Electric Vehicle Infrastructure

Market Readiness Support

DOCKET

09-ALT-1

DATE OCT 12 2009 RECD OCT 15 2009

10/12/09

Bill Boyce Sacramento Municipal Utility District

SMUD's Leadership in EV Infrastructure

- SMUD has been actively installing EV Chargers Since 1991
 - •Began Working With Electrical Vehicle Infrastructure Inc. in 1992 on Conductive Chargers
 - •1994: Market Studies on Public Acceptance
 - •1995: Began installing inductive chargers
 - •1999: Acquired Magne Charge / General Motors Charger Contract
 - Installation contractor network in California and Arizona
 - Responsible for approximately 1900 charger installations
 - Clean Fuel Connections Inc. primary contractor
- •SMUD's continuing activities regarding public infrastructure
 - Coordinated activities with local EV Driver's Association
 - •42 EV Charging sites still active (Total of 119 Chargers)
 - •61 conductive chargers
 - •33 small paddle inductive
 - •25 large paddle inductive

Historical Average Infrastructure Installation Cost

•Level 2 Residential installations avera	nged \$4000 per charger
 Charger (Inductive with \$500 incentive 	e) \$1900
•Installation labor	\$1177
•Permits	\$ 150
Other Mat'ls and freight	\$ 572
•Tax \$	\$ 193

 Level 2 Commercial installations averaged 	\$6300 per charger
Charger (Inductive w/o incentive)	\$2480
•Installation labor	\$2287
•Permits	\$ 77
•Other Mat'ls and freight	\$1497

Historical EV Charging Business Model

- Most EV charging was home based (Automaker/Contractor)
 - Automaker / Contractor initiated installation
 - Special TOU incentive rates for off-peak charging through utility
 - Typically required special dual meter adapter installation
 - Cost analysis to determine dual meter pay-off

Work Place and Public Charging were free to drivers

- •Workplace charging more common than public charging
- Costs borne by the facility owner
- Other incentives: parking location, fee waivers

High Fixed Costs Hurt for Business Case

- Most profits from hardware sales
- Installation activities broke even
- Maintenance and repairs lost money
- •Typical business office staffed by only 3 employees
 - Office/Business manager
 - Electrical Design / Field Supervisor
 - Call Center / Records Keeper

Tough Issues Never Addressed

- Multi-family Dwellings / Apartments
 - •Typically require facility service upgrades
- Residential Street / Parking
 - Service upgrades for new service
 - Parking permits / regulations to prevent ICE-ing
- Integration with Advanced Metering and Smart Grid
 - Communication protocols standards
 - New EVSE Technology

EVSE Deployment is a Complex Issue

- Home base / Fixed Parking charging is ideal
 - Level 1 or Level 2 (at lower levels)
 - Decision depends upon the customer and cost
- Workplace charging
 - Level 2 preferred to avoid afternoon charging
 - •Employee provided benefit?
- •Public / Non-fixed parking solution is a big question!
 - •Level 1 and Level 2 for inclusion of bikes and scooters?
 - Level 2 vs. DC-Level 3 Fast Charging versus Battery Swaps?
 - •When will the technology be ready?
 - Cost of distributed versus centralized approach
 - Revenue collection need

Current SMUD EV Infrastructure Activities

- •DOE FOA28 CEC AB118 Automaker Demonstration Teams support
 - Upgrading existing public infrastructure in Sacramento to J1772
 - Supporting new EVSE installations for regional demonstration partner
- Pursuing DC-Level III fast charging research
 Refitting SMUD Solar hydrogen station for PEV charging research
- Initiating a multi-family charging cost estimation study
- •Initiating regional permitting harmonization process
 - Objective: Get all municipal governments in SMUD service territory to adopt a similar application and permitting process
- Initiating Smart Grid / AMI integration approaches

AB118 Funding Recommendations on EV Infrastructure

- Update existing state infrastructure to new J1772 Standard
 - Statewide effort would go far for first wave of vehicles
 - Need to coordinate activity with legacy drivers for continuity
- •Form a Task Force to address public infrastructure issues
 - •Develop a comprehensive roadmap for electricification
 - Develop a structured approach for long-term coverage / need
 - Vehicle market penetration versus need
 - Distributed versus Centralized modeling
 - Develop statewide building codes for EV circuit integration
- Workforce development for EV installation contractors

Final Thoughts

- •California's history with electric vehicle charging should be leveraged as a market readiness asset
- Task force needed to address tough issues
- Toughest issue: public charging approaches
- Advanced Technologies will take time to materialize
- Market likely to shift with time as technology matures

