URS

DOCKET

08-AFC-8

DATE RECD.

SEP 30 2009 SEP 30 2009

September 30, 2009

Dockets Unit California Energy Commission 1516 Ninth Street, MS 4 Sacramento, CA 95814

> RE: Hydrogen Energy California Project Application for Certification 08-AFC-8

On behalf of Hydrogen Energy International LLC, the applicant for the abovereferenced Hydrogen Energy California AFC, we are pleased to submit the enclosed document:

- Sixty print copies and seventy-five CDs of the Amendment to the Revised Application for Certification
- · 5 copies of a DVD containing revised Air Quality Modeling Files

The enclosed document is being submitted to the CEC for docketing.

URS Corporation

Dale Shileikis

Vice President, Environmental Services

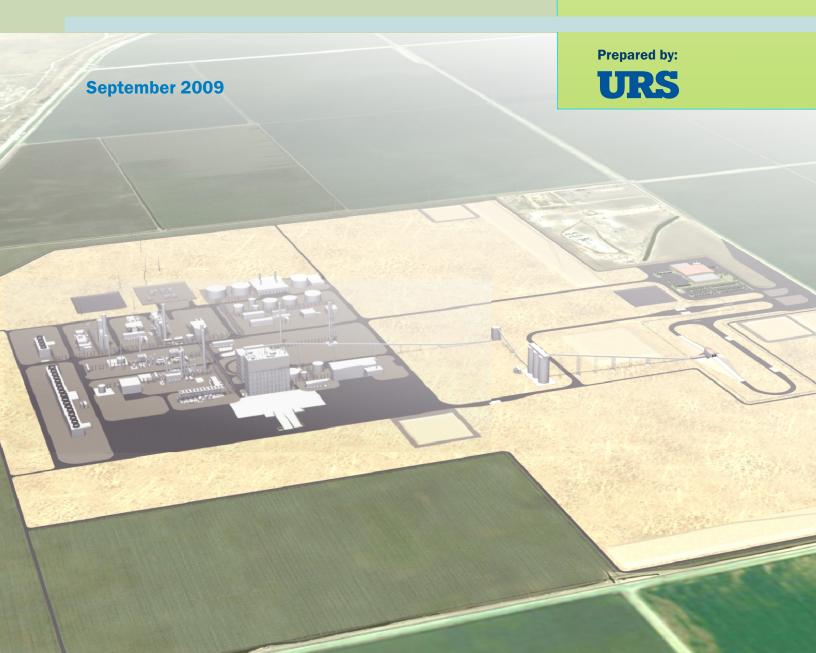
Hallihis

Enclosures

CC: Rod Jones (w/o enclosure)

URS Corporation 221 Main Street, Suite 600 San Francisco, CA 94105 Tel: 415.896.5858 Fax: 415.882.9261 www.urscorp.com Amendment to the
Revised
Application for Certification
(08-AFC-8)
for
HYDROGEN ENERGY CALIFORNIA
Kern County, California

Prepared for:


Hydrogen Energy International

Submitted to:

California Energy Commission

Section 1	Introd	luction	1-1
Section 2	Projec	ct Description Change	2-1
Section 3	Enviro	onmental Consequences	3-1
	3.1	Air Quality	3-1
		3.1.1 Construction	
		3.1.2 Operations	3-1
		3.1.3 Dispersion Modeling	3-8
		3.1.4 Compliance with Ambient Air Quality Standards	3-10
		3.1.5 Impacts on Air Quality Related Value in Class I Areas	3-12
		3.1.6 Cumulative Impacts Analyses	3-16
		3.1.7 Mitigation Measures	3-16
	3.2	Biological Resources	3-16
		3.2.1 Construction	3-16
		3.2.2 Operations	3-17
	3.3	Cultural Resources	
	3.4	Land Use and Agriculture	3-17
		3.4.1 Construction	3-17
		3.4.2 Operations	3-17
	3.5	Noise	3-17
		3.5.1 Construction	3-17
		3.5.2 Operations	3-18
	3.6	Public Health	3-19
		3.6.1 Construction	3-19
		3.6.2 Operations	3-19
	3.7	Worker Safety and Health	
	3.8	Socioeconomics/Environmental Justice	3-20
	3.9	Soils	3-20
	3.10	Traffic and Transportation	3-20
		3.10.1 Construction	
		3.10.2 Operations	3-20
	3.11	Visual Resources	
	3.12	Hazardous Materials	3-21
		3.12.1 Construction	3-21
		3.12.2 Operations	
	3.13	Waste Management	
		3.13.1 Construction	
		3.13.2 Operations	
	3.14	Water Resources	
		3.14.1 Construction	
		3.14.2 Operation	
	3.15	Geologic Hazards and Resources	
	3.16	Paleontological Resources	
Section 4	Refere	ences	4-1

Revised Appendices

Note: Appendices C3 and D1.2 have been replaced in their entirety. For Appendices C4 and T, only selected revised tables have been provided; the remainder of the text is unchanged from the version provided in the May 2009 Revised AFC.

Revised Appendix C3 HECA Downwash Structures

Revised Portions of Appendix C4 CALMET/CALPUFF Air Quality Modeling Results

Revised Appendix D1.2 Operating Emissions Stationary Sources

Revised Portions of Appendix T Description of Offset Package

Revised Tables

Revised Table 2-11	Representative Heat and Material Balances
Revised Table 2-21	Project Emissions Summary for Normal Operations
Revised Table 5.1-12	1-Hour Operating Emission Rates for CTG/HRSG Operating Load Scenarios
Revised Table 5.1-13	CTG/HRSG Criteria Pollutant Emission Rates During Startup and Shutdown
Revised Table 5.1-14	Criteria Pollutant Sources and Emission Totals for the Worst-Case CTG Emissions Scenario for All Averaging Time
Revised Table 5.1-15	Average Annual Emissions per Turbine Operating Scenario
Revised Table 5.1-20	Total Combined Annual Criteria Pollutant Emissions
Revised Table 5.1-32	Turbine Screening Results Normal Operations – Emissions and Stack Parameters per Turbine
Revised Table 5.1-35	AERMOD Modeling Results for Project Operations (All Project Sources Combined)
Revised Table 5.1-37	PSD Class I Increment Significance Analysis – CALPUFF Results
Revised Table 5.1-38	Visibility Analysis – CALPUFF Results
Revised Table 5.1-39	Total Nitrogen and Sulfur Deposition Analysis – CALPUFF Results
Revised Table 5.1-43	PSD Emission Threshold Triggers for New Stationary Sources
Revised Table 5.1-45	Proposed BACT for the Project
Revised Table 5.5-17	Summary of Project Contributions with Noise Control Features Relative to Kern County Noise Element Standards (Exterior)
Revised Table 5.5-18	Summary of Project Contributions with Noise Control Features Relative to Kern County Noise Element Standards (Interior)

Revised Figures

Revised Figure 2-3	Overall Block Flow Diagram
Revised Figure 2-5	Preliminary Plot Plan
Revised Figure 2-6	Project Elevations
Revised Figure 2-18	Flow Diagram: Power Block Systems
Revised Figure 2-19	Electrical Overall One-Line Diagram (1)
Revised Figure 2-20	Electrical Overall One-Line Diagram (2)
Revised Figure 2-22	Electrical Overall One-Line Diagram (4)
Revised Figure 2-23	Flow Diagram: Natural Gas System
Revised Figure 2-35	Preliminary Hazardous Material Location Plan
Revised Figure 2-38	Preliminary Emissions Sources Plot Plan
Revised Figure 2-39	Block Flow Diagram with Air Emission Sources
Revised Figure 5.1-3	Locations of Maximum Predicted Ground Level Pollutant Concentrations for the Operational Project Area

Acronyms

AAQS Ambient Air Quality Standards AFC Application for Certification

AGR acid gas removal

AQRV Air Quality Related Values

AR as received

CAAQS California Ambient Air Quality Standards

CEC California Energy Commission

CO carbon monoxide CO₂ carbon dioxide CT combustion turbine

CTG combustion turbine generator

dB decibels

dBA A-weighted decibels
°F degrees Fahrenheit
GE General Electric
GHG greenhouse gas
gpm gallons per minute
g/s grams per second
H₂S hydrogen sulfide

HECA Hydrogen Energy California

HEI Hydrogen Energy International LLC

HHV higher heating value

HRSG heat recovery system generator

IGCC integrated gasification combined cycle

K Kelvin

μg/m³ micrograms per cubic meter

MMBtu/hr million British thermal units per hour mmscfd million standards cubic feet per day

MW megawatts

NAAQS National Ambient Air Quality Standards

NH₃ ammonia NO_x nitrogen oxide

O&M operation and maintenance

 PM_{10} particulate matter less than 10 microns in diameter $PM_{2.5}$ particulate matter less than 2.5 microns in diameter

ppm parts per million

PSD Prevention of Significant Deterioration Revised AFC Revised Application for Certification

SCR selective catalytic reaction SILs Significant Impact Levels

SJVAPCD San Joaquin Valley Air Pollution Control District

SO₂ sulfur dioxide SO_X sulfur oxides stpd short tons per day

TIBL thermal internal boundary layer

tpy tons per year

USEPA U.S. Environmental Protection Agency

VOC volatile organic compound

SECTIONONE Introduction

On May 28, 2009, Hydrogen Energy International LLC (HEI) filed a Revised Application for Certification (AFC) with the California Energy Commission (CEC) seeking approval to construct and operate the Hydrogen Energy California Project (HECA or Project) (Docket 08-AFC-8). The Revised AFC was deemed Data Adequate on August 26, 2009.

The Applicant is modifying the Project to eliminate the auxiliary combustion turbine generator (CTG) and demonstrate its emissions of particulates less than 2.5 microns in diameter (PM_{2.5}) will be below the 100 tons per year (tpy) PM_{2.5} Air Quality Standard threshold. This Amendment provides a detailed discussion of the design modification and revisions to the Revised AFC needed to address this change. The elimination of the auxiliary CTG and reduction in emissions rates do not fundamentally alter the nature of the project, nor do they affect the proposed capture and sequestration of Project carbon emissions.

This submittal describes the Amendment and analyzes whether or not the modification results in any environmental consequences not previously analyzed. As demonstrated, the elimination of the auxiliary CTG will not increase the magnitude of any previously identified environmental impacts, or result in any new significant impacts associated with the Project. The emissions of all criteria pollutants and greenhouse gases (GHG) are reduced as a result of this Project modification. Further, the AERMOD and CALPUFF air modeling results demonstrate that the Project modification reduces criteria pollutant and visibility impacts. Therefore, all impacts are expected to remain less than significant with the Project modification.

This Amendment to the Revised AFC presents information that has changed as a result of the Project modification. Tables and figures that have been changed as a result of this modification are included in this Amendment with the original table number, but prefaced with "Revised."

The Project modification consists of eliminating the auxiliary CTG General Electric (GE) LMS100 $^{\$}$ and reducing the emission rates for particulate matter less than 10 microns in diameter (PM₁₀) and particulate matter less than 2.5 microns in diameter (PM_{2.5}) from the GE Frame 7B CTG)/Heat Recovery Steam Generator (HRSG) when firing hydrogen–rich fuel. Therefore, all references in the Revised AFC to the following are no longer applicable: "auxiliary CTG," "peaking power," auxiliary combustion turbine generator," "GE LMS100 $^{\$}$," "CTG-2," "auxiliary Simple Cycle Gas Turbine," "auxiliary Simple Cycle CTG," and "turbines."

The Project would still produce about 250 megawatts (MW) of baseload power and 390 gross MW from the combined cycle plant that is fed by the Gasification Block and would still require two conventional mechanical-draft cooling towers.

The Project modification is within the 473-acre Project Site and does not result in any additional disturbed areas beyond the Site that were not previously evaluated. In addition, the modification is not expected to result in any substantial changes to the schedule, costs, workforce, or traffic during construction or operations, or equipment use during construction, as presented in the Revised AFC.

The Project modification is reflected in the following revised Project Description figures, which are included in this Amendment:

- Revised Figure 2-3: Overall Block Flow Diagram
- Revised Figure 2-5: Preliminary Plot Plan
- Revised Figure 2-6: Project Elevations
- Revised Figure 2-18: Flow Diagram Power Block Systems
- Revised Figure 2-19: Electrical Overall One-Line Diagram (1)
- Revised Figure 2-20: Electrical Overall One-Line Diagram (2)
- Revised Figure 2-22: Electrical Overall One-Line Diagram (4)
- Revised Figure 2-23: Flow Diagram Natural Gas System
- Revised Figure 2-35: Preliminary Hazardous Material Location Plan
- Revised Figure 2-38: Preliminary Emissions Sources Plot Plan
- Revised Figure 2-39: Block Flow Diagram with Air Emission Sources

Changes to the above figures includes removal of equipment shown as Auxiliary CTG Structure and Auxiliary CTG Stack (identified as M2 and 12, respectively, on Figures 2-6 and 2-38) of the Revised AFC.

The following Project Description tables have been revised to reflect the Project modification, and are included in this Amendment:

- Revised Table 2-11: Representative Heat and Material Balances
- Revised Table 2-21: Project Emissions Summary for Normal Operations

Revised Table 2-11 Representative Heat and Material Balances

	IGCC PG7321 (FB) Hydrogen-Rich Gas from:				
Operating Case:	100% Petcoke	75 % Coal/ 25 % Petcoke Blend ³	Combined Cycle <u>PG7321 (FB)</u> Natural Gas		
Ambient Temperature, °F	65 ¹	65 ¹	20	65	115
	Feeds:				
Feedstock, stpd (AR)	2,820	3,197	0	0	0
Feedstock, MMBtu/hr [HHV]	3,240	3,255	0	0	0
Fluxant, stpd	60	32	0	0	0
Natural Gas, MMBtu/hr [HHV]	0	0	2,560	2,410	2,310
Water, gpm	2,900	2,810	1,080	1,450	2,130
	Products and By-P	roducts:			
Hydrogen, mmscfd ²	177	177	0	0	0
Carbon Dioxide, stpd	7,400	7,300	0	0	0
Sulfur, stpd	130	40	0	0	0
Gasification Solids, stpd (wet)	140	470	0	0	0
	Power Balan	ce:			
Combustion Turbine, MW	232	232	201	183	169
Steam Turbine, MW	160	156	148	146	142
H ₂ -Rich Fuel Expander, MW	2	2	0	0	0
Gross Power, MW	394	390	349	329	311
Total Auxiliary Load, MW	143	142	16	18	18
Air Separation Unit, MW	74	75	0	0	0
CO ₂ Compression, MW	27	27	0	0	0
Other Internal Users, MW	42	40	16	18	18
Net Power, MW	251	248	333	311	293

Source: HECA Project

Notes:

AR = as received

°F = degrees Fahrenheit
gpm = gallons per minute
HHV = higher heating value

IGCC = integrated gasification combined cycle MMBtu/hr = million British thermal units per hour mmscfd = million standard cubic feet per day

MW = megawatt stpd = short tons per day

Ambient temperature variations have minimal effect on hydrogen-rich gas fueled combustion turbine generator output and gasification operation. Results are nearly constant for plant output across the ambient temperature range.

² Hydrogen contained in the hydrogen-rich gas used to fuel power generation equipment.

³ Percentage is by thermal input (HHV basis)

Revised Table 2-21 Project Emissions Summary for Normal Operations (tons per year)

Pollutant	Total Annual	HRSG Stack Maximum ¹	Cooling Towers ²	Auxiliary Boiler	Emergency Generators ³	Fire Water Pump ⁴	Gasifica- tion Flare	SRU Flare	Rectisol Flare	Tail Gas Thermal Oxidizer	CO ₂ Vent	Gasifier Vents	Feed- stock ⁵
NO_X	186.4	167.2		1.7	0.2	0.1	4.3	0.2	0.2	10.9		1.8	
CO	322.7	150.2		5.8	0.1	0.2	48.8	0.1	0.1	9.1	106.9	1.5	-
VOC	36.1	32.5		0.6	0.03	0.01	0.003	0.002	0.002	0.3	2.4	0.1	-
SO_2	38.4	29.2		0.3	0.001	0.0003	0.004	0.055	0.003	8.8		0.03	
PM_{10}	111.4	82.4	24.1	0.8	0.01	0.001	0.007	0.004	0.004	0.4		0.1	3.6
PM _{2.5} ⁶	99.2	82.4	14.5	0.8	0.01	0.001	0.007	0.004	0.004	0.4		0.1	1.0
NH ₃	75.9	75.9											
H ₂ S	1.3										1.3		

Source: HECA Project

Total annual HRSG emissions represents the maximum emissions rate from a composite firing scenario (all three fuels)
Includes contributions from all three cooling towers

Includes contributions from both emergency generators

VOC emissions for fire pump engine are combined with NO_X

Feedstock emissions are shown as the contribution of all dust collection points

Where $PM_{10} = PM_{2.5}$ it is assumed all PM_{10} is $PM_{2.5}$

CO = carbon monoxide H_2S = hydrogen sulfide

HRSG = heat recovery system generator

ammonia nitrogen oxide

 PM_{10} particles less than 10 micrometers in diameter particles less than 2.5 micrometers in diameter

 SO_2 sulfur dioxide

VOC Volatile Organic Compound

This section discusses potential environmental impacts associated with the Project modification.

3.1 AIR OUALITY

The results of revised Air Quality modeling for Project operations are provided below. Additional data related to Air Quality are presented in the following sections of this Amendment: Section 2, Project Description Change related to changes in projected emissions, and Section 3.6, Public Health regarding toxic air pollutants.

3.1.1 Construction

The Project design modification consists of deleting the auxiliary CTG GE LMS100 $^{\circ}$ and reducing the PM₁₀ and PM_{2.5} emission rates from the GE Frame 7B CTG/HRSG when firing hydrogen–rich fuel. The Project modification is within the 473-acre Project Site and would not result in the disturbance of areas not previously evaluated in the Revised AFC. The Project modification would not increase the expected number or duration, or change the location of construction equipment proposed for the construction of the Project in the Revised AFC. Therefore, the construction emissions calculated and modeled in Section 5.1.2 of the Revised AFC accurately characterize the potential air quality impacts during construction with the Project modification incorporated. The Project modification would not change the conclusions in Section 5.1 of the Revised AFC, and potential air quality impacts during construction are expected to remain less than significant.

3.1.2 Operations

Operational Emissions – Stationary Sources

The Project is a nominal 250 net MW IGCC power generating facility consisting of a Gasification Block and hydrogen-rich fuel production unit with carbon capture capability and a combined-cycle power block. The Gasification Block will feature GE Quench gasifiers and sour shift, and an acid gas removal (AGR) unit to remove sulfur components and recover carbon dioxide. The power block will feature one GE 7FB CTG that can be fueled with hydrogen-rich fuel from the gasification plant, natural gas, or a mixture of the two; a HRSG with duct firing of hydrogen-rich fuel or natural gas; and a condensing steam turbine-generator. The operational emissions from the Project are mainly generated from the combustion of the hydrogen-rich fuel. Other emission sources include cooling towers, solids handling, and an auxiliary boiler.

This Amendment addresses changes to the emission rates from the GE Frame 7B CTG/HRSG as a result of a refinement of the PM_{10} and $PM_{2.5}$ emission factors. The updated emission rates are presented in Revised Table 5.1-20, Total Combined Annual Criteria Pollutant Emissions. There will be no changes to emission rates from other equipment, and therefore they are not discussed in this section.

Power Block CTG/HRSG Operating Emissions

The most significant emission source of the Project will be the CTG/HRSG train. The power block design will be optimized for performance on 100 percent hydrogen-rich fuel, 100 percent natural gas, or co-firing hydrogen-rich fuel and natural gas. Most of the hydrogen-rich fuel from the gasification plant will be used to fully load the CTG, with any excess (up to about 10 to 14 percent) duct fired in the HRSG. The CTG will operate on hydrogen-rich fuel, natural gas, or a mixture of the two (45 to 90 percent hydrogen-rich fuel) over the compliance load range of 60 to 100 percent. The CTG may be co-fired with natural gas as required to maintain emission-compliant operation if the quantity of hydrogen-rich fuel is insufficient or hydrogen-rich fuel is completely unavailable.

Maximum short-term operational emissions from the CTG/HRSG were determined from a comparative evaluation of potential emissions corresponding to normal operating conditions (including HRSG duct-firing), and CTG startup/shutdown conditions. The long-term operational emissions from the CTG/HRSG were estimated by summing the emissions contributions from normal operating conditions (including hours with and without duct-firing) and CTG/HRSG startup/shutdown conditions. Estimated annual emissions of air pollutants for the CTG/HRSG have been calculated based on the expected operating schedule for the CTG/HRSG presented in Table 5.1-11, Maximum CTG/HRSG Operating Schedule in the Revised AFC (which remains unchanged in this Amendment).

Operational emissions from the CTG/HRSG were estimated for all the applicable scenarios using base emission rates and startup/shutdown emissions. The base criteria pollutant emission rates provided by the turbine vendor and the engineer for three load conditions (60, 80, and 100 percent) and three ambient temperatures (20, 65, and 97 degrees Fahrenheit [°F]) when firing natural gas, hydrogen-rich fuel, or cofiring are presented in Revised Table 5.1-12, 1-Hour Operating Emission Rates for CTG/HRSG Operating Load Scenarios. There will be a revision to the PM_{10} and $PM_{2.5}$ emissions rates from the CTG/HRSG when firing hydrogen-rich fuel due to a refinement of the PM_{10} and $PM_{2.5}$ emission factor. The changes to PM_{10} and $PM_{2.5}$ emission rates are presented in Revised Table 5.1-12.

CTG/HRSG Startup and Shutdown Emissions

The expected emissions and durations associated with CTG/HRSG startup and shutdown events are summarized in Revised Table 5.1-13, CTG/HRSG Criteria Pollutant Emission Rates During Startup and Shutdown. No changes to the startup and shutdown times result from this Amendment. However, there will be a revision to the PM_{10} and $PM_{2.5}$ emission rates during cold startup and hot startup scenarios due to a refinement of the PM_{10} and $PM_{2.5}$ emission factor.

CTG/HRSG Emissions Scenarios for Modeling

Reasonable worst-case short-term emissions from the turbines were calculated for use in the air quality modeling. These scenarios form the basis for the air dispersion modeling analyses presented in Section 3.1.3, Dispersion Modeling.

Revised Table 5.1-14, Criteria Pollutant Sources and Emission Totals for the Worst-Case CTG Emissions Scenario for All Averaging Times, summarizes the worst-case emissions scenarios adopted to assess maximum impacts to air quality and air quality-related values in the modeling analyses presented in Section 3.1.3.

Estimated annual emission totals for all pollutants incorporate the maximum anticipated emissions related to startups and shutdowns, as well as the maximum steady-state operating emissions with and without duct firing. Estimated maximum annual emissions for the GE 7FB turbine are presented in Revised Table 5.1-15, Average Annual Emissions per Turbine Operating Scenario. Emissions calculations for all scenarios, including revisions, are contained in Revised Appendix D1.2.

SECTIONTHREE

Revised Table 5.1-12
1-Hour Operating Emission Rates for CTG/HRSG Operating Load Scenarios

Ambient Temperature	UNITS	V	Vinter Mini	mum, 20°I	7	`	Yearly Av	verage, 6	5°F	S	Summer Ma	ximum, 97	′°F
CTG Load Level	% Load	100%	100%	80%	60%	100%	100%	80%	60%	100%	100%	80%	60%
Evap Cooling Status	off/on	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Duct Burner Status	off/on	On	Off	Off	Off	On	Off	Off	Off	On	Off	Off	Off
Average Emission Rates from CTG (lbs/hr/turbine) - Normal Operation Natural Gas													
NO _x (@ 4.0 ppm)	lb/hr	36.3	29.0	24.8	20.8	35.1	27.0	23.1	19.4	33.3	26.1	22.4	18.7
CO (@ 5.0 ppm)	lb/hr	27.6	22.1	18.8	15.8	26.7	20.5	17.6	14.8	25.3	19.8	17.0	14.2
VOC (@ 2.0 ppm)	lb/hr	6.3	5.0	4.3	3.6	6.1	4.7	4.0	3.4	5.8	4.5	3.9	3.2
SO ₂ (@ 12.65 ppmv in fuel)	lb/hr	5.1	4.1	3.5	3.0	4.8	3.8	3.3	2.8	4.7	3.7	3.2	2.7
$PM_{10} = PM_{2.5}$	lb/hr	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0
NH ₃ (@ 5.0 ppm slip)	lb/hr	16.7	13.4	11.4	9.6	16.2	12.5	10.7	9.0	15.4	12.1	10.3	8.6
Average Emission Rates from	CTG(lbs/hi	r/turbine) -	Normal Op	eration H	ydrogen-l	Rich Fuel		-		•	•	-	•
NO _x (@ 4.0 ppm)	lb/hr		37.2	31.5	26.1	39.7	36.9	31.0	25.6	39.7	38.0	30.9	25.6
CO (@ 3.0 ppm)	lb/hr		17.0	14.4	11.9	18.1	16.8	14.1	11.7	18.1	17.4	14.1	11.7
VOC (@ 1.0 ppm)	lb/hr		3.2	2.7	2.3	3.5	3.2	2.7	2.2	3.5	3.3	2.7	2.2
SO ₂ (@ 5.0 ppmv in fuel)	lb/hr		6.1	5.2	4.4	6.8	6.1	5.1	4.3	6.8	6.0	5.1	4.3
$PM_{10} = PM_{2.5}$	lb/hr		19.8	19.8	19.8	19.8	19.8	19.8	19.8	19.8	19.8	19.8	19.8
NH ₃ (@ 5.0 ppm slip)	lb/hr		17.2	14.6	12.0	18.4	17.0	14.3	11.8	18.4	17.6	14.3	11.8
Average Emission Rates from	CTG (lbs/h	r/turbine) -	Normal O	peration C	o-firing	•	•	•		•	•	-	•
NO _x (@ 4.0 ppm)	lb/hr	41.3	34.0			38.7	31.7						
CO (@ 5.0 ppm)	lb/hr	31.4	25.9			29.4	24.1						
VOC (@ 2.0 ppm)	lb/hr	7.2	5.9			6.7	5.5						
SO ₂ (@ 6.7 ppmv in fuel)	lb/hr	7.4	5.2			7.0	4.8						
$PM_{10} = PM_{2.5}$	lb/hr	19.8	19.8			19.8	19.8						
NH ₃ (@ 5.0 ppm slip)	lb/hr	19.1	15.7			17.9	14.6						

Source: HECA Project

Notes:

Co-firing emissions are controlled at the same amount as natural gas.

Emission rates not provided were not necessary to determine the maximum hourly, 3-hour, 8-hour, 24-hour emission rates or the annual average emission rates.

CO = carbon monoxide ppm = parts per million

CTG = combustion turbine generator PM_{10} = particulate matter less than 10 microns in diameter. HRSG = heat recovery steam generator $PM_{2.5}$ = particulate matter less than 2.5 microns in diameter.

 NH_3 = ammonia SO_2 = sulfur dioxide

 NO_X = nitrogen oxides VOC = volatile organic compound

Revised Table 5.1-13
CTG/HRSG Criteria Pollutant Emission Rates During Startup and Shutdown

	Cold Startup			Hot Startup			Shutdown	
180 (min. in cold startup)	Max 1-hr. (lb/hr)	Total (lb/180 min.)	60 (min. in hot startup)	Max 1-hr. (lb/hr)	Total lb/60 min.)	30 (min. in shutdown)	Max 1-hr. (lb/hr)	Total (lb/30 min.)
NO_X	90.7	272.0	NO_X	167.0	167.0	NO_X	62.0	62.0
CO	1,679.7	5,039.0	СО	394.0	394.0	CO	126.0	126.0
VOC	266.7	800.0	VOC	98.0	98.0	VOC	21.0	21.0
SO_2	5.1	15.3	SO_2	5.1	5.1	SO_2	2.6	2.6
$PM_{10} = PM_{2.5}$	19	57.0	$PM_{10} = PM_{2.5}$	19.8	19.8	$PM_{10} = PM_{2.5}$	5.0	5.0

Source: HECA Project

Notes:

CTGs will always be started burning natural gas. Startup and shutdown emission rates above reflect natural gas.

Startup and shutdown SO_2 emissions will always be lower than normal operation SO_2 emissions. Startup and shutdown emissions are assumed equal to normal operations (burning natural gas) at the max emission rate.

Startup/shutdown duration defined as operation of CTG below 60 percent load when gaseous emission rates (lb/hr basis) exceed the controlled rates defined as normal operation

CO = carbon monoxide NO_X = nitrogen oxides

 PM_{10} = particulate matter less than 10 microns in diameter and is assumed to equal $PM_{2.5}$ = particulate matter less than 2.5 microns in diameter

 SO_2 = sulfur dioxide

VOC = volatile organic compounds

Revised Table 5.1-14 Criteria Pollutant Sources and Emission Totals for the Worst-Case CTG Emissions Scenario for All Averaging Time

			Emissions in Pounds – Entire Period				
Averaging Time	Worst-Case Emission Scenarios by Operating Equipment	Pollutant	CTG/HRSG (Natural Gas)	CTG/HRSG (Hydrogen- Rich Fuel)	CTG/HRSG (Co-firing)		
	NO _X : Cold startup hour	NO_X	167.0	167.0	167.0		
1 hour	CO: Cold startup hour	CO	1,679.7	1,679.7	1,679.7		
THOU	SO _X : Full-load turbine operation with duct firing at peak fuel usage	SO_X	5.1	6.8	7.4		
3 hour	SO_X: Continuous full-load turbine operation with duct firing (both turbines) at peak fuel usage	SO_X	15.3	20.5	22.1		
8 hour	CO: Two cold starts, three shutdowns, and remainder of period at full load operation with full duct firing (both turbines) at peak fuel usage	СО	10,469.8	10,465.1	10,471.7		
	NO_X: 20 hours of natural gas firing at the winter minimum (20°F) without duct firing and 4 hours of co-firing at the winter minimum (20°F) without duct firing	NO_X	20 hrs = 580.5 $Total = 716.5$	n/a	4 hrs = 136.0 Total = 716.5		
24 hour	SO _x , PM ₁₀ : Continuous full-load turbine operation with duct firing	$PM_{10} = PM_{2.5}$	432	475.2	475.2		
	(both turbines) at peak fuel use; except PM ₁₀ for natural gas: four cold starts, four shutdowns, and remainder of period at full load operation with full duct firing (both turbines) at peak fuel usage	SO_X	122.4	163.8	177.2		
		NO_X	296,044.0	334,353.0	325,712.3		
	NO_X , CO , VOC , PM_{10} , and SO_X :	CO	277,817.2	206,919.2	300,390.9		
Annual	10 hot starts, 10 cold starts and 20 shutdowns, and remainder of	VOC	59,906.8	37,984.6	65,066.5		
1 minuti	turbine operates at full load with duct firing	$PM_{10} = PM_{2.5}$	149,866.0	164,755.6	164,755.6		
		SO_X	40,045.4	56,713.0	58,357.9		

Source: HECA Project Notes:

CO = carbon monoxide

CTG = combustion turbine generator

°F = degrees Fahrenheit

HRSG = heat recovery steam generator

 NO_X = nitrogen oxides

 PM_{10} : = particulate matter less than 10 microns in diameter, and is assumed to

equal $PM_{2.5}$ = particulate matter less than 2.5 microns in diameter

 SO_X = sulfur oxides

VOC = volatile organic compounds

Revised Table 5.1-15
Average Annual Emissions per Turbine Operating Scenario

Pollutant	HRSG Stack – Nat Gas (tons/yr/CT)	HRSG Stack – (Hydrogen-Rich Fuel) (tons/yr/CT)	HRSG Stack – Co Firing (tons/yr/CT)	Maximum (tons/yr/CT)
NO_X	148.0	167.2	162.9	167.2
СО	138.9	103.5	150.2	150.2
VOC	30.0	19.0	32.5	32.5
SO_2	20.0	28.4	29.2	29.2
$PM_{10} = PM_{2.5}$	74.9	82.4	82.4	82.4
NH ₃	67.1	75.9	73.9	75.9

Source: HECA Project

Notes:

CT = combustion turbine CO = carbon monoxide

HRSG = heat recovery steam generator

 NH_3 = ammonia NO_X = nitrogen oxides

 PM_{10} = particulate matter less than 10 microns in diameter

 $PM_{2.5}$ = particulate matter less than 2.5 microns in diameter ($PM_{2.5}$ is assumed to equal PM_{10})

 SO_2 = sulfur dioxide

VOC = volatile organic compounds

Commissioning

In this Amendment, there will be no emission rates associated with the commissioning of the Auxiliary CTG, because this unit will no longer be part of the Project design.

PM₁₀ emission rates are expected to be lower when commissioning the CTG/HRSG on hydrogen-rich fuel. However, no changes will be made to the emission rates represented in Table 5.1-22 of the Revised AFC, Duration and Criteria Pollutant Emissions for Commissioning of the CTG/HRSG on Hydrogen-Rich Fuel at 59°F. Therefore, PM₁₀ emission rates during the commissioning of the CTG/HRSG on hydrogen-rich fuel will be a conservative over-estimate.

Greenhouse Gas Emissions

The revised table included in Revised Appendix D1.2 presents the peak or maximum possible carbon dioxide emissions for all Project emission sources. In this Amendment, the total plant GHG emissions will be 185,117 tons per year. The decrease in GHG emissions is due to the removal of the Auxiliary CTG unit, which will decrease GHG emissions by 198,200 tons per year.

The Project's greenhouse gas emissions will continue to be well below the 1,100 lbs/MWh threshold requirement (natural gas combined cycle comparison) of Senate Bill 1368.

Operational Emissions – Mobile Sources

There will be no changes to the mobile source operational emissions as a result of this Amendment.

Revised Table 5.1-20 Total Combined Annual Criteria Pollutant Emissions

Pollutant	Total Annual (ton/yr)	HRSG Stack Maximum (1) (ton/yr)	Cooling Towers (2) (ton/yr)	Auxiliary Boiler (ton/yr)	Emergency Generators ⁽³⁾ (ton/yr)	Fire Water Pump (ton/yr)	Gasification Flare (ton/yr)	SRU Flare (ton/yr)	Rectisol Flare (ton.yr)	Tail Gas Thermal Oxidizer (ton/yr)	CO ₂ Vent (ton/yr)	Gasifier (ton/yr)	Feedstock (4) (ton/yr)
NO_X	186.4	167.2		1.7	0.2	0.1	4.3	0.2	0.2	10.9		1.8	
CO	322.7	150.2		5.8	0.1	0.2	48.8	0.1	0.1	9.1	106.9	1.5	
VOC	36.1	32.5		0.6	0.03	0.01	0.003	0.002	0.002	0.3	2.4	0.1	
SO ₂	38.4	29.2		0.3	0.001	0.0003	0.004	0.055	0.003	8.8		0.03	
PM ₁₀	111.4	82.4	24.1	0.8	0.01	0.001	0.007	0.004	0.004	0.4		0.1	3.6
PM _{2.5} (5)	99.2	82.4	14.5 (6)	0.8	0.01	0.001	0.007	0.004	0.004	0.4		0.1	1.0
NH ₃	75.9	75.9											
H ₂ S	1.3										1.3		

Source: HECA Project

Notes:

1 Total annual HRSG emissions represents the maximum emissions rate from a composite firing scenario (all three fuels)

2 Includes contributions from all three cooling towers

3 Includes contributions from both emergency generators

4 Feedstock emissions are shown as the contribution of all dust collection points.

5 Where $PM_{10} = PM_{2.5}$, it is assumed that PM_{10} is 100 percent $PM_{2.5}$

6 Where PM_{2.5} is 60 percent of the PM₁₀ emissions for cooling towers

CO = carbon monoxide CO₂ = carbon dioxide

CTG = combustion turbine generator

 H_2S = hydrogen sulfide

 NH_3 = ammonia NO_X = nitrogen oxides

 PM_{10} = particulate matter less than 10 microns in diameter $PM_{2.5}$ = particulate matter less than 2.5 microns in diameter

 SO_2 = sulfur dioxide

VOC = volatile organic compounds

3.1.3 Dispersion Modeling

The purpose of the air quality impact analyses is to evaluate whether criteria pollutant emissions resulting from the Project will cause or contribute significantly to a violation of a California or national Ambient Air Quality Standards (AAQS) or contribute significantly to degradation of air quality-related values in Class I areas. The air quality impact analyses were performed using the same model and model option selections, and receptor locations as in the Revised AFC. Copies of the revised modeling files are included on the Revised Air Quality Modeling DVD included with this Amendment.

Building Wake Effects

The BPIP-Prime analysis was rerun to take into account the removal of the Auxiliary CTG structure. An updated table listing all the structures, minus the Auxiliary CTG building, evaluated in the downwash analysis is included in Revised Appendix C3.

Input and output electronic files for the BPIP-Prime analysis are included with those from all other dispersion modeling analyses on the Revised Air Quality Modeling DVD included with this Amendment.

Meteorological Data

The original meteorological data set issued by San Joaquin Valley Air Pollution Control District (SJVAPCD) was used in this modeling analysis.

Construction Impacts Modeling

There will be no change to the construction impacts modeling results in this Amendment.

Turbine Impact Screening Modeling

The Revised AFC described a turbine impact screening modeling analysis that was performed to determine which CTG/HRSG operating mode and stack parameters produced worst-case off-site impacts (i.e., maximum ground level concentrations for each pollutant and averaging time). Only the emissions from the CTGs with and without duct firing and evaporative cooling were considered in this preliminary modeling step. The AERMOD model simulated transport and dispersion of natural gas combustion emissions released from the 20-foot-diameter (6.10-meter), 213-foot-tall (65-meter) stack for the CTG/HRSG unit. Unlike the Revised AFC, the AERMOD model was not used to simulate emissions for the Auxiliary CTG, since it has been removed from the Project design. Revised Table 5.1-32, Turbine Screening Results Normal Operations – Emissions and Stack Parameters per Turbine, summarizes the combustion CTG screening results for the different CTG operating load conditions.

The maximum ground level concentrations predicted to occur off site with unit turbine emission rates for each of the seven operating conditions shown in Revised Table 5.1-32 were then multiplied by the corresponding turbine emission rates for specific pollutants. The highest resulting concentration values for each pollutant and averaging time were then identified (see bolded values in the table).

The stack parameters associated with these maximum predicted impacts were used in all subsequent simulations of the refined AERMOD analyses described in the next subsection. (Note that the lower exhaust temperatures and flow rates at reduced turbine loads correspond to reduced plume rise, in some cases resulting in higher off-site pollutant concentrations than the higher baseload emissions.) Model input and output files for the screening modeling analysis are included with those from all other modeling tasks on the Revised Air Quality modeling DVD that is provided with this Amendment.

Revised Table 5.1-32
Turbine Screening Results Normal Operations – Emissions and Stack Parameters per Turbine

Core 1A Core 1B Core 1C Core 2B Core 2							
Case	Case 1A	Case 1B	Case 1C	Case 2A	Case 2B	Case 2C	Case 3
							HRSG Stack
Scenario Description	HRSG S	tack, Hydroge	n-rich Fuel	HRSG S	Co-Firing		
HRSG/CTG Load Level	100% Load	80% Load	60% Load	100% Load	80% Load	60% Load	100% Load
Stack Outlet Temperature (°F)	200.0	190.0	180.0	180.0	170.0	160.0	190.0
Stack Outlet Temperature (K)	366.48	360.93	355.37	355.37	349.82	344.26	360.93
Stack Exit Velocity (ft/s)	63.3	51.8	42.7	53.1	45.6	37.7	58.4
Stack Exit Velocity (m/s)	19.3	15.8	13	16.2	13.9	11.5	17.8
NO _x as NO ₂ (lb/hr)	166.7	166.7	166.7	166.7	166.7	166.7	166.7
CO (lb/hr)	1,679.4	1,679.4	1,679.4	1,679.4	1,679.4	1,679.4	1,679.4
SO ₂ (lb/hr)	8.7	8.7	8.7	8.7	8.7	8.7	8.7
PM ₁₀ (lb/hr)	19.8	19.8	19.8	19.8	19.8	19.8	19.8
NO _X (g/s)	21	21	21	21	21	21	21
CO (g/s)	211.6	211.6	211.6	211.6	211.6	211.6	211.6
SO ₂ (g/s) (based on 0.4 grain total							
S/100 scf) (grains of total sulfur							
per 100 standard cubic feet of gas)	1.1	1.1	1.1	1.1	1.1	1.1	1.1
$PM_{10}(g/s)$	2.5	2.5	2.5	2.5	2.5	2.5	2.5
Model Results - Maximum X/Q co							
1-hour	3.682	4.114	4.483	4.191	4.668	6.536	3.966
3-hour 1	3.313	3.703	4.035	3.771	4.201	5.882	3.569
8-hour ¹	2.577	2.880	3.138	2.933	3.268	4.575	2.776
24-hour 1	1.473	1.646	1.793	1.676	1.867	2.614	1.586
annual ¹	0.295	0.329	0.359	0.335	0.373	0.523	0.317
Maximum Concentration (μg/m ³)			_				
NO _X 1 hour	77.313	86.394	94.140	88.001	98.030	137.252	83.280
NO _x annual	6.185	6.911	7.531	7.040	7.842	10.980	6.662
CO 1 hour	779.024	870.518	948.575	886.714	987.766	1,382.977	839.142
CO 8 hour	545.317	609.363	664.003	620.700	691.436	968.084	587.399
SO ₂ 1 hour	4.050	4.525	4.931	4.610	5.135	7.189	4.362
SO ₂ 3 hour	3.645	4.073	4.438	4.149	4.621	6.470	3.926
SO ₂ 24 hour	1.620	1.810	1.972	1.844	2.054	2.876	1.745
SO ₂ annual	0.324	0.362	0.394	0.369	0.411	0.575	0.349
PM ₁₀ 24 hour	3.683	4.115	4.483	4.190	4.668	6.535	3.965
PM ₁₀ annual	0.738	0.823	0.898	0.838	0.933	1.308	0.793
Case Source: HECA Project	Case 1A	Case 1B	Case 1C	Case 2A	Case 2B	Case 2C	Case 3

Source: HECA Project

Notes:

Notes:

CO = carbon monoxide

 $\begin{array}{lll} CTG & = & combustion turbine generator \\ \mu g/m^3 & = & micrograms per cubic meter \\ {}^{\circ}F & = & degrees Fahrenheit \\ g/s & = & grams per second \end{array}$

HRSG = heat-recovery steam generator

K = Kelvin $NO_2 = nitrogen$

 NO_2 = nitrogen dioxide NO_X = nitrogen oxides

 PM_{10} = particulate matter less than 10 microns in diameter

SCR = selective catalytic reduction

 SO_2 = sulfur dioxide

Only 1-hour impacts were modeled. Impact concentrations for other averaging times were estimated with USEPA Screening Factors: 0.9 for a 3-hour average time, 0.7 for an 8-hour average time, 0.4 for a 24-hour average time, and 0.08 for an annual average.

1-Hour Startup Scenarios

The worst-case 1-hour NO_2 and CO impacts will occur during an hour with a startup; thus, the results of the screening analysis were not used to determine the turbine stack parameters. The results in Revised Table 5.1-32 indicate that maximum hourly NO_2 and CO concentrations during normal operations will occur with the stack parameters corresponding to 60 percent load. However, the magnitude of the emissions for both these pollutants during the worst-case 60 minutes of the turbine startup sequence will be higher than those during normal operations at any ambient temperature condition. Because a startup is a transition from non-operation to full-load operation, the stack exhaust velocity and temperature during most of this operation are lower than the values indicated as "worst-case" by the turbine screening modeling. Accordingly, modeling simulations were conducted to estimate the maximum 1-hour NO_2 and CO concentrations during a startup with reduced stack exhaust velocity and temperature.

Refined Modeling

A refined modeling analysis was performed to estimate off-site criteria pollutant impacts from operational emissions of the Project. The CTG/HRSG was modeled assuming the worst-case emissions corresponding to each averaging time and the turbine stack parameters that were determined in the turbine screening analysis (see previous subsection). The maximum mass emission rates that will occur over any averaging time, whether during turbine startups, normal operations, turbine shutdowns, or a combination of these activities, were used in all refined modeling analyses (see Revised Table 5.1-32).

The DEGADIS model that was used to calculate CO and H₂S impacts from the carbon dioxide vent in the Revised AFC was not re-run, because there were no changes made to the emission rates from the carbon dioxide vent in this Amendment.

Fumigation Analysis

Fumigation modeling was conducted in the same manner as described in the Revised AFC. However, because the Auxiliary CTG stack is no longer a part of the Project, SCREEN3 was run for the CTG/HRSG unit, tail gas thermal oxidizer, and gasifier refractory heater stack parameters. In addition, new PM₁₀ and PM_{2.5} pollutant emissions were used in the fumigation analysis for the CTG/HRSG unit.

A unit emission rate was used (1 gram per second) in the fumigation modeling to obtain a maximum unit concentration (x/Q), and the model results were scaled to reflect expected Project emissions for each pollutant. Inversion breakup fumigation concentrations were calculated for 1- and 3-hour averaging times using U.S. Environmental Protection Agency (USEPA)—approved conversion factors. These multiple-hour model predictions are conservative, since inversion breakup fumigation is a transitory condition that would most likely affect a given receptor location for only a few minutes at a time. To calculate the inversion breakup fumigation, the default thermal internal boundary layer (TIBL) factor of 6 in the SCREEN3 model was used.

Fumigation impacts can affect concentrations longer than 1 hour; the procedures described in Section 4.5.3 of "Screening Procedures for Estimating the Air Quality Impact of Stationary Sources" (USEPA, 1992) were used to determine the 3- and 8-hour average concentrations.

Modeling input and output files are included on the Revised Air Quality Modeling DVD included with this Amendment.

3.1.4 Compliance with Ambient Air Quality Standards

Air dispersion modeling was performed according to the methodology described in Section 3.1.3, Dispersion Modeling. This was done to evaluate the maximum increase in ground level pollutant

concentrations resulting from Project emissions based on the modifications, and to compare the maximum predicted impacts, including background pollutant levels, with applicable short-term and long-term California Ambient Air Quality Standards (CAAQS) and National Ambient Air Quality Standards (NAAQS).

Construction Impacts

There will be no change to the construction impacts in this Amendment.

Operations Impacts

The emissions used for each pollutant and averaging time are explained and quantified in Section 3.1.2, Operations. Commissioning impacts, which will occur on a temporary, one-time basis and will not be representative of normal operations, were addressed separately, as described in the next section.

Revised Table 5.1-35, AERMOD Modeling Results for Project Operations (All Project Sources Combined), summarizes the maximum predicted criteria pollutant concentrations due to Project emissions. The incremental impacts of Project emissions will be below the federal Prevention of Significant Deterioration (PSD) Significant Impact Levels (SILs) for all attainment pollutants, despite the use of worst-case emissions scenarios for all pollutants and averaging times. Although maximum predicted values for PM_{10} are below the SILs, these thresholds do not apply to this pollutant because the San Joaquin Valley Air Basin is designated as being in non-attainment with respect to the federal ambient standards. No SILs have been established yet for $PM_{2.5}$.

Revised Table 5.1-35 also shows that the modeled impacts due to the Project emissions, in combination with conservative background concentrations, will not cause a violation of any NAAQS and will not significantly contribute to the existing violations of the federal and state PM_{10} and $PM_{2.5}$ standards. In addition, as described later, all of the Project's operational emissions of non-attainment pollutants and their precursors will be offset to ensure a net air quality benefit.

The locations of predicted maximum impacts will vary by pollutant and averaging time. Revised Figure 5.1-3, Locations of Maximum Predicted Ground Level Pollutant Concentrations for the Operational Project Area, shows the locations of the maximum predicted operational impacts for all pollutants and averaging times.

The peak 24-hour PM_{10} , $PM_{2.5}$, and SO_2 concentrations and peak SO_2 annual concentration are predicted to occur on the western boundary of the Project Site, while the peak annual PM_{10} and $PM_{2.5}$ concentrations are predicted to occur on the eastern boundary of the Project Site. The peak 1-hour NO_X , SO_2 , and CO concentrations, peak 3-hour SO_2 concentration, and peak 8-hour CO concentration are predicted to occur within approximately 2 miles south of the Project Site. The peak annual NO_X concentration occurred at the northern property boundary.

Carbon monoxide impacts from the carbon dioxide vent were predicted to be 2,934 micrograms per cubic meter ($\mu g/m^3$) at a point off of the Project Site and Controlled Areas at 778 meters from the source. This value is below the CAAQS for CO and below the 8-hour CO SIL, but above the 1-hour CO SIL. A stability class of D combined with a wind speed of 1 meter per second was found to calculate the worst-case results.

Hydrogen sulfide impacts from the carbon dioxide vent were predicted to be $35.84 \,\mu g/m^3$ at the maximum impact point off of the Project Site and Controlled Areas at 778 meters from the source. This value is below the 1-hour CAAQS of $42 \,\mu g/m^3$.

Fumigation

The predicted peak concentrations from inversion fumigation from Project emissions, including background, are predicted to be below the CAAQS and are as follows:

 NO_X 1-hour = 269.25 μ g/m³ SO_2 1-hour = 32.68 μ g/m³ SO_2 3-hour = 21.60 μ g/m³ CO 1-hour = 5,228.26 μ g/m³

Turbine Commissioning

As mentioned in Section 3.1.2, Operations, changes will be made to the commissioning emission rates, even though the emission rates in the Revised AFC would overestimate emission rates due to the removal of the Auxiliary CTG. The AERMOD model will not be re-run, since there were no changes to turbine commissioning emission rates.

Impacts for Non-Attainment Pollutants and their Precursors

The emission offset program described in the SJVAPCD Rules and Regulations was developed to facilitate net air quality improvement when new sources locate within the District. Project impacts of non-attainment pollutants (PM₁₀, PM_{2.5}, and O₃) and their precursors (NO_X, SO₂, and VOC) will be fully mitigated by emission offsets. The emission reductions associated with these offsets have not been accounted for in the modeled impacts noted above. Thus, the impacts indicated in the foregoing presentation of model results for the Project may be significantly overestimated.

Effects on Visibility from Plumes

There will be no changes to the effects on visibility from plumes, since there are no changes to the cooling tower emissions in this Amendment.

3.1.5 Impacts on Air Quality Related Value in Class I Areas

The CALPUFF modeling analysis for impacts to Air Quality Related Values (AQRV) was updated to reflect the project design changes. The objectives of the modeling were to demonstrate whether air emissions from the Project will cause or contribute to a PSD increment exceedance or cause a significant impact on visibility, regional haze, or sulfur or nitrogen deposition in any Class I area.

Since the Project location has not changed in this Amendment, the same Class I area (San Rafael Wilderness Area) was included in the revised AQRV analysis. PSD increment analysis for the San Rafael Wilderness Class I area is shown in Revised Table 5.1-37, PSD Class I Increment Significance Analysis – CALPUFF Results. No Class I PSD increments will be exceeded.

SECTIONTHREE

Revised Table 5.1-35
AERMOD Modeling Results for Project Operations (All Project Sources Combined)

Pollutant	Averaging Period	5000	5001	5007	5003	5007	Wax	Class II Significance Level	% of SIL	Background Conc. (4)	Monitoring Station Description (4)	CAAQS	NAAQS	Total Conc.
	₹	$(\mu g/m^3)$	(μg/m ³)	$(\mu g/m^3)$		(μg/m ³)		$(\mu g/m^3)$	(μg/m ³)	(μg/m ³)				
NO ₂ (1)	1-hour (OLM) (1,3)	89.70	89.77	93.90	88.69	90.48	93.90	NA	NA	190.1	1	339	NA	284
NO ₂	Annual (OLM) (1)	0.82	0.86	0.81	0.87	0.79	0.87	1	87%	39.6	1	57	100	40.5
G G	1-hour (3)	1,191.74	1,109.96	1,400.54	1,025.55	1,067.22	1,400.54	2,000	71%	4,025	2	23,000	40,000	5,425
CO_2	8-hour (3)	210.59	167.24	185.80	178.94	150.96	210.59	500	43%	2,444	2	10,000	10,000	2,655
	1-hour (3)	21.03	16.30	20.86	16.05	19.44	21.03	NA	NA	340.6	3	655	NA	362
go.	3-hour (3)	7.38	6.10	6.95	7.07	6.79	7.38	25	31%	195	3	NA	1300	202
SO ₂	24-hour (3)	0.55	0.53	0.46	0.55	0.78	0.78	5	18%	81.38	3	105	365	82
	Annual	0.13	0.12	0.13	0.13	0.13	0.13	1	14%	26.7	3	NA	80	26.8
DM.	24-hour (3)	2.56	2.39	2.90	2.63	2.58	2.90	5	58%	267.4	4	50	150	-
PM ₁₀	Annual	0.47	0.47	0.50	0.52	0.53	0.53	1	59%	56.5	4	20	Revoked	-
PM _{2.5} (4)	24-hour (3)	1.50	1.42	1.74	1.54	1.54	1.74	-	44%	154	5	NA	35	-
P1V1 _{2.5}	Annual	0.35	0.35	0.37	0.38	0.39	0.39	-	45%	25.2	5	12	15	-

Revised Table 5.1-35 AERMOD Modeling Results for Project Operations (All Project Sources Combined)

	Pollutant	eraging Period	2000	2001	2002	2003	2004	Max	Class II Significance Level	% of SIL	Background Conc. (4)	Monitoring Station Description (4)	CAAQS	NAAQS	Total Conc.
		Ā	$(\mu g/m^3)$		$(\mu g/m^3)$		$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$						
]	I ₂ S ⁽⁵⁾	1-hour	35.84	35.84	35.84	35.84	35.84	35.84	NA	NA	NA	NA	42	NA	35.84

Source: HECA Project

Notes:

CARB, Maximum of last three years (2006-2008), Bakersfield Golden State Highway, 2006

CARB, Maximum of last three years (2006-2008), Bakersfield Golden State Highway, 2007

CARB, Maximum of last three years (2006-2008), Bakersfield Golden State Highway, 2008

CARB, Maximum of last three years (2006-2008), Shafter-Walker Street, 2007

CARB, Maximum of last three years (2006-2008), Fresno – 1st Street, 2007

CAAQS = California Ambient Air Quality Standards

CO = carbon monoxide H₂S = hydrogen sulfide

 $\mu g/m^3$ = micrograms per cubic meter

NAAQS = National Ambient Air Quality Standards

NO₂ = nitrogen dioxide OLM = ozone limiting method

PM₁₀ = particulate matter less than 10 microns in diameter PM_{2.5} = particulate matter less than 2.5 microns in diameter

 SO_2 = sulfur dioxide

¹ Ozone Limiting Method (OLM) was applied using hourly O₃ data.

² CO₂ Vent was not included in the AERMOD analysis; it was modeled using DEGADIS/SCREEN3, which predicted maximum impacts of 2,934 μg/m³ for the 1-hour average. The current assumption is that only one gasifier heater is expected to be operational at any time. Auxiliary Boiler does not operate with HRSG at the same time for short-term average period. Therefore, the Auxiliary Boiler was not included in the modeling analysis while HRSG was included because HRSG gives more impact on off-Project Site and Controlled Area concentration.

³ For short-term (1-, 3-, 8-, and 24-hour) modeling, only one emergency generator will be operational at any one time, and the current assumption is that only one gasifier heater is expected to be operational at any one time.

⁴ Monitoring station for the maximum background concentration is described below:

⁵ H₂S was modeled using DEGADIS (its only source is the CO₂ vent). DEGADIS is a screening model that uses worst-case meteorology rather than actual monitored hourly meteorological data.

Revised Table 5.1-37
PSD Class I Increment Significance Analysis – CALPUFF Results

Class I Area	Pollutant Unit Threshold	Annual NO _x μg/m ³ 0.1	3-hour SO ₂ µg/m ³	24-hour SO ₂ µg/m ³ 0.2	Annual SO ₂ µg/m ³ 0.08	24-hour PM ₁₀ µg/m ³ 0.32	Annual PM ₁₀ Annual 0.16
San Rafael	2001	3.77E-03	2.18E-01	2.53E-02	7.47E-04	8.65E-02	3.33E-03
Wilderness	2002	4.08E-03	2.33E-01	2.56E-02	8.79E-04	7.67E-02	3.80E-03
Area	2003	4.23E-03	2.73E-01	2.75E-02	8.85E-04	9.29E-02	3.77E-03
Exceed?		No	No	No	No	No	No

Source: HECA Project

Notes:

 $\mu g/m^3$ = micrograms per cubic meter

 NO_X = nitrogen oxides

 PM_{10} = particulate matter less than 10 microns in diameter

 SO_2 = sulfur dioxide

Effects on Visibility. This revised analysis was conducted using the same model (CALPUFF). The same 3-year meteorological data set for 2001-2003 was used in the revised analysis.

Visibility impact results for the San Rafael Wilderness Class I area are shown in Revised Table 5.1-38, Visibility Analysis – CALPUFF Results. No maximum extinction change exceeds 10 percent with only 1 to 3 days of exceedance of 5 percent despite the conservative operating scenario. Therefore, the Project screening successfully passed all screening criteria.

Revised Table 5.1-38
Visibility Analysis – CALPUFF Results

Class I Area	Pollutant Unit Threshold	No. of Days > 5% Days 0	No. of Days >10% Days 0	Maximum Extinction Change % 10	Day of Maximum Extinction Change Julian Day
~	2001	1	0	8.09	308
San Rafael Wilderness Area	2002	3	0	6.56	287
	2003	1	0	5.41	247
Exceed?				No	

Source: HECA Project.

Terrestrial Resources. This revised analysis was conducted using the same model (CALPUFF). Revised Table 5.1-39, Total Nitrogen and Sulfur Deposition Analysis – CALPUFF Results, summarizes the maximum modeled impacts versus the National Park Service and the U.S. Forest Service significance criteria. All impacts are below the significance criteria.

Revised Table 5.1-39
Total Nitrogen and Sulfur Deposition Analysis – CALPUFF Results

Class I Area	Pollutant Unit Threshold	Deposition Nitrogen g/m²/s 1.59E-11	Deposition Sulfur g/m²/s 1.59E-11
	2001	9.53E-13	3.91E-13
San Rafael Wilderness Area	2002	1.19E-12	5.12E-13
	2003	1.21E-12	4.61E-13
Exceed?		No	No

Source: HECA Project

Notes:

 $g/m^2/s$ = grams per square meter per second.

Aquatic Resources. A significant effect of NO_X and SO_2 emissions on aquatic resources is nitrogen and sulfur deposition and subsequent acidification. However, because any increased nitrogen and sulfur deposition due to the Project will be minimal, impacts to water acid neutralizing capacity and pH, and, therefore, acidification or eutrophication, are not likely to occur.

The revised CALPUFF/CALMET air impact modeling analysis for Class I areas is presented in selected revised tables, provided in Revised Portions of Appendix C4.

3.1.6 Cumulative Impacts Analyses

CEC requirements specify that an analysis may be required to determine the cumulative impacts of the Project and other Projects within a 6-mile radius that have received construction permits but are not yet operational or that are in the permitting process. The cumulative impact analysis is intended to assess whether the emissions of the combined effects of these sources may cause or contribute to a violation of any AAQS.

The Applicant has obtained a list of projects within a 6-mile radius from the Project from the SJVAPCD. (See Appendix J, List of Proposed Projects of the Revised AFC.) These projects are generally of the type that are small with respect to air quality impacts from operation but will be re-analyzed in a cumulative impact analysis if requested by the CEC staff. The emissions inventory from this Amendment will be used in the cumulative impact analysis. The results of the final cumulative impact analysis will be reported under separate cover.

3.1.7 Mitigation Measures

Revised estimated required emission reduction credits due to the Project modification are presented in selection revised tables provided in Revised Portions of Appendix T.

3.2 BIOLOGICAL RESOURCES

3.2.1 Construction

The Project modification is within the 473-acre Project Site and would not result in disturbance of areas that were not previously evaluated in the Revised AFC. Therefore, the modification would not change the analysis of potential impacts to biological resources described in Section 5.2 of the Revised AFC for construction, and impacts to biological resources during construction are expected to remain less than significant with implementation of the mitigation measures identified in Section 5.2.4 of the Revised AFC.

3.2.2 Operations

The Project modification consists of eliminating the auxiliary CTG, which would result in a decrease of air emissions. Section 5.2 of the Revised AFC concluded that the emissions associated with this Project would not result in significant impacts to the plants and animals found in the region. Therefore, the modification would not change the analysis of potential impacts to biological resources described in Section 5.2 of the Revised AFC for operations, and impacts to biological resources during operations are expected to remain less than significant.

3.3 CULTURAL RESOURCES

The Project modification is within the 473-acre Project Site and would not result in disturbance of areas not previously evaluated in the Revised AFC. Therefore, the modification would not change the analysis of potential impacts to cultural resources described in Revised AFC Section 5.3 for construction or operations, and impacts to cultural resources are expected to remain less than significant with implementation of the mitigation measures identified in Revised AFC Section 5.3.4.

3.4 LAND USE AND AGRICULTURE

3.4.1 Construction

The Project modification consists of eliminating the auxiliary CTG within the 473-acre Project Site and would not result in disturbance of areas not previously evaluated in the Revised AFC or affect distances to nearby sensitive land uses. Therefore, the modification would not change the analysis of potential impacts to land use described in Section 5.4 of the Revised AFC for construction, and impacts to land use and agriculture during construction are expected to remain less than significant.

3.4.2 Operations

The elimination of the auxiliary CTG from the Project is within the 473-acre Project Site and would not result in disturbance of areas not previously evaluated in the Revised AFC or affect distances to nearby sensitive land uses. The Project modification would not alter the analysis of potential impacts to land use and agriculture as presented in Section 5.4 of the Revised AFC for operations, which found that the Project would not disrupt or divide an established community; would not conflict with the established uses of the area; would be consistent with existing zoning and applicable land use plans, policies, and regulations; and would have less-than-significant impacts on farmlands. Therefore, as described in Section 5.4 of the Revised AFC, potential impacts to land use and agricultural resources during operations are expected to remain less than significant.

3.5 NOISE

3.5.1 Construction

The Project modification consists of eliminating the auxiliary CTG and would not result in disturbance of areas not previously evaluated in the Revised AFC or affect distances to the nearest sensitive noise receptors. The design modification is not expected to significantly affect the Project's construction equipment use, construction hours, or construction traffic, and would not result in significant changes to potential noise emissions during construction that were modeled and presented in Sections 5.5.2.1 and 5.5.2.6 of the Revised AFC. Therefore, the modification would not change the analysis presented in Section 5.5 of the Revised AFC for construction, and impacts from noise during construction are expected

to be less than significant with implementation of the mitigation measure presented in Section 5.5.4 of the Revised AFC.

3.5.2 Operations

The auxiliary CTG was originally excluded from the noise analysis for nighttime operations since it has was not anticipated to operate at night. Consequently, its elimination from the Project would not change the original nighttime impact assessment presented in Section 5.5 of the Revised AFC. Specifically, the discussions under the heading "Noise Analysis Compared to CEC Significance Thresholds" as well as Table 5.5-19 of the Revised AFC do not change with this Amendment.

Since the auxiliary CTG was originally modeled for the daytime operations scenario, its removal as part of this Amendment would eliminate one of the modeled noise sources and would thus reduce the daytime plant contributions as presented in Revised Tables 5.5-17 and 5.5-18 (impact assessment relative to Kern County Noise Element Standards). These aggregate plant contributions would be reduced by 1 to 2 decibels (dB), as compared to the information presented in the Revised AFC. Revised Tables 5.5-17 and 5.5-18 are provided below.

Revised Table 5.5-17 Summary of Project Contributions with Noise Control Features Relative to Kern County Noise Element Standards (Exterior)

Location [column 1]	Kern County Noise Element Exterior Standards, L _{dn} [column 2]	Existing Exterior L _{dn} Environ- ment [column 3]	Predicted Project L _{eq} Contributions, dBA [column 4]	Predicted Project L_{dn} Contributions, [column 5] a	Total, Future Calculated L_{dn} (existing plus Project) $[column \ 6]^b$	Project Contribution/ Project Compliance ^{c,f} [column 7]
LT1/ST1	65	58	37	43	58	0 / Yes
LT2/ST2	65	61	37	43	61	0 / Yes
LT3/ST3	65	70	24	30	70	0 / Yes
ST4	65	51 ^e	33	39	51	0 / Yes
ST5	65	68 ^e	36	42	68	0 / Yes

Source: HECA Project

Notes:

- a Using 24 hourly Leq values to calculate the equivalent Ldn metric, assuming continuous operations at steady-state, design conditions. Thus, $L_{dn} = L_{eq} + 6 \ dB$.
- b Summing sound levels from column 3 plus column 5.
- c Is column 6 less than or equal to columns 3 and 2?
- d Footnote not used.
- e Estimated Ldn from short-term data in Tables 5.5-8 and 5.5-9.
- f Result is completely controlled by the existing noise environment.

It should be noted that the last column of both of these revised tables show that the plant contribution to the future environment remains at 0 dB and that, as a result, all locations are in compliance. From an analytical standpoint, removing the LMS100[®] would reinforce that the Revised AFC-stated 0 dB Project contribution would be even lower than the existing conditions (which are due to other sources).

In summary, the deletion of the auxiliary CTG would not change the previous conclusions in Section 5.5 of the Revised AFC, but would add a factor of conservatism to the daytime operations scenario presented in the Revised AFC. Since the conclusions for compliance at all locations for the daytime noise scenarios would only change in a beneficial direction by the deletion of this noise source and would remain unchanged for nighttime operations, noise impacts during operations would remain less than significant.

Revised Table 5.5-18 Summary of Project Contributions with Noise Control Features Relative to Kern County Noise Element Standards (Interior)

Location [column 1]	Kern County Noise Element Interior Standards, L _{dn} [column 2]	Existing Interior L _{dn} Environ- ment ^a [column 3]	Predicted Project Exterior L _{dn} Contributions, [column 4] b	Predicted Project Interior L _{dn} Contributions, [column 5] c	Total, Future Calculated L _{dn} (Existing plus Project) ^f [column 6] ^d	Project Contribution/ Project Compliance ^{ef} [column 7]
LT1/ST1	45	41	43	26	41	0 / Yes
LT2/ST2	45	44	43	26	44	0 / Yes
LT3/ST3	45	53	30	13	53	0 / Yes
ST4	45	34	39	22	34	0 / Yes
ST5	45	51	42	25	51	0 / Yes

Source: HECA Project

Notes

- a Applying -17 dB to results from Table 5.5-16 above.
- b Using results of column 5 from Table 5.5-16 above.
- c Applying -17 dB to column 4.

- d Summing sound levels from column 3 plus column 5.
- e Is column 6 less than or equal to columns 3 and 2?
- f Result is completely controlled by the existing noise environment.

3.6 PUBLIC HEALTH

3.6.1 Construction

The Project modification consists of deleting the auxiliary CTG GE LMS100 $^{\circ}$ and reducing the PM₁₀ and PM_{2.5} emission rates from the GE Frame 7B CTG/HRSG when firing hydrogen–rich fuel. This modification is within the 473-acre Project Site and would not result in disturbance of areas not previously evaluated in the Revised AFC. The Project modification would not change the analysis presented in Section 5.6 of the Revised AFC, and public health impacts during construction are expected to remain less than significant.

3.6.2 Operations

The Project modification would not increase emissions of toxic air contaminants during operation. Therefore, the modification would not change the analysis presented in Section 5.6 of the Revised AFC, which concluded that the impact of the Project's emissions of toxic air contaminants during operation would be less than significant. Therefore, public health impacts during operation are expected to remain less than significant.

3.7 WORKER SAFFTY AND HEALTH

The design modification consists of eliminating the auxiliary CTG and would not change the anticipated workplace hazards or require changes to the safety programs presented in Section 5.7 of the Revised AFC. Therefore, impacts to worker safety and health during construction and operation are expected to remain less than significant.

3.8 SOCIOECONOMICS/ENVIRONMENTAL JUSTICE

The Project modification consists of eliminating of the auxiliary CTG. The modification is not expected to substantially affect the Project's costs or workforce for construction or operations. Therefore, the design modification would not change the analysis presented in Section 5.8 of the Revised AFC, which concluded that the Project would not induce substantial growth or concentration of population; induce substantial increases in demand for public service and utilities; disrupt or divide an established community; or result in disproportionate adverse effects on minority or low-income populations. Economic benefits previously identified related to payroll, purchasing, and tax revenues would be marginally less than identified in the Revised AFC. However, these reductions are not expected to change the conclusions in Section 5.8 of the Revised AFC. Therefore, marginal socioeconomic impacts during construction and operations are expected to remain less than significant.

3.9 SOILS

The Project modification consists of eliminating the auxiliary CTG within the 473-acre Project Site and does not result in disturbance of areas not previously evaluated in the Revised AFC. The elimination of the auxiliary CTG would not result in increased soil erosion or loss of topsoil beyond that evaluated in the Revised AFC, and the area on which the auxiliary CTG would have been located is within the footprint of ground disturbance previously evaluated. The area would still be managed to prevent soil erosion with implementation of mitigation measures identified in Section 5.9.4 of the Revised AFC. Therefore, the modification would not change the analysis presented in Section 5.9 of the Revised AFC, and impacts are expected to be less than significant with implementation of the mitigation measure presented in Section 5.9.4 of the Revised AFC.

3.10 TRAFFIC AND TRANSPORTATION

3.10.1 Construction

The elimination of the auxiliary CTG is not expected to substantially affect the traffic or workforce associated with construction of the Project. The Project would continue to experience short-term increases in traffic associated primarily with construction worker commute and material and equipment delivery trips. No increases to the number of construction workers or projections for construction equipment and material deliveries (including soil fill deliveries) would occur as a result of the Project modification. Therefore, the design modification would not change the analysis presented in Section 5.10 of the Revised AFC, which concluded that potential traffic and transportation impacts are expected to remain less than significant with implementation of the construction mitigation measures presented in Section 5.10.4.1 of the Revised AFC.

3.10.2 Operations

The elimination of the auxiliary CTG would not affect the traffic or workforce associated with operation of the Project. The Project would continue to experience increases in traffic associated with worker commute, feedstock deliveries, and operation and maintenance (O&M) trips. No increases in the number of operations personnel or the projected deliveries and O&M trips would occur as a result of the Project modification. Therefore, the design modification would not change the analysis presented in Section 5.10 of the Revised AFC, which concluded that potential traffic and transportation impacts are expected to remain less than significant with implementation of the operations mitigation measures presented in Section 5.10.4.2 of the Revised AFC.

URS

With elimination of the auxiliary CTG, it is currently estimated that the construction cost may be reduced by 3 to 4 percent, and the operation cost may be reduced by 1 to 2 percent.

3.11 VISUAL RESOURCES

The Project modification consists of eliminating the auxiliary CTG within the 473-acre Project Site and would not result in the disturbance of areas not previously evaluated in the Revised AFC. Revised Figure 2-6 provides new elevation drawings incorporating the Project modification. This figure has been revised to delete the following equipment from the previous drawings: Auxiliary CTG Structure (previously identified as No. M2, with height of 45 feet) and the Auxiliary CTG Stack (previously identified as No. 12, with height of 110 feet).

Due to the comparatively small scale of the auxiliary CTG, it was not a prominent feature in any of the visual simulations and its removal from the Project design would serve to have minimal decreases in the Project's overall visibility from the Key Observation Points. The Project modification would not change any of the conclusions in Section 5.11 of the Revised AFC, and potential visual impacts are expected to remain less than significant with implementation of the mitigation measures presented in Section 5.11.4 of the Revised AFC.

3.12 HAZARDOUS MATERIALS

3.12.1 Construction

The elimination of the auxiliary CTG from the Project would not result in increases to the hazardous materials that would be used during construction of the Project. The elimination of the auxiliary CTG would result in a minor reduction to the total quantity of hazardous materials that would be used during the construction phase of the Project, as assembly of the LMS100® auxiliary CTG would no longer be required. As described in Section 5.12 of the Revised AFC, potential hazardous materials handling impacts are expected to remain less than significant with implementation of the construction mitigation measures presented in Section 5.12.5.1 of the Revised AFC.

3.12.2 Operations

The elimination of the auxiliary CTG from the Project would not result in increases to the hazardous materials that would be used during operation of the Project. Materials that would have been used for the auxiliary CTG (such as natural gas, lubricating oil, nitrogen, and ammonia) would continue to be present at the Project site for use with the combined cycle CTG, as specified in the Revised AFC. The slight decrease in hazardous materials to be used during operations would not impact the scenarios or conclusions of the offsite consequence analysis presented in Section 5.12 of the Revised AFC (Hazardous Materials Handling), nor the scenarios and conclusions presented in Appendix L of the Revised AFC (Hazardous Materials Technical Analysis). In addition, the reduction in wastes generated from the operation of the auxiliary CTG (such as used oil) would not substantially affect or change Section 5.12 of the Revised AFC.

Revised Figure 2-35, Preliminary Hazardous Material Location Plan, is included in this Revised AFC Amendment. The only change in this figure is the deletion of the auxiliary CTG. The hazardous material locations are unchanged from the original figure.

As described in Section 5.12 of the Revised AFC, potential hazardous materials handling impacts are expected to remain less than significant with implementation of the operations mitigation measures presented in Section 5.12.5.2 of the Revised AFC.

3.13 WASTE MANAGEMENT

3.13.1 Construction

The Project modification consists of eliminating the auxiliary CTG. The modification would result in a minor reduction of the quantities hazardous wastes, non-hazardous wastes and wastewater associated with construction of the Project, as assembly of the auxiliary CTG would no longer occur. The design modification would not affect the best management practices described in Section 5.13 of the Revised AFC that would be implemented during construction of the Project to manage and minimize the amount of waste generated, nor would it change the conclusions in Section 5.13 of the Revised AFC. Therefore, the potential construction-related waste management impacts identified in Section 5.13 of the Revised AFC are expected to remain less than significant with implementation of mitigation measures described in Section 5.13.4.1 of the Revised AFC.

3.13.2 Operations

The elimination of the auxiliary CTG would not result in increases to the amount of wastes generated during operation of the Project. Operation waste streams would remain as described in Section 5.13 of the Revised AFC, and the slight decrease in wastes generated during operations would not impact the conclusions presented in Section 5.13 of the Revised AFC. In addition, the slight reduction in wastes generated from the operation of the auxiliary CTG (such as used oil) would not substantially affect impact or change the assumptions and conclusions in Section 5.13 of the Revised AFC. Therefore, the operations-related waste management impacts identified in Section 5.13 of the Revised AFC are expected to remain less than significant with implementation of mitigation measures described in Section 5.13.4.2 of the Revised AFC.

3.14 WATER RESOURCES

3.14.1 Construction

The Project modification consists of eliminating the auxiliary CTG. This modification would not affect the Project water needs during construction, since two conventional mechanical-draft cooling towers would still be constructed, and the project water supply plan would remain as described in Section 5.14 of the Revised AFC. Construction of the Project would not result in changes to the analysis of groundwater, surface water, or flood hazards, as presented in Section 5.14 of the Revised AFC. Therefore, impacts to water resources are expected to remain less than significant with implementation of the mitigation measures presented in Section 5.14.4 of the Revised AFC.

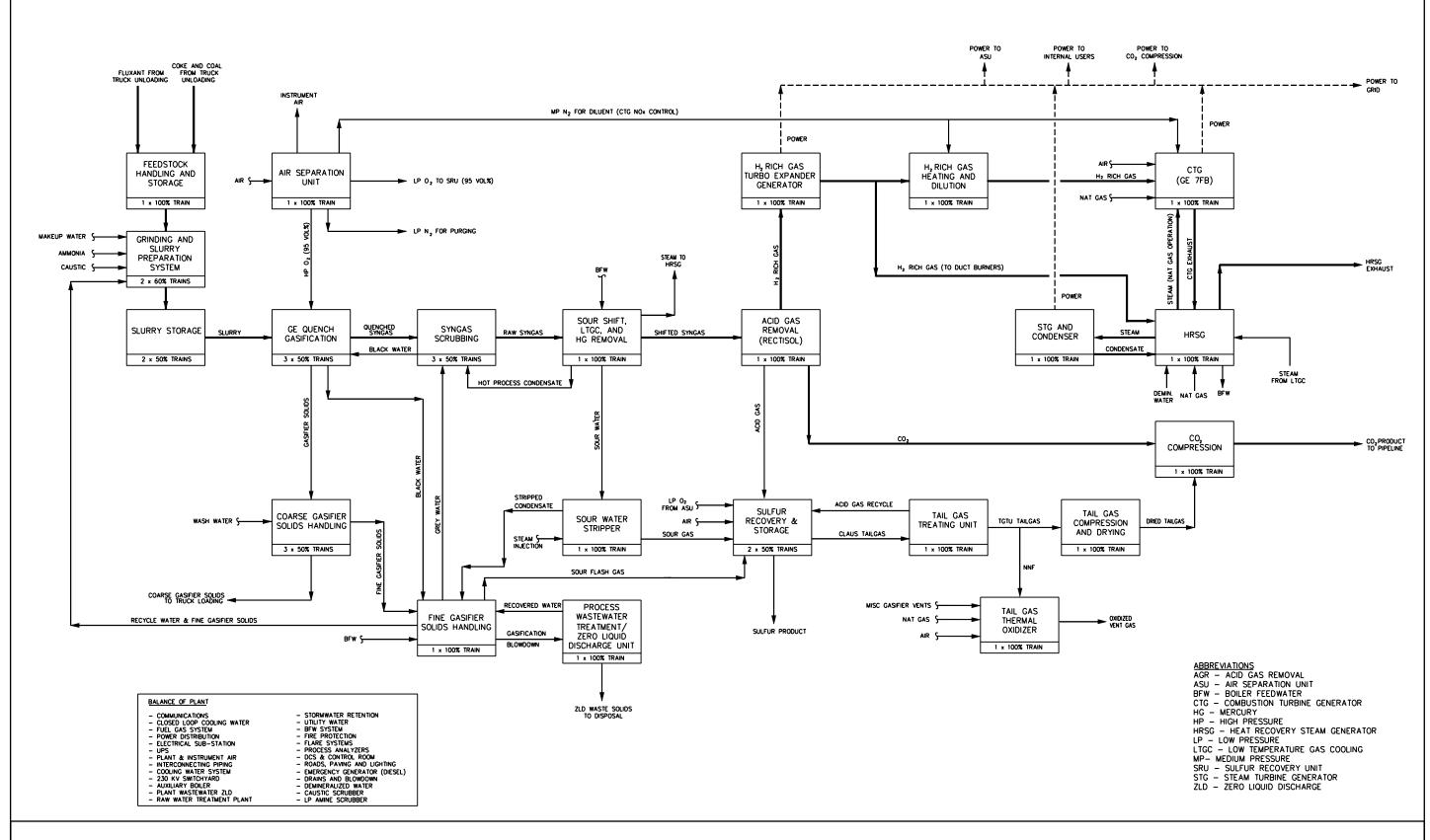
3.14.2 Operation

The elimination of the auxiliary CTG would not affect water resources during Project operations. The Project would not have any negative effect on the quality of groundwater in the area, and would continue to have a net positive effect on groundwater quality and agricultural activity. The Project modification is not anticipated to affect surface waters during operations. Therefore, the modification would not change the analysis presented in Section 5.14 of the Revised AFC, and impacts are expected to be less than significant with implementation of mitigation measures presented in Section 5.14.4 of the Revised AFC.

3.15 GEOLOGIC HAZARDS AND RESOURCES

The Project modification consists of eliminating the auxiliary CTG and does not result in disturbance of areas that were not previously evaluated in the Revised AFC. This modification would not result in increased impacts to geologic or mineral resources during construction or operation, and the analysis

presented in Section 5.15 of the Revised AFC would not change. Construction-related impacts to geologic or mineral resources would continue to primarily involve grading operations and operations for foundation support. During operation, potential impacts of geologic hazards on the Project and ancillary facility operations would still include seismic shaking. Therefore, as described in Section 5.15 of the Revised AFC, impacts to geologic hazards and resources are expected to remain less than significant with implementation of the mitigation measures presented in Section 5.15.4 of the Revised AFC.

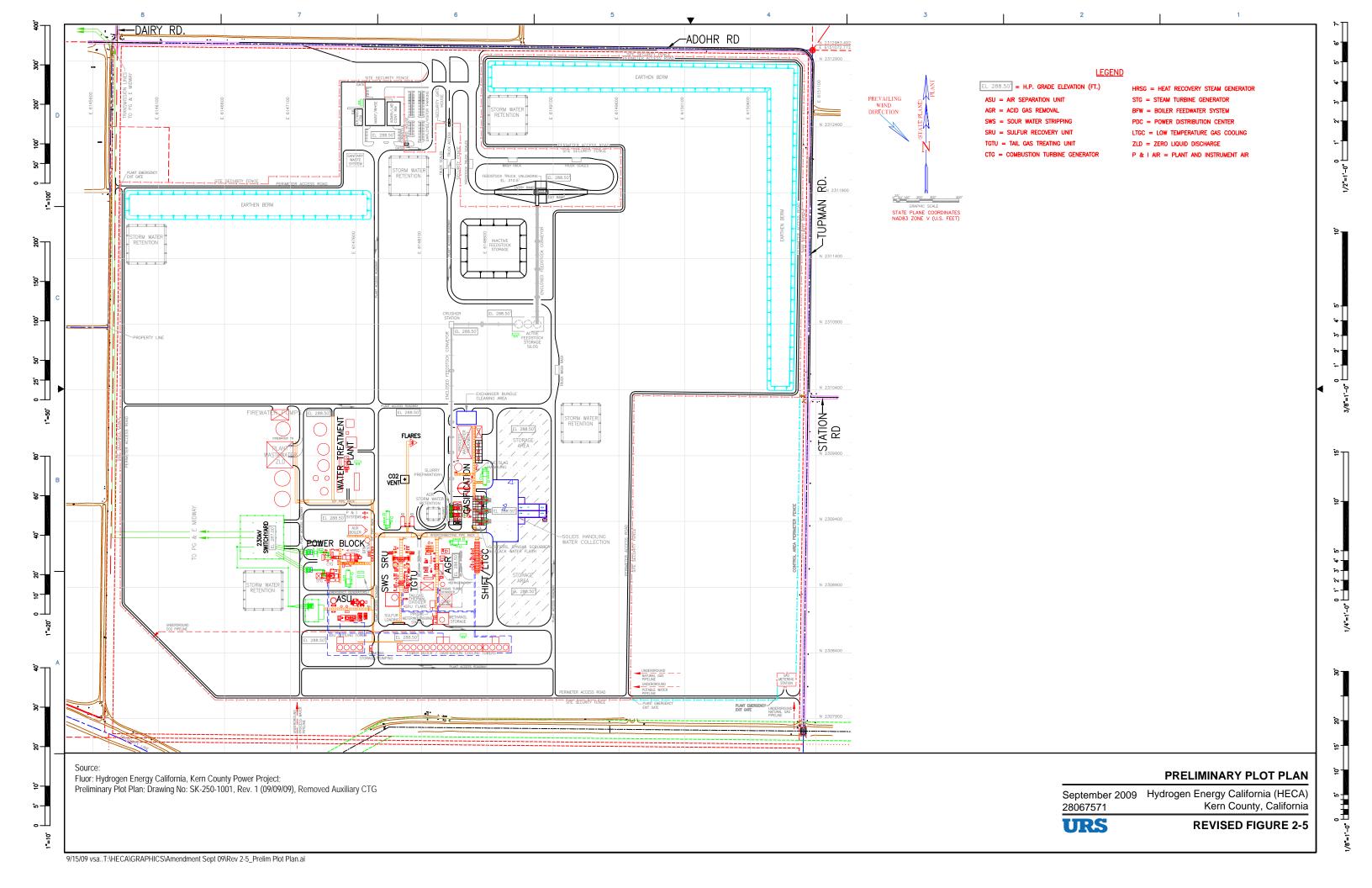

3.16 PALEONTOLOGICAL RESOURCES

The Project modification is within the 473-acre Project Site and would not result in disturbance of areas not previously evaluated in the Revised AFC. Therefore, the modification would not change the analysis of potential impacts to paleontological resources described in Section 5.16 of the Revised AFC for construction or operations, and impacts to paleontological resources are expected to remain less than significant with implementation of the mitigation measures identified in Section 5.16.4 of the Revised AFC.

SECTIONFOUR References

URS Corporation, 2009. Revised Application for Certification for Hydrogen Energy California, Kern County, California. Prepared for Energy International LLC. May 2009.

USEPA (U.S. Environmental Protection Agency), 1992. Screening Procedures for Estimating the Air Quality Impact of Stationary Sources, Revised. EPA-454/R-92-019. October 1992.


Source

Fluor; Hydrogen Energy California, Kern County Power Project; Block Flow Diagram; Drawing No: A3RW-BFD-25-001, Rev. 5 (09/09/09), Removed Auxiliary CTG

OVERALL BLOCK FLOW DIAGRAM

September 2009 Hydrogen Energy California (HECA) 28067571 Kern County, California

LEGEND

ASU = AIR SEPARATION UNIT

AGR = ACID GAS REMOVAL

STG = STEAM TURBINE GENERATOR

SWS = SOUR WATER STRIPPING

SRU = SULFUR RECOVERY UNIT

TGTU = TAIL GAS TREATING UNIT

CTG = COMBUSTION TURBINE GENERATOR

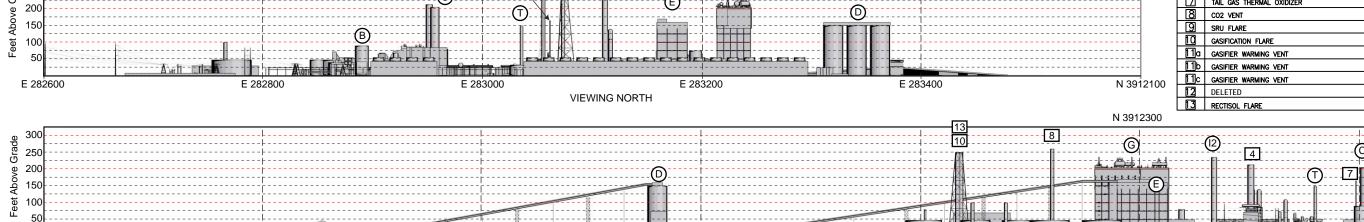
ARROW TO STEAM TURBINE GENERATOR

BFW = BOILER FEEDWATER SYSTEM

PDC = POWER DISTRIBUTION CENTER

LTGC = LOW TEMPERATURE GAS COOLING

ZLD = ZERO LIQUID DISCHARGE


P & I AIR = PLANT AND INSTRUMENT AIR

Notes:

 Identifiers are same as shown in Revised Figure 2-38, Preliminary Emissions Sources Plot Plan

ELEVATIONS OF SIGNIFICANT STRUCTURES (See Note 1)

	(See Note 1)									
ΠD	DESCRIPTION	APPX. ELEVATIONS FROM GRADE (FT.)								
A	ASU MAIN AIR COMPRESSOR ENCLOSURE	40								
B	LIQUID OXYGEN STORAGE (LOX) TANK	90								
©	AIR SEPARATION COLUMN CAN	205								
0	FEEDSTOCK STORAGE SILOS	150								
Ē	SLURRY PREPARATION BUILDING	165								
Ē	SLURRY RUN TANKS (QTY 2)	75								
<u></u>	GASIFICATION STRUCTURE	200								
(H)	FINE SLAG HANDLING ENCLOSURE	70								
(11)	AGR REFRIGERATION COMPRESSOR ENCLOSURE	40								
(12)	AGR METHANOL WASH COLUMN	235								
0	CO2 COMPRESSOR ENCLOSURE	50								
®	STEAM TURBINE GENERATOR STRUCTURE	50								
Ō	COMBUSTION TURBINE GENERATOR STRUCTURE	50								
(M1)	HEAT RECOVERY STEAM GENERATOR STRUCTURE	90								
(M2)	DELETED	NA								
(M3)	AUXILIARY BOILER STRUCTURE	50								
N	FLARE K.O. DRUMS (QTY 2)	35								
0	POWER DISTRIBUTION CENTERS	25								
0	GREY WATER TANK	30°DIA X 40°H								
R	SETTLER	85'DIA X 35'H								
S	METHANOL STORAGE TANK	40'DIA X 40'H								
Ū	SOUR WATER STRIPPER FEED TANK	48'DIA X 32'H								
0	PROCESS WASTEWATER TREATMENT FEED TANK	60'DIA X 40'H								
0	CONDENSATE STORAGE TANK	34'DIA X 24'H								
W)	RAW WATER TANK	100'DIA X 48'H								
W2	TREATED WATER TANK	90'DIA X 40'H								
W3	PURIFIED WATER TANK	90'DIA X 48'H								
W4	BACKWASH TANK	42.5'DIA X 48'H								
W5	UTILITY WATER TANK	35'DIA X 32'H								
W6	DEMINERALIZED WATER STORAGE TANK	60'DIA X 40'H								
⊗	FIREWATER STORAGE TANK	110'DIA X 48'H								
100	PLANT WASTEWATER ZLD FEED TANK-A	120'DIA X 48'H								
120	PLANT WASTEWATER ZLD FEED TANK-B	120'DIA X 48'H								
	ASU COOLING TOWER	55								
[2]	POWERBLOCK & GASIFICATION COOLING TOWERS	55								
3	EMERGENCY GENERATORS	20								
4	HRSG STACK	213								
5	FIRE WATER PUMP DIESEL ENGINE	20								
6	AUXILIARY BOILER	80								
[7]	TAIL GAS THERMAL OXIDIZER	165								
8	CO2 VENT	260								
9	SRU FLARE	250								
10	GASIFICATION FLARE	250								
<u>[11</u> a	GASIFIER WARMING VENT	210								
11b	GASIFIER WARMING VENT	210								
<u>11</u> c	GASIFIER WARMING VENT	210								
12	DELETED	NA								
13	RECTISOL FLARE	250								

N 3912700

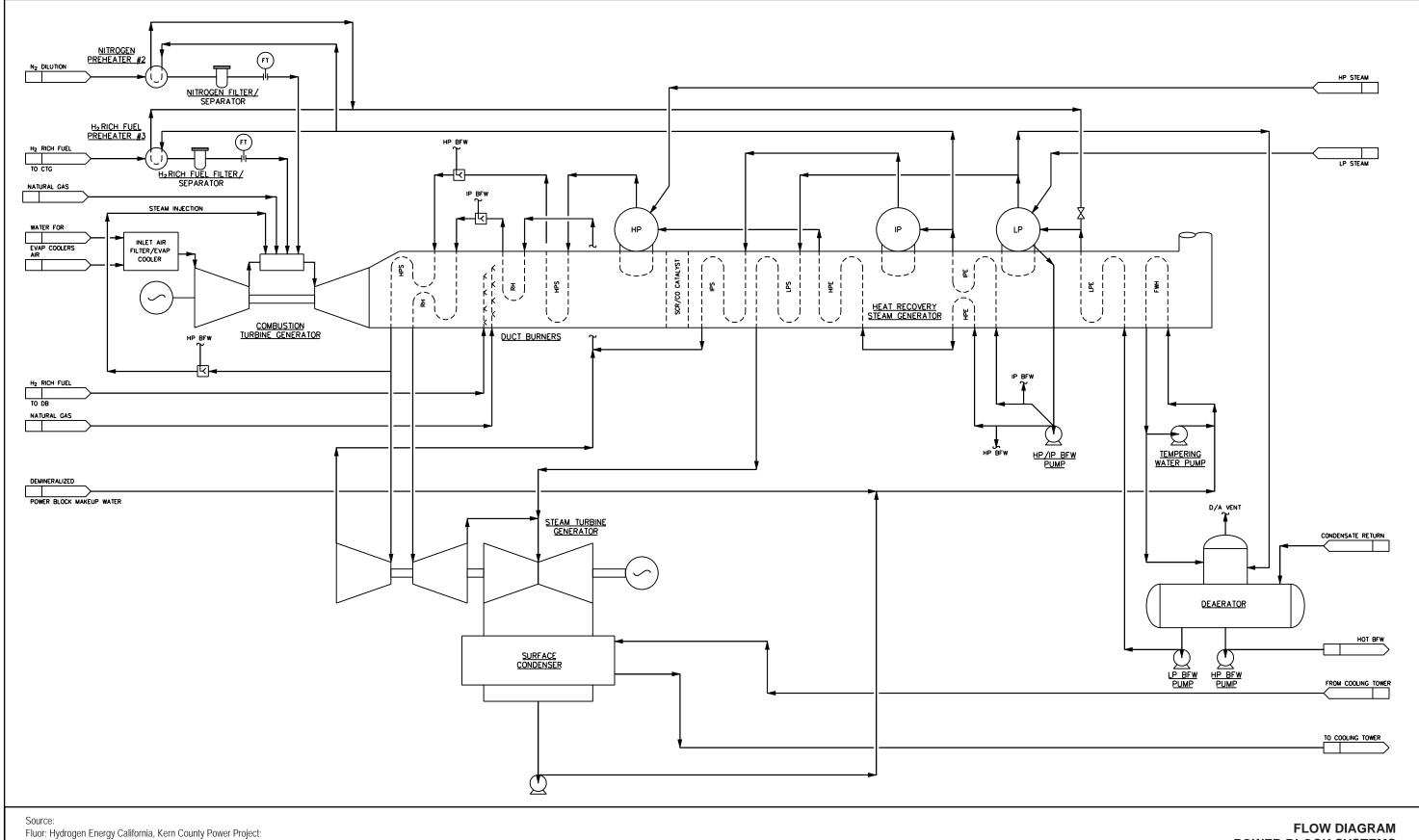
VIEWING EAST UTM Zone V, NAD83 (METERS)

N 3912500

PROJECT ELEVATIONS

September 2009 Hydrogen Energy California (HECA) 28067571 Kern County, California

N 3912100

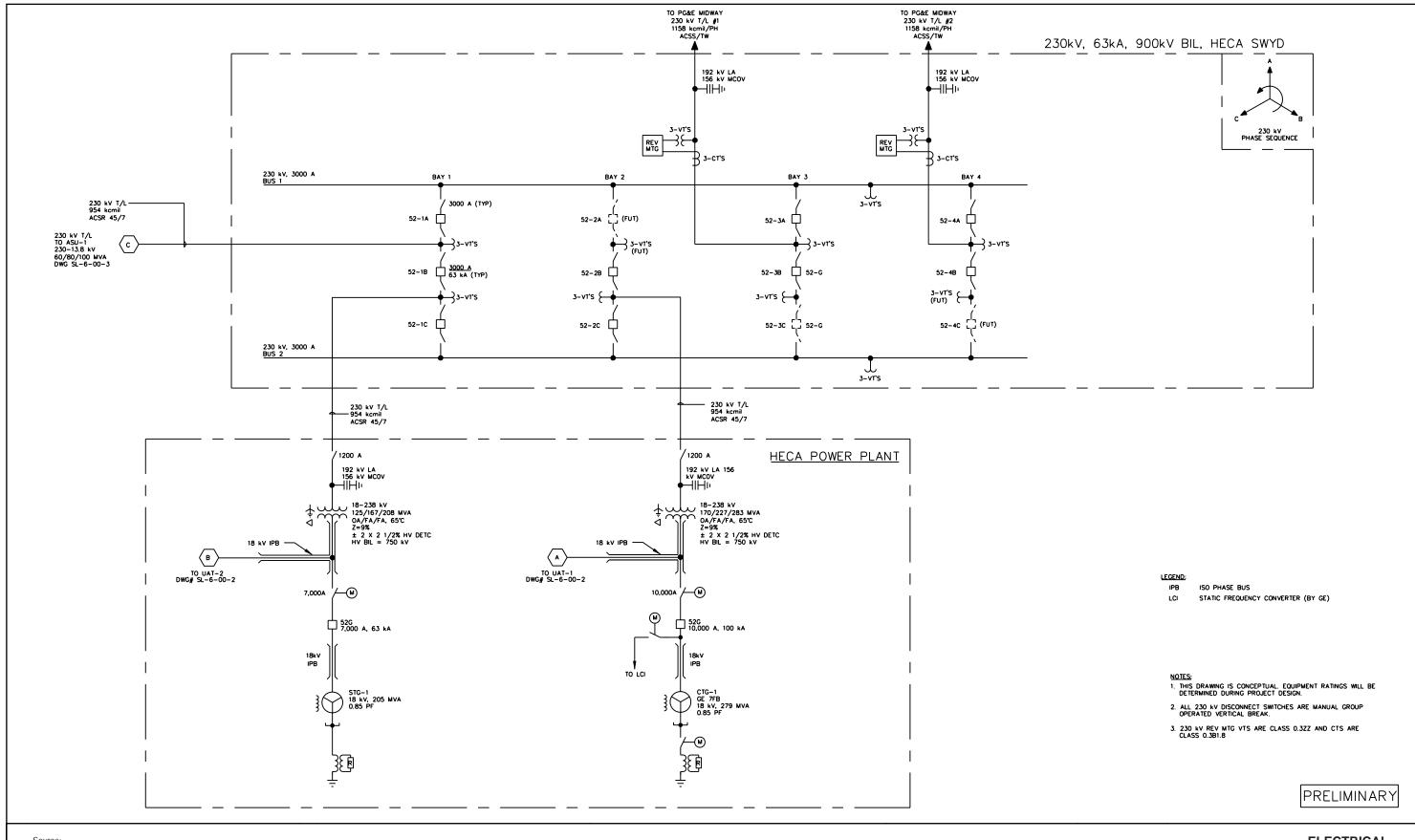

N 3912300

REVISED FIGURE 2-6

N 3913100

N 3912900

250

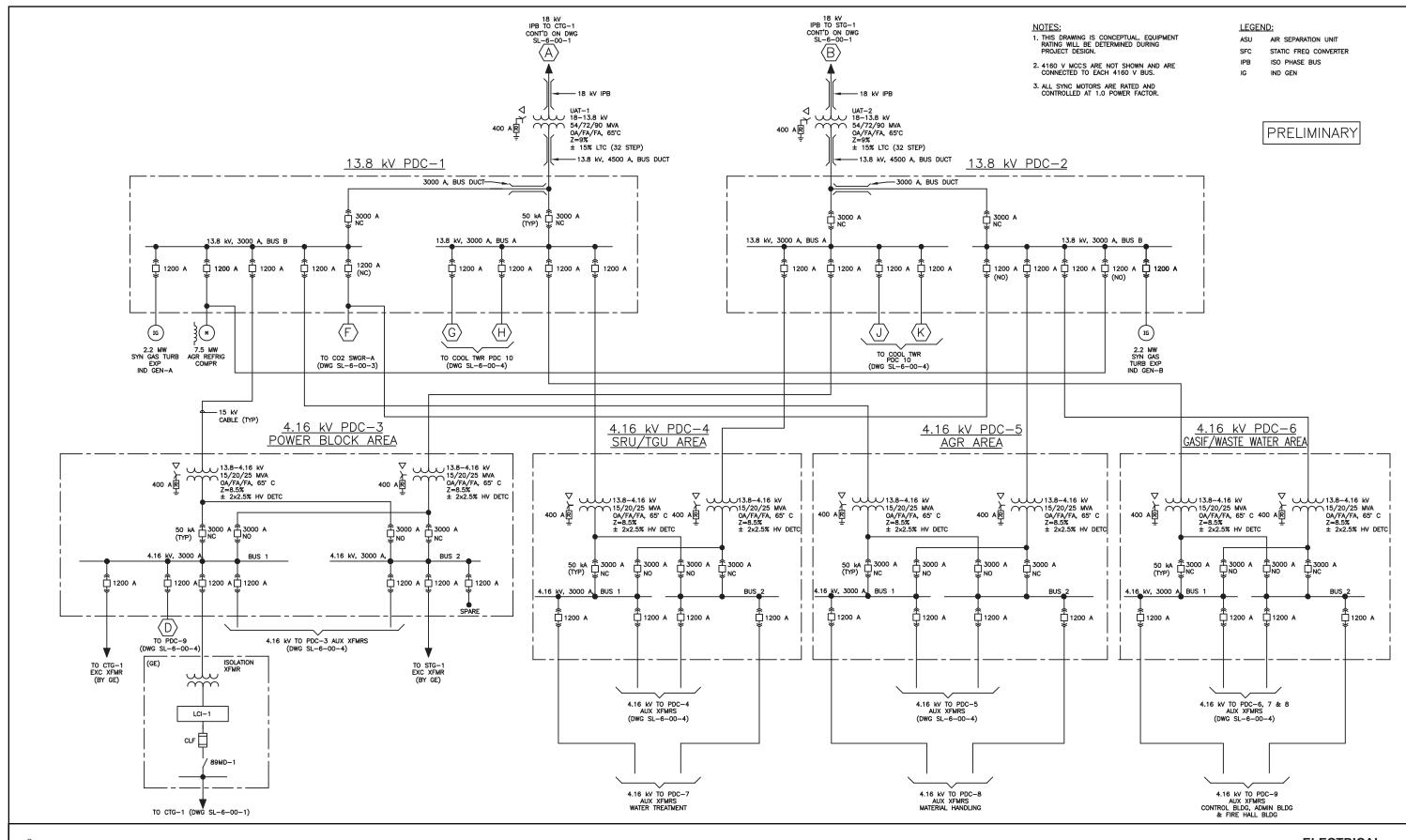


Flow Diagram, Power Block Systems; Drawing No: A3RW-PFD-25-010, Rev. 2 (09/03/09), Removed Auxiliary CTG

POWER BLOCK SYSTEMS

September 2009 Hydrogen Energy California (HECA) 28067571 Kern County, California

Source:


Fluor; Hydrogen Energy California, Kern County Power Project; Electrical Overall One Line Diagram;

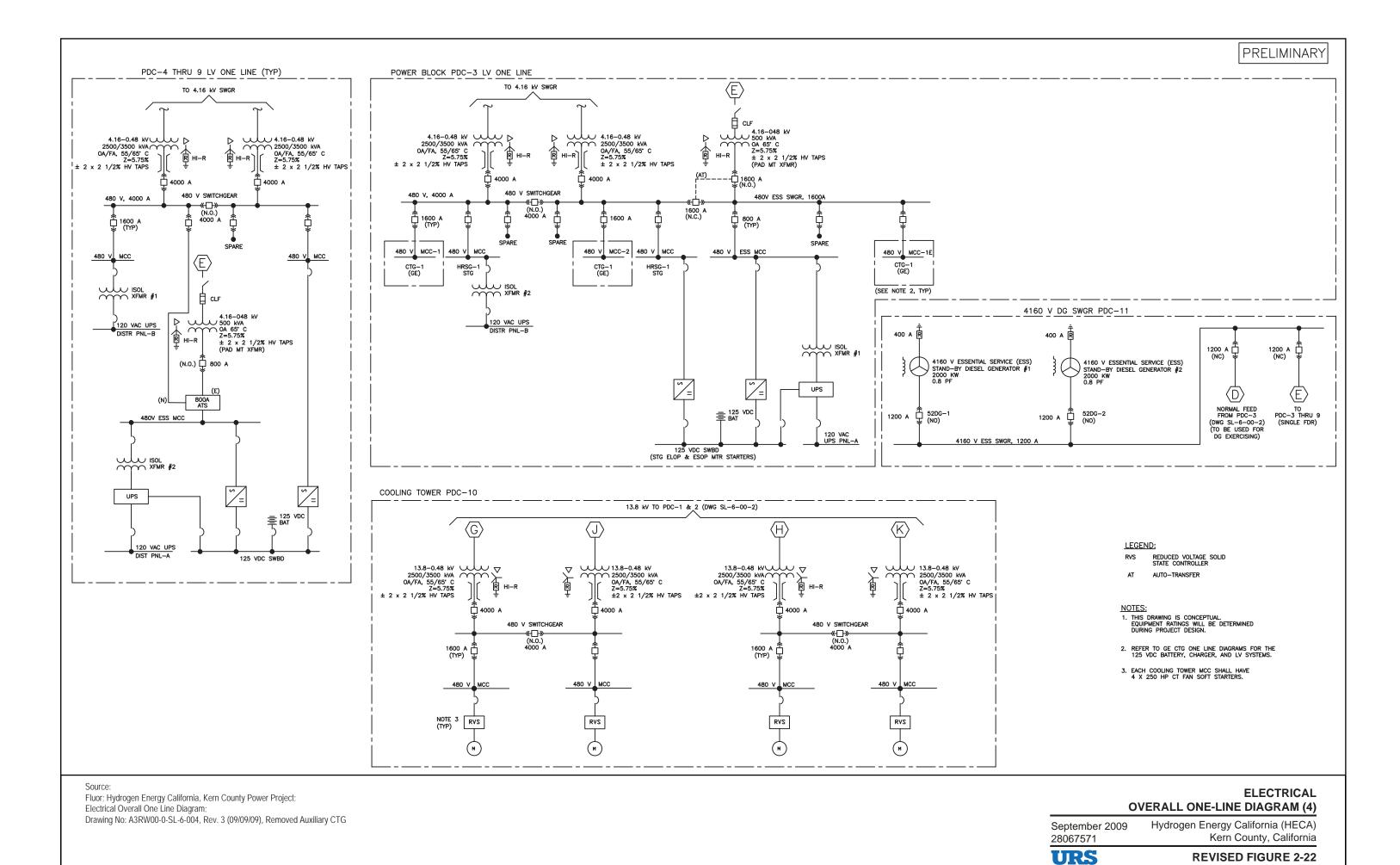
Drawing No: A3RW00-0-SL-6-001, Rev. 3 (09/09/09), Removed Auxiliary CTG

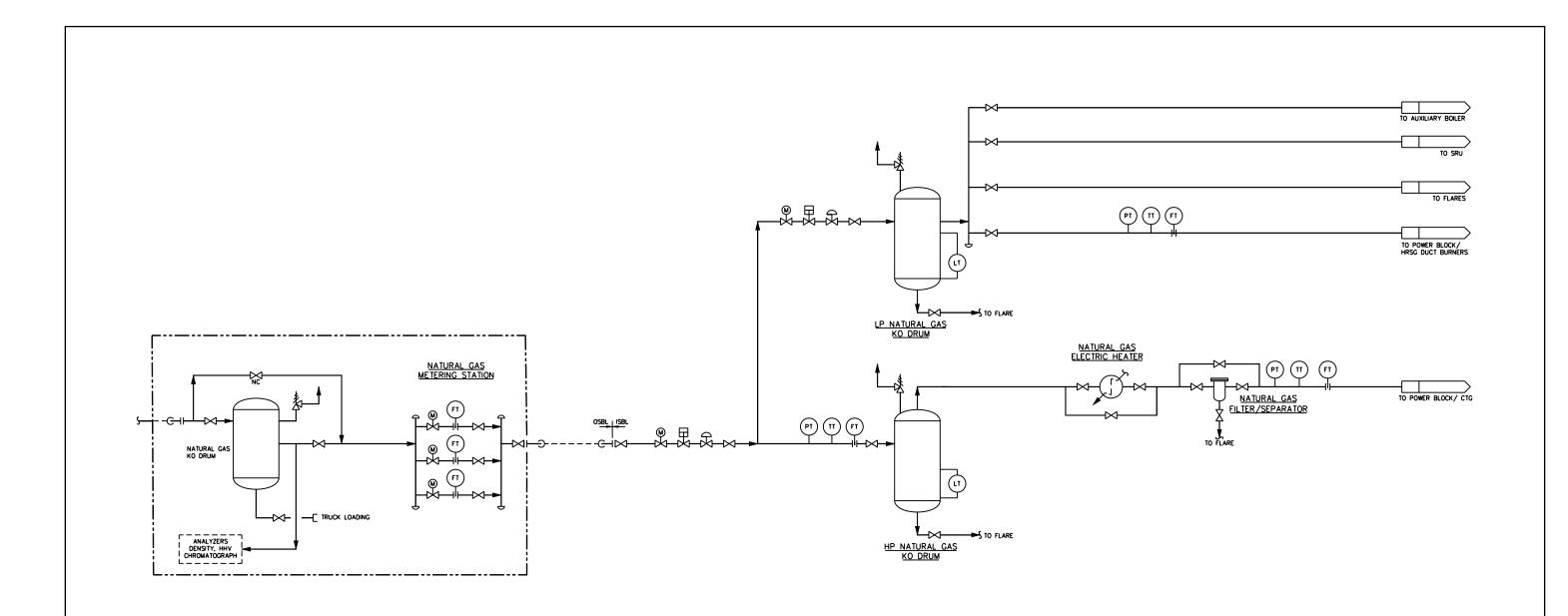
ELECTRICAL OVERALL ONE-LINE DIAGRAM (1)

September 2009 Hydrogen Energy California (HECA) 28067571 Kern County, California

Source

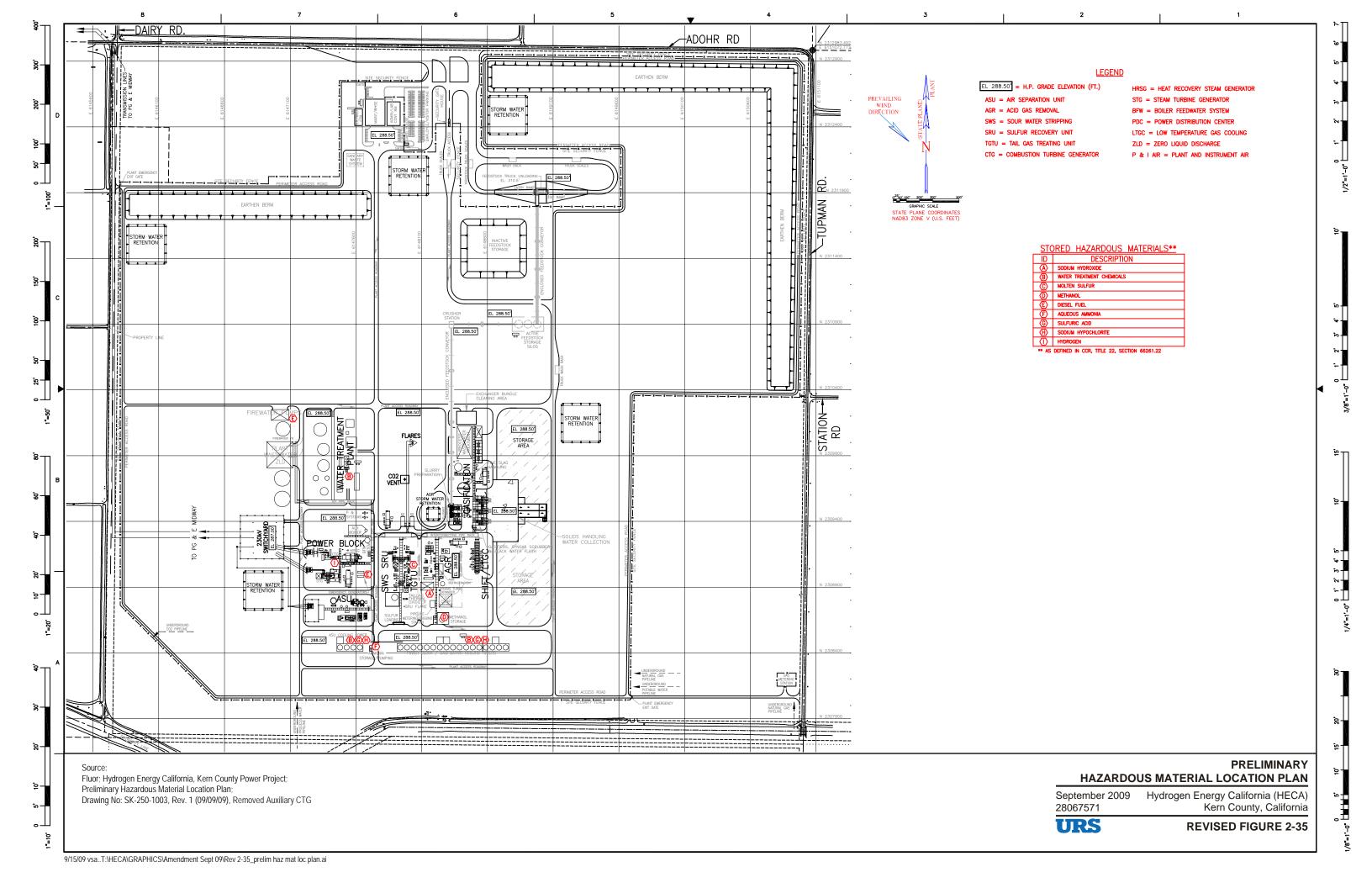
Fluor; Hydrogen Energy California, Kern County Power Project;

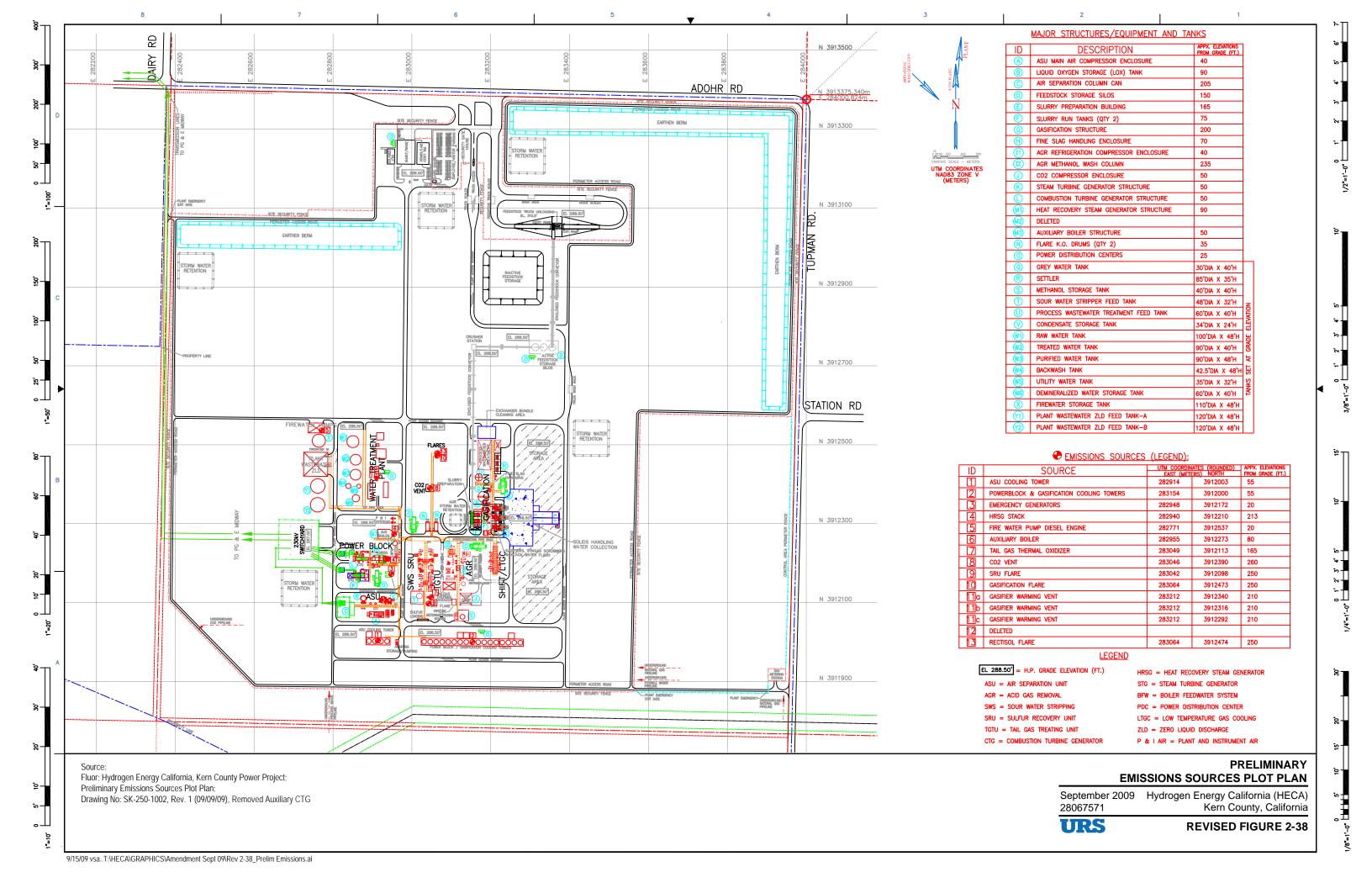

Electrical Overall One Line Diagram;

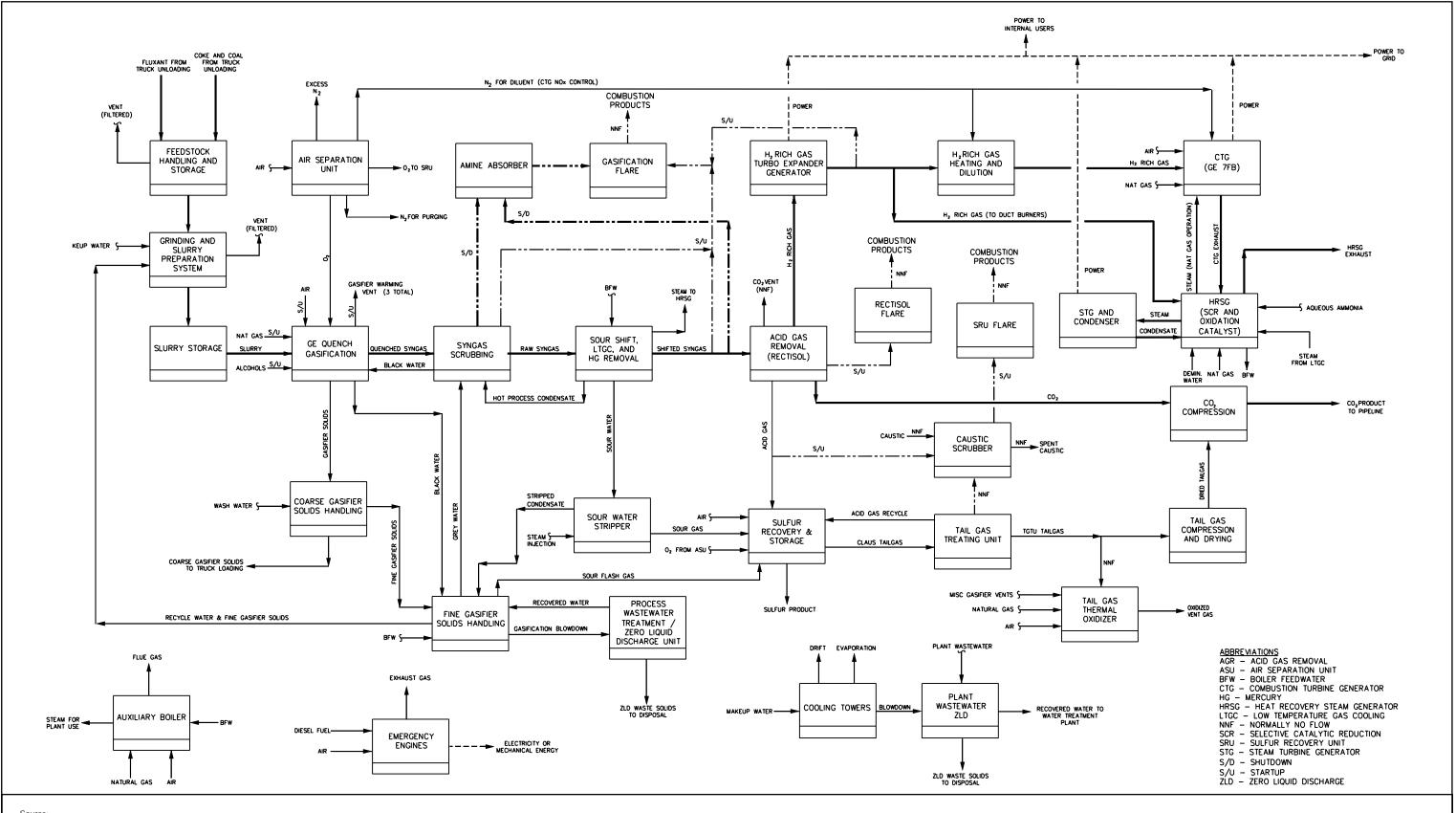

Drawing No: A3RW00-0-SL-6-002, Rev. 3 (09/09/09), Removed Auxiliary CTG

ELECTRICAL OVERALL ONE-LINE DIAGRAM (2)

September 2009 Hydrogen Energy California (HECA) 28067571 Kern County, California



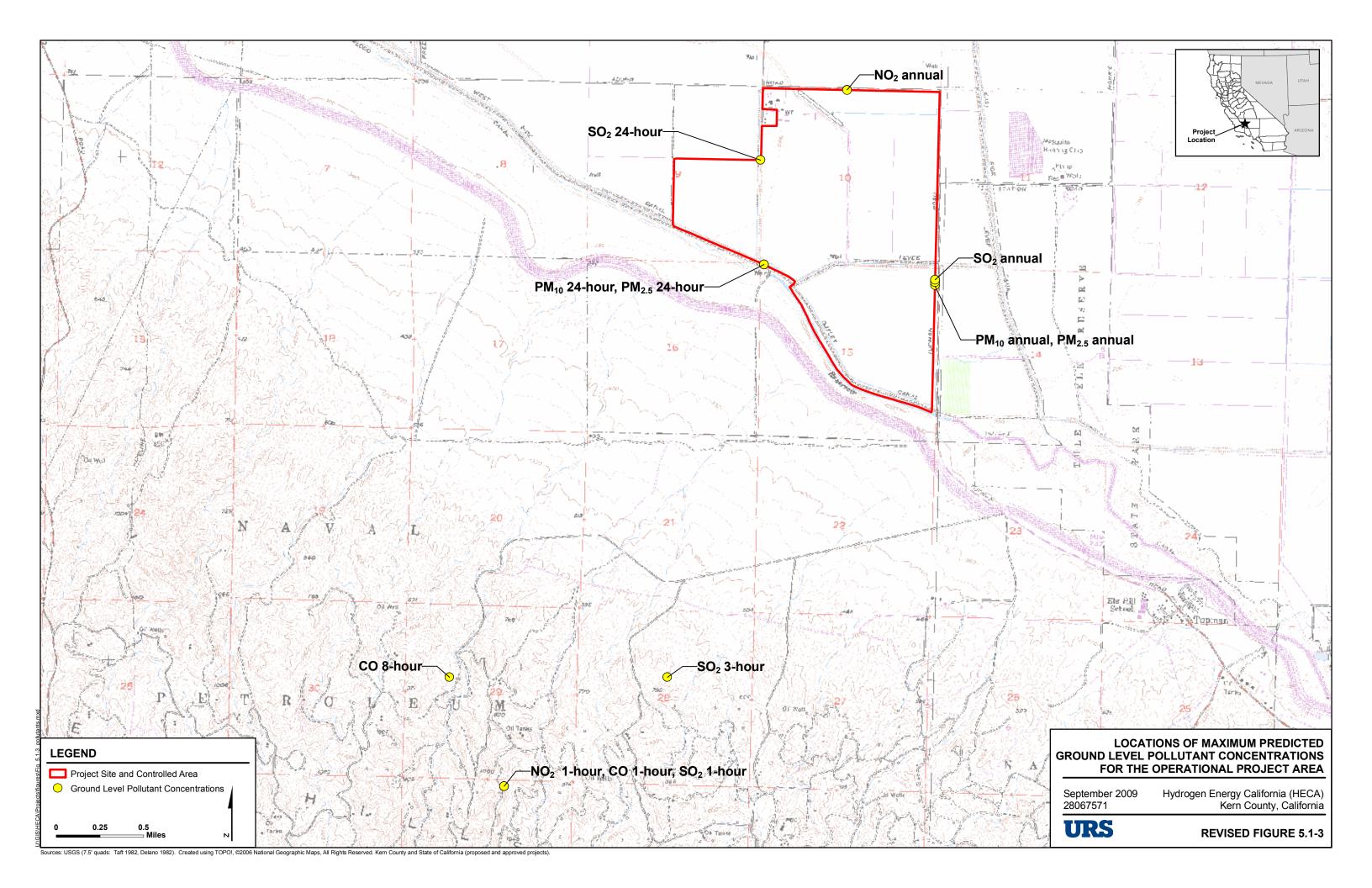

Source:
Fluor; Hydrogen Energy California, Kern County Power Project;
Flow Diagram, Natural Gas System;
Drawing No: A3RW-PFD-25-019, Rev. 3 (09/03/09), Removed Auxiliary CTG


FLOW DIAGRAM NATURAL GAS SYSTEM

September 2009 Hydrogen Energy California (HECA) 28067571 Kern County, California

Source:

Fluor; Hydrogen Energy California, Kern County Power Project;


Block Flow Diagram with Air Emission Sources;

Drawing No: A3RW-BFD-25-023, Rev. 3 (09/03/09), Removed Auxiliary CTG

BLOCK FLOW DIAGRAM WITH AIR EMISSION SOURCES

September 2009 Hydrogen Energy California (HECA) 28067571 Kern County, California

REVISED APPENDIX C3
HECA DOWNWASH STRUCTURES

	Building Name	Comment	Number of Tiers	Tier Number	Base Elevation (ft)	Tier Height (ft)	Number of Corners	Corner 1 East (X) (m)
1	FINESLAG	Fine Slag Handling Enclosure	1	1	288.5	7Ó	4	283221.4
2	SLRYPREP	Slurry Preparation Building	1	1	288.5	165	4	283149.2
3	GASIFIER	Gassifier Structure	1	1	288.5	200	4	283204
4	AGR	AGR Refrigeration Compressor Enclosure	1	1	288.5	40	4	283132.3
5	CO2	CO2 Compressor Enclosure	1	1	288.5	50	4	283148.9
6	ASU_COOL	ASU Cooling Tower	1	1	288.5	50	4	282884
7	STG	Steam Turbine Generator Structure	1	1	288.5	50	12	282851
8	CTG	Combustion Turbine Generator	1	1	288.5	50	10	282851.4
9	HRSG	Heat Recovery Steam Generator	1	1	288.5	90	4	282934.2
10	KO_DRUM	Flare KO Drum	1	1	288.5	35	8	283056.8
11	PWR_COOL	Power Block and Gassification Cooling To	1	1	288.5	50	4	283024.1
12	ASU_COMP	ASU Main Air Compressor Enclosure	1	1	288.5	40	4	282893.5
13	AUX_BOIL	Auxiliary Boiler	1	1	288.5	50	4	282913.4
14	EMER_GN1	Emergency Generator - 1	1	1	288.5	20	4	282933.4
15	EMER_GN2	Emergency Generator - 2	1	1	288.5	20	4	282933.3
16	AIR_SEP	Air Separation Column Can	1	1	288.5	85	22	282918.2
17	AGR_METH	AGR Methanol Wash Column	1	1	288.5	235	4	283091.7
18	LOX_TANK	LOx Tank	1	1	288.5	90	8	282870.4
19	DEMIN1	Demineraized Storage Tank 1	1	1	288.5	45	4	282965.9
20	DEMIN2	Demineraized Storage Tank 2	1	1	288.5	45	4	282965.9

		Corner 1	Corner 2	Corner 2	Corner 3	Corner 3	Corner 4	Corner 4
	Building Name	North (Y)	East (X)	North (Y)	East (X)	North (Y)	East (X)	North (Y)
	Daliding Name	(m)	(m)	(m)	(m)	(m)		, ,
	FINESI AG	, ,	. ,	, ,			(m)	(m)
1	FINESLAG	3912479.6	283205.3	3912480	283205.2	3912428	283221.5	3912428
2	SLRYPREP	3912325.7	283175.6	3912324.7	283175.5	3912280	283147.7	3912280
3	GASIFIER	3912352.1	283233	3912348.9	283233.2	3912283	283202.9	3912282
4	AGR	3912194.1	283132	3912169.3	283122.3	3912170	283122.7	3912194
5	CO2	3912117	283148.7	3912086.7	283118.1	3912087	283118.6	3912117
6	ASU_COOL	3912012	282944.5	3912011.3	282944.5	3911993	282883.8	3911993
7	STG	3912173.3	282861.6	3912173.1	282861.5	3912177	282869.2	3912177
8	CTG	3912218.2	282855.5	3912218.1	282858	3912216	282873.1	3912216
9	HRSG	3912219.4	282934.6	3912199.7	282909.9	3912201	282906.3	3912221
10	KO_DRUM	3912303.9	283066.5	3912303.3	283065.9	3912281	283056.5	3912281
11	PWR_COOL	3912009.6	283282.8	3912006.9	283282	3911989	283023.6	3911991
12	ASU_COMP	3912076.4	282928.5	3912076.4	282928.6	3912063	282892.7	3912063
13	AUX_BOIL	3912285.6	282913.8	3912261.7	282954.5	3912261	282954.5	3912285
14	EMER_GN1	3912178.4	282948.7	3912178.3	282948.5	3912174	282933.3	3912174
15	EMER_GN2	3912169.2	282948.4	3912169	282948.5	3912165	282933.4	3912165
16	AIR_SEP	3912110.2	282921.3	3912110	282922.8	3912114	282931.3	3912115
17	AGR_METH	3912224	283109.7	3912223.8	283109.7	3912209	283091.3	3912209
18	LOX_TANK	3912113.7	282874.5	3912117.8	282880.2	3912118	282884.3	3912114
19	DEMIN1	3912233.9	282970.3	3912234	282970.5	3912222	282966	3912221
20	DEMIN2	3912215	282970.4	3912214.6	282970.4	3912202	282965.8	3912202

	Building Name	Corner 5 East (X) (m)	Corner 5 North (Y) (m)	Corner 6 East (X) (m)	Corner 6 North (Y) (m)	Corner 7 East (X) (m)	Corner 7 North (Y) (m)	Corner 8 East (X) (m)	Corner 8 North (Y) (m)	Corner 9 East (X) (m)	Corner 9 North (Y) (m)
1	FINESLAG										
2	SLRYPREP										
3	GASIFIER										
4	AGR										
5	CO2										
6	ASU_COOL										
7	STG	282869.3	3912173	282889	3912173	282889	3912164	282869.1	3912164	282869.2	3912160
8	CTG	282889.6	3912215	282889.5	3912208	282872.9	3912207	282857.7	3912207	282855.4	3912204
9	HRSG										
10	KO_DRUM	283044.7	3912282	283034.7	3912283	283035.4	3912303	283044.4	3912303		
11	PWR_COOL										
12	ASU_COMP										
13	AUX_BOIL										
14	EMER_GN1										
15	EMER_GN2										
16	AIR_SEP	282931.5	3912113	282934.7	3912113	282934.9	3912109	282937.8	3912108	282943.7	3912111
17	AGR_METH										
18	LOX_TANK	282884.3	3912108	282880	3912104	282874.3	3912104	282870.2	3912108		
19	DEMIN1										
20	DEMIN2										

	Building Name	Corner 10 East (X) (m)	Corner 10 North (Y) (m)	Corner 11 East (X) (m)	Corner 11 North (Y) (m)	Corner 12 East (X) (m)	Corner 12 North (Y) (m)	Corner 13 East (X) (m)	Corner 13 North (Y) (m)	Corner 14 East (X) (m)	Corner 14 North (Y) (m)
1	FINESLAG	()	()	()	()	()	()	()	()	()	()
2	SLRYPREP										
3	GASIFIER										
4	AGR										
5 6	CO2 ASU_COOL										
7	STG	282861.4	3912160	282861.2	3912164	282850.9	3912164				
8	CTG	282851.2	3912205	202001.2	0012104	202000.0	0012104				
9	HRSG										
10	KO_DRUM										
11	PWR_COOL										
12	ASU_COMP										
13	AUX_BOIL										
14	EMER_GN1										
15 16	EMER_GN2 AIR_SEP	282955.1	3912109	282954.9	3912104	282949.9	3912104	282943.7	3912102	282939.4	3912103
17	AGR_METH	202900.1	3912109	202904.9	3912104	202949.9	3912104	202943.1	3912102	202939.4	3912103
18	LOX_TANK										
19	DEMIN1										
20	DEMIN2										

	Building Name	Corner 15 East (X) (m)	Corner 15 North (Y) (m)	Corner 16 East (X) (m)	Corner 16 North (Y) (m)	Corner 17 East (X) (m)	Corner 17 North (Y) (m)	Corner 18 East (X) (m)	Corner 18 North (Y) (m)	Corner 19 East (X) (m)	Corner 19 North (Y) (m)
1	FINESLAG	` ,		, ,	. ,	, ,	, ,	, ,	. ,	. ,	, ,
2	SLRYPREP										
3	GASIFIER										
4	AGR										
5	CO2										
6	ASU_COOL										
7	STG										
8	CTG										
9	HRSG										
10	KO_DRUM										
11	PWR_COOL										
12	ASU_COMP										
13	AUX_BOIL										
14	EMER_GN1										
15	EMER_GN2	000004.0	2040404	000004.0	2042000	000004.7	2042000	000000 7	2042000	000004.4	204.0000
16	AIR_SEP	282934.8	3912101	282934.8	3912099	282934.7	3912096	282932.7	3912096	282931.1	3912099
17 10	AGR_METH										
18 10	LOX_TANK DEMIN1										
19 20	DEMIN2										
20	DEMINA										

	Building Name	Corner 20 East (X) (m)	Corner 20 North (Y) (m)	Corner 21 East (X) (m)	Corner 21 North (Y) (m)	Corner 22 East (X) (m)	Corner 22 North (Y) (m)
1	FINESLAG	` '	` ,	` ,	` ,	` ,	` ,
2	SLRYPREP						
3	GASIFIER						
4	AGR						
5	CO2						
6	ASU_COOL						
7	STG						
8	CTG						
9	HRSG						
10	KO_DRUM						
11	PWR_COOL						
12	ASU_COMP						
13	AUX_BOIL						
14	EMER_GN1						
15	EMER_GN2						
16	AIR_SEP	282922	3912099	282921.1	3912102	282918.1	3912102
17	AGR_METH						
18	LOX_TANK						
19	DEMIN1						
20	DEMIN2						

Tanks

	Taliks		Base	Center	Center	Tank	Tank
	Tank Name	Description	Elevation	East (X)	North (Y)	Height	Diameter
		2 000.1p.1.0.1	(ft)	(m)	(m)	(ft)	(ft)
1	PROC_WTR	Process Water Treatment Feed Tank	288.5	283173.3	3912429.9	32	35
2	GREY_WTR	Grey Water Tank	288.5	283158.5	3912414.5	40	30
3	SETTLER	Settler	288.5	283184.2	3912394.2	35	85
4	SLURTK_N	Slurry Run Tank - N	288.5	283184	3912318	75	38
5	SLURTK_S	Slurry Run Tank - S	288.5	283183.4	3912301.5	75	38
6	SOUR_WTR	Sour Water Stripper Feed Tank	288.5	283022.5	3912123.8	32	48
7	CONDENSA	Condensate Storage Tank	288.5	282957	3912249.6	24	34
8	FIREWATR	Firewater Storage Tank	288.5	282758.5	3912509.6	48	110
9	RAWWATER	Raw Water Tank	288.5	282850.6	3912507.3	48	100
10	TREATD_W	Treated Water Tank	288.5	282857.4	3912461.7	40	90
11	SILO_W	Feedstock Storage Silos - West	288.5	283261.6	3912671.8	150	80
12	SILO_C	Feedstock Storage Silos - Central	288.5	283290.1	3912671.4	150	80
13	SILO_E	Feedstock Storage Silos - East	288.5	283316.9	3912670.5	150	80
14	METHNL	Methanol Storage Tank	288.5	283115.2	3912061.2	40	40
15	AIR_CAN	Air Separation Can	288.5	282943.5	3912106.5	205	33
16	DEMINERA	Demineraized Storage Tank	288.5	282857.3	3912364.3	40	60
17	PURH2O_1	Purified Water Tank	288.5	282857.4	3912424.4	48	90
18	PURH2O_2	Purified Water Tank	288.5	282839.4	3912395.2	48	42.5
19	PURH2O_3	Purified Water Tank	288.5	282865.6	3912395.5	32	35
20	WATERT_N	Water Treatment Tank North	288.5	282761	3912394.8	48	120
21	WATERT_S	Water Treatment Tank South	288.5	282760.9	3912346.9	48	120

REVISED PORTIONS OF APPENDIX C4 CALMET/CALPUFF AIR QUALITY MODELING RESULTS

The tables listed below have been revised to reflect the elimination of the GE LMS100 $^{\$}$ auxiliary combustion turbine generator (CTG) and the reduction of PM₁₀ and PM_{2.5} emission rates from the GE Frame 7B CTG/Heat Recovery System Generator (HRSG) when firing hydrogen-rich fuel. The remaining portions of Appendix C4 are unchanged.

Revised List of Tables

Maximum Emission Rates of Each Averaging Time Period
Source Location and Parameters
3-hour Averaged Emission Inventory for CALPUFF (3-hour SO ₂ Increment Analysis)
24-hour Averaged Emission Inventory for CALPUFF (24-hour NO_x , SO_2 , and PM_{10} Increment and Visibility Analyses)
Annual Averaged Emission Inventory for CALPUFF (Annual NO _x , SO ₂ , and PM ₁₀ Increment and Deposition Analyses)
PSD Class I Increment Significance Analysis – CALPUFF Results
Visibility Analysis – CALPUFF Results
Total Nitrogen and Sulfur Deposition Analysis – CALPUFF Results

Revised Table 2
Maximum Emission Rates of Each Averaging Time Period

Course	3-hr (g/s)		24-hr (g/s)			Annual (g/s)	
Source	SO ₂	NO _X	SO ₂	PM ₁₀	NO _X	SO ₂	PM_{10}
ASUCOOL1	-	-	-	0.0285	-	-	0.0271
ASUCOOL2	-	-	-	0.0285	-	-	0.0271
ASUCOOL3	-	-	-	0.0285	-	-	0.0271
ASUCOOL4	-	-	-	0.0285	-	-	0.0271
PWCOOL1	-	-	-	0.0382	-	-	0.0363
PWCOOL2	-	-	-	0.0382	-	-	0.0363
PWCOOL3	-	-	-	0.0382	-	-	0.0363
PWCOOL4	-	-	-	0.0382	-	-	0.0363
PWCOOL5	-	-	-	0.0382	-	-	0.0363
PWCOOL6	-	-	-	0.0382	-	-	0.0363
PWCOOL7	-	-	-	0.0382	-	-	0.0363
PWCOOL8	-	-	-	0.0382	-	-	0.0363
PWCOOL9	-	-	-	0.0382	-	-	0.0363
PWCOOL10	-	-	-	0.0382	-	-	0.0363
PWCOOL11	-	-	-	0.0382	-	-	0.0363
PWCOOL12	-	-	-	0.0382	-	-	0.0363
PWCOOL13	-	-	-	0.0382	-	-	0.0363
GASCOOL1	-	-	-	0.0300	-	-	0.0285
GASCOOL2	-	-	-	0.0300	-	-	0.0285
GASCOOL3	-	-	-	0.0300	-	-	0.0285
GASCOOL4	-	-	-	0.0300	-	-	0.0285
EMERGEN1 a	0.0024	0.0324	0.0003	0.0017	0.0022	0.00002	0.0001
EMERGEN2 a	-	-	-	-	_	-	-
HRSGSTK	0.9302	6.5718	0.9302	2.4947	4.8092	0.8394	2.3698
FIREPUMP	0.0005	0.0193	0.0001	0.0002	0.0026	0.000008	0.000026
AUX_BOIL b	-	-	-	-	0.0492	0.0091	0.0224
TAIL_TO	0.2546	0.6048	0.2546	0.0202	0.3128	0.2521	0.0104
CO ₂ _VENT	-	-	-	-	-	-	-
SRUFLARE	2.1933	0.0720	0.2742	0.0018	0.0049	0.0016	0.0001
GF_FLARE	0.0001	7.9380	0.0001	0.0002	0.1239	0.0001	0.0002
GASVENTA ^c	=	ı	-	=	I	=	-
GASVENTB ^c	0.0046	0.2495	0.0046	0.0181	0.0513	0.0010	0.0037
GASVENTC ^c	=	ı	-	=	I	=	-
DC1	-	ı	-	0.0301	ı	-	0.0058
DC2	-	-	-	0.0761	-	-	0.0147
DC3	-	-	-	0.0411	-	-	0.0363
DC4	-	-	-	0.0263	-	-	0.0232
DC5	-	-	-	0.0252	-	-	0.0223
DC6	-	-	-	0.0027	-	-	0.0004
RC_FLARE	0.0001	0.0045	0.0001	0.0001	0.0045	0.0001	0.0001

Notes:

a The analysis also assumed that all emissions from two emergency generators are released to the emergency generator 1, which has worst dispersion characteristics.

b. Auxiliary boiler is not fired at the same time that the HRSG is operating.

c. There are three gasifiers. Only one gasifier warming will be operated at any one time. The emission is from GASVENTB, which results worst impact among three gasifiers.

Revised Table 3
Source Location and Parameters

Source ID	Source Description	UTM Easting	UTM Northing	LCC X	LCC Y	Base Elevation	Stack Height	Stack Temperature	Stack Velocity	Stack Diameter
	•	(m)	(m)	(km)	(km)	(m)	(m)	(k)	(m/s)	(m)
ASUCOOL1	ASU Cooling Tower	282891.3	3912002.1	23.21883	30.06171	87.93	16.76	299.9	7.98	9.14
ASUCOOL2	ASU Cooling Tower	282906.2	3912002.4	23.23371	30.06243	87.93	16.76	299.9	7.98	9.14
ASUCOOL3	ASU Cooling Tower	282922.2	3912002.1	23.24975	30.06254	87.93	16.76	299.9	7.98	9.14
ASUCOOL4	ASU Cooling Tower	282937.3	3912001.4	23.26486	30.06224	87.93	16.76	299.9	7.98	9.14
PWCOOL1	Power Block Cooling Tower	283031.9	3912001.1	23.35941	30.06445	87.93	16.76	299.9	7.98	9.14
PWCOOL2	Power Block Cooling Tower	283046.3	3912000.9	23.37385	30.06469	87.93	16.76	299.9	7.98	9.14
PWCOOL3	Power Block Cooling Tower	283061.6	3912001.0	23.38915	30.06519	87.93	16.76	299.9	7.98	9.14
PWCOOL4	Power Block Cooling Tower	283076.9	3912000.0	23.40443	30.06463	87.93	16.76	299.9	7.98	9.14
PWCOOL5	Power Block Cooling Tower	283092.1	3912000.0	23.4196	30.06494	87.93	16.76	299.9	7.98	9.14
PWCOOL6	Power Block Cooling Tower	283107.9	3912000.0	23.4354	30.06545	87.93	16.76	299.9	7.98	9.14
PWCOOL7	Power Block Cooling Tower	283122.7	3911999.4	23.45019	30.06518	87.93	16.76	299.9	7.98	9.14
PWCOOL8	Power Block Cooling Tower	283137.8	3911999.3	23.46529	30.06555	87.93	16.76	299.9	7.98	9.14
PWCOOL9	Power Block Cooling Tower	283153.5	3911999.5	23.481	30.06609	87.93	16.76	299.9	7.98	9.14
PWCOOL10	Power Block Cooling Tower	283168.8	3911999.2	23.49627	30.06622	87.93	16.76	299.9	7.98	9.14
PWCOOL11	Power Block Cooling Tower	283183.7	3911999.6	23.51118	30.06702	87.93	16.76	299.9	7.98	9.14
PWCOOL12	Power Block Cooling Tower	283199.5	3911999.0	23.52698	30.0669	87.93	16.76	299.9	7.98	9.14
PWCOOL13	Power Block Cooling Tower	283275.2	3911998.1	23.60261	30.068	87.93	16.76	299.9	7.98	9.14
GASCOOL1	Gasification Cooling Tower	283214.6	3911999.4	23.54206	30.06768	87.93	16.76	299.9	7.98	9.14
GASCOOL2	Gasification Cooling Tower	283228.6	3911998.4	23.5561	30.06699	87.93	16.76	299.9	7.98	9.14
GASCOOL3	Gasification Cooling Tower	283244.7	3911998.9	23.57215	30.06791	87.93	16.76	299.9	7.98	9.14
GASCOOL4	Gasification Cooling Tower	283259.1	3911998.1	23.5866	30.06755	87.93	16.76	299.9	7.98	9.14
EMERGEN1	Emergency Generator1	282948.3	3912172.0	23.2713	30.23302	87.93	6.10	677.6	67.38	0.37
EMERGEN2	Emergency Generator2	282948.3	3912172.0	23.2713	30.23302	87.93	6.10	677.6	67.38	0.37
HRSGSTK	HRSG Stack	282940	3912211.5	23.262	30.27232	87.93	65.00	344.3	11.55	6.10
FIREPUMP	Fire Water Pump Diesel Engine	282770.9	3912535.5	23.08432	30.59164	87.93	6.10	727.6	47.52	0.21
AUX_BOIL	Auxiliary Boiler	282955.1	3912273.0	23.27539	30.33414	87.93	24.38	422.0	9.20	1.37
TAIL_TO	Tail Gas Thermal Oxidizer	283049.1	3912112.7	23.37362	30.1765	87.93	50.29	922.0	7.45	0.76

Revised Table 3
Source Location and Parameters (Continued)

Source ID	Source Description	UTM Easting	UTM Northing	LCC X	LCC Y	Base Elevation	Stack Height	Stack Temperature	Stack Velocity	Stack Diameter
		(m)	(m)	(km)	(km)	(m)	(m)	(k)	(m/s)	(m)
CO ₂ _VENT	CO ₂ Vent	283045.7	3912389.7	23.36286	30.45327	87.93	79.25	291.5	55.92	1.07
SRUFLARE	SRU Flare	283042.4	3912097.7	23.36739	30.16128	87.93	76.20	1273.0	20.00	1.09
GF_FLARE	Gasification Flare	283064.5	3912472.6	23.37946	30.53658	87.93	76.20	1273.0	20.00	5.47
GASVENTA	Gasifier Warming Vent A	283212.7	3912342.0	23.531	30.41005	87.93	64.01	338.7	26.39	0.30
GASVENTB	Gasifier Warming Vent B	283211.7	3912316.6	23.53075	30.38457	87.93	64.01	338.7	26.39	0.30
GASVENTC	Gasifier Warming Vent C	283211.2	3912291.0	23.53085	30.35898	87.93	64.01	338.7	26.39	0.30
DC1	FeedStock-DustCollection	283365.3	3913058.7	23.6644	31.13031	87.93	13.87	291.9	15.06	0.51
DC2	FeedStock-DustCollection	283356.0	3912740.9	23.66358	30.81248	87.93	51.97	291.9	14.90	0.81
DC3	FeedStock-DustCollection	283150.4	3912310.2	23.46956	30.37655	87.93	53.79	291.9	14.66	0.56
DC4	FeedStock-DustCollection	283298.0	3912740.9	23.60564	30.81094	87.93	51.97	291.9	15.70	0.43
DC5	FeedStock-DustCollection	283150.4	3912749.0	23.45789	30.81511	87.93	24.23	291.9	15.06	0.43
DC6	FeedStock-DustCollection	283149.9	3912324.5	23.46876	30.39085	87.93	53.79	291.9	14.19	0.23
RC_FLARE	Rectisol Flare	283064.7	3912479.1	23.3795	30.54304	87.93	76.20	1273.0	20.00	0.10

Notes:

Assumed that the temperature of cooling tower is 8 degrees Kelvin degree higher than the annual averaged temperature value from the AERMET meteorological data at Bakersfield monitoring station.

Assumed that the temperature of dust collection is the annual averaged value from the AERMET meteorological data at Bakersfield monitoring station.

 $egin{array}{lll} K & = & Kelvin \\ km & = & kilometer \end{array}$

LCC = Lambert Conformal Conic

m = meter

m/s = meters per second

UTM = Universal Transverse Mercator

Revised Table 4 3-Hour Averaged Emission Inventory for CALPUFF (3-Hour SO₂ Increment Analysis)

Sources									SOA					
(g/s)	SO_2	SO_4	NO _x	HNO ₃	NO_3	INCPM	PM_{10}	PM0005	PM0010	PM0015	PM0020	PM0025	PM0100	EC
EMERGEN1	2.35E-03	-	3.89E-01	-	-	1.69E-03	1.69E-03	=	-	-	=	-	-	=
HRSGSTK	6.20E-01	4.65E-01	2.10E+01	-	=	2.49E+00	1	2.11E-01	3.51E-01	3.23E-01	2.11E-01	1.55E-01	1.55E-01	6.24E-01
FIREPUMP	4.70E-04	-	2.32E-01	-	-	1.93E-04	1.93E-04	-	-	-	-	-	-	-
TAIL_TO	2.55E-01	-	6.05E-01	-	-	2.02E-02	2.02E-02	-	-	-	-	-	-	-
SRUFLARE	2.19E+00	-	5.44E-01	-	-	1.80E-03	1.80E-03	-	-	-	-	-	-	-
GF_FLARE	1.29E-04	-	7.94E+00	-	-	1.89E-04	1.89E-04	-	-	-	-	-	-	-
GASVENTB	4.63E-03	-	2.49E-01	-	-	1.81E-02	1.81E-02	-	-	-	-	-	-	-
RC_FLARE	7.72E-05	-	4.54E-03	-	-	1.13E-04	1.13E-04	-	-	-	-	-	-	-

Notes:

(g/s) = grams per second EC = Elemental Carbon HNO₃ = nitric acid

INCPM = total particulate matter emission

NOx = oxides of nitrogen

 NO_3 = nitrate

 $\begin{array}{lll} PM0005 & = & particulate \ matter \ 0.05 \ microns \ or \ less \ in \ diameter \\ PM0010 & = & particulate \ matter \ 0.1 \ microns \ or \ less \ in \ diameter \\ PM0020 & = & particulate \ matter \ 0.2 \ microns \ or \ less \ in \ diameter \\ PM0025 & = & particulate \ matter \ 0.25 \ microns \ or \ less \ in \ diameter \\ PM0100 & = & particulate \ matter \ 1 \ microns \ or \ less \ in \ diameter \\ PM_{10} & = & particulate \ matter \ 10 \ microns \ or \ less \ in \ diameter \\ \end{array}$

SO₂ = sulfur dioxide SO₄ = sulfate compound

SOA = Secondary Organic Aerosol

Revised Table 5

24-hour Averaged Emission Inventory for CALPUFF (24-hour NO_x, SO₂, and PM₁₀ Increment and Visibility Analyses)

Sources			veraged Emiss		Ĭ		A) 2)	10			OA			
(g/s)	SO_2	SO_4	NO _x	HNO ₃	NO ₃	INCPM	PM_{10}	PM0005	PM0010	PM0015	PM0020	PM0025	PM0100	EC
ASUCOOL1	-	-	-	-	-	2.85E-02	2.85E-02	-	-	-	=	=	=	=
ASUCOOL2	-	=	-	-	=	2.85E-02	2.85E-02	-	-	-	=	=	=	=
ASUCOOL3	-	=	-	-	=	2.85E-02	2.85E-02	-	-	-	=	=	=	=
ASUCOOL4	-	-	-	-	-	2.85E-02	2.85E-02	-	-	-	-	-	-	-
PWCOOL1	-	-	-	-	-	3.82E-02	3.82E-02	-	-	-	-	-	-	-
PWCOOL2	-	-	-	-	-	3.82E-02	3.82E-02	-	-	-	-	-	-	-
PWCOOL3	-	-	-	-	-	3.82E-02	3.82E-02	-	-	-	-	-	-	-
PWCOOL4	-	-	-	-	-	3.82E-02	3.82E-02	-	-	-	-	-	-	-
PWCOOL5	-	-	-	-	-	3.82E-02	3.82E-02	-	-	-	-	-	-	-
PWCOOL6	-	-	-	_	-	3.82E-02	3.82E-02	-	-	-	-	-	-	-
PWCOOL7	-	-	-	_	-	3.82E-02	3.82E-02	-	-	-	-	-	-	-
PWCOOL8	-	-	-	-	-	3.82E-02	3.82E-02	-	-	-	-	-	-	-
PWCOOL9	-	-	-	-	-	3.82E-02	3.82E-02	-	-	-	-	-	-	-
PWCOOL10	-	-	-	-	-	3.82E-02	3.82E-02	-	-	-	-	-	-	-
PWCOOL11	-	-	-	-	-	3.82E-02	3.82E-02	-	-	-	-	-	-	-
PWCOOL12	-	-	-	-	-	3.82E-02	3.82E-02	-	-	-	-	-	-	-
PWCOOL13	-	-	-	-	-	3.82E-02	3.82E-02	-	-	-	-	-	-	-
GASCOOL1	-	-	-	-	-	3.00E-02	3.00E-02	-	-	-	-	-	-	-
GASCOOL2	-	-	-	-	-	3.00E-02	3.00E-02	-	-	-	-	-	-	-
GASCOOL3	-	-	-	-	-	3.00E-02	3.00E-02	-	-	-	-	-	-	-
GASCOOL4	-	-	-	-	-	3.00E-02	3.00E-02	-	-	-	-	-	-	-
EMERGEN1	2.94E-04	-	3.24E-02	-	-	1.69E-03	1.69E-03	-	-	-	-	-	-	-
HRSGSTK	6.20E-01	4.65E-01	6.57E+00	-	-	2.49E+00	-	2.11E-01	3.51E-01	3.23E-01	2.11E-01	1.55E-01	1.55E-01	6.24E-01
FIREPUMP	5.88E-05	-	1.93E-02			1.93E-04	1.93E-04							
TAIL_TO	2.55E-01	=	6.05E-01	=	=	2.02E-02	2.02E-02	-	-	-	=	=	•	-
SRUFLARE	2.74E-01	=	7.20E-02	=	=	1.80E-03	1.80E-03	-	-	-	=	=	•	-
GF_FLARE	1.29E-04	=	7.94E+00	=	=	1.89E-04	1.89E-04	-	-	-	=	=	•	-
GASVENTB	4.63E-03	=	2.49E-01	=	=	1.81E-02	1.81E-02	-	-	-	=	=	•	-
DC1	=	=	-	=	=	3.01E-02	3.01E-02	-	-	-	=	=	•	-
DC2	-	=	-	-	-	7.61E-02	7.61E-02	-	-	-	=	=	=	=
DC3	-	=	-	-	-	4.11E-02	4.11E-02	-	-	-	=	=	=	=
DC4	-	-	-	-	-	2.63E-02	2.63E-02	-	-	-	-	-	-	-
DC5	-	-	-	-	-	2.52E-02	2.52E-02	-	-	-	-	-	-	-
DC6	-	-	-	-	-	2.67E-03	2.67E-03	-	-	-	-	-	-	-
RC_FLARE	7.72E-05	=	4.54E-03	-	-	1.13E-04	1.13E-04	-	-	-	=	=	=	=

Notes:

(g/s) = grams per second EC = Elemental Carbon HNO₃ = nitric acid

INCPM = total particulate matter emission

 NO_x = oxides of nitrogen

 NO_3 = nitrate

PM0005 = particulate matter 0.05 microns or less in diameter PM0010 = particulate matter 0.1 microns or less in diameter

Secondary Organic Aerosol

SOA

 $Revised\ Table\ 6$ Annual Averaged Emission Inventory for CALPUFF (Annual NO $_x$, SO $_2$, and PM $_{10}$ Increment and Deposition Analyses)

Sources														
(g/s)	SO ₂	SO_4	NO _x	HNO ₃	NO_3	INCPM	PM_{10}	PM0005	PM0010	PM0015	SOA	PM0025	PM0100	EC
ASUCOOL1	-	-	-	-	-	2.71E-02	2.71E-02	-	-	-	-	-	-	-
ASUCOOL2	-	-	-	-	-	2.71E-02	2.71E-02	-	-	-	-	-	-	-
ASUCOOL3	-	-	-	-	-	2.71E-02	2.71E-02	-	-	-	-	-	-	-
ASUCOOL4	-	-	-	-	-	2.71E-02	2.71E-02	-	-	-	-	-	-	-
PWCOOL1	-	-	-	-	-	3.63E-02	3.63E-02	-	-	-	-	-	-	-
PWCOOL2	-	-	-	-	-	3.63E-02	3.63E-02	-	-	-	-	-	-	-
PWCOOL3	-	-	-	-	-	3.63E-02	3.63E-02	-	-	-	-	-	-	-
PWCOOL4	-	-	-	-	-	3.63E-02	3.63E-02	-	-	-	-	-	-	-
PWCOOL5	-	-	-	-	-	3.63E-02	3.63E-02	-	-	-	-	-	-	-
PWCOOL6	-	-	-	-	-	3.63E-02	3.63E-02	-	-	-	-	-	-	-
PWCOOL7	-	-	-	-	-	3.63E-02	3.63E-02	-	-	-	-	-	-	-
PWCOOL8	-	-	-	-	-	3.63E-02	3.63E-02	-	-	-	-	-	-	-
PWCOOL9	-	-	-	-	-	3.63E-02	3.63E-02	-	-	-	-	-	-	-
PWCOOL10	-	-	-	-	-	3.63E-02	3.63E-02	-	-	-	-	-	-	-
PWCOOL11	-	-	-	-	-	3.63E-02	3.63E-02	-	-	-	-	-	-	-
PWCOOL12	-	-	-	-	-	3.63E-02	3.63E-02	-	-	-	-	-	-	-
PWCOOL13	-	-	-	-	-	3.63E-02	3.63E-02	-	-	-	-	-	-	-
GASCOOL1	-	-	-	-	-	2.85E-02	2.85E-02	-	-	-	-	-	-	-
GASCOOL2	-	-	-	-	-	2.85E-02	2.85E-02	-	-	-	-	-	-	-
GASCOOL3	-	-	-	-	-	2.85E-02	2.85E-02	-	-	-	-	-	-	-
GASCOOL4	-	-	-	-	-	2.85E-02	2.85E-02	-	-	-	-	-	-	-
EMERGEN1	2.01E-05	-	2.22E-03	_	-	1.15E-04	1.15E-04	_	-	_	-	_	_	=
HRSGSTK	5.60E-01	4.20E-01	4.81E+00	-	-	2.37E+00	-	2.04E-01	3.39E-01	3.12E-01	2.04E-01	1.49E-01	1.49E-01	5.92E-01
FIREPUMP	8.05E-06	-	2.64E-03	-	-	2.64E-05	2.64E-05	-	-	-	-	-	-	-
AUX_BOIL	9.13E-03	-	4.92E-02	-	-	2.24E-02	2.24E-02	-	=	-	=	-	-	=
TAIL_TO	2.52E-01	-	3.13E-01	-	-	1.04E-02	1.04E-02	-	=	-	=	-	-	-
SRUFLARE	1.58E-03	-	4.91E-03	-	-	1.23E-04	1.23E-04	-	=	-	=	-	-	-
GF_FLARE	1.29E-04	-	1.24E-01	-	-	1.89E-04	1.89E-04	-	=	-	=	-	-	-
GASVENTB	9.51E-04	-	5.13E-02	-	-	3.73E-03	3.73E-03	-	=	-	=	-	-	-
DC1	-	-	-	-	-	5.82E-03	5.82E-03	-	-	-	-	-	-	-
DC2	-	-	-	-	-	1.47E-02	1.47E-02	-	-	-	-	-	-	-
DC3	-	-	-	-	-	3.63E-02	3.63E-02	-	-	-	-	-	-	-
DC4	-	-	-	-	-	2.32E-02	2.32E-02	-	-	-	-	-	-	-
DC5	-	-	_	-	-	2.23E-02	2.23E-02	-	-	-	-	-	_	-
DC6	-	-	_	-	-	4.00E-04	4.00E-04	-	-	-	_	-	_	-
RC_FLARE	7.72E-05	_	4.54E-03	_	=	1.13E-04	1.13E-04	_	_	_	_	_	_	

Notes:

(g/s) = grams per second EC = Elemental Carbon HNO₃ = nitric acid

INCPM = total particulate matter emission

 NO_x = oxides of nitrogen

 NO_3 = nitrate

PM0005 = particulate matter 0.05 microns or less in diameter PM0010 = particulate matter 0.1 microns or less in diameter $\begin{array}{lll} PM0015 & = & particulate \ matter \ 0.15 \ microns \ or \ less \ in \ diameter \\ PM0020 & = & particulate \ matter \ 0.2 \ microns \ or \ less \ in \ diameter \\ PM0025 & = & particulate \ matter \ 0.25 \ microns \ or \ less \ in \ diameter \\ PM0100 & = & particulate \ matter \ 1 \ microns \ or \ less \ in \ diameter \\ PM_{10} & = & particulate \ matter \ 10 \ microns \ or \ less \ in \ diameter \\ \end{array}$

SO₂ = sulfur dioxide SO₄ = sulfate compound SOA = Secondary Organic Aerosol

Revised Table 8 PSD Class I Increment Significance Analysis - CALPUFF Results

	Pollutant	Annual NO _x	3-hr SO ₂	24-hr SO ₂	Annual SO ₂	24-hr PM ₁₀	Annual PM ₁₀
	Unit	μg/m ³	μg/m³	μg/m³	μg/m ³	μg/m³	Annual
Class I Area	Threshold	0.1	1	0.2	0.08	0.32	0.16
San Rafael	2001	3.77E-03	2.18E-01	2.53E-02	7.47E-04	8.65E-02	3.33E-03
Wilderness	2002	4.08E-03	2.33E-01	2.56E-02	8.79E-04	7.67E-02	3.80E-03
Area	2003	4.23E-03	2.73E-01	2.75E-02	8.85E-04	9.29E-02	3.77E-03
Exceed?		No	No	No	No	No	No

Notes:

 $\mu g/m^3 = micrograms per cubic meter$

 NO_x = oxides of nitrogen

 PM_{10} = particulate matter 10 microns or less in diameter

PSD = Prevention of Significant Deterioration

 SO_2 = sulfur dioxide

Revised Table 9 Visibility Analysis – CALPUFF Results

	Pollutant	No. of Days > 5%	No. of Days >10%	Max Extinction Change	Day of Maximum Extinction Change
	Unit	Days	Days	%	Julian Day
Class I Area	Threshold	0	0	10	
	2001	1	0	8.09	308
San Rafael Wilderness Area	2002	3	0	6.56	287
	2003	1	0	5.41	247
Exceed?				No	

Revised Table 10 Total Nitrogen and Sulfur Deposition Analysis - CALPUFF Results

	Pollutant	Deposition N	Deposition S
	Unit	$g/m^2/s$	$g/m^2/s$
Class I Area	Threshold	1.59E-11	1.59E-11
	2001	9.52E-13	3.91E-13
San Rafael Wilderness Area	2002	1.19E-12	5.12E-13
	2003	1.21E-12	4.61E-13
Exceed?		No	No

REVISED APPENDIX D1.2 OPERATING EMISSIONS STATIONARY SOURCES

Modeling Parameters for Emission Sources

Summary

Hydrogen Energy, Inc HECA Amendment 9/28/2009

		CTG/I	HRSG , H2-rich	Fuel	CTG/HRS	G , Natural G	Sas Fuel	CTG/HRSG Co-Firing **
Parameter		100% Load (2)	80% Load	60% Load	100% Load ⁽³⁾	80% Load	60% Load	100% Load
English Units								
Stack height above grade ⁽¹⁾	ft	213	213	213	213	213	213	213
Stack diameter	ft	20	20	20	20	20	20	20
Stack outlet temperature	٥F	200	190	180	180	170	160	190
Stack exit flow, act	ft ³ /s	19,900	16,300	13,400	16,700	14,300	11,900	18,300
Metric Units								
Stack height above grade ⁽¹⁾	m	65.0	65.0	65.0	65.0	65.0	65.0	65.0
Stack diameter	m	6.1	6.1	6.1	6.1	6.1	6.1	6.1
Stack outlet temperature	K	366.5	360.9	355.4	355.4	349.8	344.3	360.9
Stack exit flow, act	m ³ /s	563.5	461.6	379.4	472.9	404.9	337.0	518.2
Stack Area	m^2	29.2	29.2	29.2	29.2	29.2	29.2	29.2
Stack exit velocity, act	m/s	19.3	15.8	13.0	16.2	13.9	11.5	17.8

	Aux Boiler	Gasification Flare(4)	SRU Flare(6)	Rectisol Flare (6)	Tail Gas Oxidizer ⁽⁷⁾	Gasifier Warming Vent (ea.)	Cooling Towers (per cell) ⁽⁵⁾	Diesel Generator (ea.)	Fire Pump Engine	CO ₂ Vent
ft	80	250	250	250	165	210	55	20	20	260
ft	4.5	9.8	2	1.3	2.5	1.0	30	1.2	0.7	3.5
°F	300	(NA)	(NA)	(NA)	1200	150	75	760	850	65
ft ³ /s	480	0.5/900	0.3/36	0.3	120	68	18,500	250	60	1,765
m	24.4	76.2	76.2	76.2	50.3	64.0	16.8	6.1	6.1	79.2
m	1.4	3.0	0.6	0.4	0.8	0.3	9.1	0.4	0.2	1.1
K	422.0	n/a	n/a	n/a	922.0	338.7	297.0	677.6	727.6	291.5
m ³ /s	13.6	0.01/25.49	0.01/1.02	0.01	3.4	1.9	523.9	7.1	1.7	50.0
m ²	1.5	7.0	0.3	0.1	0.5	0.1	65.7	0.1	0.0	0.9
m/s	9.2	0.001/3.64	0.03/3.4	0.1	7.5	26.4	8.0	67.4	47.5	55.9
	ft ³ /s	ft 80 ft 4.5 °F 300 ft³/s 480 m 24.4 m 1.4 K 422.0 m³/s 13.6 m² 1.5	Aux Boiler Flare(4) ft 80 250 ft 4.5 9.8 °F 300 (NA) ft³/s 480 0.5/900 m 24.4 76.2 m 1.4 3.0 K 422.0 n/a m³/s 13.6 0.01/25.49 m² 1.5 7.0	Aux Boiler Flare(4) SRU Flare(6) ft 80 250 250 ft 4.5 9.8 2 ° F 300 (NA) (NA) ft³/s 480 0.5/900 0.3/36 m 24.4 76.2 76.2 m 1.4 3.0 0.6 K 422.0 n/a n/a m³/s 13.6 0.01/25.49 0.01/1.02 m² 1.5 7.0 0.3	Aux Boiler Flare(4) SRU Flare(6) (6) ft 80 250 250 250 ft 4.5 9.8 2 1.3 °F 300 (NA) (NA) (NA) ft³/s 480 0.5/900 0.3/36 0.3 m 24.4 76.2 76.2 76.2 m 1.4 3.0 0.6 0.4 K 422.0 n/a n/a n/a m³/s 13.6 0.01/25.49 0.01/1.02 0.01 m² 1.5 7.0 0.3 0.1	Aux Boiler Flare(4) SRU Flare(6) (6) Oxidizer ⁽⁷⁾ ft 80 250 250 250 165 ft 4.5 9.8 2 1.3 2.5 °F 300 (NA) (NA) (NA) 1200 ft³/s 480 0.5/900 0.3/36 0.3 120 m 24.4 76.2 76.2 76.2 50.3 m 1.4 3.0 0.6 0.4 0.8 K 422.0 n/a n/a n/a 922.0 m³/s 13.6 0.01/25.49 0.01/1.02 0.01 3.4 m² 1.5 7.0 0.3 0.1 0.5	Aux Boiler Gasification Flare(4) SRU Flare(6) Rectisol Flare (6) Tail Gas Oxidizer ⁽⁷⁾ Warming Vent (ea.) ft 80 250 250 250 165 210 ft 4.5 9.8 2 1.3 2.5 1.0 °F 300 (NA) (NA) (NA) 1200 150 ft³/s 480 0.5/900 0.3/36 0.3 120 68 M 24.4 76.2 76.2 76.2 76.2 76.2 50.3 64.0 M 1.4 3.0 0.6 0.4 0.8 0.3 K 422.0 n/a n/a n/a 922.0 338.7 3/s 13.6 0.01/25.49 0.01/1.02 0.01 3.4 1.9 M 1.5 7.0 0.3 0.1 0.5 0.1	Rectisol Flare Tail Gas Oxidizer Towers Towers (per cell) (b)	Rectisol Flare	Rectisol Flare Tail Gas Oxidizer Tail Gas Oxidizer Tail Gas Central Tail Gas Central Tail Gas Central Central

Notes:

⁽¹⁾ Minimum stack height assumed for worst-case dispersion.

⁽²⁾ Volume Flow Value shown in table for H2-rich fuel is based on full load syn gas combustion (relatively constant for varying ambient temperatures). Duct firing of the HSRG changes the stack volumetric flow by about 1% or less.

⁽³⁾ Full load stack flow for natural gas combustion will vary from the value shown in the table during warm summer ambient temperatures to about 18,000 act ft3/sec for winter ambient temperatures. Stack flow rates for co-firing of H2-rich gas and natural gas will range between the values shown for the two fuels separately.

⁽⁴⁾ Based on gasifier startup; stack parameters estimated from a previous project, to be confirmed by current flare suppliers.

⁽⁵⁾ Thirteen cells estimated for power block cooling tower; four cells estimated for process cooling tower, and four cells estimated for the ASU cooling tower.

⁽⁶⁾ Waste gas heat release, 10^6 Btu/hr, HHV. First exit flow value is normal pilot gas, the second value is the maximum startup heat release (Rectisol Flare has no planned operation than standby with pilot on)

⁽⁷⁾ Estimated oxidizer stack outlet flow for normal operating case of miscellaneous vent gas disposal; SRU startup case will be about 50% greater.

 $^{^{\}star\star}$ HRSG Stack Cofiring is estimated assuming 47% Syngas and the balance natural gas

9/28/2009

			Fee	d Stock - Dust	Collection Unit	s	
Parameter		DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
English Units							
Ground elevation	ft	289	289	289	289	289	289
Stack elevation	ft	334	459	465	459	368	465
Stack height above grade	ft	46	171	177	171	80	177
Stack diameter	ft	1.7	2.7	1.8	1.4	1.4	0.8
Stack outlet temperature (1)	°F	Ambient	Ambient	Ambient	Ambient	Ambient	Ambient
Stack exit flow, act	ft ³ /s	108	273	127	81	78	21
Metric Units							
Stack height above grade	m	13.9	52.0	53.8	52.0	24.2	53.8
Stack diameter	m	0.5	0.8	0.6	0.4	0.4	0.2
Stack outlet temperature (1)	K	Ambient	Ambient	Ambient	Ambient	Ambient	Ambient
Stack exit flow, act	m ³ /s	3.1	7.7	3.6	2.3	2.2	0.6
Stack Area	m ²	0.2	0.5	0.2	0.1	0.1	0.0
Stack exit velocity, act	m/s	15.1	14.9	14.7	15.7	15.1	14.2

⁽¹⁾ Assume ambient temperature

Summary

Hydrogen Energy, Inc HECA Amendment 9/28/2009

Modeling Wors	t-Case 1 hr Emi	ssions																	
	CTG/HRSG Maximum ⁽¹⁾	Co	oling Towers ⁽²⁾		Auxiliary Boiler	Emergency Generators ⁽³⁾	Fire Water Pump	Gasification Flare	SRU Flare	Rectisol Flare	Tg Thermal Oxidizer		Gasifier (4)			Feeds	stock		
	(g/sec)	Power Block (g/sec/cell)	Process Area (g/sec/cell)	ASU (g/sec/cell)	(g/sec)	(g/sec/gen)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	DC-1 (g/sec)	DC-2 (g/sec)	DC-3 (g/sec)	DC-4 (g/sec)	DC-5 (g/sec)	DC-6 (g/sec)
NOx	21.0			-	0.2	0.4	0.2	7.9	0.544	0.005	0.6		0.2	-	-				
CO	211.6				0.7	0.2	0.4	113.4	0.363	0.003	0.5	53.4	0.2	-	-				
SO ₂	0.9			-	0.04	0.004	0.0007	0.0001	2.19	0.0001	0.3		0.00	-	-	-		-	
H₂S	-	-		-	-	-		-	-	-		0.6	-		-		-		

- (1) HRSG modeling emission rates represents the maximum emissions rate from a composite firing scenario (all three fuels)
- (2) There are three separate cooling towers. The modeling rates are per cell.
- (3) There are two separate generators. Modeling rates are shown per individual generator.
- (4) There are three gasifiers. The modeling rate shown is per individual gasifier. However, only one gasifier warming will be operational at any one time.

Modeling Worst		ssions																	
	CTG/HRSG				Auxiliary	Emergency	Fire Water	Gasification	SRU	Rectisol	Tg Thermal								
	Maximum (1)	Co	oling Towers (2))	Boiler	Generators (3)	Pump	Flare	Flare	Flare	Oxidizer	CO ₂ Vent	Gasifier (4)			Feeds	stock		
		Power Block	Process Area	ASU										DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
	(g/sec)	(g/sec/cell)	(g/sec/cell)	(g/sec/cell)	(g/sec)	(g/sec/gen)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)
SO ₂	0.9	-	-		0.04	0.002	0.0005	0.0001	2.19	0.00	0.3	-	0.00	-		-			

- (1) HRSG modeling emission rates represents the maximum emissions rate from a composite firing scenario (all three fuels)
- (2) There are three separate cooling towers. The modeling rates are per cell.
- (3) There are two separate generators. Modeling rates are shown per individual generator.
- (4) There are three gasifiers. The modeling rate shown is per individual gasifier. However, only one gasifier warming will be operational at any one time.

Modeling Wors		issions																	
	CTG/HRSG				Auxiliary	Emergency	Fire Water	Gasification	SRU	Rectisol	Tg Thermal								
	Maximum (1)	Co	oling Towers ⁽²⁾	1	Boiler	Generators (3)	Pump	Flare	Flare	Flare	Oxidizer	CO ₂ Vent	Gasifier (4)			Feeds	stock		
		Power Block	Process Area	ASU										DC-1	DC-2	DC-3			DC-6
	(g/sec)	(g/sec/cell)	(g/sec/cell)	(g/sec/cell)	(g/sec)	(g/sec/gen)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)
CO	164.9		-	-	0.7	0.06	0.1	113.4	0.138	0.003	0.5	53.4	0.2		-				

- (1) HRSG modeling emission rates represents the maximum emissions rate from a composite firing scenario (all three fuels)
- (2) There are three separate cooling towers. The modeling rates are per cell.
- (3) There are two separate generators. Modeling rates are shown per individual generator.
- (4) There are three gasifiers. The modeling rate shown is per individual gasifier. However, only one gasifier warming will be operational at any one time.

Modeling Worst		Emission Ra	ite																
	CTG/HRSG				Auxiliary	Emergency	Fire Water	Gasification	SRU	Rectisol	Tg Thermal								
	Maximum (1)	Co	oling Towers (2)	1	Boiler	Generators (3)	Pump	Flare	Flare	Flare	Oxidizer	CO ₂ Vent	Gasifier (4)			Feed	stock		
		Power Block	Process Area	ASU										DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
	(g/sec)	(g/sec/cell)	(g/sec/cell)	(g/sec/cell)	(g/sec)	(g/sec/gen)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)
SO ₂	0.9				0.04	0.0003	0.0001	0.0001	0.2742	0.0001	0.3	-	0.00						
PM ₁₀	2.5	0.038	0.030	0.028	0.09	0.002	0.0002	0.0002	0.0018	0.0001	0.02		0.02	0.030	0.076	0.041	0.026	0.025	0.003
PM _{2.5} ⁽⁵⁾	2.5	0.023	0.018	0.017	0.09	0.002	0.0002	0.0002	0.0018	0.0001	0.02		0.02	0.009	0.022	0.012	0.008	0.007	0.001

- (1) HRSG modeling emission rates represents the maximum emissions rate from a composite firing scenario (all three fuels)
- (2) There are three separate cooling towers. The modeling rates are per cell.
- (3) There are two separate generators. Modeling rates are shown per individual generator.
- (4) There are three gasifiers. The modeling rate shown is per individual gasifier. However, only one gasifier warming will be operational at any one time.
- (5) Where $PM_{10} = PM_{2.5}$, it is assumed that PM_{10} is 100% $PM_{2.5}$

Modeling Annu		ssion Rate																	
	CTG/HRSG				Auxiliary	Emergency	Fire Water	Gasification	SRU	Rectisol	Tg Thermal								
	Maximum (1)	Co	oling Towers (2)		Boiler	Generators (3)	Pump	Flare	Flare	Flare	Oxidizer	CO ₂ Vent	Gasifier (4)			Feed:	stock		
		Power Block	Process Area	ASU										DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
	(g/sec)	(g/sec/cell)	(g/sec/cell)	(g/sec/cell)	(g/sec)	(g/sec/gen)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)	(g/sec)
NO_X	4.8		-		0.05	0.002	0.003	0.1	0.005	0.005	0.3		0.05	-					
CO	4.3		ı		0.2	0.001	0.005	1.4	0.003	0.003	0.26	3.1	0.04194	-		-		-	
VOC	0.9		ı		0.02	0.0005	0.0002	0.0001	0.00005	0.00005	0.01	0.1	0.00326	-		-		-	
SO ₂	0.8		ı	-	0.01	0.00002	0.00001	0.0001	0.0016	0.0001	0.3		0.00095	ı	-	-	-	-	
PM ₁₀	2.4	0.036	0.028	0.027	0.02	0.0001	0.00003	0.0002	0.0001	0.0001	0.01		0.004	0.006	0.015	0.036	0.023	0.022	0.0004
PM _{2.5} (5)	2.4	0.022	0.017	0.016	0.02	0.0001	0.00003	0.0002	0.0001	0.0001	0.01		0.004	0.002	0.004	0.011	0.0068	0.007	0.0001
H₂S	-		ı	-	-		-	-		-		0.0	-	-	-	-	-	-	

- (1) HRSG modeling emission rates represents the maximum emissions rate from a composite firing scenario (all three fuels)
- (2) There are three separate cooling towers. The modeling rates are per cell.
- (3) There are two separate generators. Modeling rates are shown per individual generator.
- (4) There are three gasifiers. The modeling rate shown is per individual gasifier. However, only one gasifier warming will be operational at any one time.
- (5) Where $PM_{10} = PM_{2.5}$, it is assumed that PM_{10} is 100% $PM_{2.5}$

Total Annual Project Emissions Emissions Summary

Hydrogen Energy, Inc HECA Amendment 9/28/2009

Pollutant	Total Annual (ton/yr)	CTG/HRSG Maximum ⁽¹⁾ (ton/yr)	Cooling Towers ⁽²⁾ (ton/yr)	Auxiliary Boiler (ton/yr)	Emergency Generators ⁽³⁾ (ton/yr)	Fire Water Pump (ton/yr)	Gasification Flare (ton/yr)	SRU Flare (ton/yr)	Rectisol Flare (ton/yr)	Tg Thermal Oxidizer (ton/yr)	CO ₂ Vent (ton/yr)	Gasifier Warming (ton/yr)	Feedstock (4) (ton/yr)
NO_X	186.4	167.2		1.7	0.2	0.1	4.3	0.2	0.2	10.9		1.8	
CO	322.7	150.2		5.8	0.1	0.2	48.8	0.1	0.1	9.1	106.9	1.5	
VOC	36.1	32.5		0.6	0.03	0.01	0.003	0.002	0.002	0.3	2.4	0.1	
SO ₂	38.4	29.2		0.3	0.001	0.0003	0.004	0.055	0.003	8.8		0.03	
PM ₁₀	111.4	82.4	24.1	0.8	0.01	0.001	0.007	0.004	0.004	0.4		0.1	3.6
PM _{2.5} (5)	99.2	82.4	14.5	0.8	0.01	0.001	0.007	0.004	0.004	0.4		0.1	1.0
NH ₃	75.9	75.9											
H ₂ S	1.3										1.3		
CO ₂ e (6)	442,998	263,170		16,466	146	29	6,348	176	139	4,797	150,011	1,716	

(1) Total annual HRSG emissions represents the maximum emissions rate from a composite firing scenario (all three fuels)

⁽²⁾ Includes contributions from all three cooling towers

⁽³⁾ Includes contributions from both emergency generators

⁽⁴⁾ Feedstock emissions are shown as the contribution of all dust collection points.

⁽⁵⁾ Where PM10 = PM2.5, it is assumed that PM10 is 100% PM2.5

⁽⁶⁾ CO2e emission rates are shown as metric tons (tonnes)

CTG/HRSG Stack - Comparison of all Firing Scenarios

Emissions Summary

Hydrogen Energy, Inc HECA Amendment 9/28/2009

Summary of CTG/HRSG Emission Rates Under the Three Different Firing Scenarios

Average Annual	Emissions per Turbine			
	CTG/HRSG - Nat Gas (ton/yr/CT)	CTG/HRSG - Syn Gas (ton/yr/CT)	CTG/HRSG - Co Firing (ton/yr/CT)	Maximum (ton/yr/CT)
NO_X	148.0	167.2	162.9	167.2
co	138.9	103.5	150.2	150.2
VOC	30.0	19.0	32.5	32.5
SO ₂	20.0	28.4	29.2	29.2
$PM_{10} = PM_{2.5}$	74.9	82.4	82.4	82.4
NH ₃	67.1	75.9	73.9	75.9

Modeling Wo	rst-Case 1 hr Emissions per T	urbine		
	CTG/HRSG - Nat Gas	CTG/HRSG - Syn Gas	CTG/HRSG - Co Firing	Maximum
	(g/sec/CT)	(g/sec/CT)	(g/sec/CT)	(g/sec/CT)
NOx	21.0	21.0	21.0	21.0
СО	211.6	211.6	211.6	211.6
SO ₂	0.6	0.86	0.93	0.9

Modeling Worst-C	Case 3 hr Emissions per T	urbine		
	CTG/HRSG - Nat Gas	CTG/HRSG - Syn Gas	CTG/HRSG - Co Firing	Maximum
	(g/sec/CT)	(g/sec/CT)	(g/sec/CT)	(g/sec/CT)
SO ₂	0.6	0.86	0.93	0.9

Modeling Worst-Case 8 hr Emissions per Turbine							
	CTG/HRSG - Nat Gas	CTG/HRSG - Syn Gas	CTG/HRSG - Co Firing	Maximum			
	(g/sec/CT)	(g/sec/CT)	(g/sec/CT)	(g/sec/CT)			
CO	164.9	164.8	164.9	164.9			

Modeling Worst-Case 24 Hour Emission Rate								
	CTG/HRSG - Nat Gas	CTG/HRSG - Syn Gas	CTG/HRSG - Co Firing	Maximum				
	(g/sec/CT)	(g/sec/CT)	(g/sec/CT)	(g/sec/CT)				
SO ₂	0.6	0.86	0.93	0.9				
$PM_{10} = PM_{2.5}$	2.4	2.5	2.5	2.5				

Modeling Annual Average Emission Rate per Turbine								
	CTG/HRSG - Nat Gas	CTG/HRSG - Syn Gas	CTG/HRSG - Co Firing	Maximum				
	(g/sec/CT)	(g/sec/CT)	(g/sec/CT)	(g/sec/CT)				
NO_X	4.3	4.8	4.7	4.8				
СО	4.0	3.0	4.3	4.3				
VOC	0.9	0.5	0.9	0.9				
SO ₂	0.6	0.82	0.84	0.8				
$PM_{10} = PM_{2.5}$	2.2	2.4	2.4	2.4				

CTG Operating Parameters

OTO Operating Farameters													
Ambient Temperature	UNITS	Winter Minimum - 20°F			Yearly Average- 65°F			Summer Maximum - 97°F					
CTG Load Level	Percent Load (%)	100%	100%	80%	60%	100%	100%	80%	60%	100%	100%	80%	60%
Evap Cooling Status	off / on	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Duct Burner Status	off / on	On	Off	Off	Off	On	Off	Off	Off	On	Off	Off	Off

Average Emission Rates from CTG (lbs/hr/turbine) - Normal Operation

	UNITS		Winter Minimum - 2	20°F			Yearly Average- 65°F	•			Summer Maxin	num - 97°F	
NO _x (@ 4.0 ppm)	lbm/hr	36.3	29.0	24.8	20.8	35.1	27.0	23.1	19.4	33.3	26.1	22.4	18.7
CO (@ 5.0 ppm)	lbm/hr	27.6	22.1	18.8	15.8	26.7	20.5	17.6	14.8	25.3	19.8	17.0	14.2
VOC (@ 2.0 ppm)	lbm/hr	6.3	5.0	4.3	3.6	6.1	4.7	4.0	3.4	5.8	4.5	3.9	3.2
SO ₂ (@ 12.65 ppmv)	lbm/hr	5.1	4.1	3.5	3.0	4.8	3.8	3.3	2.8	4.7	3.7	3.2	2.7
$PM_{10} = PM_{2.5}$	lbm/hr	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0
NH ₃ (@ 5.0 ppm slip)	lbm/hr	16.7	13.4	11.4	9.6	16.2	12.5	10.7	9.0	15.4	12.1	10.3	8.6
All turbine operating parameters and emissions data or	rovided by FLLIOR based on expected one	rating parameters										•	

Startup / Shutdown Emissions from Turbine (1CT)

Max 1-hr.			Hot Startup			Shutdown		
IVIAA ITII.	Total	60	Max 1-hr.	Total	30	Max 1-hr.	Total	
(lb/hr)	(lb/180min)	(min. in hot startup)	(lb/hr)	(lb/60min)	(min. in shutdown)	(lb/hr)	(lb/30min)	
90.7	272.0	NOx	167.0	167.0	NOx	62.0	62.0	
1,679.7	5,039.0	СО	394.0	394.0	СО	126.0	126.0	
266.7	800.0	voc	98.0	98.0	VOC	21.0	21.0	
5.1	15.3	SO ₂	5.1	5.1	SO ₂	2.6	2.6	
21.3	64.0	$PM_{10} = PM_{2.5}$	23.0	23.0	$PM_{10} = PM_{2.5}$	5.0	5.0	
	90.7 1,679.7 266.7 5.1	90.7 272.0 1,679.7 5,039.0 266.7 800.0 5.1 15.3 21.3 64.0	90.7 272.0 NOx 1,679.7 5,039.0 CO 266.7 800.0 VOC 5.1 15.3 SO ₂ 21.3 64.0 PM ₁₀ = PM _{2.5}	90.7 272.0 NOx 167.0 1,679.7 5,039.0 CO 394.0 266.7 800.0 VOC 98.0 5.1 15.3 SO ₂ 5.1 21.3 64.0 PM ₁₀ = PM _{2.5} 23.0	90.7 272.0 NOx 167.0 167.0 1,679.7 5,039.0 CO 394.0 394.0 266.7 800.0 VOC 98.0 98.0 5.1 15.3 SO ₂ 5.1 5.1 21.3 64.0 PM ₁₀ = PM _{2.5} 23.0 23.0	90.7 272.0 NOx 167.0 167.0 NOx 1,679.7 5,039.0 CO 394.0 394.0 CO 266.7 800.0 VOC 98.0 98.0 VOC 5.1 15.3 SO ₂ 5.1 5.1 SO ₂ 21.3 64.0 PM ₁₀ = PM _{2.5} 23.0 23.0 PM ₁₀ = PM _{2.5}	90.7 272.0 NOx 167.0 NOx 62.0 1,679.7 5,039.0 CO 394.0 CO 126.0 266.7 800.0 VOC 98.0 98.0 VOC 21.0 5.1 15.3 SO ₂ 5.1 5.1 SO ₂ 2.6 21.3 64.0 PM ₁₀ = PM _{2.5} 23.0 23.0 PM ₁₀ = PM _{2.5} 5.0	

All turbine operating parameters and emissions data provided by FLUOR based on expected operating parameters.

Startup and shutdown SO₂ emissions will always be lower than normal operation SQ emissions. Startup and shutdown emissions are assumed equal to the normal operations max emission rate.

Average Annual Emissions

			Turbine		
Total Hours of Operation	8,322.0	Pollutant	Emissions	Emissions	Emissions
Total Number of Cold Starts	10.0		lb/yr/CT	ton/yr/CT	g/sec/CT
Cold Start Duration (hr)	3.0	NO _X	296,044.0	148.0	4.3
Total Number of Hot Starts	10.0	СО	277,817.2	138.9	4.0
Hot Start Duration (hr)	1.0	voc	59,906.8	30.0	0.9
Total Number of Shutdowns	20.0	SO ₂	40,045.4	20.0	0.6
Shutdown Duration (hr)	0.5	$PM_{10} = PM_{2.5}$	149,866.0	74.9	2.2
Duct Burner Operation (hr)	8,272.0	NH ₃	134,158.6	67.1	1.9
Average Normal Operation (hr)	0.0		•	•	

Assumptions

Average annual normal operational emissions are calculated using yearly average- 65°F, at 100 % load.

Duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Parameters

Farameters					
Days per year:	365				
Hours per day:	24				
Minutes per hour:	60				
Seconds per minute:	60				

9/28/2009

First Quarter Emissions (Jan, Feb, Mar)

i not quartor Ennociono (carri i co) mary			Turbine	
Total Hours of Operation	2,080.5	Pollutant	Emissions	Emissions
Total Number of Cold Starts	2.5		lb/yr/CT	ton/yr/CT
Cold Start Duration (hr)	3.0	NO _X	74,011.0	37.0
Total Number of Hot Starts	2.5	со	69,454.3	34.7
Hot Start Duration (hr)	1.0	voc	14,976.7	7.5
Total Number of Shutdowns	5.0	SO ₂	10,011.4	5.0
Shutdown Duration (hr)	0.5	$PM_{10} = PM_{2.5}$	37,466.5	18.7
Duct Burner Operation (hr)	2,068.0	NH ₃	33,539.7	16.8
Average Normal Operation (hr)	0.0			

Assumptions:

Quarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load.

Duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Second Quarter Emissions (Apr, May, Jun)

				Turbine	
Total Hours of Operation	2,080.5	F	Pollutant	Emissions	Emissions
Total Number of Cold Starts	2.5			lb/yr/CT	ton/yr/CT
Cold Start Duration (hr)	3.0	NO_{χ}		74,011.0	37.0
Total Number of Hot Starts	2.5	со		69,454.3	34.7
Hot Start Duration (hr)	1.0	VOC		14,976.7	7.5
Total Number of Shutdowns	5.0	SO ₂		10,011.4	5.0
Shutdown Duration (hr)	0.5	PM ₁₀ =	= PM _{2.5}	37,466.5	18.7
Duct Burner Operation (hr)	2,068.0	NH ₃		33,539.7	16.8
Average Normal Operation (hr)	0.0				

Assumptions:

Quarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load.

Duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Modeling Worst-Case 1 hr Emissions per Turbine

Pollutant	lb/hr/CT	g/sec/CT
NOx	167.0	21.0
co	1,679.7	211.6
SO ₂	5.1	0.6

Assumptions:

Startup emissions represent worst case hr for NOx and CO.

NOx emissions are from hot start

CO emissions are from cold start

Calculation assumes that startup and shutdown SO₂ emissions will always be lower than normal operational SO₂ emissions.

Modeling Worst-Case 3 hr Emissions per Turbine

			Emissions	
	hr	emission rate lb/hr	lb/CT	
Total Hours of Operation	3.0			
Startup Duration	0.0		0.0	contribution over 3 hr from start up
Shutdown Duration	0.0		0.0	contribution over 3 hr from shut down
Hours of Normal Operation (burning natural gas)	3.0	5.1	15.3	contribution over 3 hr from normal operation
				-

lb/3 hr

lb/hr

g/sec

15.3

5.1

0.6

SO₂ worst-case 1 hr emissions per turbine SO₂ modeling worst-case emissions per turbine Assumptions:

Only SO₂ is considered for an average 3-hour Ambient Air Quality Standard.

Normal operation assumes max emission rate

SO₂ worst-case 3 hr emissions per turbine

Worst-case 3 hr emissions assumes a total start up of : 0
Worst-case 3 hr emissions assumes a total shut down of : 0

Calculation assumes that startup and shutdown SO₂ emissions will always be lower than normal operational SO₂ emissions

Third Quarter Emissions (Jul, Aug, Sep)

			Turbine	
Total Hours of Operation	2,080.5	Pollutant	Emissions	Emissions
Total Number of Cold Starts	2.5		lb/yr/CT	ton/yr/CT
Cold Start Duration (hr)	3.0	NO_X	74,011.0	37.0
Total Number of Hot Starts	2.5	СО	69,454.3	34.7
Hot Start Duration (hr)	1.0	VOC	14,976.7	7.5
Total Number of Shutdowns	5.0	SO ₂	10,011.4	5.0
Shutdown Duration (hr)	0.5	$PM_{10} = PM_{2.5}$	37,466.5	18.7
Duct Burner Operation (hr)	2,068.0	NH ₃	33,539.7	16.8
Average Normal Operation (hr)	0.0			

9/28/2009

Assumptions

Quarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load.

Duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Fourth Quarter Emissions (Oct, Nov, Dec)

			Turbine	
Total Hours of Operation	2,080.5	Pollutant	Emissions	Emissions
Total Number of Cold Starts	2.5		lb/yr/CT	ton/yr/CT
Cold Start Duration (hr)	3.0	NO_X	74,011.0	37.0
Total Number of Hot Starts	2.5	СО	69,454.3	34.7
Hot Start Duration (hr)	1.0	VOC	14,976.7	7.5
Total Number of Shutdowns	5.0	SO ₂	10,011.4	5.0
Shutdown Duration (hr)	0.5	$PM_{10} = PM_{2.5}$	37,466.5	18.7
Duct Burner Operation (hr)	2,068.0	NH ₃	33,539.7	16.8
Average Normal Operation (hr)	0.0			

Assumptions:

Quarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load.

Duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Emissions Summary

9/28/2009

Hydrogen Energy, Inc HECA Amendment

Modeling Worst-Case 8 hr Emissions per Turbine

Worst-case 8 hr emissions assumes a total shut down of :

	hr	emission rate lb/hr	Emissions lb/CT	
Total Hours of Operation	8.0			
Startup Duration (cold start)	6.0		10,078.0	contribution over 8 hr from start up
Shutdown Duration	1.5		378.0	contribution over 8 hr from shut down
Hours of Normal Operation (burning natural gas)	0.5	27.6	13.8	contribution over 8 hr from normal operation
		·		
CO worst-case 8 hr emissions per turbine	10,469.8	lb/8 hr		
CO worst-case 1 hr emissions per turbine	1,308.7	lb/hr		
CO modeling worst-case emissions per turbine	164.9	g/sec		
Assumptions:				
Only CO is considered for an average 8-hour Ambient Air Quality Stand	ard.			
Normal operation assumes max emission rate				
Worst-case 8 hr emissions assumes a total COLD start up of :	2			

Worst-Case Daily Emissions per Turbine and Modeling Worst-Case 24 Hour Emission Rate

SO ₂ (lb/day/CT)	122.4
SO ₂ (g/s/CT) (burning natural gas)	0.6
$PM_{10} = PM_{2.5} (Ib/day/CT)$	
$PM_{10} = PM_{2.5}$ (g/s/CT) (burning natural gas)	
Assumptions:	
Only SO ₂ and PM are considered for an average 24-hour Ambient Air Qu	ality Standard.
For SO₂ 24 hrs of normal operation at max emission rate For PM emissions are calculated below assuming startup and shutdown	contributions.

Worst-Case Daily Emissions per Turbine and Modeling Worst-Case 24 Hour Emission Rate

Pollutant	Time in Startup	Startup Emission Rate lb/start	Time in Shut Down	Shutdown Emission Rate Ib/shutdown	Time in Normal Operation hr	Normal Operation Emission Rate Ib/start	Worst-Case Daily Emissions lb/day/CT	Modeling Worst- Case 24 Hr Emission g/s/CT
Nox (1 COLD start up and I shut down)	3.0	272.0	0.5	62.0	17.5	36.3	1,426.4	7.5
Nox (2 HOT start ups and 2 shut downs)	2.0	167.0	1.0	62.0				
co	12.0	5,039.0	2.0	126.0	10.0	27.6	20,935.8	
VOC	12.0	800.0	2.0	21.0	10.0	6.3	3,347.0	
SO ₂								
$PM_{10} = PM_{2.5}$	12.0	64.0	2.0	5.0	10.0	18.0	456.0	2.4

Assumptions:

For CO, VOC, and PM -- emissions are calculated assuming:

Worst-case daily emissions assumes a total COLD start up of : 4

Worst-case daily emissions assumes a total shut down of : 4

Page lades of time is expect in page of a section of winter minimum, 2005; 4000/ lead

Remainder of time is spent in normal operation at winter minimum - 20°F; 100% load

For CALPUFF modeling purposes, NOx emissions are calculated assuming:

Worst-case daily emissions assumes a total COLD start up of : 1 and a total HOT start up of:

Worst-case daily emissions assumes a total shut down of: 3

Remainder of time is spent in normal operation at winter minimum - 20°F; 100% load

See above calculation for worst-case daily SO₂:calculated as 24 hrs of normal operation at max emissions rate

CTG Operating Parameters

Ambient Temperature	UNITS		Winter Minimum - 20°F			Yearly Average- 65°F				Summer Maximum - 97°F			
CTG Load Level	Percent Load (%)	100%	100%	80%	60%	100%	100%	80%	60%	100%	100%	80%	60%
Evap Cooling Status	off / on	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Duct Burner Status	off / on	On	Off	Off	Off	On	Off	Off	Off	On	Off	Off	Off

Average Emission Rates from CTG (lbs/hr/turbine) - Normal Operation

	UNITS	Winter Minimum - 20°F			Yearly Average- 65°F				Summer Maximum - 97°F			
NO _x (@ 4.0 ppm)	lbm/hr	37.2	31.5	26.1	39.7	36.9	31.0	25.6	39.7	38.0	30.9	25.6
CO (@ 3.0 ppm)	lbm/hr	17.0	14.4	11.9	18.1	16.8	14.1	11.7	18.1	17.4	14.1	11.7
VOC (@ 1.0 ppm)	lbm/hr	3.2	2.7	2.3	3.5	3.2	2.7	2.2	3.5	3.3	2.7	2.2
SO ₂ (@ 5.0 ppmv)	lbm/hr	6.1	5.2	4.4	6.8	6.1	5.1	4.3	6.8	6.0	5.1	4.3
$PM_{10} = PM_{2.5}$	lbm/hr	19.8	19.8	19.8	19.8	19.8	19.8	19.8	19.8	19.8	19.8	19.8
NH ₃ (@ 5.0 ppm slip)	lbm/hr	17.2	14.6	12.0	18.4	17.0	14.3	11.8	18.4	17.6	14.3	11.8
All turbine operating parameters and emissions data	turbine operating parameters and emissions data provided by FLUOR based on expected operating parameters.											

Startup / Shutdown Emissions from Turbine (1CT)

Cold Startup	Cold Startup					Shutdown		
180	Max 1-hr.	Total	60	Max 1-hr.	Total	30	Max 1-hr.	Total
(min. in cold startup)	(lb/hr)	(lb/180min)	(min. in hot startup)	(lb/hr)	(lb/60min)	(min. in shutdown)	(lb/hr)	(lb/30min)
NO _X	90.7	272.0	NOx	167.0	167.0	NOx	62.0	62.0
со	1,679.7	5,039.0	со	394.0	394.0	со	126.0	126.0
voc	266.7	800.0	voc	98.0	98.0	voc	21.0	21.0
SO ₂ (@ 12.65 ppmv)	5.1	15.3	SO2	5.1	5.1	SO2	2.6	2.6
$PM_{10} = PM_{2.5}$	21.3	64.0	$PM_{10} = PM_{2.5}$	23.0	23.0	$PM_{10} = PM_{2.5}$	5.0	5.0

All turbine operating parameters and emissions data provided by FLUOR based on expected operating parameters. CTGs will always be started burning natural gas. Startup and shutdown emission rates above reflect natural gas.

Startup and shutdown SO 2 emissions will always be lower than normal operation SO 2 emissions. Startup and shutdown emissions are assumed equal to normal operations (burning natural gas) at the max emission rate.

Average Annual Emissions

			Turbine		
Total Hours of Operation	8,322.0	Pollutant	Emissions	Emissions	Emissions
Total Number of Cold Starts	10.0		lb/yr/CT	ton/yr/CT	g/sec/CT
Cold Start Duration (hr)	3.0	NO _X	334,353.0	167.2	4.8
Total Number of Hot Starts	10.0	СО	206,919.2	103.5	3.0
lot Start Duration (hr)	1.0	VOC	37,984.6	19.0	0.5
Total Number of Shutdowns	20.0	SO ₂	56,713.0	28.4	0.8
Shutdown Duration (hr)	0.5	$PM_{10} = PM_{2.5}$	164,755.6	82.4	2.4
Duct Burner Operation (hr)	8,272.0	NH ₃	151,855.7	75.9	2.2
Average Normal Operation (hr)	0.0		•		

verage annual normal operational emissions are calculated using yearly average- 65°F, at 100 % load.

Duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Parameters					
Days per year:	365				
Hours per day:	24				
Minutes per hour:	60				
Seconds per minute:	60				

9/28/2009

First Quarter Emissions (Jan, Feb, Mar)

Total Hours of Operation	2,080.5	Pollutant	Turbine Emissions	Emissions
Total Number of Cold Starts	2.5		lb/yr/CT	ton/yr/CT
Cold Start Duration (hr)	3.0	NO _X	83,588.3	41.8
Total Number of Hot Starts	2.5	со	51,729.8	25.9
Hot Start Duration (hr)	1.0	voc	9,496.2	4.7
Total Number of Shutdowns	5.0	SO ₂	14,178.3	7.1
Shutdown Duration (hr)	0.5	$PM_{10} = PM_{2.5}$	41,188.9	20.6
Duct Burner Operation (hr)	2,068.0	NH ₃	37,963.9	19.0
Average Normal Operation (hr)	0.0		•	

Quarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load.

Duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Second Quarter Emissions (Apr, May, Jun)

			Turbine	
Total Hours of Operation	2,080.5	Pollutant	Emissions	Emissions
Total Number of Cold Starts	2.5		lb/yr/CT	ton/yr/CT
Cold Start Duration (hr)	3.0	NO _X	83,588.3	41.8
Total Number of Hot Starts	2.5	СО	51,729.8	25.9
Hot Start Duration (hr)	1.0	VOC	9,496.2	4.7
Total Number of Shutdowns	5.0	SO ₂	14,178.3	7.1
Shutdown Duration (hr)	0.5	$PM_{10} = PM_{2.5}$	41,188.9	20.6
Duct Burner Operation (hr)	2,068.0	NH ₃	37,963.9	19.0
Average Normal Operation (hr)	0.0			

Emissions Ib/CT

0.0

0.0

20.5

contribution over 3 hr from start up

contribution over 3 hr from shut down

contribution over 3 hr from normal operation

Quarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load.

Duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Modeling Worst-Case 1 hr Emissions per Turbine

Pollutant	lb/hr/CT	g/sec/CT
NOx	167.0	21.0
CO SO ₂	1,679.7	211.6
SO ₂	6.8	0.9

Startup emissions represent worst case hr for NOx and CO. Startup and shutdown only burn natural gas.

NOx emissions are from hot start

Normal operation burning syngas represents worst case SO 2.

Calculation assumes that startup and shutdown SO 2 emissions will always be lower than normal operational (burning natural gas) SO₂ emissions.

Modeling Worst-Case 3 hr Emissions per Turbine

		Emission Rate
	hr	lb/hr
Total Hours of Operation	3.0	
Startup Duration	0.0	
Shutdown Duration	0.0	
Hours of Normal Operation (burning syngas)	3.0	6.8
SO ₂ worst-case 3 hr emissions per turbine	20.5	lb/3 hr
SO ₂ worst-case 1 hr emissions per turbine	6.8	lb/hr
SO ₂ modeling worst-case emissions per turbine	0.9	g/sec
Accumutions	•	

Only SO₂ is considered for an average 3-hour Ambient Air Quality Standard.

Normal operation burning syngas represents worst case SO 2.

Worst-case 3 hr emissions assumes a total start up of :

Worst-case 3 hr emissions assumes a total shut down of : 0 Calculation assumes that startup and shutdown SO $_2$ emissions will always be lower than normal operational (burning natural gas) SO $_2$ emissions.

Third Quarter Emissions (Jul, Aug, Sep)

Total Hours of Operation	2,080.5		Pollutant	Turbine Emissions	Emissions
Total Number of Cold Starts	2.5			lb/yr/CT	ton/yr/CT
Cold Start Duration (hr)	3.0		NO _X	83,588.3	41.8
Total Number of Hot Starts	2.5		CO	51,729.8	25.9
Hot Start Duration (hr)	1.0		VOC	9,496.2	4.7
Total Number of Shutdowns	5.0		SO ₂	14,178.3	7.1
Shutdown Duration (hr)	0.5	1	$PM_{10} = PM_{2.5}$	41,188.9	20.6
Duct Burner Operation (hr)	2,068.0		NH ₃	37,963.9	19.0
Average Normal Operation (hr)	0.0			•	

9/28/2009

Quarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load.

Duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Fourth Quarter Emissions (Oct, Nov, Dec)

			Turbine	
Total Hours of Operation	2,080.5	Pollutant	Emissions	Emissions
Total Number of Cold Starts	2.5		lb/yr/CT	ton/yr/CT
Cold Start Duration (hr)	3.0	NO _X	83,588.3	41.8
Total Number of Hot Starts	2.5	СО	51,729.8	25.9
Hot Start Duration (hr)	1.0	VOC	9,496.2	4.7
Total Number of Shutdowns	5.0	SO ₂	14,178.3	7.1
Shutdown Duration (hr)	0.5	$PM_{10} = PM_{2.5}$	41,188.9	20.6
Duct Burner Operation (hr)	2,068.0	NH ₃	37,963.9	19.0
Average Normal Operation (hr)	0.0			

Quarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load.

Duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

9/28/2009

Hydrogen Energy, Inc HECA Amendment

Modeling Worst-Case 8 hr Emissions per Turbine

	hr	Emission Rate lb/hr	Emissions lb/CT	
Total Hours of Operation	8.0			
Startup Duration	6.0		10,078.0	cc
Shutdown Duration	1.5		378.0	cc
Hours of Normal Operation (burning syngas)	0.5	18.1	9.1	cc
	•			

contribution over 8 hr from start up
contribution over 8 hr from shut down
contribution over 8 hr from normal operation

CO worst-case 8 hr emissions per turbine	10,465.1	lb/8 hr
CO worst-case 1 hr emissions per turbine	1,308.1	lb/hr
CO modeling worst-case emissions per turbine	164.8	g/sec

Assumptions

Only CO is considered for an average 8-hour Ambient Air Quality Standard.

Normal operation assumes max rate.

Worst-case 8 hr emissions assumes a total COLD start up of :
Worst-case 8 hr emissions assumes a total shut down of :

Worst-Case Daily Emissions per Turbine and Modeling Worst-Case 24 Hour Emission Rate

SO ₂ (lb/day/CT)	163.8
SO ₂ (g/s/CT) (burning syngas)	0.9
$PM_{10} = PM_{2.5}$ (lb/day/CT)	475.2
$PM_{10} = PM_{2.5}$ (g/s/CT) (burning syngas)	2.5
Assumptions:	
0 1 00 1 104 11 17 041 4 11	. 4: 0 1: 0: 1

Only SO₂ and PM are considered for an average 24-hour Ambient Air Quality Standard.

For SO₂ 24 hrs of normal operation max emission rate

For PM 24 hrs of normal operation max emission rate

Worst-Case Daily Emissions per Turbine and Modeling Worst-Case 24 Hour Emission Rate

Pollutant	Time in Startup hr	Startup Emission Rate lb/start	Time in Shut Down	Shutdown Emission Rate Ib/shutdown		Normal Operation Emission Rate Ib/start	Worst-Case Daily Emissions lb/day/CT	Modeling Worst- Case 24 Hr Emission g/s/CT
NOx	12.0	272.0	2.0	62.0	10.0	39.7	1,733.4	
co	12.0	5,039.0	2.0	126.0	10.0	18.1	20,841.4	
VOC	12.0	800.0	2.0	21.0	10.0	3.5	3,318.6	
SO ₂						•		•

$PM_{10} = PM_{2.5}$ Assumptions:

For NOx, CO, and VOC -- emissions are calculated assuming:

Worst-case daily emissions assumes a total start up of : 4
Worst-case daily emissions assumes a total shut down of : 4

Remainder of time is spent in normal operation at max emission rate

See above calculation for worst-case daily SO $_{\rm 2}$ and PM: calculated as 24 hrs of normal operationat max emissions rate

CTG Operating Parameters

C. C Cporuming : unumotoro													
Ambient Temperature	ure UNITS Winter Minimum - 20°F Yearly Average- 65°F				Winter Minimum - 20°F				Summer Maximum - 97°F				
CTG Load Level	Percent Load (%)	100%	100%	80%	60%	100%	100%	80%	60%	100%	100%	80%	60%
Evap Cooling Status	off / on	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Duct Burner Status	off / on	On	Off	Off	Off	On	Off	Off	Off	On	Off	Off	Off

Average Emission Rates from CTG (lbs/hr/turbine) - Normal Operation

	UNITS		Winter Minimum - 20°F				Yearly Average- 65°F				Summer Maximum - 97°F		
NO _x (@ 4.0 ppm)	lbm/hr	41.3	34.0			38.7	31.7						
CO (@ 5.0 ppm)	lbm/hr	31.4	25.9			29.4	24.1						
VOC (@ 2.0 ppm)	lbm/hr	7.2	5.9			6.7	5.5						
SO ₂ (@ 6.7 ppmv, average) (12.65 ppm duct firing)	lbm/hr	7.4	5.2			7.0	4.8						
$PM_{10} = PM_{2.5}$	lbm/hr	19.8	19.8			19.8	19.8						
NH ₃ (@ 5.0 ppm slip)	lbm/hr	19.1	15.7			17.9	14.6						
All turbine operating parameters and emissions data provided by FLUC	OR based on expected of	pperating parameters.	5.0659										

Co-firing emissions are controlled at the same amount as natural gas.

Startup / Shutdown Emissions from Turbine (1CT)

Cold Startup	Hot Startup			Shutdown				
180	Max 1-hr.	Total	60	Max 1-hr.	Total	30	Max 1-hr.	Total
(min. in cold startup)	(lb/hr)	(lb/180min)	(min. in hot startup)	(lb/hr)	(lb/60min)	(min. in shutdown)	(lb/hr)	(lb/30min)
NO _X	90.7	272.0	NOx	167.0	167.0	NOx	62.0	62.0
со	1,679.7	5,039.0	со	394.0	394.0	со	126.0	126.0
voc	266.7	800.0	voc	98.0	98.0	voc	21.0	21.0
SO ₂ (@ 12.65 ppmv)	5.1	15.3	SO2	5.1	5.1	SO2	2.6	2.6
$PM_{10} = PM_{2.5}$	21.3	64.0	$PM_{10} = PM_{2.5}$	23.0	23.0	$PM_{10} = PM_{2.5}$	5.0	5.0

All turbine operating parameters and emissions data provided by FLUOR based on expected operating parameters.

CTGs will always be started burning natural gas. Startup and shutdown emission rates above reflect natural gas.

Average annual normal operational emissions are calculated using yearly average- 65°F, at 100 % load. Duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Startup and shutdown SO₂ emissions will always be lower than normal operation SO₂ emissions. Startup and shutdown emissions are assumed equal to normal operations (burning natural gas) at the max emission rate.

Average Annual Emissions

Total Hours of Operation	8,322.0	Pollutant	Turbine Emissions	Emissions	Emissions
Total Number of Cold Starts	10.0		lb/yr/CT	ton/yr/CT	g/sec/CT
Cold Start Duration (hr)	3.0	NO _X	325,712.3	162.9	4.7
Total Number of Hot Starts	10.0	СО	300,390.9	150.2	4.3
lot Start Duration (hr)	1.0	voc	65,066.5	32.5	0.9
otal Number of Shutdowns	20.0	SO ₂	58,357.9	29.2	0.8
Shutdown Duration (hr)	0.5	$PM_{10} = PM_{2.5}$	164,755.6	82.4	2.4
Ouct Burner Operation (hr)	8,272.0	NH ₃	147,864.1	73.9	2.1
Average Normal Operation (hr)	0.0		•		

Parameters

. aramotoro				
Days per year:	365			
Hours per day:	24			
Minutes per hour:	60			
Seconds per minute:	60			

9/29/2009

First Quarter Emissions (Jan, Feb, Mar)

Total Hours of Operation	2,080.5	Pollutant	Turbine Emissions	Emissions
Total Number of Cold Starts	2.5		lb/yr/CT	ton/yr/CT
Cold Start Duration (hr)	3.0	NO _X	81,428.1	40.7
Total Number of Hot Starts	2.5	со	75,097.7	37.5
Hot Start Duration (hr)	1.0	VOC	16,266.6	8.1
Total Number of Shutdowns	5.0	SO ₂	14,589.5	7.3
Shutdown Duration (hr)	0.5	$PM_{10} = PM_{2.5}$	41,188.9	20.6
Duct Burner Operation (hr)	2,068.0	NH ₃	36,966.0	18.5
Average Normal Operation (hr)	0.0			

Assumptions

Quarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load.

Duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Second Quarter Emissions (Apr, May, Jun)

			Turbine	
Total Hours of Operation	2,080.5	Pollutant	Emissions	Emissions
Total Number of Cold Starts	2.5		lb/yr/CT	ton/yr/CT
Cold Start Duration (hr)	3.0	NO _X	81,428.1	40.7
Total Number of Hot Starts	2.5	СО	75,097.7	37.5
Hot Start Duration (hr)	1.0	VOC	16,266.6	8.1
Total Number of Shutdowns	5.0	SO ₂	14,589.5	7.3
Shutdown Duration (hr)	0.5	$PM_{10} = PM_{2.5}$	41,188.9	20.6
Duct Burner Operation (hr)	2,068.0	NH ₃	36,966.0	18.5
Average Normal Operation (hr)	0.0		•	•

Emissions lb/CT

0.0

0.0

22.1

contribution over 3 hr from start up

contribution over 3 hr from shut down

contribution over 3 hr from normal operation

ssumptions

Quarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load.

Duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Modeling Worst-Case 1 hr Emissions per Turbine

Pollutant	lb/hr/CT	g/sec/CT
NOx	167.0	21.0
co	1,679.7	211.6
SO ₂	7.4	0.93

Assumptions:

Startup emissions represent worst case hr for NOx and CO. Startup and shutdown only burn natural gas.

NOx emissions are from hot start

CO emissions are from cold start

Normal operation co firing represents worst case SO_{2.}

Calculation assumes that startup and shutdown SO₂ emissions will always be lower than normal operational (burning

natural gas) SO₂ emissions.

Modeling Worst-Case 3 hr Emissions per Turbine

		emission rate
	hr	lb/hr
Total Hours of Operation	3.0	
Startup Duration	0.0	
Shutdown Duration	0.0	
Hours of Normal Operation (co firing)	3.0	7.4
SO ₂ worst-case 3 hr emissions per turbine	22.1	lb/3 hr
SO ₂ worst-case 1 hr emissions per turbine	7.4	lb/hr
SO ₂ modeling worst-case emissions per turbine	0.9	g/sec
Assumptions:		
Only SO ₂ is considered for an average 3-hour Ambient Air Quality Sta	andard.	
Normal operation co firing represents worst case SO ₂ .		
Worst-case 3 hr emissions assumes a total start up of :	0	
Worst-case 3 hr emissions assumes a total shut down of : Calculation assumes that startup and shutdown SO_2 emissions will al natural gas) SO_2 emissions.	0 Iways be lower than n	ormal operational (burning

Total Hours of Operation	2,080.5	Pollutant	Turbine Emissions	Emissions
Total Number of Cold Starts	2.5		lb/yr/CT	ton/yr/CT
Cold Start Duration (hr)	3.0	NO _X	81,428.1	40.7
Total Number of Hot Starts	2.5	со	75,097.7	37.5
Hot Start Duration (hr)	1.0	voc	16,266.6	8.1
Total Number of Shutdowns	5.0	SO ₂	14,589.5	7.3
Shutdown Duration (hr)	0.5	$PM_{10} = PM_{2.5}$	41,188.9	20.6
Duct Burner Operation (hr)	2,068.0	NH ₃	36,966.0	18.5
Average Normal Operation (hr)	0.0		•	•

9/29/2009

Assumption

Quarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load.

Duct burner emissions are calculated using yearly average- 65°F, at 100 % load with duct burners.

Fourth Quarter Emissions (Oct, Nov, Dec)

Total Hours of Operation	2,080.5		Pollutant	Turbine Emissions	Emissions
Total Number of Cold Starts	2.5			lb/yr/CT	ton/yr/CT
Cold Start Duration (hr)	3.0	1	NO _X	81,428.1	40.7
Total Number of Hot Starts	2.5		CO	75,097.7	37.5
Hot Start Duration (hr)	1.0	\	VOC	16,266.6	8.1
Total Number of Shutdowns	5.0		SO ₂	14,589.5	7.3
Shutdown Duration (hr)	0.5	F	PM ₁₀ = PM _{2.5}	41,188.9	20.6
Duct Burner Operation (hr)	2,068.0	1	NH ₃	36,966.0	18.5
Average Normal Operation (hr)	0.0				

Assumption

Quarterly normal operational emissions are calculated using yearly average- 65°F, at 100 % load.

Duct burner emissions are calculated using yearly average- $65^{\circ}\text{F},$ at 100 % load with duct burners.

9/29/2009

Modeling Worst-Case 8 hr Emissions per Turbine

		emission rate
	hr	lb/hr
Total Hours of Operation	8.0	
Startup Duration	6.0	
Shutdown Duration	1.5	
Hours of Normal Operation (co firing)	0.5	31.4
		•
CO worst-case 8 hr emissions per turbine	10,471.7	lb/8 hr
CO worst-case 1 hr emissions per turbine	1,309.0	lb/hr
CO modeling worst-case emissions per turbine	164.9	g/sec
Assumptions:	_	_
Only CO is considered for an average 8-hour Ambient Air Quality Sta	ndard.	
Normal operation assumes max rate.		
Worst-case 8 hr emissions assumes a total COLD start up of :	2	
Worst-case 8 hr emissions assumes a total shut down of	3	

contribution over 8 hr from start up contribution over 8 hr from shut down contribution over 8 hr from normal operation

Worst-Case Daily Emissions per Turbine and Modeling Worst-Case 24 Hour Emission Rate

SO ₂ (lb/day/CT)	177.2		
SO2 (g/s/CT) (co firing)	0.9		
$PM_{10} = PM_{2.5}$ (lb/day/CT)	475.2		
$PM_{10} = PM_{2.5}$ (g/s/CT) (cofiring)	2.5		
Assumptions:			
Only SO ₂ and PM are considered for an average 24-hour Ambient Air Quality Standard.			
For SO ₂ 24 hrs of normal operation max emission rate			

Worst-Case Daily Emissions per Turbine and Modeling Worst-Case 24 Hour Emission Rate

	Ť							Т
	Time in Startup	Startup Emission Rate	Time in Shut Down	Shutdown Emission Rate		Normal Operation Emission Rate	Worst-Case Daily Emissions	Modeling Worst- Case 24 Hr
Pollutant	hr	lb/start	hr	lb/shutdown	hr	lb/start	lb/day/CT	Emission g/s/CT
NOx	12.0	272.0	2.0	62.0	10.0	41.3	1,748.8	
СО	12.0	5,039.0	2.0	126.0	10.0	31.4	20,974.1	
VOC	12.0	800.0	2.0	21.0	10.0	7.2	3,355.8	
SO ₂								
$PM_{10} = PM_{2.5}$								

Emissions lb/CT

10,078.0

378.0

15.7

Assumptions:

For NOx, CO, and VOC -- emissions are calculated assuming:

For PM 24 hrs of normal operation max emission rate

Worst-case daily emissions assumes a total start up of : 4
Worst-case daily emissions assumes a total shut down of : 4

Remainder of time is spent in normal operation at max emission rate

See above calculation for worst-case daily SO₂ and PM: calculated as 24 hrs of normal operationat max emissions rate

Auxiliary Boiler - Annual Operating Emissions

Total Hours of Operation	2,190	hr/yr
Firing Rate	142	MMBtu/hr

Hours per Qtr						
Q1	Q2	Q3	Q4			
547.5	547.5	547.5	547.5			

Assuming equal operation in each quarter

Auxiliary Boiler Emission Factors

NOx (low NOx burner and flue gas recirculation, 9 ppmvd (3% O2))	0.011	lb/MMBtu
CO (50 ppmvd (3% O2))	0.037	lb/MMBtu
voc	0.004	lb/MMBtu
SO ₂ (12.65 ppmv total sulfur in pipeline natural gas)	0.00204	lb/MMBtu
$PM_{10} = PM_{2.5}$	0.005	lb/MMBtu

Auxiliary Boiler Pollutant Emission Rates

	Auxiliary Boiler Emissions				
Pollutant		lb/day	lb/yr	ton/qtr	ton/yr
NOx	1.56	37.49	3,420.78	0.43	1.7
СО	5.25	126.10	11,506.26	1.44	5.8
VOC	0.57	13.63	1,243.92	0.16	0.6
SO_2	0.29	6.96	635.09	0.08	0.3
$PM_{10} = PM_{2.5}$	0.71	17.04	1,554.90	0.19	0.8

Revised Appendix D1-2.xls 15 of 49

Auxiliary Boiler Emissions Summary

Hydrogen Energy, Inc HECA Amendment 9/28/2009

Modeling Worst-Case 1 hr Emissions

NOx (g/sec)	0.2
CO (g/sec)	0.7
SO ₂ (g/sec)	0.04

Only NOx, CO, and SO₂ are considered for an average 1-hour Ambient Air Quality Standard.

Parameters

Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

Modeling Worst-Case 3 hr Emissions

SO ₂ (lb/3-hr)	0.87
SO ₂ (g/sec)	0.04

Only SO₂ is considered for an average 3-hour Ambient Air Quality Standard.

Modeling Worst-Case 8 hr Emissions

CO (lb/8-hr)	42.03
CO (g/sec)	0.7

Only CO is considered for an average 8-hour Ambient Air Quality Standard.

Modeling Worst-Case 24 Hour Emissions

SO ₂ (lb/24-hr)	6.96
SO ₂ (g/sec)	0.04
$PM_{10} = PM_{2.5} (lb/24-hr)$	17.04
$PM_{10} = PM_{2.5} (g/sec)$	0.09

Only SO₂ and PM are considered for an average 24-hour Ambient Air Quality Standard.

Modeling Annual Average Emissions

NOx (g/sec)	0.05
CO (g/sec)	0.2
VOC (g/sec)	0.02
SO ₂ (g/sec)	0.01
$PM_{10} = PM_{2.5} (g/sec)$	0.02

Revised Appendix D1-2.xls 16 of 49

Hydrogen Energy, Inc

HECA Amendment

9/28/2009

Gasification Flare - Normal Operating Emissions From Pilot

Total Hours of Operation 8,760 hr/yr Gasification Flare Pilot Fuel Use = 0.5 MMBtu/hr			
Gasification Flare Pilot Fuel Use = 0.5 MMBtu/hr	Total Hours of Operation	8,760	hr/yr
	Gasification Flare Pilot Fuel Use =	0.5	MMBtu/hr

Hours per Qtr					
Q1	Q3	Q4			
2190	2190	2190	2190		

Pilot Pollutant Emission Factors

NOx (lb/MMBtu, HHV)	0.12
CO (lb/MMBtu, HHV)	0.08
VOC (lb/MMBtu, HHV)	0.0013
SO ₂ (lb/MMBtu, HHV) (12.65 ppm)	0.002
VOC (lb/MMBtu, HHV)	0.0013
$PM_{10} = PM_{2.5}$ (lb/MMBtu, HHV)	0.003

Assuming equal operation in each quarter

Pilot Pollutant Emission Rates

	Pilot Emissions				
Pollutant	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr
NOx	0.060	1.44	525.60	0.07	0.26
СО	0.040	0.96	350.40	0.04	0.18
VOC	0.001	0.02	5.69	0.0007	0.003
SO ₂	0.001	0.02	8.94	0.0011	0.004
$PM_{10} = PM_{2.5}$	0.002	0.04	13.14	0.00	0.007

Revised Appendix D1-2.xls 17 of 49

Hydrogen Energy, Inc
HECA Amendment
9/28/2009

Gasification Flare - Operating Emissions During Gasifier Startup and Shutdown

Total Flare SU/SD Operation	115,500	MMBtu/yr
Wet Unshifted Gas Heat Rate	900	MMBtu/hr
Dry Shifted Gas Heat Rate	768	MMBtu/hr
Approximate Operating Hours (wet)	96	hr/yr
Approximate Operating Hours (dry)	38	hr/yr

Startup and shutdown flared gas scenario

 Cold plant startup =
 30,000 MMBtu/yr (1 event)
 (assume 20% unshifted)

 Plant shutdown =
 500 MMBtu/yr (1 event)
 (assume 100% unshifted)

 Gasifier outages =
 60,000 MMBtu/yr (24 events)
 (assume 100% unshifted)

 Gasifier hot restarts =
 25,000 MMBtu/yr (12 events)
 (assume 100% unshifted)

 Total
 115,500 MMBtu/yr
 (approx 75% unshifted)

SU/SD Flare Pollutant Emission Factors

NOx (lb/MMBtu, HHV)	0.07
CO (lb/MMBtu, HHV) (wet)	1.00
CO (lb/MMBtu, HHV) (dry)	0.37
VOC (lb/MMBtu, HHV)	0
SO ₂ (lb/MMBtu, HHV)	0
$PM_{10} = PM_{2.5} (Ib/MMBtu, HHV)$	0

SU/SD Flare Pollutant Emission Rates

	SU/SD Flare Emissions						
Pollutant	lb/hr (wet)	lb/hr (dry)	% Wet	% Dry	lb/hr (wet/dry)	ton/qtr (wet/dry)	ton/yr (wet/dry)
NOx	63.0	53.8	75.0%	25.0%	60.70	1.01	4.04
СО	900.0	284.3	75.0%	25.0%	746.08	12.16	48.65
VOC	0	0	0	0	0	0	0
SO ₂	0	0	0	0	0	0	0
$PM_{10} = PM_{2.5}$	0	0	0	0	0	0	0

Total emissions are determined based on the fractional amount of wet and dry gas burned.

Revised Appendix D1-2.xls 18 of 49

Hydrogen Energy, Inc
HECA Amendment
9/28/2009

Total Gasification Flare Emissions

		Emissions					
Pollutant	Pilot (ton/yr)	Pilot (ton/yr) SU/SD (ton/yr) Total (ton/qtr) Total (ton/yr					
NOx	0.26	4.04	1.08	4.3			
со	0.18	48.65	12.21	48.8			
voc	0.003	0.00	0.001	0.003			
SO ₂	0.004	0.00	0.001	0.004			
$PM_{10} = PM_{2.5}$	0.01	0.00	0.002	0.01			

Modeling Worst-Case 1 hr Emissions

NOx (g/sec)	7.9
CO (g/sec)	113.4
SO ₂ (g/sec)	0.0001

Only NOx, CO, and SO₂ are considered for an average 1-hour Ambient Air Quality Standard.

NOx and CO rates are taken from the SU/SD flaring events

SO₂ rate is from pilot operation

Modeling Worst-Case 3 hr Emissions

SO ₂ (lb/3-hr)	0.003
SO ₂ (g/sec)	0.0001

Only SO₂ is considered for an average 3-hour Ambient Air Quality Standard.

SO₂ pounds per 3-hr assumes three (3) hours of pilot operation.

Modeling Worst-Case 8 hr Emissions

CO (lb/8-hr)	7,200.00
CO (g/sec)	113.4

Only CO is considered for an average 8-hour Ambient Air Quality Standard.

Pounds per 8-hr assumes eight (8) hours of SU/SD flaring events.

Parameters

Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

Revised Appendix D1-2.xls 19 of 49

Hydrogen Energy, Inc HECA Amendment 9/28/2009

Modeling Worst-Case 24 Hour Emissions

SO ₂ (lb/24-hr)	0.02
SO ₂ (g/sec)	0.0001
$PM_{10} = PM_{2.5} (lb/24-hr)$	0.04
$PM_{10} = PM_{2.5} (g/sec)$	0.0002

Only SO₂ and PM are considered for an average 24-hour Ambient Air Quality Standard.

Pounds per 24-hr assumes 24 hours of pilot operation.

Modeling Annual Average Emissions

NOx (g/sec)	0.1
CO (g/sec)	1.4
VOC (g/sec)	0.0001
SO ₂ (g/sec)	0.0001
$PM_{10} = PM_{2.5} (g/sec)$	0.0002

Pounds per year assumes contributions from both pilot operation and SU/SD flaring

Revised Appendix D1-2.xls 20 of 49

Hydrogen Energy, Inc 9/28/2009
HECA Amendment

SRU Flare - Normal Operating Emissions from Pilot

Total Hours of Operation	8,760	hr/yr
SRU Flare Pilot Firing Rate	0.3	MMBtu/hr

Hours per Qtr				
Q1	Q2	Q3	Q4	
2190	2190	2190	2190	

Pilot Pollutant Emission Factors

NOx (lb/MMBtu, HHV)	0.12
CO (lb/MMBtu, HHV)	0.08
VOC (lb/MMBtu, HHV)	0.0013
SO ₂ (lb/MMBtu, HHV) (12.65 ppm)	0.002
$PM_{10} = PM_{2.5}$ (lb/MMBtu, HHV)	0.003

Assuming equal operation in each quarter

Pilot Pollutant Emission Rates

	Pilot Emissions				
Pollutant	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr
NOx	0.036	0.86	315.36	0.04	0.2
co	0.024	0.58	210.24	0.03	0.1
VOC	0.0004	0.01	3.42	0.0004	0.002
SO ₂	0.0006	0.01	5.37	0.0007	0.003
$PM_{10} = PM_{2.5}$	0.0009	0.02	7.88	0.00	0.004

Revised Appendix D1-2.xls 21 of 49

Hydrogen Energy, Inc 9/28/2009
HECA Amendment

SRU - Operating Emissions During Gasifier Startup and Shutdown

			<u></u>		
Natural Gas Heat Rate (assist gas)	36.0	MMBtu/hr			
Approximate Operating Hours	6.0	hr/yr	approximately	2	events
Control efficiency of scrubber =	99.62%				
Acid gas lb/hr SO2 =	4,600	lb/hr scrubbed SO2=	17.3		

SU/SD Flare Pollutant Emission Factors

NOx (lb/hr)	4.32
CO (lb/hr)	2.88
VOC (lb/hr)	0.05
SO ₂ (lb/hr) from natural gas	0.07
SO ₂ (lb/hr) from sour flaring	17.33
$PM_{10} = PM_{2.5}(lb/hr)$	0.11

Natural gas emissions are the same as those listed for the pilot multiplied by the heat rate of the assist gas

SU/SD Flare Pollutant Emission Rates

	SU/SD Flare Emissions				
Pollutant	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr
NOx	4.32	13.0	25.9	0.00324	0.0130
СО	2.88	8.6	17.3	0.00216	0.0086
VOC	0.05	0.1	0.3	0	0.0001
SO ₂	17.41	52.2	104.4	0.01	0.0522
$PM_{10} = PM_{2.5}$	0.11	0.3	0.6	0	0.0003

SRU Flare - Total Annual Emissions

		Emissions			
Pollutant	Pilot (ton/yr)	SU/SD (ton/yr)	Total (ton/qtr)	Total (ton/yr)	
NOx	0.16	0.0130	0.04	0.2	
СО	0.11	0.0086	0.03	0.1	
VOC	0.002	0.0001	0.000	0.002	
SO ₂	0.003	0.05	0.014	0.1	
$PM_{10} = PM_{2.5}$	0.004	0.0003	0.001	0.004	

Revised Appendix D1-2.xls 22 of 49

SRU Flare Emissions Summary

Hydrogen Energy, Inc
HECA Amendment
9/28/2009

Modeling Worst-Case 1 hr Emissions

NOx (g/sec)	0.544
CO (g/sec)	0.363
SO ₂ (g/sec)	2.19

Only NOx, CO, and SO2 are considered for an average 1-hour Ambient Air Quality Standard.

NOx, CO, and SO2 one (1) hr rates are from taken from the SU/SD flaring events

Modeling Worst-Case 3 hr Emissions

SO ₂ (lb/3-hr)	52.22
SO ₂ (g/sec)	2.19

Only SO₂ is considered for an average 3-hour Ambient Air Quality Standard.

Pounds per 3-hr assumes aproximately 3 hours (1 event) from SU/SD flaring.

Modeling Worst-Case 8 hr Emissions

CO (lb/8-hr)	8.76
CO (g/sec)	0.138

Only CO is considered for an average 8-hour Ambient Air Quality Standard.

Pounds per 8-hr assumes aproximately 3 hours (1 event) from SU/SD flaring and the remainder in pilot operation.

Modeling Worst-Case 24 Hour Emissions

mousting received and a received	
SO ₂ (lb/24-hr)	52.23
SO ₂ (g/sec)	0.27
$PM_{10} = PM_{2.5} (lb/24-hr)$	0.34
$PM_{10} = PM_{2.5} (g/sec)$	0.0018

Only SO₂ and PM are considered for an average 24-hour Ambient Air Quality Standard.

SO₂ and PM pounds per 24-hr assume aproximately 3 hours (1 event) from SU/SD flaring and the remainder in pilot operation.

Parameters

Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

Revised Appendix D1-2.xls 23 of 49

SRU Flare Emissions Summary

Hydrogen Energy, Inc 9/28/2009
HECA Amendment

Modeling Annual Average Emissions

NOx (g/sec)	0.005
CO (g/sec)	0.003
VOC (g/sec)	0.00005
SO ₂ (g/sec)	0.002
$PM_{10} = PM_{2.5} (g/sec)$	0.0001

Pounds per year assumes contributions from both pilot operation and SU/SD flaring

Revised Appendix D1-2.xls 24 of 49

Rectisol - Normal Operating Emissions from Pilot

Total Hours of Operation 8,760	
	nr/yr
Rectisol Flare Pilot Firing Rate 0.3	MMBtu/hr

Hours per Qtr			
Q1	Q2	Q3	Q4
2190	2190	2190	2190

Pilot Pollutant Emission Factors

Assuming equal operation in each quarter

NOx (lb/MMBtu, HHV)	0.12
CO (lb/MMBtu, HHV)	0.08
VOC (lb/MMBtu, HHV)	0.0013
SO ₂ (lb/MMBtu, HHV) (12.65 ppm)	0.002
$PM_{10} = PM_{2.5}$ (lb/MMBtu, HHV)	0.003

Pilot Pollutant Emission Rates

	Pilot Emissions				
Pollutant	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr
NOx	0.036	0.86	315.36	0.04	0.2
со	0.024	0.58	210.24	0.03	0.1
voc	0.0004	0.01	3.42	0.0004	0.002
SO ₂	0.0006	0.01	5.37	0.0007	0.003
$PM_{10} = PM_{2.5}$	0.0009	0.02	7.88	0.00	0.004

Rectisol Flare - Total Annual Emissions

Pollutant	Emissions		
	Pilot (ton/yr)	Total (ton/qtr)	Total (ton/yr)
NOx	0.16	0.04	0.2
со	0.11	0.03	0.1
VOC	0.002	0.000	0.002
SO ₂	0.003	0.001	0.003
$PM_{10} = PM_{2.5}$	0.004	0.001	0.004

Modeling Worst-Case 1 hr Emissions

NOx (g/sec)	0.005
CO (g/sec)	0.003
SO ₂ (g/sec)	0.0001

Only NOx, CO, and SO2 are considered for an average 1-hour Ambient Air Quality Standard.

NOx, CO, and SO2 one (1) hr rates are from taken from the natural gas pilot emissions

Parameters

Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

Rectisol Flare Emissions Summary

Hydrogen Energy, Inc HECA Amendment 9/28/2009

Modeling Worst-Case 3 hr Emissions

SO ₂ (lb/3-hr)	0.0018
SO ₂ (g/sec)	0.0001

Only SO₂ is considered for an average 3-hour Ambient Air Quality Standard.

Pounds per 3-hr assumes aproximately 3 hours the natural gas pilot emissions.

Modeling Worst-Case 8 hr Emissions

CO (lb/8-hr)	0.19
CO (g/sec)	0.003

Only CO is considered for an average 8-hour Ambient Air Quality Standard.

Pounds per 8-hr assumes aproximately 8 hours of pilot operation.

Modeling Worst-Case 24 Hour Emissions

SO ₂ (lb/24-hr)	0.01
SO ₂ (g/sec)	0.0001
$PM_{10} = PM_{2.5} (lb/24-hr)$	0.02
$PM_{10} = PM_{2.5} (g/sec)$	0.0001

Only SO₂ and PM are considered for an average 24-hour Ambient Air Quality Standard.

 ${\rm SO_2}$ and PM pounds per 24-hr assume aproximately 32 hoursof pilot operation.

Modeling Annual Average Emissions

0.005
0.003
0.00005
0.0001
0.0001

Pounds per year assumes contributions from both pilot operation and SU/SD flaring

Hydrogen Energy, Inc
9/28/2009
HECA Amendment

Thermal Oxidizer - Process Vent Disposal Emissions

Total Hours of Operation	8,760	hr/yr
Thermal Oxidizer Firing Rate	10	MMBtu/hr
0		

Q1	Q3	Q4	
2190	2190	2190	2190

Assuming equal operation in each quarter

Process Vent Gas Pollutant Emission Factors

NOx (lb/MMBtu, HHV)	0.24
CO (lb/MMBtu, HHV)	0.20
VOC (lb/MMBtu, HHV)	0.0070
SO ₂ (lb/MMBtu, HHV)	See Below
$PM_{10} = PM_{2.5}$ (lb/MMBtu, HHV)	0.008
1 W10 = 1 W2.5 (ID/WIWIDIG, 1111V)	0.000

Assume an allowance of 2 lb/hr SO₂ emission to account for sulfur in the various vent streams plus fuel.

Process Vent Gas Pollutant Emission Rates

	Process Vent Gas Emissions				
Pollutant	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr
NOx	2.40	57.60	21,024.00	2.63	10.5
со	2.00	48.00	17,520.00	2.19	8.8
VOC	0.07	1.68	613.20	0.0767	0.3
SO ₂	2.00	48.00	17,520.00	2.1900	8.8
$PM_{10} = PM_{2.5}$	0.08	1.92	700.80	0.09	0.4

Assume an allowance of 2 lb/hr SO₂ emission to account for sulfur in the various vent streams plus fuel.

Revised Appendix D1-2.xls 27 of 49

Thermal Oxidizer - SRU Startup Waste Gas Disposal

Total Hours of Operation	300	hr/yr
Thermal Oxidizer Firing Rate	10	MMBtu/hr

Q1	Q2	Q3	Q4
75	75	75	75

SRU Startup Waste Gas Disposal Emission Factors

NOx (lb/MMBtu, HHV)	0.24
CO (lb/MMBtu, HHV)	0.20
VOC (lb/MMBtu, HHV)	0.007
SO ₂ (lb/MMBtu, HHV) (12.65 ppm)	0.002
$PM_{10} = PM_{2.5}$ (lb/MMBtu, HHV)	0.008

Assuming equal operation in each quarter

SRU Startup Waste Gas Disposal Pollutant Emission Rates

		SRU Startup Waste Gas Disposal Emissions			
Pollutant	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr
NOx	2.40	57.60	720.00	0.09	0.36
со	2.00	48.00	600.00	0.08	0.30
VOC	0.07	1.68	21.00	0.003	0.011
SO ₂	0.02	0.49	6.17	0.001	0.003
$PM_{10} = PM_{2.5}$	0.08	1.92	24.00	0.003	0.012

Thermal Oxidizer - Total Annual Emissions

		Emissions			
Pollutant	Vent (ton/yr)	SU/SD (ton/yr)	Total (ton/qtr)	Total (ton/yr)	
NOx	10.51	0.36	2.72	10.9	
СО	8.76	0.30	2.27	9.1	
voc	0.31	0.011	0.08	0.3	
SO ₂	8.76	0.003	2.19	8.8	
$PM_{10} = PM_{2.5}$	0.35	0.012	0.09	0.4	

Revised Appendix D1-2.xls 28 of 49

Tail Gas Thermal Oxidizer Emissions Summary

Hydrogen Energy, Inc

HECA Amendment

9/28/2009

Modeling Worst-Case 1 hr Emissions

NOx (g/sec)	0.6
CO (g/sec)	0.50
SO ₂ (g/sec)	0.25

Only NOx, CO, and SO₂ are considered for an average 1-hour Ambient Air Quality Standard.

NOx, CO, and SO₂ one (1) hr rates include contributions from both process venting and SRU startup.

Modeling Worst-Case 3 hr Emissions

SO ₂ (lb/3-hr)	6.06
SO ₂ (g/sec)	0.3

Only SO₂ is considered for an average 3-hour Ambient Air Quality Standard.

SO₂ pounds per 3-hr assumes three (3) hours of oxidation from both process venting and SRU startup.

Modeling Worst-Case 8 hr Emissions

CO (lb/8-hr)	32.00
CO (g/sec)	0.5

Only CO is considered for an average 8-hour Ambient Air Quality Standard.

Pounds per 8-hr assumes eight (8) hours of oxidation from both process venting and SRU startup.

Modeling Worst-Case 24 Hour Emissions

SO ₂ (lb/24-hr)	48.49
SO ₂ (g/sec)	0.3
$PM_{10} = PM_{2.5} (lb/24-hr)$	3.84
$PM_{10} = PM_{2.5} (g/sec)$	0.02

Only SO₂ and PM are considered for an average 24-hour Ambient Air Quality Standard.

Pounds per 24-hr assumes 24 hours of oxidation from both process venting and SRU startup.

Modeling Annual Average Emissions

modeling / minda / troings = modeling	
NOx (g/sec)	0.3
CO (g/sec)	0.26
VOC (g/sec)	0.01
SO ₂ (g/sec)	0.3
$PM_{10} = PM_{2.5} (g/sec)$	0.01

Pounds per year assumes all contributions from annual waste gas oxidation and periodic SRU startup.

Parameters

Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

Revised Appendix D1-2.xls 29 of 49

Gasifier Warming Emissions Summary

9/28/2009

Hydrogen Energy, Inc
HECA Amendment

Gasifier Warming Emissions - Normal Operation

 $PM_{10} = PM_{2.5}$

Total Hours of Operation	1,800	hr/yr]	Hours per Q			:r	
Gasifier Firing Rate	18	MMBtu/hr		Q1	Q2	Q3	Q4	
	<u>.</u>	•	-	450	450	450	450	
Gasifier Pollutant Emission Factors		_		Assuming equ	al operation in	each quarter		
NOx (lb/MMBtu, HHV)	0.11							
CO (lb/MMBtu, HHV)	0.09							
VOC (lb/MMBtu, HHV)	0.007							
SO ₂ (lb/MMBtu, HHV) (12.65 ppm)	0.002							
$PM_{10} = PM_{2.5}$ (lb/MMBtu, HHV)	0.008							
Gasifier Pollutant Emission Rates		_	ifier Emissi					
Pollutant	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr			
NOx	1.98	47.52	3,564.00	0.45	1.8			
CO	1.62	38.88	2,916.00	0.36	1.5			
VOC	0.13	3.02	226.80	0.03	0.1			
<u> </u>	01.10	0.02						

3.46

259.20

0.03

0.1

Please Note That There Are Three Gassifiers; However, Under Normal Operations, Only One Operates At A Time.

0.14

Revised Appendix D1-2.xls 30 of 49

Gasifier Warming Emissions Summary

Hydrogen Energy, Inc 9/28/2009
HECA Amendment

Modeling Worst-Case 1 hr Emissions

NOx (g/sec)	0.2
CO (g/sec)	0.2
SO ₂ (g/sec)	0.0046

Only NOx, CO, and SO₂ are considered for an average 1-hour Ambient Air Quality Standard.

NOx, CO, and SO₂ one (1) hr rates assume normal operation.

Modeling Worst-Case 3 hr Emissions

SO ₂ (lb/3-hr)	0.11
SO ₂ (g/sec)	0.0046

Only SO₂ is considered for an average 3-hour Ambient Air Quality Standard.

SO₂ pounds per 3-hr assumes three (3) hours of normal operation.

Modeling Worst-Case 8 hr Emissions

CO (lb/8-hr)	12.96
CO (g/sec)	0.2

Only CO is considered for an average 8-hour Ambient Air Quality Standard.

Pounds per 8-hr assumes eight (8) hours of normal operation.

Modeling Worst-Case 24 Hour Emissions

SO ₂ (lb/24-hr)	0.88
SO ₂ (g/sec)	0.0046
$PM_{10} = PM_{2.5} (lb/24-hr)$	3.46
$PM_{10} = PM_{2.5} (g/sec)$	0.02

Only SO₂ and PM are considered for an average 24-hour Ambient Air Quality Standard.

Pounds per 24-hr assumes 24 hours of normal operation.

Parameters

Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

Revised Appendix D1-2.xls 31 of 49

Gasifier Warming Emissions Summary

Hydrogen Energy, Inc 9/28/2009
HECA Amendment

Modeling Annual Average Emissions

NOx (g/sec)	0.1
CO (g/sec)	0.0419
VOC (g/sec)	0.0033
SO ₂ (g/sec)	0.0010
$PM_{10} = PM_{2.5} (g/sec)$	0.0037

Pounds per year assumes 1,800 hours of annual normal operation.

Revised Appendix D1-2.xls 32 of 49

Cooling Towers Emissions Summary

Hydrogen Energy, Inc
HECA Amendment
9/28/2009

Cooling Towers - Annual Operating Emissions

			_				
Total Hours of Operation	8,322	hr/yr		Hours per Qtr			
			-	Q1	Q2	Q3	Q4
				2080.5	2080 5	2080.5	2080 5

Assuming equal operation in each quarter

Cooling Tower Operating Parameters

	Power Block	Process Area	ASU	Basis
Cooling water (CW) circulation rate, gpm	175,000	42,300	40,200	Typical plant performance
CW circulation rate (million lb/hr)	88	21	20	
CW dissolved solids (ppmw)	9,000	9,000	9,000	(See note)
Drift, fraction of circulating CW	0.0005%	0.0005%	0.0005%	Expected BACT

Note: Assumed 9,000 ppm TDS in circulating cooling water. Circulating water could range from 1200 to 90,000 ppm TDS depending on makeup water quality and tower operation. PM10 emissions would vary proportionately.

Cooling Tower PM₁₀ Emissions

	Cooling Tower PM ₁₀ Emissions Ib/hr				
Power Block Cooling Tower PM 10 Emissions	3.94	94.50	32,767.88	4.10	16.38
Process Area Cooling Tower PM ₁₀ Emissions	0.95	22.84	7,920.46	0.99	3.96
ASU Cooling Tower PM ₁₀ Emissions	0.90	21.71	7,527.25	0.94	3.76

Revised Appendix D1-2.xls 33 of 49

Cooling Towers Emissions Summary

Hydrogen Energy, Inc
HECA Amendment

Total Cooling Tower PM₁₀ Emissions

	(ton/yr)
PM ₁₀	24.11
PM _{2.5}	14.46

PM_{2.5} emission factors were determined by multiplying PM₁₀ numbers by a "PM_{2.5} fraction of PM₁₀" value. Fractional values for PM_{2.5} were taken from the SCAQMD guidance: Final - Methodology to Calculate PM_{2.5} and PM_{2.5} Significance Thresholds, October 2006: Appendix A - Updated CEIDARS Table with PM_{2.5} Fractions.

Modeling Worst-Case 24 Hour Emissions	Power Block	Process Area	ASU
Cells per Cooling Tower	13	4	4
PM ₁₀ (lb/24-hr)	94.50	22.84	21.71
PM ₁₀ (g/sec/cell)	0.038	0.030	0.028
PM _{2.5} (lb/24-hr)	56.70	13.71	13.02
PM _{2.5} (g/sec/cell)	0.023	0.018	0.017

PM is considered for an average 24-hour Ambient Air Quality Standard.

Pounds per 24-hr assumes 24 hours of continual operation.

Modeling Worst-Case Annual Emissions	Power Block	Process Area	ASU
Cells per Cooling Tower	13	4	4
PM ₁₀ (ton/yr)	16.38	3.96	3.76
PM ₁₀ (g/sec/cell)	0.036	0.028	0.027
PM _{2.5} (lb/24-hr)	9.830	2.376	2.258
PM _{2.5} (g/sec/cell)	0.022	0.017	0.016

PM is considered for an annual average Ambient Air Quality Standard.

Assumes continual annual operation.

Parameters

Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

Revised Appendix D1-2.xls 34 of 49

Emergency Diesel Generators

Emissions Summary

Hydrogen Energy, Inc HECA Amendment 9/28/2009

Emergency Generator - Expected Emergency Operation and Maintenance

Total Hours of Operation	50	hr/yr
Generator Specification	2,800	Bhp

	Hours	per Qtr	
Q1	Q2	Q3	Q4
12.5	12.5	12.5	12.5

Generator Pollutant Emission Factors (per generator)

NOx (g/Bhp/hr)	0.50
CO (g/Bhp/hr)	0.29
VOC (g/Bhp/hr)	0.11
SO ₂ (g/Bhp/hr)	N/A
$PM_{10} = PM_{2.5} (g/Bhp/hr)$	0.03

Assuming equal operation in each quarter

Generator Pollutant Emission Rates (per generator)

		Generator Emissions				
Pollutant	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr	
NOx	3.09	6.17	154.32	0.02	0.1	
СО	1.79	3.58	89.51	0.01	0.04	
VOC	0.68	1.36	33.95	0.00	0.02	
SO ₂	0.03	0.06	1.40	0.00	0.001	
$PM_{10} = PM_{2.5}$	0.16	0.32	8.02	0.00	0.00	

Fuel sulfur content = 15 ppmw Pounds per day assumes two (2) hours of operation for maintenance and testing.

 SO_2 emissions = 0.20 lb $SO_2/1000$ gal

Fuel flow 140.00 gal/hr

Please note that there are two generators; all emissions are shown for individual generators

Modeling Worst-Case 1 hr Emissions (per generator)

	· · · · · · · · · · · · · · · · · · ·
NOx (g/sec)	0.4
CO (g/sec)	0.2
SO ₂ (g/sec)	0.004

Only NOx, CO, and SO₂ are considered for an average 1-hour Ambient Air Quality Standard.

Parameters

Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

Revised Appendix D1-2.xls 35 of 49

Emergency Diesel Generators

Emissions Summary

Hydrogen Energy, Inc HECA Amendment 9/28/2009

Modeling Worst-Case 3 hr Emissions (per generator)

SO ₂ (lb/3-hr)	0.06
SO ₂ (g/sec)	0.002

Only SO₂ is considered for an average 3-hour Ambient Air Quality Standard. Pounds per 3-hr assumes two (2) hours of operation.

Modeling Worst-Case 8 hr Emissions (per generator)

CO (lb/8-hr)	3.58
CO (g/sec)	0.06

Only CO is considered for an average 8-hour Ambient Air Quality Standard. Pounds per 8-hr assumes two (2) hours of operation.

Modeling Worst-Case 24 Hour Emissions (per generator)

SO ₂ (lb/24-hr)	0.06
SO ₂ (g/sec)	0.0003
$PM_{10} = PM_{2.5} (lb/24-hr)$	0.32
$PM_{10} = PM_{2.5} (g/sec)$	0.002

Only SO_2 and PM are considered for an average 24-hour Ambient Air Quality Standard. Pounds per 24-hr assumes two (2) hours of operation.

Modeling Annual Average Emissions (per generator)

NOx (g/sec)	0.002
CO (g/sec)	0.001
VOC (g/sec)	0.000
SO ₂ (g/sec)	0.00002
$PM_{10} = PM_{2.5} (g/sec)$	0.0001

Pounds per year assumes 50 hours of operation.

Revised Appendix D1-2.xls 36 of 49

Emergency Diesel Firewater Pump

Emissions Summary

9/28/2009 Hydrogen Energy, Inc HECA Amendment

Fire Water Pump - Expected Emergency Operation and Maintenance

Total Hours of Operation	100	hr/yr
Fire Water Pump Specification	556	Bhp

Hours per Qtr			
Q1	Q2	Q3	Q4
25	25	25	25

Assuming equal operation in each quarter

Pounds per day assumes two (2) hours of operation for maintenance and testing.

Fire Water Pump Pollutant Emission Factors

NOx (g/Bhp/hr)	1.50
CO (g/Bhp/hr)	2.60
VOC (g/Bhp/hr)	0.14
SO ₂ (g/Bhp/hr)	N/A
$PM_{10} = PM_{2.5} (g/Bhp/hr)$	0.015

Fire Water Pump Pollutant Emission Rates

	Fire Water Pump Emissions				
Pollutant	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr
NOx	1.84	3.68	183.86	0.02	0.1
СО	3.19	6.37	318.69	0.04	0.2
VOC	0.17	0.34	17.16	0.00	0.01
SO ₂	0.01	0.01	0.56	0.0001	0.0003
$PM_{10} = PM_{2.5}$	0.02	0.04	1.84	0.00	0.00

Fuel sulfur content = 15 ppmw SO₂ emissions = lb SO₂/1000 gal 0.20

gal/hr

Fuel flow 28.00

Revised Appendix D1-2.xls 37 of 49

Emergency Diesel Firewater Pump

Emissions Summary

9/28/2009

Hydrogen Energy, Inc HECA Amendment

Parameters

Modeling	Worst-Case	1 hr	Emissions
woaeiina	worst-case	T nr	Emissions

NOx (g/sec)	0.2
CO (g/sec)	0.4
SO ₂ (g/sec)	0.0007

Only NOx, CO, and SO₂ are considered for an average 1-hour Ambient Air Quality Standard

Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

Modeling Worst-Case 3 hr Emissions

SO ₂ (lb/3-hr)	0.01
SO ₂ (g/sec)	0.0005

Only SO_2 is considered for an average 3-hour Ambient Air Quality Standard. Pounds per 3-hr assumes two (2) hours of operation.

Modeling Worst-Case 8 hr Emissions

CO (lb/8-hr)	6.37
CO (g/sec)	0.1

Only CO is considered for an average 8-hour Ambient Air Quality Standard. Pounds per 8-hr assumes two (2) hours of operation.

Revised Appendix D1-2.xls 38 of 49

Emergency Diesel Firewater Pump

Emissions Summary

Hydrogen Energy, Inc 9/28/2009
HECA Amendment

Modeling Worst-Case 24 Hour Emissions

SO ₂ (lb/24-hr)	0.01
SO ₂ (g/sec)	0.0001
$PM_{10} = PM_{2.5} (lb/24-hr)$	0.04
$PM_{10} = PM_{2.5} (g/sec)$	0.0002

Only SO₂ and PM are considered for an average 24-hour Ambient Air Quality Standard.

Pounds per 24-hr assumes two (2) hours of operation.

Modeling Annual Average Emissions

NOx (g/sec)	0.003
CO (g/sec)	0.005
VOC (g/sec)	0.0002
SO ₂ (g/sec)	0.00001
$PM_{10} = PM_{2.5} (g/sec)$	0.00003

Pounds per year assumes 100 hours of operation.

Revised Appendix D1-2.xls 39 of 49

Intermittent CO₂ Vent Emissions Summary

Hydrogen Energy, Inc HECA Amendment 9/28/2009

Intermittent CO₂ Vent - Venting Operation

Total Days of Operation	21	day/yr
Total Hours of Operation	504	hr/yr
Total Flow	656,000	lb/hr
Total Flow	15,150	lbmol/hr

Hours per Qtr						
Q1	1 Q2 Q3 Q4					
5.25	5.25	5.25	5.25			

Assuming equal operation in each quarter

Vent Gas Pollutant Emission Factors

CO (ppmv)	1000
VOC (ppmv)	40
H ₂ S (ppmv)	10

Molecular weight

H_2S	34	lb/lbmol
CO	28	lb/lbmol
VOC	16	lb/lbmol

Vent Gas Pollutant Emission Rates

	Vent Gas Emissions						
Pollutant	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr		
со	424.20	10,180.88	213,798.43	26.72	106.9		
VOC	9.70	232.71	4,886.82	0.61	2.4		
H ₂ S	5.15	123.62	2,596.12	0.32	1.3		

Revised Appendix D1-2.xls 40 of 49

Intermittent CO₂ Vent Emissions Summary

Hydrogen Energy, Inc HECA Amendment 9/28/2009

Modeling Worst-Case 1 hr Emissions

CO (g/sec)	53.4
H ₂ S (g/sec)	0.6

Only H_2S and CO are considered for an average 1-hour Ambient Air Quality Standard. H_2S and CO one (1) hr rates assume normal venting operation.

Modeling Worst-Case 8 hr Emissions

CO (lb/8-hr)	3,393.63
CO (g/sec)	53.4

Only CO is considered for an average 8-hour Ambient Air Quality Standard. Pounds per 8-hr assumes eight (8) continuous hours of venting.

Modeling Annual Average Emissions

со	3.1
VOC	0.1
H2S	0.0

Pounds per year assumes normal venting averaged over the entire year.

Parameters

Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

Revised Appendix D1-2.xls 41 of 49

Feedstock - Dust Collection Emissions Summary

Hydrogen Energy, Inc HECA Amendment 9/28/2009

Operation

		. ,
Total Hours of Operation	8,760	hr/yr
		•

Hours per Qtr						
Q1	Q2	Q3	Q4			
2190	2190	2190	2190			

Assuming equal operation in each quarter

	Dust	Max Feed	Air Flow to	Max Collector	Emission	Max 24-hr Average		Annual Average	
	Collector	Handling	Collector	PM Emission	Factor	Feed Rate	PM Emission	Feed Rate	PM Emission
Description	No.	Rate (ton/hr)	(acfm)	Rate (lb/hr)	(lb/ton)	(ton/hr)	(lb/hr)	(ton/hr)	(lb/hr)
Truck Unloading	DC-1	900	6,467	0.277	0.00031	775	0.239	150	0.046
Coke/coal Silos (filling)	DC-2	900	16,376	0.702	0.00078	775	0.604	150	0.117
Mass Flow Bins (in/out)	DC-3	170	7,620	0.327	0.00192	170	0.327	150	0.288
Coke/coal Silos (loadout)	DC-4	170	4,872	0.209	0.00123	170	0.209	150	0.184
Crusher Inlet/Outlet	DC-5	170	4,673	0.200	0.00118	170	0.200	150	0.177
Fluxant Bins (filling)	DC-6	100	1,234	0.053	0.00053	40	0.021	6	0.003

Maximum dust collector PM emission rate based on expected supplier guarantee of 0.005 grain/scf outlet dust loading.

Duct Collector Emission Rates

	Collector Emissions					
Pollutant	lb/hr	lb/day	lb/yr	ton/qtr	ton/yr	
Dust Collecter 1 (DC-1)	0.24	5.73	404.65	0.05	0.2	
Dust Collecter 2 (DC-2)	0.60	14.50	1,024.67	0.13	0.5	
Dust Collecter 3 (DC-3)	0.33	7.84	2,524.21	0.32	1.3	
Dust Collecter 4 (DC-4)	0.21	5.01	1,613.90	0.20	0.8	
Dust Collecter 5 (DC-5)	0.20	4.81	1,547.98	0.19	0.8	
Dust Collecter 6 (DC-6)	0.02	0.51	27.80	0.00	0.0	

Pounds per hour and pounds per day calculated based on the maximum 24-hr average emission rate.

Pounds per year calculated based on the annual average emission rate.

	lb/yr	ton/qtr	ton/yr
PM ₁₀	7,143.2	0.9	3.6
PM _{2.5}	2085.8	0.3	1.0

PM_{2.5} emission factors were determined by multiplying PM₁₀ numbers by a "PM_{2.5} fraction of PM₁₀" value. Fractional values for PM_{2.5} were taken from the SCAQMD guidance: Final - Methodology to Calculate PM_{2.5} and PM_{2.5} Significance Thresholds, October 2006: Appendix A - Updated CEIDARS Table with PM_{2.5} Fractions.

Revised Appendix D1-2.xls 42 of 49

The maximum 24-hr feed rate to the gasifiers is limited by the grinding mill capacity.

Feedstock - Dust Collection Emissions Summary

Hydrogen Energy, Inc HECA Amendment 9/28/2009

Parameters

Days per year:	365
Hours per day:	24
Minutes per hour:	60
Seconds per minute:	60

Modeling Worst-Case 24 Hour Emissions	DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
PM ₁₀ (lb/day)	5.73	14.50	7.84	5.01	4.81	0.51
PM ₁₀ (g/sec)	0.030	0.076	0.041	0.026	0.025	0.003
PM _{2.5} (lb/24-hr)	1.673	4.235	2.289	1.463	1.404	0.148
PM _{2.5} (g/sec)	0.009	0.022	0.012	0.008	0.007	0.001

PM is considered for an average 24-hour Ambient Air Quality Standard.

Pounds per hour calculated based on the maximum 24-hr average emission rate.

Modeling Annual Average Emissions	DC-1	DC-2	DC-3	DC-4	DC-5	DC-6
PM ₁₀ (lb/yr)	404.65	1,024.67	2,524.21	1,613.90	1,547.98	27.80
PM ₁₀ (g/sec)	0.006	0.015	0.036	0.023	0.022	0.000
PM _{2.5} (lb/24-hr)	118.158	299.204	737.068	471.259	452.010	8.117
PM _{2.5} (g/sec)	0.002	0.004	0.011	0.007	0.007	0.000

Pounds per year calculated based on the annual average emission rate.

Revised Appendix D1-2.xls 43 of 49

GHG Emissions Summary by Source

Emissions Summary

Hydrogen Energy, Inc HECA Amendment 9/28/2009

GHG emissions are numerically depicted as metric tons (tonne) of carbon dioxide equivalents (CO₂e). CO₂e represents CO₂ plus the additional warming potential from CH₄ and N₂O. CH₄ and N₂O have 21 and 310 times the warming potential of CO₂, respectively.

Natural Gas GHG Emission Factors

Diesel GHG Emission Factors

CO ₂ =	52.78	kg/MMBtu =	116.36	lb/MMBtu	CO ₂ =	10.15	kg/gal =	22.38	lb/gal
CH ₄ =	0.0059	kg/MMBtu =	0.013	lb/MMBtu	CH ₄ =	0.0003	kg/gal =	0.001	lb/gal
$N_2O =$	0.0001	kg/MMBtu =	0.00022	lb/MMBtu	$N_2O =$	0.0001	kg/gal =	0.0002	lb/gal

CO₂, CH₄, and N₂O emission factors are taken from Appendix C of the California Climate Action Registry (CCAR) General Reporting Protocol Version 2.2 (March 2007)

HRSG Stack

TINOG Glack						
Operating Ho	urs	50	hr/yr			
HRSG Heat I	nput	1,998 MMBtu/hr]		
				_		
CO ₂ =	5,274	tonne/yr				
CH ₄ =	1	tonne/yr =	12	tonne CO ₂ e/yr		
$N_2O =$	0.01	tonne/yr =	3	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr =	5,290

During mature operation of the HRSG, the unit will fire only syngas, except during periods of startup and shutdown.

Startup and shutdown of the HRSG will be accomplished using natural gas. The total startup and shutdown operating hours are estimated at 50 hr/yr.

HRSG heat input rate is assumed to be the maximum heat input rate firing natural gas, which corresponds to winter minimum (20 F).

HRSG Stack - Burning Hydrogen-Rich Fuel

Operating Ho	urs	8,322	hr/yr		Syngas GHG Emission Factors		
HRSG Heat I	RSG Heat Input 2,432 MMBtu/hr		CO ₂ =	28.1	lb/MMBtu		
CO ₂ =	257,881	tonne/yr			Total to	nne CO ₂ e/yr =	257,881

During mature operation of the HRSG, the unit will fire only syngas, except during periods of startup and shutdown.

HRSG heat input rate is assumed to be the maximum heat input rate firing syngas.

Revised Appendix D1-2.xls 44 of 49

GHG Emissions Summary by Source

Emissions Summary

Hydrogen Energy, Inc HECA Amendment 9/28/2009

GHG emissions are numerically depicted as metric tons (tonne) of carbon dioxide equivalents (CO₂e). CO₂e represents CO₂ plus the additional warming potential from CH₄ and N₂O. CH₄ and N₂O have 21 and 310 times the warming potential of CO₂, respectively.

Auxiliary Boiler

Adams, Jones									
Operating Ho	ours	2,190	hr/yr						
HRSG Heat I	Input	142	MMBtu/hr	1					
				_					
$CO_2 =$	16,418	tonne/yr							
CH ₄ =	2	tonne/yr =	39	tonne CO ₂ e/yr					
$N_2O =$	0.03	tonne/yr =	10	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr =	16,466			

Emergency Generators

Operating Ho	ours	50	hr/yr			
HRSG Heat Input		2,800	Bhp			
$CO_2 =$	3,201	lb/hr =	73	tonne CO ₂ /yr		
CH ₄ =	0.09	lb/hr =	0.045	tonne CO ₂ e/yr		
$N_2O =$	0.03	lb/hr =	0.2218	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr* =	146

The following conversions were used to convert from lb/gallon to lb/hp-hour; and then multiplying by the rated horsepower rating: 1 gallon/137,000 Btu; and 7,000 Btu/hp-hour.

Fire Water Pump

Operating H	ours	100	00 hr/yr			
HRSG Heat Input		556	Bhp			
$CO_2 =$	636	lb/hr =	29	tonne CO ₂ /yr		
CH ₄ =	0.02	lb/hr =	0.018	tonne CO ₂ e/yr		
$N_2O =$	0.01	lb/hr =	0.0881	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr =	29

The following conversions were used to convert from lb/gallon to lb/hp-hour; and then multiplying by the rated horsepower rating: 1 gallon/137,000 Btu; and 7,000 Btu/hp-hour.

Revised Appendix D1-2.xls 45 of 49

^{*} Total tonnes CO₂e per year represent the contributions from both generators.

Hydrogen Energy, Inc HECA Amendment 9/28/2009

GHG emissions are numerically depicted as metric tons (tonne) of carbon dioxide equivalents (CO_2e). CO_2e represents CO_2 plus the additional warming potential from CH_4 and N_2O . CH_4 and N_2O have 21 and 310 times the warming potential of CO_2 , respectively.

Gasification Flare

Pilot Opera	tion					
Operating Hours 8,760		hr/yr]			
HRSG Heat Input 0		0.5	MMBtu/hr]		
CO ₂ =	231	tonne/yr				
CH ₄ =	0.03	tonne/yr =	0.5	tonne CO ₂ e/yr		
$N_2O =$	0.0004	tonne/yr =	0.1	tonne CO2e/yr	Total tonne CO ₂ e/yr =	232
Flaring Eve	nts			_		
Total Opera	tion	115,500	MMBtu/yr]		
CO ₂ =	6,098	tonne/yr				
CH ₄ =	0.7	tonne/yr =	14	tonne CO2e/yr		
$N_2O =$	0.01	tonne/yr =	4	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr =	6,116

GHG emissions from flaring events are conservatively estimated using GHG emission factors for natural gas combustion.

Revised Appendix D1-2.xls 46 of 49

Hydrogen Energy, Inc HECA Amendment 9/28/2009

GHG emissions are numerically depicted as metric tons (tonne) of carbon dioxide equivalents (CO_2e). CO_2e represents CO_2 plus the additional warming potential from CH_4 and N_2O . CH_4 and N_2O have 21 and 310 times the warming potential of CO_2 , respectively.

SRU Flare

Pilot Operati	ion			_				
Operating Ho		8,760	hr/yr					
HRSG Heat I	nput	0.3	MMBtu/hr					
			•					
CO ₂ =	139	tonne/yr						
CH ₄ =	0.02	tonne/yr =	0.3	tonne CO ₂ e/yr				
$N_2O =$	0.0003	tonne/yr =	0.08	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr =	139		
Flaring Events (assist gas)								
Operating Ho		6	hr/yr	7				
HRSG Heat I		36	MMBtu/hr					
				_				
CO ₂ =	11	tonne/yr						
CH ₄ =	0.001	tonne/yr =	0.03	tonne CO ₂ e/yr				
$N_2O =$	0.00002	tonne/yr =	0.007	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr =	11		
Throughput	(inerts)							
$H_2S =$	(morto)	25	%	7				
CO ₂ (inerts) =	=	75	%	_				
$H_2S =$		72	lbmol/hr					
CO ₂ (inerts) =		216	lbmol/hr					
CO ₂ (inerts) =		9,488	lb/hr					
Operating Ho	ours	6	hr/yr]				
				ſ	Total tanna CO alim	00		
					Total tonne CO ₂ e/yr =	26		

GHG emissions from flaring events are conservatively estimated using GHG emission factors for natural gas combustion.

Revised Appendix D1-2.xls 47 of 49

Throughtput (inerts) amount calculated from the relationship of CO2 to H2S in the SRU Flare.

Hydrogen Energy, Inc HECA Amendment 9/28/2009

GHG emissions are numerically depicted as metric tons (tonne) of carbon dioxide equivalents (CO_2e). CO_2e represents CO_2 plus the additional warming potential from CH_4 and N_2O . CH_4 and N_2O have 21 and 310 times the warming potential of CO_2 , respectively.

Rectisol Flare

Pilot Opera	tion					
Operating Hours		8,760	hr/yr			
HRSG Heat Input		0.3	MMBtu/hr			
		·		_		
$CO_2 =$	139	tonne/yr				
CH ₄ =	0.02	tonne/yr =	0.3	tonne CO ₂ e/yr		
$N_2O =$	0.0003	tonne/yr =	0.08	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr =	139
		-		· .	•	

GHG emissions from flaring events are conservatively estimated using GHG emission factors for natural gas combustion.

Tail Gas Thermal Oxidizer

Process Ven	t Disposal En	nissions				
Operating Hours		8,760	hr/yr			
HRSG Heat Input		10	MMBtu/hr			
		_	•			
$CO_2 =$	4,625	tonne/yr				
CH ₄ =	0.52	tonne/yr =	10.9	tonne CO ₂ e/yr		
$N_2O =$	0.0088	tonne/yr =	2.7	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr =	4,638
SRU Startup	Waste Gas D	isposal		_		
Operating Hours		300	hr/yr			
HRSG Heat Input		10	MMBtu/hr			
CO ₂ =	158	tonne/yr				
CH ₄ =	0.018	tonne/yr =	0.37	tonne CO ₂ e/yr		
$N_2O =$	0.00030	tonne/yr =	0.093	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr =	159

GHG emissions from flaring events are conservatively estimated using GHG emission factors for natural gas combustion.

Revised Appendix D1-2.xls 48 of 49

GHG Emissions Summary by Source

Emissions Summary

Hydrogen Energy, Inc HECA Amendment 9/28/2009

GHG emissions are numerically depicted as metric tons (tonne) of carbon dioxide equivalents (CO_2e). CO_2e represents CO_2 plus the additional warming potential from CH_4 and N_2O . CH_4 and N_2O have 21 and 310 times the warming potential of CO_2 , respectively.

Intermittent CO₂ Vent

504 hr/yr
656,000 lb/hr
<u> </u>

Assumes 21 days per year venting at full rate.

Gasifier Warming

Operating Hours		1,800	hr/yr			
HRSG Heat Input		18	MMBtu/hr	1		
				=		
CO ₂ =	1,711	tonne/yr				
CH ₄ =	0	tonne/yr =	4	tonne CO ₂ e/yr		
$N_2O =$	0.00	tonne/yr =	1	tonne CO ₂ e/yr	Total tonne CO ₂ e/yr =	1,716

Total tonne CO₂e/yr =	442,998

Revised Appendix D1-2.xls 49 of 49

REVISED PORTIONS OF APPENDIX T DESCRIPTION OF OFFSET PACKAGE

REVISED PORTIONS OF APPENDIX T DESCRIPTION OF OFFSET PACKAGE

Tables T-1 and T-2 have been revised to reflect the elimination of the GE LMS100 $^{\circ}$ auxiliary combustion turbine generator (CTG) and the reduction of PM $_{10}$ and PM $_{2.5}$ emission rates from the GE Frame 7B CTG/HRSG when firing hydrogen-rich fuel. The remaining portions of Appendix T are unchanged.

Revised Table T-1 Project Annual Operating Emissions

Pollutant	Annual Operational Emission (tons/year)	Annual Operational Emission (pounds/year)	Offset Requirement Threshold (pounds/year)
VOC	36.1	72,156.09	20,000
NO _x	186.4	372,841.56	20,000
SO_x	38.4	76,712.73	54,750
PM_{10}	111.4	222,700.73	29,200

Source: HECA Project

Notes:

 $NO_x = nitrogen oxide(s)$

 PM_{10} = particulate matter less than 10 microns in diameter

 $SO_x = sulfur oxides$

VOC = volatile organic compounds

Revised Table T-2 Estimated ERCs Required

Pollutant	Total Annual Offset Requirement (pounds/year)	Total Quarterly Offset Requirement (pounds/quarter)	Annual ERC* (pounds/year)	Quarterly ERC* (pounds/quarter)
VOC	52,156	13,039	78,234	19,559
NO_X	352,842	88,210	529,262	132,316
SO ₂	21,963	5,491	32,944	8,236
PM_{10}	193,501	48,375	290,251	72,563

^{*} assumed 1.5 distance ratio

Notes:

ERC = emission reduction credits

 $NO_X = nitrogen oxide(s)$

 PM_{10} = particulate matter less than 10 microns

 $SO_2 = sulfur oxides$

VOC = volatile organic compounds

BEFORE THE ENERGY RESOURCES CONSERVATION AND DEVELOPMENT COMMISSION OF THE STATE OF CALIFORNIA 1516 NINTH STREET, SACRAMENTO, CA 95814 1-800-822-6228 – WWW.ENERGY.CA.GOV

APPLICATION FOR CERTIFICATION FOR THE HYDROGEN ENERGY CALIFORNIA PROJECT Docket No. 08-AFC-8

PROOF OF SERVICE LIST (Rev. 9/3/09)

APPLICANT

Gregory D. Skannal
Tiffany Rau
Rick Harrison
Hydrogen Energy International LLC
One World Trade Center, Suite 1600
Long Beach, CA 90831
gregory.skannal@hydrogenenergy.com
tiffany.rau@hydrogenenergy.com
rick.harrison@hydrogenenergy.com

Asteghik Khajetoonans, Senior BP Legal Attorney BP America, Inc. 6 Centerpointe Drive, LPR 6-550 La Palma, CA 90623 Asteghik.Khajetoorians@bp.com

APPLICANT'S CONSULTANT

Dale Shileikis, Vice President Energy Services Manager Major Environmental Programs URS Corporation 221 Main Street, Suite 600 San Francisco, CA 94105-1917 dale shileikis@urscorp.com

COUNSEL FOR APPLICANT

Michael J. Carroll Latham & Watkins, LLP 650 Town Center Drive, 20th FI. Costa Mesa, CA 92626-1925 michael.carroll@lw.com

INTERESTED AGENCIES

California ISO e-recipient@caiso.com

INTERVENORS

*Tom Frantz Association of Irritated Residents 30100 Orange Street Shafter, CA 93263 tfrantz@bak.rr.com

ENERGY COMMISSION

JAMES D. BOYD Vice Chair and Presiding Member jboyd@energy.state.ca.us

JEFFREY D. BYRON Commissioner and Associate Member jbyron@energy.state.ca.us

Raoul Renaud Hearing Officer rrenaud@energy.state.ca.us

Rod Jones Project Manager rjones@energy.state.ca.us

Lisa De Carlo Staff Counsel Idecarlo@energy.state.ca.us

Public Adviser's Office publicadviser@energy.state.ca.us

DECLARATION OF SERVICE

I, <u>Catherine Short</u>, declare that on <u>September 30</u>, 2009, I served and filed copies of the attached <u>Amendment to the Revised Application for Certification</u>, dated <u>September</u>, 2009. The original document, filed with the Docket Unit, is accompanied by a copy of the most recent Proof of Service list, located on the web page for this project at: [www.energy.ca.gov/sitingcases/hydrogen_energy].

The documents have been sent to both the other parties in this proceeding (as shown on the Proof of Service list) and to the Commission's Docket Unit, in the following manner:

(Check all that Apply)

•	• • • •
	FOR SERVICE TO ALL OTHER PARTIES:
	sent electronically to all email addresses on the Proof of Service list
Х	by personal delivery or by depositing in the United States mail at <u>San Francisco, CA</u> with first-class postage thereon fully prepaid and addressed as provided on the Proof of Service list above to those addresses NO T marked "email preferred."
AND	FOR FILING WITH THE ENERGY COMMISSION:
	sending an original paper copy and one electronic copy, mailed and emailed respectively, to the address below (<i>preferred method</i>);
OR	
X	depositing in the mail an original and 12 paper copies, as follows:
	CALIFORNIA ENERGY COMMISSION Attn: Docket No. <u>08-AFC-8</u> 1516 Ninth Street, MS-4

Attn: Docket No. <u>08-AFC-8</u> 1516 Ninth Street, MS-4 Sacramento, CA 95814-5512

docket@energy.state.ca.us

I declare under penalty of perjury that the foregoing is true and correct.

(Short