC (Ib/MMBtu, HHV)	0.007	

			Hours	per Qtr	
		Q1	Q2	Q3	Q4
		450	450	450	450
		Assuming equ	al operation in	each quarter	
S	ifier Emissi	ons			
	lb/yr	ton/qtr	ton/yr		
	3,564.00	0.45	1.8		
	2,916.00	0.36	1.5		
	226.00	0.02	0 1		

Г

Gasifier Pollutant Emission Rates

SO₂ (lb/MMBtu, HHV) (12.65 ppm)

 $PM_{10} = PM_{2.5}$ (Ib/MMBtu, HHV)

	Gasifier Emissions				
Pollutant	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr
NOx	1.98	47.52	3,564.00	0.45	1.8
со	1.62	38.88	2,916.00	0.36	1.5
VOC	0.13	3.02	226.80	0.03	0.1
SO ₂	0.04	0.88	66.10	0.01	0.0
$PM_{10} = PM_{2.5}$	0.14	3.46	259.20	0.03	0.1

0.002

0.008

Please Note That There Are Three Gassifiers; However, Under Normal Operations, Only One Operates At A Time.

Emissions Summary

Gasifier Warming

Hydrogen Energy, Inc HECA Amendment

Modeling Worst-Case 1 hr Emissions

NOx (g/sec)	0.2
CO (g/sec)	0.2
SO ₂ (g/sec)	0.0046

Only NOx, CO, and SO₂ are considered for an average 1-hour Ambient Air Quality Standard.

NOx, CO, and SO₂ one (1) hr rates assume normal operation.

Modeling Worst-Case 3 hr Emissions

SO ₂ (lb/3-hr)	0.11
SO ₂ (g/sec)	0.0046

Only SO₂ is considered for an average 3-hour Ambient Air Quality Standard.

 SO_2 pounds per 3-hr assumes three (3) hours of normal operation.

Modeling Worst-Case 8 hr Emissions

CO (lb/8-hr)	12.96
CO (g/sec)	0.2

Only CO is considered for an average 8-hour Ambient Air Quality Standard. Pounds per 8-hr assumes eight (8) hours of normal operation.

Modeling Worst-Case 24 Hour Emissions

SO ₂ (lb/24-hr)	0.88
SO ₂ (g/sec)	0.0046
$PM_{10} = PM_{2.5} (Ib/24-hr)$	3.46
$PM_{10} = PM_{2.5} (g/sec)$	0.02

Only SO_2 and PM are considered for an average 24-hour Ambient Air Quality Standard. Pounds per 24-hr assumes 24 hours of normal operation.

Parameters

Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

Emissions Summary

10/7/2009

31 of 49

Gasifier Warming

Hydrogen Energy, Inc HECA Amendment

Modeling Annual Average Emissions

NOx (g/sec)	0.1
CO (g/sec)	0.0419
VOC (g/sec)	0.0033
SO ₂ (g/sec)	0.0010
$PM_{10} = PM_{2.5} (g/sec)$	0.0037

Pounds per year assumes 1,800 hours of annual normal operation.

Emissions Summary

Cooling Towers

Hydrogen Energy, Inc HECA Amendment

Cooling Towers - Annual Operating Emissions

Total Hours of Operation	8,322	hr/yr			Hours	per Qtr	
				Q1	Q2	Q3	Q4
				2080.5	2080.5	2080.5	2080
Cooling Tower Operating Parameters				Assuming equal op	eration in each qua	arter	
	Power Block	Process Area	ASU	Ва	sis		
Cooling water (CW) circulation rate, gpm	175,000	42,300	40,200	Typical plant pe	erformance		
CW circulation rate (million lb/hr)	88	21	20				
CW dissolved solids (ppmw)	9,000	9,000	9,000	(See note)		1	
		4	,	· · · · ·			
Drift, fraction of circulating CW	0.0005%	0.0005%	0.0005%	Expected BAC		DM10 amir	
Drift, fraction of circulating CW Note: Assumed 9,000 ppm TDS in circulating cooling water. Circul proportionately. Cooling Tower PM ₁₀ Emissions	0.0005% ating water could range	0.0005% from 1200 to 90,000 p	0.0005% pm TDS dependin	Expected BAC	- uality and tower op	Deration. PM10 emis	ssions woul
Drift, fraction of circulating CW Note: Assumed 9,000 ppm TDS in circulating cooling water. Circul proportionately. Cooling Tower PM ₁₀ Emissions	0.0005% ating water could range	0.0005% from 1200 to 90,000 p Cooling 1 Ib/day	0.0005% pm TDS dependin <u>Fower PM₁₀ En</u> Ib/yr	Expected BAC g on makeup water of nissions ton/qtr	uality and tower op	beration. PM10 emis	ssions woul
Drift, fraction of circulating CW Note: Assumed 9,000 ppm TDS in circulating cooling water. Circul proportionately. Cooling Tower PM ₁₀ Emissions Power Block Cooling Tower PM ₁₀ Emissions	0.0005% ating water could range	0.0005% from 1200 to 90,000 p Cooling T Ib/day 94.50	0.0005% pm TDS dependin Fower PM ₁₀ En Ib/yr 32,767.88	Expected BAC g on makeup water q nissions ton/qtr 4.10	uality and tower op ton/yr 16.38	peration. PM10 emis	ssions woul
Drift, fraction of circulating CW Note: Assumed 9,000 ppm TDS in circulating cooling water. Circul proportionately. Cooling Tower PM ₁₀ Emissions Power Block Cooling Tower PM ₁₀ Emissions Process Area Cooling Tower PM ₁₀ Emissions	0.0005% ating water could range Ib/hr 3.94 0.95	0.0005% from 1200 to 90,000 p Cooling 1 Ib/day 94.50 22.84	0.0005% ppm TDS dependin Fower PM ₁₀ En Ib/yr 32,767.88 7,920.46	Expected BAC g on makeup water of nissions ton/qtr 4.10 0.99	ton/yr 16.38 3.96	peration. PM10 emis	ssions woul

Emissions Summary

Cooling Towers

Hydrogen Energy, Inc HECA Amendment

Total Cooling Tower PM₁₀ Emissions

	(ton/yr)
PM ₁₀	24.11
PM _{2.5}	14.46

PM_{2.5} emission factors were determined by multiplying PM₁₀ numbers by a "PM_{2.5} fraction of PM₁₀" value. Fractional values for PM_{2.5} were taken from the SCAQMD guidance: Final - Methodology to Calculate PM_{2.5} and PM_{2.5} Significance Thresholds, October 2006: Appendix A - Updated CEIDARS Table with PM_{2.5} Fractions.

Modeling Worst-Case 24 Hour Emissions	Power Block	Process Area	ASU
Cells per Cooling Tower	13	4	4
PM ₁₀ (lb/24-hr)	94.50	22.84	21.71
PM ₁₀ (g/sec/cell)	0.038	0.030	0.028
PM _{2.5} (lb/24-hr)	56.70	13.71	13.02
PM _{2.5} (g/sec/cell)	0.023	0.018	0.017

Parameters		
Days per year:	365	
Hours per day:	24	
Minutes per hour:	60	
Seconds per minute:	60	

PM is considered for an average 24-hour Ambient Air Quality Standard.

Pounds per 24-hr assumes 24 hours of continual operation.

Modeling Worst-Case Annual Emissions	Power Block	Process Area	ASU
Cells per Cooling Tower	13	4	4
PM ₁₀ (ton/yr)	16.38	3.96	3.76
PM ₁₀ (g/sec/cell)	0.036	0.028	0.027
PM _{2.5} (lb/24-hr)	9.830	2.376	2.258
PM _{2.5} (g/sec/cell)	0.022	0.017	0.016

PM is considered for an annual average Ambient Air Quality Standard.

Assumes continual annual operation.

Emissions Summary

Emergency Diesel Generators

Hydrogen Energy, Inc

HECA Amendment

Emergency Generator - Expected Emergency Operation and Maintenance

Total Hours of Operation 50	hr/yr
Generator Specification 2,800	Bhp

Generator Pollutant Emission Factors (per generator)

NOx (g/Bhp/hr)	0.50
CO (g/Bhp/hr)	0.29
VOC (g/Bhp/hr)	0.11
SO ₂ (g/Bhp/hr)	N/A
$PM_{10} = PM_{2.5} (g/Bhp/hr)$	0.03

12.5 12.5 12.5

Q2

Hours per Qtr

Q3

Assuming equal operation in each quarter

Q1

	Generator Emissions				
Pollutant	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr
NOx	3.09	6.17	154.32	0.02	0.1
СО	1.79	3.58	89.51	0.01	0.04
VOC	0.68	1.36	33.95	0.00	0.02
SO ₂	0.03	0.06	1.40	0.00	0.001
$PM_{10} = PM_{2.5}$	0.16	0.32	8.02	0.00	0.00
Fuel sulfur content =	15	ppmw	Pounds per day as	sumes two (2) hours	of operation for

lb SO₂/1000 gal

gal/hr

0.20

140.00

Please note that there are two generators; all emissions are shown for individual generators

Modeling Worst-Case 1 hr Emissions (per generator)

NOx (g/sec)	0.4
CO (g/sec)	0.2
SO ₂ (g/sec)	0.004

Only NOx, CO, and SO₂ are considered for an average 1-hour Ambient Air Quality Standard.

Parameters	
Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

 SO_2 emissions =

Fuel flow

Emissions Summary 10/7/2009

Q4

12.5

Emergency Diesel Generators

Hydrogen Energy, Inc HECA Amendment

Modeling Worst-Case 3 hr Emissions (per generator)

Ŭ	 <u> </u>	/
SO ₂ (lb/3-hr)		0.06
SO ₂ (g/sec)		0.002

Only SO₂ is considered for an average 3-hour Ambient Air Quality Standard. Pounds per 3-hr assumes two (2) hours of operation.

Modeling Worst-Case 8 hr Emissions (per generator)

CO (lb/8-hr)	3.58
CO (g/sec)	0.06

Only CO is considered for an average 8-hour Ambient Air Quality Standard. Pounds per 8-hr assumes two (2) hours of operation.

Modeling Worst-Case 24 Hour Emissions (per generator)

SO ₂ (lb/24-hr)	0.06
SO ₂ (g/sec)	0.0003
$PM_{10} = PM_{2.5} (lb/24-hr)$	0.32
$PM_{10} = PM_{2.5} \text{ (g/sec)}$	0.002

Only SO₂ and PM are considered for an average 24-hour Ambient Air Quality Standard. Pounds per 24-hr assumes two (2) hours of operation.

Modeling Annual Average Emissions (per generator)

NOx (g/sec)	0.002
CO (g/sec)	0.001
VOC (g/sec)	0.000
SO ₂ (g/sec)	0.00002
$PM_{10} = PM_{2.5} (g/sec)$	0.0001

Pounds per year assumes 50 hours of operation.

Emissions Summary

Emergency Diesel Firewater Pump

Hydrogen Energy, Inc HECA Amendment

Fire Water Pump - Expected Emergency Operation and Maintenance

Total Hours of Operation	100	hr/yr
Fire Water Pump Specification	556	Bhp

Fire Water Pump Pollutant Emission Factors

NOx (g/Bhp/hr)	1.50
CO (g/Bhp/hr)	2.60
VOC (g/Bhp/hr)	0.14
SO ₂ (g/Bhp/hr)	N/A
$PM_{10} = PM_{2.5} (g/Bhp/hr)$	0.015

Hours per Qtr Q3 Q1 Q2 Q4 25 25 25 25

Assuming equal operation in each quarter

Fire Water Pump Pollutant Emission Rates

Pollutant		Fire Water Pump Emissions			
	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr
NOx	1.84	3.68	183.86	0.02	0.1
CO	3.19	6.37	318.69	0.04	0.2
VOC	0.17	0.34	17.16	0.00	0.01
SO ₂	0.01	0.01	0.56	0.0001	0.0003
$PM_{10} = PM_{2.5}$	0.02	0.04	1.84	0.00	0.00
Fuel sulfur content =	15	15 ppmw Pounds per day assumes two (2) hours of operation for			

 SO_2 emissions =

Fuel flow

0.20

lb SO₂/1000 gal

28.00 gal/hr **Emissions Summary**

Emergency Diesel Firewater Pump

Hydrogen Energy, Inc HECA Amendment

Modeling Worst-Case 1 hr Emissions

NOx (g/sec)	0.2
CO (g/sec)	0.4
SO ₂ (g/sec)	0.0007

Only NOx, CO, and SO₂ are considered for an average 1-hour Ambient Air Quality Standard

Modeling Worst-Case 3 hr Emissions

SO ₂ (lb/3-hr)	0.01
SO ₂ (g/sec)	0.0005

Only SO_2 is considered for an average 3-hour Ambient Air Quality Standard. Pounds per 3-hr assumes two (2) hours of operation.

Modeling Worst-Case 8 hr Emissions

CO (lb/8-hr)	6.37
CO (g/sec)	0.1

Only CO is considered for an average 8-hour Ambient Air Quality Standard. Pounds per 8-hr assumes two (2) hours of operation.

10/7/2009

Emissions Summary

Parameters

Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

Emergency Diesel Firewater Pump

Hydrogen Energy, Inc HECA Amendment

Modeling Worst-Case 24 Hour Emissions

SO ₂ (lb/24-hr)	0.01
SO ₂ (g/sec)	0.0001
$PM_{10} = PM_{2.5} (Ib/24-hr)$	0.04
$PM_{10} = PM_{2.5} (g/sec)$	0.0002

Only SO₂ and PM are considered for an average 24-hour Ambient Air Quality Standard. Pounds per 24-hr assumes two (2) hours of operation.

Modeling Annual Average Emissions

NOx (g/sec)	0.003
CO (g/sec)	0.005
VOC (g/sec)	0.0002
SO ₂ (g/sec)	0.00001
$PM_{10} = PM_{2.5} (g/sec)$	0.00003

Pounds per year assumes 100 hours of operation.

Emissions Summary

Hydrogen Energy, Inc HECA Amendment

Intermittent CO₂ Vent - Venting Operation

Total Days of Operation	21	day/yr
Total Hours of Operation	504	hr/yr
Total Flow	656,000	lb/hr
Total Flow	15,150	lbmol/hr

Hours per Qtr				
Q1	Q2	Q3	Q4	
5.25	5.25	5.25	5.25	

Assuming equal operation in each quarter

Vent Gas Pollutant Emission Factors

CO (ppmv)	1000	
VOC (ppmv)	40]
H ₂ S (ppmv)	10	1
Molecular weight	•	-
H ₂ S	34	lb/lbmol
СО	28	lb/lbmol
VOC	16	lb/lbmol

Vent Gas Pollutant Emission Rates

	Vent Gas Emissions					
Pollutant	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr	
со	424.20	10,180.88	213,798.43	26.72	106.9	
VOC	9.70	232.71	4,886.82	0.61	2.4	
H ₂ S	5.15	123.62	2,596.12	0.32	1.3	

Intermittent CO₂ Vent

Emissions Summary

10/7/2009

Revised Appendix D1-2_100709.xls

Intermittent CO₂ Vent

Hydrogen Energy, Inc HECA Amendment

Modeling Worst-Case 1 hr Emissions

CO (g/sec)	53.4
H ₂ S (g/sec)	0.6

Only H_2S and CO are considered for an average 1-hour Ambient Air Quality Standard. H_2S and CO one (1) hr rates assume normal venting operation.

Modeling Worst-Case 8 hr Emissions

CO (lb/8-hr)	3,393.63
CO (g/sec)	53.4

Only CO is considered for an average 8-hour Ambient Air Quality Standard.

Pounds per 8-hr assumes eight (8) continuous hours of venting.

Modeling Annual Average Emissions

CO	3.1
VOC	0.1
H2S	0.0

Pounds per year assumes normal venting averaged over the entire year.

Parameters

Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

Emissions Summary

10/7/2009

41 of 49

Feedstock - Dust Collection

Hydrogen Energy, Inc HECA Amendment

Operation

Total Hours of Operation	8,760	hr/yr				Hours per Qtr			
						Q1	Q2	Q3	Q4
						2190	2190	2190	2190
						Assuming equal	operation in each c	luarter	
	Dust	Max Feed	Air Flow to	Max Collector	Emission	Max 24-	hr Average	Annua	I Average
	Collector	Handling	Collector	PM Emission	Factor	Feed Rate	PM Emission	Feed Rate	PM Emission
Description	No.	Rate (ton/hr)	(acfm)	Rate (lb/hr)	(lb/ton)	(ton/hr)	(lb/hr)	(ton/hr)	(lb/hr)
Truck Unloading	DC-1	900	6,467	0.277	0.00031	775	0.239	150	0.046
Coke/coal Silos (filling)	DC-2	900	16,376	0.702	0.00078	775	0.604	150	0.117
Mass Flow Bins (in/out)	DC-3	170	7,620	0.327	0.00192	170	0.327	150	0.288
Coke/coal Silos (loadout)	DC-4	170	4,872	0.209	0.00123	170	0.209	150	0.184
Crusher Inlet/Outlet	DC-5	170	4,673	0.200	0.00118	170	0.200	150	0.177
Fluxant Bins (filling)	DC-6	100	1.234	0.053	0.00053	40	0.021	6	0.003

Maximum dust collector PM emission rate based on expected supplier guarantee of 0.005 grain/scf outlet dust loading.

The maximum 24-hr feed rate to the gasifiers is limited by the grinding mill capacity.

Duct Collector Emission Rates

		Collector Emissions					
Pollutant	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr		
Dust Collecter 1 (DC-1)	0.24	5.73	404.65	0.05	0.2		
Dust Collecter 2 (DC-2)	0.60	14.50	1,024.67	0.13	0.5		
Dust Collecter 3 (DC-3)	0.33	7.84	2,524.21	0.32	1.3		
Dust Collecter 4 (DC-4)	0.21	5.01	1,613.90	0.20	0.8		
Dust Collecter 5 (DC-5)	0.20	4.81	1,547.98	0.19	0.8		
Dust Collecter 6 (DC-6)	0.02	0.51	27.80	0.00	0.0		

Pounds per hour and pounds per day calculated based on the maximum 24-hr average emission rate.

Pounds per year calculated based on the annual average emission rate.

	lb/yr ton/qtr		ton/yr	
PM ₁₀	7,143.2	0.9	3.6	
PM _{2.5}	2085.8	0.3	1.0	

PM_{2.5} emission factors were determined by multiplying PM₁₀ numbers by a "PM_{2.5} fraction of PM₁₀" value. Fractional values for PM_{2.5} were taken from the SCAQMD guidance: Final - Methodology to Calculate PM_{2.5} and PM_{2.5} Significance Thresholds, October 2006: Appendix A - Updated CEIDARS Table with PM_{2.5} Fractions.

Emissions Summary

Feedstock - Dust Collection

Hydrogen Energy, Inc HECA Amendment

Parameters

Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

Modeling Worst-Case 24 Hour Emissions	DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
PM ₁₀ (lb/day)	5.73	14.50	7.84	5.01	4.81	0.51
PM ₁₀ (g/sec)	0.030	0.076	0.041	0.026	0.025	0.003
PM _{2.5} (lb/24-hr)	1.673	4.235	2.289	1.463	1.404	0.148
PM _{2.5} (g/sec)	0.009	0.022	0.012	0.008	0.007	0.001

PM is considered for an average 24-hour Ambient Air Quality Standard.

Pounds per hour calculated based on the maximum 24-hr average emission rate.

Modeling Annual Average Emissions	DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
PM ₁₀ (lb/yr)	404.65	1,024.67	2,524.21	1,613.90	1,547.98	27.80
PM ₁₀ (g/sec)	0.006	0.015	0.036	0.023	0.022	0.000
PM _{2.5} (lb/24-hr)	118.158	299.204	737.068	471.259	452.010	8.117
PM _{2.5} (g/sec)	0.002	0.004	0.011	0.007	0.007	0.000

Pounds per year calculated based on the annual average emission rate.

Emissions Summary

Emissions Summary

10/7/2009

Hydrogen Energy, Inc HECA Amendment

GHG emissions are numerically depicted as metric tons (tonne) of carbon dioxide equivalents (CO₂e). CO₂e represents CO₂ plus the additional warming potential from CH₄ and N₂O. CH₄ and N₂O have 21 and 310 times the warming potential of CO₂, respectively.

Natural Gas GHG Emission Factors				Diesel GHG Emission Factors						
$CO_2 =$	52.78	kg/MMBtu =	116.36	lb/MMBtu	CO ₂ =	=	10.15	kg/gal =	22.38	lb/gal
$CH_4 =$	0.0059	kg/MMBtu =	0.013	lb/MMBtu	CH ₄ =	=	0.0003	kg/gal =	0.001	lb/gal
$N_2O =$	0.0001	kg/MMBtu =	0.00022	lb/MMBtu	N ₂ O =	=	0.0001	kg/gal =	0.0002	lb/gal

CO₂, CH₄, and N₂O emission factors are taken from Appendix C of the California Climate Action Registry (CCAR) General Reporting Protocol Version 2.2 (March 2007)

HRSG Stack - Burning Natural Gas

Operating Ho	urs	876	hr/yr			
HRSG Heat I	nput	1,998	MMBtu/hr			
			_	_		
$CO_2 =$	92,403	tonne/yr			_	
CH ₄ =	10	tonne/yr =	217	tonne CO2e/yr		
$N_2O =$	0.18	tonne/yr =	54	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr =	92,674

Startup and shutdown of the HRSG will be accomplished using natural gas. The total operating hours, including startup and shutdown, are estimated at 876 hr/yr for the worst-case greenhouse gas emissions from natural gas combustion. The total startup and shutdown duration are estimated at 50 hr/yr for the worst-case criteria pollutant emissions.

HRSG heat input rate is assumed to be the maximum heat input rate firing natural gas, which corresponds to winter minimum (20 F).

HRSG Stack - Burning Hydrogen-Rich Fuel

Operating Ho	urs	7,446	hr/yr		Syngas GHG Emission Factors		
HRSG Heat Ir	nput	2,432	432 MMBtu/hr CO ₂ = 2		28.1	lb/MMBtu	
$CO_2 =$	230,735	tonne/yr			Total to	nne CO ₂ e/yr =	230,735

Startup and shutdown of the HRSG will be accomplished using natural gas. The total operating hours, including startup and shutdown, are estimated at 876 hr/yr for the worst-case greenhouse gas emissions from natural gas combustion. The total startup and shutdown duration are estimated at 50 hr/yr for the worst-case criteria pollutant emissions.

HRSG heat input rate is assumed to be the maximum heat input rate firing Hydrogen-rich Fuel, which corresponds to winter minimum (20 F).

Hydrogen Energy, Inc HECA Amendment

GHG emissions are numerically depicted as metric tons (tonne) of carbon dioxide equivalents (CO₂e). CO₂e represents CO₂ plus the additional warming potential from CH₄ and N₂O. CH₄ and N₂O have 21 and 310 times the warming potential of CO₂, respectively.

Auxiliary Boiler

Operating Ho	urs	2,190	hr/yr			
HRSG Heat I	nput	142	MMBtu/hr			
				_		
$CO_2 =$	16,418	tonne/yr			_	
$CH_4 =$	2	tonne/yr =	39	tonne CO2e/yr		
$N_2O =$	0.03	tonne/yr =	10	tonne CO2e/yr	Total tonne CO ₂ e/yr =	16,466

Emergency Generators

Operating Ho	urs	50	hr/yr			
HRSG Heat I	nput	2,800	Bhp]		
$CO_2 =$	3,201	lb/hr =	73	tonne CO ₂ /yr		
$CH_4 =$	0.09	lb/hr =	0.045	tonne CO2e/yr		
$N_2O =$	0.03	lb/hr =	0.2218	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr* =	146

The following conversions were used to convert from lb/gallon to lb/hp-hour; and then multiplying by the rated horsepower rating: 1 gallon/137,000 Btu; and 7,000 Btu/hp-hour.

* Total tonnes CO₂e per year represent the contributions from both generators.

Fire Water Pump

Operating Ho	urs	100	hr/yr			
HRSG Heat Ir	nput	556	Bhp]		
$CO_2 =$	636	lb/hr =	29	tonne CO ₂ /yr		
$CH_4 =$	0.02	lb/hr =	0.018	tonne CO2e/yr		
$N_2O =$	0.01	lb/hr =	0.0881	tonne CO2e/yr	Total tonne CO ₂ e/yr =	29

The following conversions were used to convert from lb/gallon to lb/hp-hour; and then multiplying by the rated horsepower rating: 1 gallon/137,000 Btu; and 7,000 Btu/hp-hour.

45 of 49

Emissions Summary

Hydrogen Energy, Inc HECA Amendment

GHG emissions are numerically depicted as metric tons (tonne) of carbon dioxide equivalents (CO₂e). CO₂e represents CO₂ plus the additional warming potential from CH₄ and N₂O. CH₄ and N₂O have 21 and 310 times the warming potential of CO₂, respectively.

Gasification Flare

Pilot Operation	on			_		
Operating Hou	urs	8,760	hr/yr]		
HRSG Heat Ir	nput	0.5	MMBtu/hr			
				-		
CO ₂ =	231	tonne/yr				
$CH_4 =$	0.03	tonne/yr =	0.5	tonne CO2e/yr		
$N_2O =$	0.0004	tonne/yr =	0.1	tonne CO2e/yr	Total tonne CO ₂ e/yr =	232
Flaring Event	ts					
Total Operation	on	115,500	MMBtu/yr			
				-		
CO ₂ =	6,098	tonne/yr				
$CH_4 =$	0.7	tonne/yr =	14	tonne CO2e/yr		
$N_2O =$	0.01	tonne/yr =	4	tonne CO2e/yr	Total tonne CO ₂ e/yr =	6,116

GHG emissions from flaring events are conservatively estimated using GHG emission factors for natural gas combustion.

Emissions Summary 10/7/2009

Hydrogen Energy, Inc HECA Amendment

GHG emissions are numerically depicted as metric tons (tonne) of carbon dioxide equivalents (CO₂e). CO₂e represents CO₂ plus the additional warming potential from CH₄ and N₂O. CH₄ and N₂O have 21 and 310 times the warming potential of CO₂, respectively.

SRU Flare						
Pilot Operati	on					
Operating Ho	ours	8,760	hr/yr]		
HRSG Heat I	nput	0.3	MMBtu/hr]		
		1	1			
$CO_2 =$	139	tonne/yr				
$CH_4 =$	0.02	tonne/yr =	0.3	tonne CO2e/yr		
$N_2O =$	0.0003	tonne/yr =	0.08	tonne CO2e/yr	Total tonne CO ₂ e/yr =	139
Flaring Even	its (assist gas	5)		-		
Operating Ho	ours	6	hr/yr	_		
HRSG Heat I	nput	36	MMBtu/hr]		
<u> </u>			1			
$CO_2 =$	11	tonne/yr				
$CH_4 =$	0.001	tonne/yr =	0.03	tonne CO ₂ e/yr		
N ₂ O =	0.00002	tonne/yr =	0.007	tonne CO2e/yr	Total tonne CO ₂ e/yr =	11
Throughput	(inerts)					
$H_2S =$	(25	%	7		
CO ₂ (inerts) =	:	75	%			
$H_2S =$		72	lbmol/hr	1		
CO ₂ (inerts) =	-	216	lbmol/hr	1		
CO ₂ (inerts) =	-	9,488	lb/hr			
Operating Ho	ours	6	hr/yr]		
					Total tonne CO₂e/vr =	26
1						

GHG emissions from flaring events are conservatively estimated using GHG emission factors for natural gas combustion.

Throughtput (inerts) amount calculated from the relationship of CO2 to H2S in the SRU Flare.

Emissions Summary

Hydrogen Energy, Inc HECA Amendment

> GHG emissions are numerically depicted as metric tons (tonne) of carbon dioxide equivalents (CO₂e). CO₂e represents CO₂ plus the additional warming potential from CH₄ and N₂O. CH₄ and N₂O have 21 and 310 times the warming potential of CO₂, respectively.

Rectisol Flare

Pilot Operat	ion					
Operating Ho	perating Hours 8,760		hr/yr]		
HRSG Heat Input		0.3	MMBtu/hr			
			_	_		
CO ₂ =	139	tonne/yr				
$CH_4 =$	0.02	tonne/yr =	0.3	tonne CO2e/yr		
$N_2O =$	0.0003	tonne/yr =	0.08	tonne CO2e/yr	Total tonne CO ₂ e/yr =	139
	-	-	-	-		

GHG emissions from flaring events are conservatively estimated using GHG emission factors for natural gas combustion.

Tail Gas Thermal Oxidizer

Process Ven	t Disposal En	nissions				
Operating Ho	urs	8,760	hr/yr]		
HRSG Heat Input		10	MMBtu/hr]		
$CO_2 =$	4,625	tonne/yr				
$CH_4 =$	0.52	tonne/yr =	10.9	tonne CO2e/yr		
$N_2O =$	0.0088	tonne/yr =	2.7	tonne CO2e/yr	Total tonne CO ₂ e/yr =	4,638
SRU Startup	Waste Gas D	isposal		_		
Operating Ho	urs	300	hr/yr			
HRSG Heat II	nput	10	MMBtu/hr			
				_		
CO ₂ =	158	tonne/yr				
$CH_4 =$	0.018	tonne/yr =	0.37	tonne CO2e/yr		
N ₂ O =	0.00030	tonne/yr =	0.093	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr =	159

GHG emissions from flaring events are conservatively estimated using GHG emission factors for natural gas combustion.

10/7/2009

48 of 49
GHG Emissions Summary by Source

Hydrogen Energy, Inc HECA Amendment

GHG emissions are numerically depicted as metric tons (tonne) of carbon dioxide equivalents (CO₂e). CO₂e represents CO₂ plus the additional warming potential from CH₄ and N₂O. CH₄ and N₂O have 21 and 310 times the warming potential of CO₂, respectively.

Intermittent CO₂ Vent

Operating Hours	504	hr/yr
CO ₂ Emission Rate	656,000	lb/hr

Assumes 21 days per year venting at full rate.

Gasifier Warming

Operating Hours		1,800	hr/yr			
HRSG Heat Input		18	MMBtu/hr			
CO ₂ =	1,711	tonne/yr				
$CH_4 =$	0	tonne/yr =	4	tonne CO2e/yr		
$N_2O =$	0.00	tonne/yr =	1	tonne CO2e/yr	Total tonne CO ₂ e/yr =	1,716

Total tonne CO ₂ e/yr =	503,237

10/7/2009

October 19, 2009

Rod Jones Project Manager California Energy Commission 1516 Ninth Street Sacramento, CA 95814

On behalf of Hydrogen Energy International LLC, the applicant for the Hydrogen Energy California Revised AFC, we are pleased to submit the enclosed documents:

- One print copy of the October 2009 Amendment to Prevention of Significant Deterioration Permit Application, and a DVD containing revised air quality modeling files, which were submitted to the US Environmental Protection Agency on October 7, 2009;
- One print copy of the October 2009 Amendment to the Authority to Construct Permit Application, and a DVD containing revised air quality and public health modeling files, which were submitted to the San Joaquin Valley Air Pollution Control District on October 7, 2009.

URS Corporation

1/ has

Dale Shileikis Vice President, Project Manager

Enclosures

cc: Greg Skannal, HEI, w/out enclosure

URS Corporation 221 Main Street, Suite 600 San Francisco, CA 94105 Tel: 415.869.5858 Fax: 415.882.9261 www.urscorp.com

J:\HECA-2\ATC_PSD\Transmittal_RJones_19 Oct 2009.doc

RE: Hydrogen Energy California Revised AFC CEC Docket No. 08-AFC-8

October 7, 2009

Leonard Scandura Permit Services Manager San Joaquin Valley Air Pollution Control District Southern Regional Office 34946 Flyover Court Bakersfield, CA 93308

Subject: Submittal of Amendment to the Application for Authority to Construct – Hydrogen Energy California SJVAPCD Project S-1093741

Dear Mr. Scandura:

Hydrogen Energy International LLC (HEI) proposes to modify the nominally rated 250 (approximate) net megawatt (MW) integrated gasification combined cycle power generation unit proposed at a greenfield site in Kern County, California. The attached document is an Amendment to the Authority to Construct / Permit to Operate Application to the San Joaquin Valley Air Pollution Control District (SJVAPCD) for the "HECA" project.

The Applicant is modifying the Project to eliminate the auxiliary combustion turbine generator (CTG) and demonstrate its emissions of particulates less than 2.5 microns in diameter ($PM_{2.5}$) will be below the 100 tons per year (tpy) $PM_{2.5}$ Air Quality Standard threshold.

An Amendment to the Revised Application for Certification for this unit was filed with the California Energy Commission dated September 2009 (Docket # 08-AFC-8). An Amendment to the Prevention of Significant Deterioration (PSD) application will be filed with the Environmental Protection Agency, Region IX.

The enclosed application amendment includes supporting information, as well as a DVD containing electronic copies of revised air quality and public health modeling input and output files. Please contact Gregory Skannal, HEI at (562) 276-1511 or Mark Strehlow at (510) 874-3055 if you have any questions or require additional information.

Page 2 of 2

Sincerely, heyon 67

Gregory D. Skannal Manager, HSSE Hydrogen Energy International LLC

Attachment: Application

Copy: Mark Strehlow, URS California Energy Commission