Hydrogen Fuel Cell Vehicles

Tim Brown, Ph.D. Technology Manager Sustainable Transportation

National Fuel Cell Research Center
University of California
Irvine, California 92697-3550
http://www.apep.uci.edu

DOCKET

09-ALT-1

DATE 9/29/2009

RECD. 9/30/2009

Transportation Problem

Three forcing functions are driving the development of alternative transportation options

The only successful alternative is one that will meet the needs of consumers and the economy

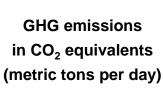
Air Quality

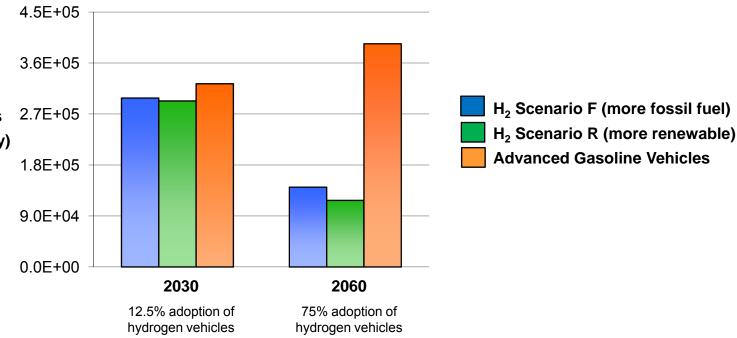
- CARB Strategic
 Plan
- EPA Clean Air Act National Ambient Clean Air Standards

Global Climate Change

- AB 32
- Pavley Law

Petroleum Dependence

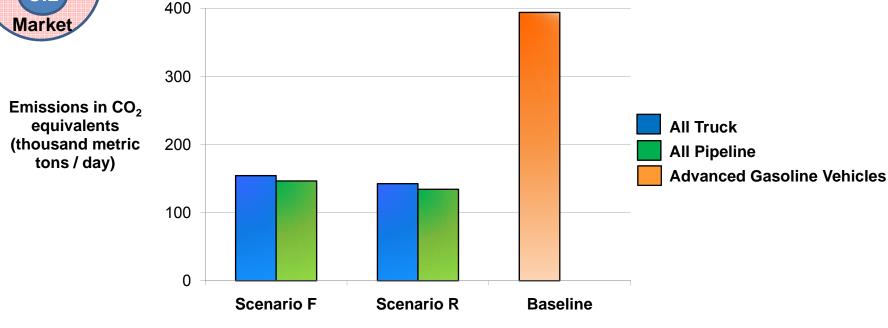

- Geopolitical instability
- Price uncertainty


Market Acceptance

Hydrogen Reduces GHG Emissions

Well-to-wheel GHG emissions are drastically reduced for a realistic *mix of H*₂ *generation technologies*

Results from NFCRC STREET modeling tool as published in:

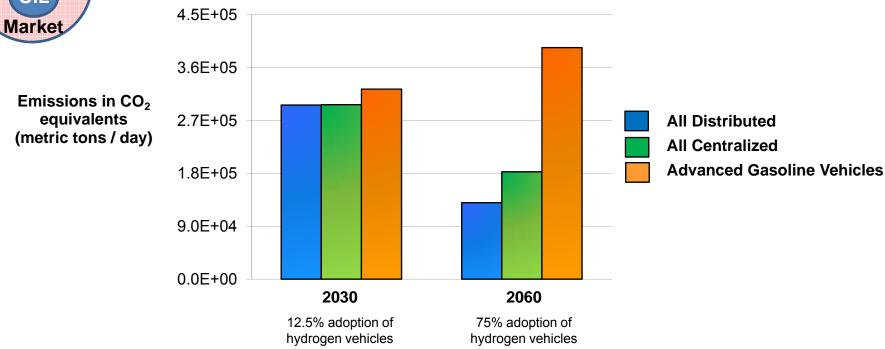

Stephens-Romero, Samuelsen. Demonstration of a novel assessment methodology for hydrogen infrastructure deployment International Journal of Hydrogen Energy, Volume 34, Issue 2, January 2009, Pages 628-641

Hydrogen Reduces GHG Emissions

Well-to-wheel GHG emissions are drastically reduced regardless of H₂ delivery method

206075% adoption of hydrogen vehicles

Results from NFCRC STREET modeling tool as published in:

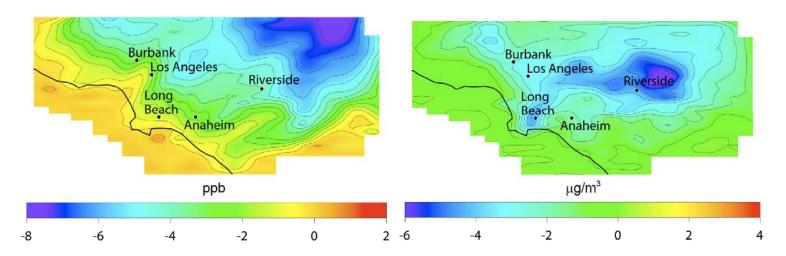

Stephens-Romero, Samuelsen. Demonstration of a novel assessment methodology for hydrogen infrastructure deployment International Journal of Hydrogen Energy, Volume 34, Issue 2, January 2009, Pages 628-641

Hydrogen Reduces GHG Emissions

Well-to-wheel GHG emissions are drastically reduced regardless of H₂ generation location

Results from NFCRC STREET modeling tool as published in:

Stephens-Romero, Samuelsen. Demonstration of a novel assessment methodology for hydrogen infrastructure deployment International Journal of Hydrogen Energy, Volume 34, Issue 2, January 2009, Pages 628-641

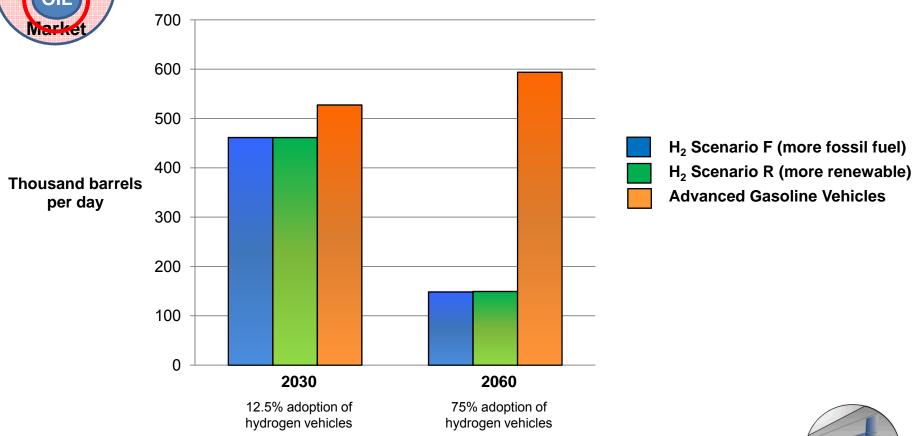

Hydrogen Improves Air Quality

FCVs emit zero criteria pollutants resulting in dramatic air quality improvements even when H₂ is generated in urban areas

8-hr Ozone, 75% FCV Penetration (Δ with respect to the baseline)

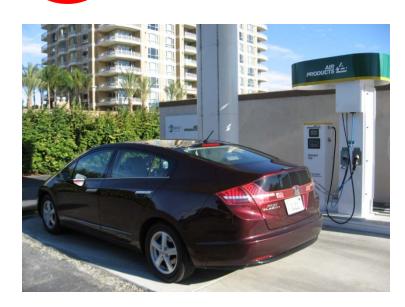
Particulate Matter, 75% FCV Penetration (Δ with respect to the baseline)

Results from NFCRC STREET modeling tool as published in:


Stephens-Romero, Carreras-Sospedra, Brouwer, Dabdub, Samuelsen. Determining Air Quality and Greenhouse Gas Impacts of Hydrogen Infrastructure and Fuel Cell Vehicles Environmental Science & Technology, In Press

Hydrogen Displaces Petroleum

FCVs use zero petroleum and can significantly lesson our dependence on oil


Hydrogen Vehicles are Marketable

FCVs provide range competitive with current gasoline

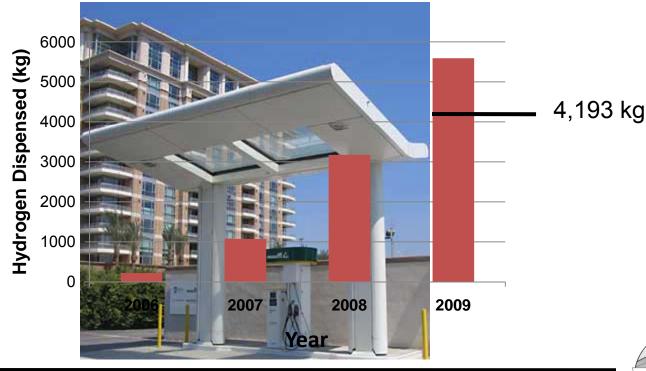
vehicles

Marke

Kia Borrego FCEV: 426 miles

Honda FCX Clarity 240 miles

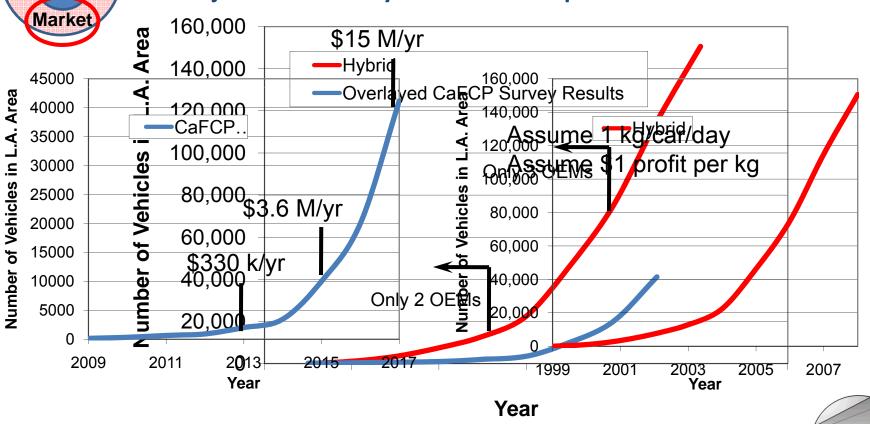
Toyota FCHV-adv: 431 miles



Hydrogen Infrastructure

UC Irvine station usage is continually increasing

- Station was established as research facility for vehicles and fueling
- We are currently operating near our design limit of 25 kg/day
- Not uncommon to find 2 or 3 cars in a line waiting for fuel



Hydrogen Infrastructure

CA Fuel Cell Partnership survey results show 40,000 FCVs in southern California by 2017

Projections are very modest in comparison to historic HEV sales

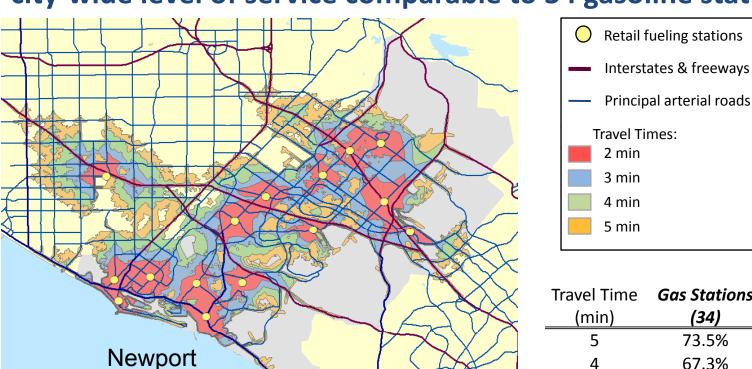
OIL

Bridge Between 2009 and ~2017

Infrastructure needs to reach threshold for vehicle commercialization

- OEMs can only sell vehicles if fueling is sufficient enough for normal day-to-day requirements
- H₂ station "cluster" concept addresses this problem for localized areas

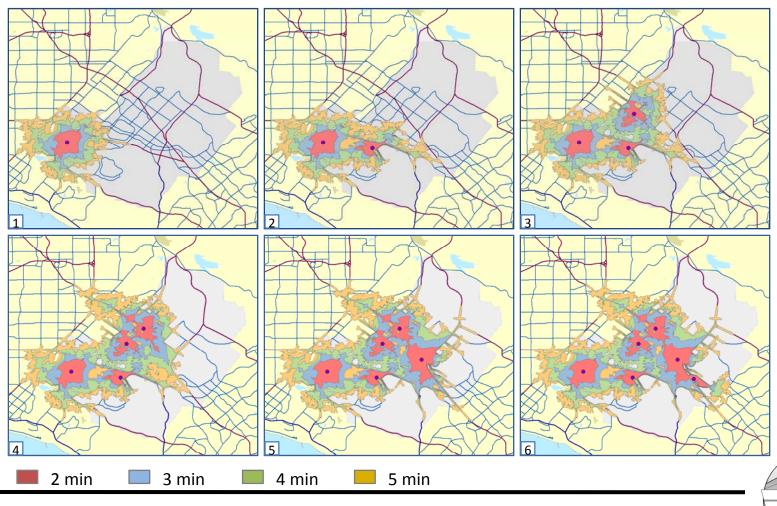
UC Irvine STREET modeling tool optimizes station location in near term to overcome *activation energy* necessary for commercialization


- Roadway network optimization algorithm
- Land use
- Travel density
- Population centers
- Stakeholder input
- OEM customer data

11/14

Blueprint for Hydrogen Station Clusters

Irvine case study: 8 well-placed H₂ stations can guarantee a basic city-wide level of service comparable to 34 gasoline stations.


Travel Time	Gas Stations	H, Stations			
(min)	(34)	(8)			
5	73.5%	66.4%			
4	67.3%	58.2%			
3	54.0%	45.1%			
2	42.8%	24.3%			

Beach

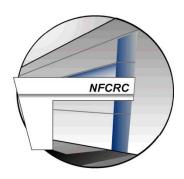
Hydrogen Station Rollout Plan

Station rollout is also essential in early years

118 Investment Recommendations

NFCRC recommendations:

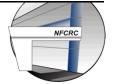
- Infrastructure
- Infrastructure planning
- Renewable H₂ generation technology
- Technologies to reduce the fueling pressure (e.g., increased FC stack efficiency, on board fuel storage technology, plug-in capability)
- FC specialty vehicle deployment
- Consumer vehicle use behavior to inform station design and operation
- HTFC-H₂ tri-generation (NG, DG, LFG, biogas)
- H₂ compressor technology (increase efficiency)
- H₂ leak control (fuel transfer, vehicle storage and injection, pipeline, storage,...)
- Consumer safety (enclosed space: ordorant? Sensors? ...)
- Weights and Measures

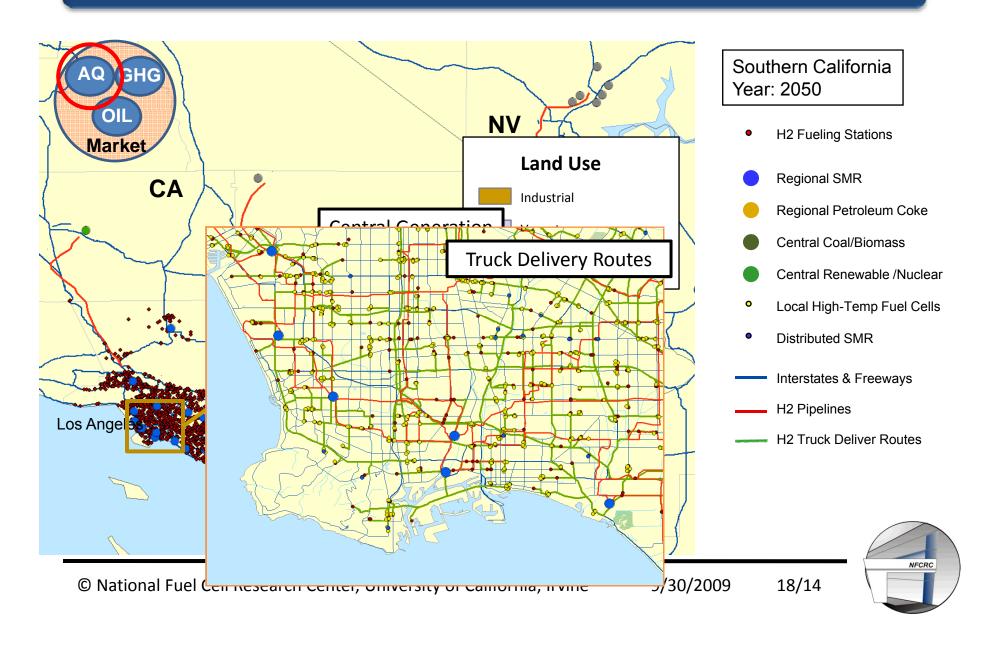


14/14

Hydrogen Fuel Cell Vehicles

Tim Brown, Ph.D.
Technology Manager Sustainable Transportation


National Fuel Cell Research Center
University of California
Irvine, California 92697-3550
http://www.apep.uci.edu


Back up Slides

	Scenari	o-R:			Scenari	o-F:			
	H ₂ generated from more renewable sources				H ₂ gene	H ₂ generated from more fossil fuel source			
Population of HFCV Hydrogen demand (kg/day) VMT/day by HFCV				10,162,500 5,943,730 573,807,694				10,162,500 5,943,730 573,807,694	
Hydrogen Generation	Number of facilities	H ₂ output (kg/day)	Percent contribution	Location relative to the SoCAB	Number of facilities	H ₂ output (kg/day)	Percent contribution	Location relative to the SoCAB	
Centralized									
Steam Methane Reforming	15	2,022,285	34.0%	Inside	16	2,157,104	36.3%	Inside	
Coal IGCC	5	641,560	10.8%	Outside	12	1,539,744	25.9%	Outside	
Petroleum Coke IGCC	0	0	0.0%	Inside	2	247,466	4.2%	Inside	
Electrolysis Distributed	7	1,905,133	32.1%	Outside	7	429,196	7.2%	Outside	
Steam Methane Reforming	155	135,700	2.3%	Inside	155	135,700	2.3%	Inside	
Stationary Fuel Cell	2,023	736,372	12.4%	Inside	2,560	931,840	15.7%	Inside	
Electrolysis	950	305,942	5.1%	Inside	950	305,942	5.1%	Inside	
Home or Office Fueling	39,348	196,738	3.3%	Inside	39,348	196,738	3.3%	Inside	
Hydrogen Distribution	Distance (km/kg H ₂)	H ₂ throughput (kg/day)			Distance (km/kg H ₂)	H ₂ throughput (kg/day)			
Remote pipelines	50	2,546,693			50	1,968,940			
Urban pipelines	15	3,064,615			15	3,064,615			
Liquid tanker	30	1,504,363			30	1,308,895			
		H ₂ delivered	Percent			H ₂ delivered	Percent		
Hydrogen Refueling		(kg/day)	contribution			(kg/day)	contribution		
140 bar gaseous fueling		4,108,125	70%			4,108,125	70%		
350 bar gaseous fueling		1,760,625	30%			1,760,625	30%		

Hydrogen Improves Air Quality

